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Abstract: This paper attempts to apply a complete finite element approach for the solution of problems on coupled dy-
namical thermoelasticity theory. Presently, we employ the extended thermoelasticity theory proposed by Lord and Shulman
(1969) and consider a problem of linear thermoelasticity for the hollow disk with a thermal shock applied on its inner
boundary. The thermoelastic equations have been solved using the complete finite element approach, where we have used
discretization in the time domain as well as space domain and applied the Galerkin’s approach of the finite element for
both time and space domain. We implement our scheme for a particular case and carry out computational work to obtain
the numerical solution of the problem. Further, we compare the present results with the solutions obtained by FEM with
Newmark time integration method and the solutions obtained by a trans-FEM method in which Laplace transform technique
is used for the time domain. We show that, there is a perfect match in solutions of complete finite element approach with
trans-finite element method and Newmark method. The efficiency of the method with respect to computation time is also
compared with other two methods.
Key words: coupled thermoelasticity, extended thermoelasticity theory, finite element method, Newmark method, trans-
FEM

I. INTRODUCTION

According to the classical uncoupled theory of heat con-
duction, the conduction of heat in a material is only depen-
dent on the temperature gradient, and the theory ignores the
effect of other mechanical causes, like the effect of elastic
property of the material on the heat transfer. For the large
time scale or small heat flux this theory behaves well, but for
the short time scale or high heat flux values it fails to explain
some physical phenomena completely. Also, the heat con-
duction equation based on the theory is of parabolic type in
nature and hence predicts the infinite speed of heat transfer,
which is not acceptable either from the physical or experi-

mental view. Therefore, many researchers have tried to over-
come such situations and proposed some modification to the
classical theory.

Biot [1] introduced the coupling of thermal and elastic
fields based on the Fourier’s law of heat conduction. This
theory was the first attempt to consider the mutual interaction
of thermal and mechanical fields during thermo-mechanical
loading on an elastic body. Hence Biot’s theory takes into
account the elastic effects on the heat conduction and vice
versa. However, this theory suffers from the drawback of in-
finite speed of heat propagation due to the involvement of
the classical heat conduction law in this theory. Chandra-
sekharaiah [2, 3] discussed the development of some mod-
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ified thermoelasticity theories predicting finite heat propaga-
tion speed and some investigations based on these modified
models. Catteneo [4] and Vernotte [5, 6] suggested a modifi-
cation to the classical theory and proposed a time delay pa-
rameter in the heat flux vector, which removes the drawback
of infinite heat speed. Lord and Shulman [7] implemented
this modification for the coupled thermoelasticity theory and
introduced an extended thermoelasticity (ETE) theory. They
obtained a solution for this coupled theory and compared
them with the conventional thermoelasticity theory. Later
on, Green and Lindsay [8] proposed the temperature-rate-
dependent thermoelasticity theory by introducing two re-
laxation parameters in the stress-strain relation and entropy
equation, while Fourier’s law remained the same. Here, it is
further worth mentioning that Green and Naghdi [9, 11] sug-
gested a new concept of thermoelasticity theory. Hetnarski
and Ignaczak [12], Hetnarski and Eslami [13] have given
a detailed discussion for GL, LS and GN models and also
discussed some theorems based on these models.

Obtaining a closed form solution of the system of cou-
pled thermoelastic equations are possible only for a few sim-
ple initial boundary value problems, and closed form solu-
tion cannot be obtained for many practical problems. Due to
this reason, in order to reduce the complexity of the prob-
lem some simplified forms of basic equations are assumed
by observations based on practical experiments. In the struc-
tural designs the use of these approximated forms of ba-
sic equations may prove good for simple structures, but
for heavy-duty equipment it does not give satisfactory re-
sponses. Hence, the calculation must be performed on the
basis of all governing equations of thermoelasticity theory
in such cases. Usually, numerical methods can be used in
these cases. Among all the numerical methods the finite
element method can be applied efficiently to various cou-
pled thermoelastic problems (see Prakash et al. [14], Mishra
et al. [15] and Xu and Li [16]). Some authors have used the
Galerkin’s approach of the finite element along with the nu-
merical transformation techniques (Laplace transform) for
the time domain to solve different thermoelasticity problems.
In this approach Laplace transformation is taken for the time
domain, and then the finite element equation is derived for
the space domain to get the solution in Laplace transforma-
tion form. Further, the suitable method for numerical inver-
sion of the transformed solution gives the final solution of the
coupled equations. A problem of the hollow disc for various
thermoelasticity model using FEM with Laplace transforma-
tion has been studied by Bagri and Eslami [17], Kothari and
Mukhopadhyay [18]. To solve coupled thermoelastic equa-
tions using the finite element method Rincon et al. [17] have
discussed an alternative way to the transformation technique
for time domain. They have suggested the discretization in
space for deriving the finite element equation and use of im-
plicit Newmark scheme to get the solution in the time do-
main. Abbas and Alzahrani [18] have used FEM with the
implicit temporal integration method to solve a mode-I crack

problem in two dimensional isotropic medium based on GN
thermoelasticity theory. Stasa [19] has given a detailed dis-
cussion for FEM to various structural problems and sug-
gested the complete finite element approach for space as well
as time domain. Balla [20] has derived the explicit formula-
tion of field variables for a two-dimensional heat conduction
equation based on the CV model using this approach.

The main motive of this work is to apply the approach
of solving coupled linear thermoelastic equations efficiently,
using a complete finite element approach. At first, we dis-
cretize the space domain into small elements of equal inter-
vals and use weak formulation to derive the finite element
equation for the space domain. Next, we discretize the time
domain, and again we apply the Galerkin’s approach of finite
element to obtain the explicit finite element equation for the
time as well as space domain. We successfully implement
this method and compute the solution of the problem for
a hollow disk. A comparison of the solution to this problem
with the solution obtained by FEM with Laplace transform
technique and with the solution obtained by FEM with the
Newmark time integration method is presented to show that
the solutions match perfectly. The computational efficiency
of the method is found to be much higher as compared to
trans-FEM and similar to the Newmark method. We believe
that this work will be helpful to solve any problem of cou-
pled thermoelasticity by applying this complete finite ele-
ment method.

II. BASIC GOVERNING EQUATIONS

The basic equations of the linear thermoelasticity theory
for homogeneous and isotropic medium following the theory
of Lord and Shulman [7] (ETE or LS theory) can be consid-
ered as follows:
The stress-displacement equation of motion in absence of
any body force:

τij,j = ρüi. (1)

Basic constitutive relations:

τij = 2µεij + λεkkδij − βθδij , (2)

qi + tq
∂qi
∂t

= −kθ,i, (3)

ρT0s = ρcEθ + βT0εkk. (4)

Strain-displacement relation:

εij =
(ui,j + uj,i)

2
. (5)

The energy balance equation without heat source:

qi,i = −ρT0ṡ. (6)
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Therefore, the heat conduction equation can be obtained
from equations (3),(4) and (6) as(

1 + tq
∂

∂t

)
(ρcE θ̇ + βT0ε̇kk) = kθ,ii. (7)

In above equations (1–7), τij , ui, εij , qi are the components
of stress tensor, displacement vector, strain tensor and heat
flux vector, respectively. θ = T − T0, T is the temperature
and T0 is the reference temperature. λ, µ are Lame’s con-
stant. β = (3λ+ 2µ)α, α is the coefficient of linear thermal
expansion. s is the entropy per unit mass. k is the thermal
conductivity. tq is the delay term in the heat flux vector. ρ is
the density of the material, and cE is the specific heat of the
material at constant strain. The subscripted comma denotes
the space derivative, and superposed dots are indicating the
time derivative. δij is the Kronecker delta. The subscripts i, j
vary from one to three.

II. 1. Problem formulation
In the present work, we consider a problem of radially

symmetric motion of a hollow disk with inner radius a and
outer radius b under the linear thermoelasticity theory based
on LS-model as described above. The material of the disc is
assumed to be homogeneous and isotropic for this problem.
So, the equations (7) can be written in the polar form as

k

(
∂2θ

∂r2
+

1

r

∂θ

∂r

)
−
(

1 + tq
∂

∂t

)[
ρcE

∂θ

∂t
+

+ βT0
∂

∂t

(
∂u

∂r
+
u

r

)]
= 0.

(8)

Further, from equations (1) and (2), we obtain the polar form
of the equation of motion in terms of displacement and tem-
perature as

(λ+ 2µ)

[
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

]
− β ∂θ

∂r
− ρ∂

2u

∂t2
= 0. (9)

The radial and circumference stress components can also
be obtained from equations (1) and (2) as

τrr = 2µ
∂u

∂r
+ λ

(
∂u

∂r
+
u

r

)
− βθ, (10)

τφφ = 2µ
u

r
+ λ

(
∂u

∂r
+
u

r

)
− βθ. (11)

For this problem, we are considering friction less inner sur-
face and apply the thermal shock on the inner boundary
of the disk. The rigid outer boundary is assumed to be insu-
lated. We also consider the homogeneous initial conditions.
Hence, we have

u(r, 0) = 0, θ(r, 0) = 0, at a ≤ r ≤ b
u̇(r, 0) = 0, θ̇(r, 0) = 0, at a ≤ r ≤ b

}
, (12)

θ(a, t) = 1− e−1000t and τrr(a, t) = 0, at t > 0
∂θ(b,t)
∂r = 0, and u(b, 0) = 0, at t > 0

}
.

(13)

Now, to make the equations in simplified non-dimen-
sional forms, we assume the following dimensionless vari-
ables:

r′ = c1n0r, θ
′ =

θ

T0
, t′ = c21n0t,

t′q = c21n0tq, (τ ′rr, τ
′
φφ) =

(
τrr
βT0

,
τφφ
βT0

)
,

u′ =
c1n0(λ+ 2µ)

βT0
u, τ ′ij =

τij
βT0

,

c21 =
(λ+ 2µ)

ρ
, n0 =

ρcE
k
.

Using the above dimensionless variables and ignoring the
prime notations for simplicity, the equations (8–11) can
be expressed as

(λ+2µ)

[
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

]
−(λ+2µ)

∂θ

∂r
−ρc21

∂2u

∂t2
= 0,

(14)(
∂2θ

∂r2
+

1

r

∂θ

∂r

)
−
(

1+ tq
∂

∂t

)
∂

∂t

[
θ + ξ

(
∂u

∂r
+
u

r

)]
= 0,

(15)

τrr =
2µ

λ+ 2µ

∂u

∂r
+

λ

λ+ 2µ

(
∂u

∂r
+
u

r

)
− θ, (16)

τφφ =
2µ

λ+ 2µ

u

r
+

λ

λ+ 2µ

(
∂u

∂r
+
u

r

)
− θ. (17)

Fig. 1. Finite element profile of the Hollow disk
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III. FINITE ELEMENT FORMULATION

Now, to solve the coupled equations (14) and (15) with
the initial conditions (12) and boundary conditions (13), we
use the Galerkin approach of the finite element method.
In this process, discretization of space domain into small
subdomains takes place (see Fig. 1), and the temperature and
displacement are approximated by the following functions
for each sub-domain:

u =

m∑
i=1

NiU
(e)
i (t), and θ =

m∑
i=1

NiΘ
(e)
i (t) (18)

where Ni, i = 1, 2, ...,m are the shape functions and
U

(e)
i (t), Θ

(e)
i (t), i = 1, 2, ...,m are the approximated nodal

displacement and temperature, respectively.
Therefore, by applying Galerkin’s approach and assuming
the shape function as weight function with the approxima-
tion (18), the equations (14) and (15) can be written in the
form ∫

V

Ni

[
(λ+ 2µ)

[
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

]
+

− (λ+ 2µ)
∂θ

∂r
− ρc21

∂2u

∂t2

]
dV = 0,

(19)

∫
V

Ni

[(
∂2θ

∂r2
+

1

r

∂θ

∂r

)
+

−
(

1 + tq
∂

∂t

)
∂

∂t

[
θ + ξ

(
∂u

∂r
+
u

r

)]]
dV = 0.

(20)

For a disk the infinitesimal volume element will be rdrdφ,
but in the present case of radial symmetry, all the vari-
ables are independent from the angle. Therefore, by consid-
ering the infinitesimal volume element as dV = rdr and
r = rk + η, k = 1, 2, ..., n in the equations (19) and (20),
we have

h∫
0

Ni

[
(λ+ 2µ)

[
∂2u

∂η2
+

1

(η + ri)

∂u

∂η
− u

(η + ri)2

]
+

− (λ+ 2µ)
∂θ

∂η
− ρc21

∂2u

∂t2

]
(η + ri)dη = 0

(21)

and

h∫
0

Ni

{[
∂2θ

∂η2
+

1

(η + rk)

∂θ

∂η

]
−
[
1 + tq

∂

∂t

]
×

×
[
∂θ

∂t
− ξ ∂

∂t

(
∂u

∂η
+

u

(η + rk)

)]}
(η + rk)dη = 0.

(22)

Now, applying integration by part in the first term of the
(21) to derive the weak formulation, we get

(λ+ 2µ)
∂u

∂η
(η + rk)Ni

∣∣∣∣h
0

+

−
h∫

0

[
Ni(λ+ 2µ)

∂u

∂η
+ (λ+ 2µ)(η + rk)

∂Ni
∂η

∂u

∂η

]
dη+

+

h∫
0

[
Ni(λ+ 2µ)(η + rk)

∂u

∂η
−Ni

u

(η + rk)

]
dη+

+

h∫
0

Ni

[
(λ+ 2µ)

∂θ

∂η
+ ρc21

∂2u

∂t2

]
(η + rk)dη = 0,

(23)

which implies that
h∫

0

[
(λ+ 2µ)(η + rk)

∂Ni
∂η

∂u

∂η
+ (λ+ 2µ)Ni

u

(η + rk)
+

+ ρc21Ni
∂2u

∂t2

]
dη +

h∫
0

Ni(λ+ 2µ)
∂θ

∂η
(η + rk)dη =

= (λ+ 2µ)(η + rk)Ni|h0 .

(24)

Similarly, from equation (22), we have

Ni
∂θ

∂η
(η + rk)

∣∣∣∣h
0

−
h∫

0

∂Ni
∂η

∂θ

∂η
(η + rk)dη+

−
h∫

0

Ni(η + rk)

(
1 + tq

∂

∂t

)
∂θ

∂t
dη+

−
h∫

0

ξ

(
1 + tq

∂

∂t

)
∂

∂t

(
∂u

∂r
+
u

r

)
Nidη = 0,

(25)

i.e.
h∫

0

∂Ni
∂η

∂θ

∂η
(η + rk)dη+

+

h∫
0

Ni(η + rk)

(
1 + tq

∂

∂t

)
∂θ

∂t
dη+

+

h∫
0

ξ

(
1 + tq

∂

∂t

)
∂

∂t

(
∂u

∂r
+
u

r

)
Nidη = 0.

(26)

Now, using the equation (18) in equations (24) and (26)
and taking i = 1, 2 we obtain the finite element equation
formulation as
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U
(e)
1

(λ+ 2µ)

h∫
0

[
(η + rk)

∂Ni
∂η

∂N1

∂η
+

NiN1

(η + rk)

]
dη

+

+ θ
(e)
1

(λ+ 2µ)

h∫
0

Ni
∂N1

∂η
(η + rk)dη

+

+ U
(e)
2

(λ+ 2µ)

h∫
0

[
(η + rk)

∂Ni
∂η

∂N2

∂η
+

NiN2

(η + rk)

]
dη

+

+ θ
(e)
2

(λ+ 2µ)

h∫
0

Ni
∂N2

∂η
(η + rk)dη

+

+ Ü
(e)
1

 h∫
0

ρc21NiN1dη

+ Ü
(e)
2

 h∫
0

ρc21NiN2dη

 =

= (λ+ 2µ)Ni
∂u

∂η
(η + rk)

∣∣∣∣rk+1

rk

,

(27)

Θ
(e)
1

[ h∫
0

∂Ni
∂η

∂N1

∂η
(η + rk)dη

]
+

+ Θ
(e)
2

[ h∫
0

∂Ni
∂η

∂N2

∂η
(η + rk)dη

]
+

+ Θ̇
(e)
1

 h∫
0

NiN1(η+rk)dη

+ Θ̇
(e)
1

[ h∫
0

NiN2(η+rk)dη

]
+

+ Θ̈
(e)
1

[
tq

h∫
0

NiN1(η+rk)dη

]
+Θ̈

(e)
1

[
tq

h∫
0

NiN2(η+rk)dη

]
+

+ U̇
(e)
1

[
ξ

h∫
0

Ni(η + rk)

(
∂N1

∂η
+

N1

(η + rk)

)
dη

]
+

+ U̇
(e)
2

ξ h∫
0

Ni(η + rk)

(
∂N1

∂η
+

N1

(η + rk)

)
dη

+

+ Ü
(e)
1

tqξ h∫
0

Ni(η + rk)

(
∂N1

∂η
+

N1

(η + rk)

)
dη

+

+ Ü
(e)
2

tqξ h∫
0

Ni(η + rk)

(
∂N2

∂η
+

N2

(η + rk)

)
dη

 =

=
∂θ

∂η
Ni(η + rk)

∣∣∣∣rk+1

rk

.

(28)

Therefore, in view of equations (27) and (28), the ma-
trix form of finite element equation for a single element can
be obtained as

[
[R11] [R12]
[R21] [R22]

]
Ü1

Θ̈1

Ü2

Θ̈2


(e)

+

+

[
[Q11] [Q12]
[Q21] [Q22]

]
U̇1

Θ̇1

U̇2

Θ̇2


(e)

+

+

[
[P11] [P12]
[P21] [P22]

]
U1

Θ2

U1

Θ2


(e)

=


J1
g1
J2
g2


(e)

(29)

where

[P11] =

[
A11

11
A12

11

A21
11 A22

11

]
, [P12] =

[
A11

12
A12

12

A21
12 A22

12

]
[P21] =

[
A11

21
A12

21

A21
21 A22

21

]
, [P22] =

[
A11

22 A12
22

A21
22 A22

22

]
[Q11] =

[
Ȧ11

11
Ȧ12

11

Ȧ21
11 Ȧ22

11

]
, [Q12] =

[
Ȧ11

12
Ȧ12

12

Ȧ21
12 Ȧ22

12

]
[Q21] =

[
Ȧ11

21
Ȧ12

21

Ȧ21
21 Ȧ22

21

]
, [Q22] =

[
Ȧ11

22 Ȧ12
22

Ȧ21
22 Ȧ22

22

]
[R11] =

[
Ä11

11
Ä12

11

Ä21
11 Ä22

11

]
, [R12] =

[
Ä11

12
Ä12

12

Ä21
12 Ä22

12

]
[R21] =

[
Ä11

21
Ä12

21

Ä21
21 Ä22

21

]
, [R22] =

[
Ä11

22 Ä12
22

A21
22 Ä22

22

]


(30)

with

A11
ij =

[
(λ+ 2µ)

∫ h
0

[
(η + rk)∂Ni

∂η
∂Nj

∂η +
NiNj

(η+rk)

]
dη
]

Ȧ11
ij = 0, Ä11

ij =
[∫ h

0
ρc21NiNjdη

]
A12
ij =

[
(λ+ 2µ)

∫ h
0
Ni

∂Nj

∂η (η + rk)dη
]

Ȧ12
ij = 0, Ä12

ij = 0

A21
ij = 0

Ȧ21
ij =

[
ξ
∫ h
0
Ni(η + rk)

(
∂Nj

∂η +
Nj

(η+rk)

)
dη
]

Ä21
ij =

[∫ h
0
tqξ
[
∂Nj

∂η Ni +
NiNj

(η+rk)

]
(η + rk)dη

]
A22
ij =

[∫ h
0
∂Ni

∂η
∂Nj

∂η (η + rk)dη
]

Ȧ22
ij =

[∫ h
0

(η + rk)NiNjdη
]

Ä12
ij =

[
tq
∫ h
0
NiNj(η + rk)dη

]



.

(31)
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Also, the load vector can be written as

J1 = −(λ+ 2µ)∂u∂η (η + rk)
∣∣∣
rk

J2 = (λ+ 2µ)∂u∂η (η + rk)
∣∣∣
rk+1

g1 = −
(
K∗

a0
+ ∂

∂t

)
∂u
∂η (η + rk)

∣∣∣
rk

g2 =
(
K∗

a0
+ ∂

∂t

)
∂u
∂η (η + rk)

∣∣∣
rk+1


. (32)

Hence, from equations (29–32) and the boundary con-
ditions (12–13), the global matrix of system of differential
equations for the whole disk are written in the form

RΩ̈ +QΩ̇ + PΩ = f (33)

where

f =



λU1 − (λ+ 2µ)θ1
0
0
.
.
0


(n−2)

,Ω =



U1

U2

.

.

.
Θn−1
Θn


(n−2)

and the matrices R, Q, P are global matrices corresponding

to the coefficients
[

[R11] [R12]
[R21] [R22]

]
,

[
[Q11] [Q12]
[Q21] [Q22]

]
and

[
[P11] [P12]
[P21] [P22]

]
of element equation (29), respec-

tively.

III. 1. Discretization in time
Now, to obtain the solution of equation (33) we fur-

ther use the finite element approach for the time domain.
For this, we divide the time domain into the nodes of length
2∆t with nodal unknowns Ωk−1, Ωk, Ωk+1and the shape
functions M1, M2, and M3. The function Ω for interval
[tk−1, tk+1] can be approximated as [19]

Ω = M1Ωi−1 +M2Ωi +M3Ωi+1 (34)

where the shape functions are assumed as

M1(t) = −1

2
p(1−p), M2 = (1+p)(1−p), M3 =

1

2
p(1+p)

(35)
and

p =
t− tk

tk+1 − tk
=
t− tk
∆t

for tk−1 ≤ t ≤ tk+1 (36)

so, dp = dt/∆t.

Therefore, from equations (34–36), we have

Ω̇(t) =
1

∆t
[(−1/2 + p)Ωk−1 − 2pΩk + (1/2 + p)Ωk+1] ,

(37)

Ω̈(t) =
1

(∆t)
2 [Ωk−1 − 2Ωk + Ωk+1] . (38)

Similarly, the vector f may be written as

f = M1(t)fk−1 +M2(t)fk +M3(t)fk+1. (39)

Now, by applying the Galerkin’s approach on equation
(33) and using equations ((34), (37–39)), we obtain

1∫
−1

w

{
R

1

(∆t)
2 [Ωk−1 − 2Ωk + Ωk+1] +

+Q
1

∆t
[(−1/2 + p)Ωk−1 − 2pΩk + (1/2 + p)Ωk+1]+

+ P

[
− 1

2
p(1− p)Ωk−1 + (1 + p)(1− p)Ωk+

+
1

2
p(1 + p)Ωk+1

]}
dp =

∫ 1

−1
w

[
− 1

2
p(1− p)fk−1+

+ (1 + p)(1− p)fk +
1

2
p(1 + p)fk+1

]
dp

(40)

where, w is the weight function and fk−1,fk, fk+1 are the
load vectors at nodal points of time element. All shape func-
tions (M1,M2,M3) can be considered as weight functions.

It has been verified that M3 shows the most favorable
stability and accuracy characteristics [19]. So, here we have
considered M3 as weight function and hence from equation
(40), we have

F1Ωk+1 = F2Ωk + F3Ωk−1 +G (41)

where

F1 =R

1∫
−1

M3dp+D∆t

1∫
−1

M3(1/2 + p)dp+

+ P (∆t)2
1∫
−1

1

2
M3p(1 + p)dp,

(42)

F2 =2R

1∫
−1

M3dp+ 2D∆t

1∫
−1

M3pdp+

+ P (∆t)2
1∫
−1

1

2
M3(1− p)(1 + p)dp,

(43)

F3 =−R
1∫
−1

M3dp−D∆t
1∫
−1

M3(−1/2+p)dp+

+ P (∆t)2
1∫
−1

1

2
M3p(1 + p)dp,

(44)
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G =−

 1∫
−1

1

2
M3p(1− p)dp

 (∆t)2fk−1+

+

 1∫
−1

M3(1 + p)(1− p)dp

 (∆t)2fk+

−

 1∫
−1

1

2
M3p(1 + p)dp

 (∆t)2fk+1.

(45)

Further, by some detailed manipulations, the equations
(42-45) can be reduced to

F1 = R+
3

2
Q∆t+

4

5
P (∆t)2, (46)

F2 = 2R+ 2Q∆t− 2

5
P (∆t)2, (47)

F3 = −R− 1

2
Q∆t+

1

5
P (∆t)2, (48)

G =

[
−1

5
fk−1 +

2

5
fk +

4

5
fk+1

]
(∆t)2. (49)

Hence, from the equation (41), together with equations
(46–49), yields an explicit form of system of equations, and
by using this explicit form, the value at Ωk+1 can be de-
termined if the nodal unknowns Ωk and Ωk−1 are known.
For the first iteration at k = 1, we first need to calculate Ω1.
For that, we use the Crank-Nicholson method which can be
given as[

2

∆t
R+Q+

∆t

2
P

]
Ω1 =

[
2

∆t
R+Q− ∆t

2
P

]
Ω0+

+ 2RΩ̇0 +
∆t

2
[f0 + f1] .

(50)

Now, the values of Ω0 and Ω̇0 are known from the initial
conditions and f1, f2 are known load vectors. Therefore, all
the unknowns can now be determined by using an iterative
scheme given by equations (41) and (50). This completes
the theoretical development of the solution method for the
present problem.

It must be pointed out that the classical Newmark time
integration method can be used to formulate the solution for
the time domain [17, 21]. In the Newmark method for cou-
pled dynamical problems, a FEM is applied to obtain the
time differential system of equation and then the Newmark
time integration technique is applied to get the complete so-
lution. In the present work we have also applied Newmark al-
gorithm to obtain the solution of equation (33) and observed

a perfect match in the behavior of all field variables for the
Newmark method and present FE approach.

IV. NUMERICAL RESULTS

Now, for implementation of the method we develop our
computer programming code using MATLAB to solve the
problem as mentioned in the previous section. We try to have
the solution to the problem by computing the temperature,
displacement, and stress distributions at different times in-
side the hollow disk of a metallic medium under considera-
tion of initial and boundary condition. We take the reference
temperature T0 = 293K. The materialistic parameters are
considered for copper metal in SI unit as [23]

λ = 7.76× 1010 kg m−1s−2, µ = 3.86× 1010 kg m−1s−2,

T0 = 293 K, ρ = 8954 kg m−3, CE = 383.1 m2 K−1 s−2,

α = 17.8× 10−6 K−1, K = 8886.73 kg m K−1 s−3.

Also, the time domain is discretized in the step size
of equal length ∆t = 0.05 and the dimensionless values
of inner and outer radii of the disk are assumed to be 1 and
10, respectively.

Fig. 2. Variation of u vs. r and t

Fig. 3. Variation of θ vs. r and t

Fig. 4. Variation of τrr vs. r and t
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Fig. 5. Variation of τφφ vs. r and t

We take the dimensionless heat flux delay parameter
tq = 0.03. In the formulation of finite element equation, we
have considered the general case, but for computation, the
linear Lagrangian polynomials are assumed as shape func-
tions. For the spatial element, the hollow disk is divided
into the 100 nodes of equal length along the radial direction
and time domain is taken from 0 to 5. Here, the computa-
tion is performed for the 100-time steps. The Fig. 2–5 rep-
resent the variations of the field variables (i.e. displacement,
temperature, radial and circumference stresses) with respect
to time and space using 3D-plots.

Fig. 2 clearly shows that at t = 0 displacement is zero
and it grows up with time. At any time displacement starts
growing up from negative values at r = 1 to attain a maxi-
mum value after some distance from the inner boundary and
then decreases to zero. As time increases the maximum val-
ues of displacement increases. The region of influence in-
creases with time.

Fig. 3 represents the variation of temperature and indi-
cates that the temperature starts decreasing from 1 to zero
value inside the disk with space. The effective domain of in-
fluence increases with the increase in time. For example, at
t = 1.2, the temperature reaches zero near r = 4.6, while for
t = 2.0 it becomes zero at 5.2. In the Fig. 4, the radial stress
(τrr) is plotted for various times and radical grids. At the in-
ner boundary it is zero and is oscillatory in nature nearer to
the inner boundary. The radial stress is compressive near the
region of inner boundary and becomes tensile while reach-
ing towards the outer boundary. Finally this field becomes
zero. The region of influence increases with time. The cir-
cumferential stress (τφφ) is plotted in the Fig. 5, displaying
that τφφ starts growing up from its minimum absolute values
(at r = 1) to a local maximum and then again after a local
minimum it increases to zero w.r.t. radial distance. Also, with
the increment of time τφφ takes larger distance to reach its
minimum and maximum. However, this stress is fully com-
pressive in nature.

In order to validate the present results we have com-
pared our solution of the problem with the corresponding
solution obtained by employing the Newmark time integra-
tion method and employing the trans-finite element method
which involves the Laplace transform technique for the
time domain and also the numerical inversion of Laplace

transform by a suitable numerical method like, Honig and
Hirdes [24], Bellman et al. [25], Stehfest method [26], etc.
Here, we follow the method for numerical inversion of the
Laplace transform given by Bellman et al. [25]. We find
that our results by the complete finite element method match
with corresponding results obtained by the trans-finite ele-
ment method and Newmark method. We particularly show
the results of the temperature field at two different times in
Fig. 6–7. The black color is used to show results for the trans-
FEM method, the red color is used to represent the solution
under the complete finite element method and the green color
represents the solution under FEM with Newmark method.

Fig. 6. Variation of θ vs. r, at t = 2.0

Fig. 7. Variation of θ vs. r, at t = 1.2

Fig. 8. Comparison of CPU time for all three methods

The similar trend of variation in the field variables and
a perfect match in results validate our results and success-
ful implementation of the complete finite element method.
For showing the efficiency of the present method over
the trans-FEM techniques, we have plotted a bar diagram
(Fig. 8) showing the CPU time (i.e. the time taken by CPU
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to run the current MATLAB programme) for three different
methods, namely, the present FEM approach, trans-FEM (in-
volving numerical Laplace inversion) and FEM+Newmark
method. It is indicated that the CPU time is much larger for
trans-FEM method and approximately the same for complete
FEM approach and FEM+Newmark approach. Hence, any
problem on coupled thermoelasticity can be solved by us-
ing this complete finite element method as discussed in the
present paper. This avoids the use of the Laplace transform
method and simplifies the method for the numerical solution
of the problem at any time.

V. CONCLUSIONS

We have attempted to solve a problem of linear coupled
thermoelasticity based on the LS model under a complete
finite element method for a homogeneous and isotropic elas-
tic solid. In this process, the finite element equations for the
present problem are derived for the space domain and time
domain by discretizing in space as well as time. The val-
idation of the results is also tested using a well-established
trans-finite element method. The trans-FEMs involve numer-
ical inversion of Laplace transform. Therefore, to apply this
approach one needs to calculate the stiffness matrix for vari-
ous values of Laplace parameter to obtain the solution at dif-
ferent time steps. In the present work we have also shown
that the complete finite element is 3-4 times faster than the
trans-FEM in the sense of CPU time. Therefore, it can be
concluded that present finite element approach can be used
as an alternative method of the FEM approach with New-
mark scheme and can be more advantageous as compared to
the trans-FEM method to solve the coupled thermodynami-
cal problems.

Acknowledgment
The authors thankfully acknowledge the constructive

suggestions by reviewer to improve the quality of the present
paper. One of the authors (O.N. Shivay) thankfully acknowl-
edges the full financial assistance of the JRF Fellowship
(the reference no. 21/06/2015(i) EU-V, Roll no. 433492) by
the University Grant Commission (UGC), India, to carry out
the present work.

References
[1] M.A. Biot, Thermoelasticity and irreversible thermodynam-

ics, Journal of Applied Physics 27, 240–253 (1956).
[2] D.S. Chandrasekharaiah, Thermoelasticity with second

sound: A review, Applied Mechanics Reviews 39(3), 355–
376 (1986).

[3] D.S. Chandrasekharaiah, Hyperbolic thermoelasticity: A re-
view of recent literature, Applied Mechanics Reviews 51(12)
705–729 (1998).

[4] C. Cattaneo, A form of heat conduction equation which elim-
inates the paradox of instantaneous propagation, Compte
Rendus 247, 431–433 (1958).

[5] P. Vernotte, Les paradoxes de la theorie continue de
l’equation de la chaleur, Compte Rendus 246, 3154–3155
(1958).

[6] P. Vernotte, Some possible complications in the phenom-
ena of thermal conduction, Compte Rendus 252, 2190–2191
(1961).

[7] H.W. Lord, Y.A. Shulman, Generalized dynamical theory
of thermoelasticity, Journal of the Mechanics and Physics
of Solids 15(5), 299–309 (1967).

[8] A.E. Green, K.A. Lindsay, Thermoelasticity, Journal of Elas-
ticity 2, 1–7 (1972).

[9] A.E. Green, P.M. Naghdi, A re-examination of the base pos-
tulates of thermomechanics, Proceedings: Mathematical and
Physical Sciences 432, 171–194 (1991).

[10] A.E. Green, P.M. Naghdi, On undamped heat waves in
an elastic solid, Journal of Thermal Stresses 15, 253–264
(1992).

[11] A.E. Green, P.M. Naghdi, Thermoelasticity without energy
dissipation, Journal of Elasticity 31, 189–208 (1993).

[12] R.B. Hetnarski, J. Ignaczak, Generalized thermoelasticity,
Journal of Thermal Stresses 22, 451–476 (1999).

[13] R.B. Hetnarski, M.R. Eslami, Thermal stresses: Advanced
theory and applications [In:] G.M.L. Gladwell, J.R. Barber,
A. Klarbring (eds), Solid mechanics and its applications, 158,
Dordrecht, The Netherlands, Springer (2010).

[14] G.S. Prakash, S.S. Reddy, S.K. Das, T. Sundararajan, K.N.
Seetharamu, Numerical modeling of microscale effects in
conduction for different thermal boundary conditions, Nu-
merical Heat Transfer, Part A: Applications 38, 513–532
(2000).

[15] S.C. Mishra, T.B.P. Kumar, B. Mondal, Lattice Boltzmann
method applied to the solution of energy equation of a radi-
ation and non-Fourier heat conduction problem, Numerical
Heat Transfer, Part A: Applications 54(8), 798–818 (2008).

[16] B. Xu, B.Q. Li, Finite element solution of non-Fourier ther-
mal wave problems, Numerical Heat Transfer: Part B: Fun-
damentals 44, 45–60 (2003).

[17] A. Bagri, M.R. Eslami, Generalized coupled thermoelastic-
ity of functionally graded annular disk considering the Lord-
Shulman theory, Composite Structures 83, 168–179 (2008).

[18] S. Kothari, S. Mukhopadhyay, Study of a problem of function-
ally graded hollow disk under different thermoelasticity the-
ories. An analysis of phase-lag effects, Computers & Mathe-
matics with Applications 66, 1306-1321 (2013).

[17] M.A. Rincon, B.S. Santos, J. Limaco, Numerical method, ex-
istence and uniqueness for thermoelasticity system with mov-
ing boundary, Computational & Applied Mathematics 24(3),
439-60 (2005).

[18] I.A. Abbas, S.F. Alzahrani, A Green-Naghdi model in a 2D
problem of a mode I crack in an isotropic thermoelastic plate,
Physical Mesomechanics 21(2), 99-103 (2018).

[19] F.L. Stasa, Applied finite element formulation for thermal
stress analysis, CBS Publishing, New York (1985).

[20] M. Balla, Formulation of coupled problems of thermoelas-
ticity by finite elements, Periodica Polytechnica Mechanical
Engineering 33(1-2), 59 (1989).

[23] H.H. Sherief, H.A. Salah, A half space problem in the theory
of generalized thermoelastic diffusion, International Journal
of Solids and Structures 42(15), 4484–4493 (2005).

[24] G. Honig, U. Hirdes, A method for the numerical inversion
of Laplace transforms, Journal of Computational and Applied
Mathematics 10, 113–132 (1984).

[25] R.E. Bellman, R.E. Kalaba, J.A. Lockett, Numerical inver-
sion of the Laplace transform: Applications to biology, eco-
nomics, engineering and physics, American Elsevier (1966).

[26] H. Stehfest, Numerical inversion of Laplace transform, Com-
munications of the ACM 13(1), 47–49 (1970).

[21] N.M. Newmark, A method of computation for structural dy-
namics, J. Eng. Mech. Div. ASCE 85, 67–94 (1959).



70 O.N. Shivay, S. Mukhopadhyay

Om Namha Shivay received his Master in Science degree in Mathematics from the Banaras Hindu Univer-
sity, Varanasi, India, in 2015. He is doing research from the Indian Institute of Technology (BHU) in the
area of Mathematical Modelling on Generalized Thermoelasticity and he has strong interest in application
of computational methods for solution of coupled thermomechanical problems. He has published 3 papers in
reputed journals.

Santwana Mukhopadhyay completed her PhD in Applied Mathematics at the University of Burdwan, India
in 1998. Currently she is working as a Professor at the Department of Mathematical Sciences, Indian Institute
of Technology (BHU), India. She has published more than 85 research papers in peer-reviewed reputed
journals, and more than 20 conference presentations in her professional area of the theory of thermoelasticity
and computational mathematics. She is active reviewer and editor/associate editor of various international
journals.

CMST 25(2) 61–70 (2019) DOI:10.12921/cmst.2018.0000062


