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Abstract. A solid packing of a circular disk U is a sequence of disjoint open

circular subdisks Ui, U2, ■ • • whose total area equals that of U. The Mergelyan-

Wesler theorem asserts that the sum of radii diverges; here numerical evidence is

presented that the sum of ath powers of the radii diverges for every a < 1.306951.

This is based on inscribing a particular sequence of 19660 disks, fitting a power law

for the radii, and relating the exponent of the power law to the above constant. |

1. We shall be concerned here with solid packings of a closed circular disk U.

Such a packing P consists of a sequence of open pairwise disjoint circular disks

Ui, U2, ■ ■ ■ which are subsets of U; P is called solid if the areas of U and UT=i Un

are the same. Let r be the radius of U and rn that of Un so that the condition for a

solid packing is r2 = £?=i r„2; the Mergelyan-Wesler theorem [1], [2], asserts then

that £T-i r„ diverges. Sums of the form £T=i rna have been considered in [3] : for

every solid packing P there is a number e{P), called its exponent, given by

e(P) = sup^x: £ r/diverges r

or by

e(P) = iniiy. £ rny converges \ ,

and one wishes now to study the set

B = {u'.u = e(P), P is a solid packing} .

Call a solid packing osculatory if its disks are determined in the following manner :

J7i is an arbitrary subdisk of U, and from then on each successive Un is the biggest

disk fitting into the as yet uncovered part of U. It is shown in [3] that all osculatory

packings have the same exponent S which satisfies

(1) 1.035 < S < 1.999971 ,

and that there exist solid packings P such that e(P) = 2. Since an osculatory packing

seems to minimize the exponent, the above suggests the conjecture

(2) B = [S, 2] .

Our main interest here will be in a numerical determination of S, and we present

numerical evidence which suggests that, approximately,

S = 1.306951 .

2. In this section we deal with the configuration of three unit-radius circles

A, B, C, pairwise externally tangent, and bounding a curvilinear triangle Z. Let the
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largest, 0th generation, circle Ci be inscribed into Z, then inscribe the three first

generation circles into the three curvilinear triangles of Z — Ci, then the nine

second generation circles, and so on. Let the radii of all the circles from Ci on, be

ri, r2, • ■ -, then the solid packing constant S of (1) is given by

S = sup i u: £ rn diverges? .

To be able to apply numerical methods we follow [4] and introduce the functions

fiy) and m(y) : fiy) is the fraction of the area of Z covered by the circles of radius

a?/, and mOy) is their number. Then

(3) fiy) = Ki f x'dmix) ,

(4) miy) =K2j x~2dfOx) ,
V

where Ki and K2 are constants, and the oth moment is

oo ri

(5) £r„° = .R.3 lim  /   AdmOx) .
n=l ¡/-H-0 JV

The functions fix) and mix) can be numerically determined for suitable values of x,

and it is found that fOx) and m(x) can be well fitted near x = 0 by power-laws :

(6) fix) = 1 - Aixai ,       mix) = A2x~"2 .

By (3), (4), (5) this leads at once to S = 2 — ai — a2. We shall work with the func-

tion mix) since it is somewhat easier to count the number of circles of an osculatory

packing, whose radii exceed a given bound, than to add the squares of their radii.

Computation of the radii proceeds readily on the basis of Soddy's formula [5],

which states that if a, b, c are the curvatures of three pairwise externally tangent

circles, then the curvature of the smaller of the two circles tangent to the three is

a + b + c + 2(a6 + ac + be)112. In the order of descending magnitude the first

19660 circles inscribed into Z were examined, the results are displayed in Table 1.

There the index n ranges from 1 to 20, Num(w) is the number of circles whose radii

are ^ (lOOOn)-1, and Fit(n) is the function obtained by fitting (by least squares)

the best power-law of the form NOn) = Anb to the data Num(n). It turns out that

Nin) = 3926.48-n1'306961.

3. The solid packings P, exponents e(P), constant S, and the conjecture (2) are

all in reference to a packing of a circular disk by similar disks. However, a con-

siderable generalization is possible. Let U he an arbitrary plane convex body and

let K be the interior of another convex body. It is assumed that the boundary of K

does not contain a pair of parallel straight segments. Consider the family F of all

homothetic images of the closure of K, then F covers U in the sense of Vitali and by

Vitali's covering theorem [6], there exists a countable subset of F, consisting of sub-

sets Ui, U2, Uz, • ■ ■ of U, whose interiors are pairwise disjoint and satisfy the solid

packing condition :

Area (Í7) = £ Area (£/„) .
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We call the sequence Ui, U2,

exponent eiK, P) by

a solid K-packing P of U. Next, one defines the

eiK, P) = sup ^ a;: £ [diam (Un)]x diverges
I n—l

and the set BiK) by

B(K) = {u:u = eiK, P), P is a solid K-packing} .

Both are easily shown to be independent of U. The equivalent of the Mergelyan-

Wesler theorem holds here and we have eiK, P) 2: 1. By the methods of [3] one can

show that there exist solid packings P such that eiK, P) = 2. Further, solid K-

packings analogous to the osculatory ones can be defined, and shown to have the

same exponent SiK). This leads to the generalization of the conjecture (2):

(7) BiK) = [SiK), 2]

The packing constants SiK) do not appear to be easy to calculate except when K

is a triangle ; we have then

SiK) = log3/log2 = 1.585

It might perhaps be conjectured that as K varies over all admissible convex bodies,

SiK) attains its minimum for a circle, and its maximum for a triangle. The con-

jecture appears to be contradicted if we take for K a "round" square, for instance,

the region bounded by the locus of the equation a;10 + y10 = 1, for, one might argue,

such figures "almost" fit together to form an economical packing. However, the

near fit breaks down as soon as one has to fit the interstices with smaller homothetic

images of K.

Table 1

Num (n) Fit (n)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
IS
19
20

388
973

1672
2428
3220
4066
4951
5947
6955
7984
9058

10075
11230
12373
13450
14677
15970
17095
18433
19660

393
972

1650
2404
3218
4083
4995
5947
6937
7961
9017

10103
11217
12358
13504
14714
15927
17162
18419
19696
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The packing constants S(K) appear to measure, in a certain sense, the efficiency

of a convex set K to form a plane packing, and they certainly merit further numeri-

cal and theoretical study.

4. The computational work was done on the Bell Telephone Laboratories'

machine GE-645, the programming presented no particular difficulties, and the

total central processor running time was 90 seconds. The author wishes to thank

D. Bzowy and M. D. Mcllroy for suggestions and help in preparing the problem

for the machine.
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