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Abstract

The authors developed a numerical method of the boundary-value problem solution in the vectorial radiative transfer

theory applicable to the turbid media with an arbitrary three-dimensional geometry. The method is based on the solution

representation as the sum of an anisotropic part that contains all the singularities of the exact solution and a smooth

regular part. The regular part of the solution could be found numerically by the finite element method that enables to

extend the approach to the arbitrary medium geometry. The anisotropic part of the solution is determined analytically by

the special form of the small-angle approximation. The method development is performed by the examples of the

boundary-value problems for the plane unidirectional and point isotropic sources in a turbid medium slab.

r 2007 Elsevier Ltd. All rights reserved.
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1. Singularities of the solution of the radiative transfer equation (RTE)

Nowadays it is possible to consider the theory of the solution methods of the boundary-value problems of
the RTE for media with a plane-parallel geometry fully completed [1]. At the same time it is necessary to note
that there are no universal and effective solution methods of the three-dimensional (3D) problems in the
transport theory [1]. Above all, it is connected with the properties of the RTE solution, which are determined
by a physical model of the transport theory, that is, ray approximation. In particular, the radiance angular
distribution has the singularities that essentially impede the RTE solution by any numerical method because of
the physically selected direction of the radiation propagation in space.

These singularities are of a key character and require the development of special methods of RTE solution.
Particularly, to eliminate these singularities, S. Chandrasekhar [2] suggested to subtract a direct non-scattered
part of radiation from the solution and to formulate the equation for the rest smooth part that can be found
numerically. However, in the case of a strong scattering anisotropy in all the natural media having suspended
e front matter r 2007 Elsevier Ltd. All rights reserved.
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particles with diameters much larger than a light wave length, the radiation, scattered in small angles, is
indistinguishable from the direct radiation. So, for this case, the Chandrasekhar method becomes ineffective.
Furthermore, in the presence of a spatially confined source, which is equivalent to the sharp changes of the
medium parameters in an arbitrary three-dimensional (3D) geometry, there are singularities in the radiance
angular distribution not only in the direct radiation but also in the first two orders of scattering [3]. The
presence of such singularities in the solution leads to the essential decrease of efficiency of any numerical
methods of RTE solution. Nowadays there are two basic solution methods of RTE in the 3D medium
geometry: Monte Carlo and SHDOM [4]; each of them is based on smoothing singularities in the radiance
angular distribution that can result in a significant error in a number of cases.
2. Elimination of the anisotropic part of RTE solution

Let us consider the eventual development of the Chandrasekhar method by the example of the a well-
investigated boundary-value problem of RTE for a turbid medium slab irradiated from the above by a plain
unidirectional (PU) source:

m dLðt;l̂Þ
dt þ Lðt; l̂Þ ¼ L

4p

H
xðl̂; l̂

0
ÞLðt; l̂

0
Þdl̂
0
;

Lðt; l̂Þ
��
t¼0;m0 ¼ dðl̂� l̂0Þ; Lðt; l̂Þ

��
t¼t0;mo0

¼ 0;

8<
: (1)

where Lðt; l̂Þ � Lðt;m;jÞ is the radiance of light field at the optical depth t in the sighting direction

l̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
cos j;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
sin j;m

n o
, m ¼ ðẑ; l̂Þ; l̂0 is the incident direction of the PU source, m0 ¼ ðẑ; l̂0Þ; L

is a single scattering albedo; xðl̂; l̂
0
Þ is a scattering phase function; t0 is the slab optical depth. The axis OZ is

directed downwards perpendicularly to the slab borders. Hereinafter, the single vectors are denoted by the
symbol ‘‘^’’.

We present the solution of a boundary-value problem as the sum [5]

Lðt; l̂Þ ¼ LSAðt; l̂Þ þ ~Lðt; l̂Þ, (2)

where LSAðt; l̂Þ is the approximate RTE solution in the small-angle approximation (SA) [6]

LSAðt; l̂Þ ¼
X1
k¼0

2k þ 1

4p
exp �

ð1� xkÞt
m0

� �
Pkðl̂ � l̂0Þ �

X1
k¼0

2k þ 1

4p
ZkðtÞPkðl̂ � l̂0Þ, (3)

where xk are decomposition coefficients of a scattering phase function on spherical harmonics (SH):

xðl̂; l̂
0
Þ ¼

X1
k¼0

ð2k þ 1Þxk Pkðl̂ � l̂
0
Þ. (4)

Since LSAðt; l̂Þ contains [7] not only all the singularities but also an angle anisotropic part of the exact
solution, the rest ~Lðt; l̂Þ is a smooth function. To show that it does not present any difficulties, we use an
arbitrary numerical method.

Taking into account the representation (2), the boundary-value problem (1) takes the form

m d ~Lðt;l̂Þ
dt þ

~Lðt; l̂Þ ¼ L
4p

H
xðl̂; l̂

0
Þ ~Lðt; l̂

0
Þdl̂
0
þ F ðt; l̂Þ;

~Lðt; l̂Þ
��
t¼0;m0 ¼ 0; ~Lðt; l̂Þ

��
t¼t0;m0

¼ � ~LSAðt0; l̂Þ;

8<
: (5)

where the source function (the discrepancy of RTE solution in SA) looks like

F ðt; l̂Þ ¼ �m
dLSAðt; l̂Þ

dt
� LSAðt; l̂Þ þ

L
4p

I
xðl̂; l̂

0
ÞLSAðt; l̂

0
Þdl̂
0
. (6)

The solution complexity of the boundary-value problem (5) is rooted in the complexity of the expression (6).
However, using SA [6] essentially simplifies (6) on the basis of an addition theorem for the surface harmonic
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taking into account (3):

F ðt; l̂Þ ¼
X1

m¼�1

X1
k¼0

2k þ 1

4p
F m

k ðtÞQ
m
k ðmÞe

imj, (7)

where Qm
k ðmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððk �mÞ!Þ=ðk þmÞ!

p
Pm

k ðmÞ; Pm
k ðmÞ; PkðmÞ are the semi-normalized, associated and ordinary

Legendre polynomials, respectively; bk ¼ 1�Lxk,

Fm
k ðtÞ ¼

1

2k þ 1

1

m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ 1Þ2 �m2

q
bkþ1 Qm

kþ1ðm0ÞZkþ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
�m2

p
bk�1 Qm

k�1ðm0ÞZk�1ðtÞ
� �

� bk Qm
k ðm0ÞZkðtÞ.

3. Determination of the smooth solution part by the SH method

In view of the SA analytical form, the SH method is offered in [5] to be used as the numerical method for the
solution (5). In the SH method, the angular dependences of all the functions in RTE are represented as the
decomposition on the Legendre polynomials

~Lðt;m;jÞ ¼
X1
k¼0

Xk

m¼�k

2k þ 1

4p
Cm

k ðtÞQ
m
k ðmÞ e

�imj, (8)

which gives the infinite set of the connected ordinary differential equations. Since ~Lðz; l̂Þ is a smooth function,
the number Nm of the series terms (8) is finite, which allows reducing this connected equation set to the matrix
form [5,8]

A
2m d

dt
~C

m
ðtÞ þ D

2
~C

m
ðtÞ ¼ A

2m
�

m0 � 1
2

� �
D
2

Q
2m

~ZðtÞ þ am
Nþ1

~ZNþ1ðtÞ, (9)

where

A
2m
� �

i;iþ1

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 �m2
p

2i � 1
; ~C ¼ Cm

i�1ðtÞ
	 


; A
2m
� �

i;i�1

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði � 1Þ2 �m2

q
2i � 1

; ~ZNþ1 ¼ 0 . . . 0|fflffl{zfflffl}
N

;ZNþ1

2
4

3
5,

D
2
¼ diagðð1� xi�1Þ=m0Þ; Q

2m

¼ diagðQm
i�1ðm0ÞÞ; am

Nþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ 1Þ2 �m2

q
2N þ 1

bNþ1

m0
Qm

Nþ1ðm0Þ; ~Z ¼ ½Zi�1�.

Hereinafter, the matrices are denoted by the double arrow above the symbol. A column vector is denoted
with the unary right arrow, and a row vector with the unary left arrow. To simplify the notation, we will omit
an azimuth coefficient m, where it is obvious.

The matrix analytical solution of the set (9) that is equivalent to the set of the (Nm�m) linear algebraic
equations with the 2(Nm�m) unknowns was suggested in [5]:

�~Cð0Þ þ e� B
2

t0 ~Cðt0Þ ¼
1

m0

Z t0

0

e� B
2

t 1
2

�m0A
2�1

� �
D
2

Q
2

~ZðtÞdtþ am
Nþ1

Z t0

0

e� B
2

t A
2�1

~ZNþ1ðtÞdt, (10)

where B
2
¼ A

2�1

D
2
.

All the integrals in Eq. (10) can be formulated analytically [5]. The missing (Nm�m) equations are given by
the boundary conditions, which in [5] are selected in Marshak’s form:

½ 1
2

G
2
� P
2

~Cð0Þ ¼~0; ½ 1
2

� G
2
� P
2

~Cðt0Þ ¼ �~Y ðt0Þ, (11)

where ½G
2

�jl ¼ ð4l � 3Þ
R 1
0 Qm

2j�1ðmÞQ
m
2l�2ðmÞdm; P

2
is the matrix that sorts out a vector into its even and odd

parts; ~Y ¼ Z2j�1ðtÞQm
2j�1ðm0Þ �

P1
l¼0G

m
jl Z2lðtÞQm

2lðm0Þ
h i

. Square brackets in Eq. (11) represent, similar to

Matlab, a concatenation of two quadric N/2�N/2 matrices into one rectangular N/2�N matrix.
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Expressions (9) and (11) are in fact a closed set of the linear algebraic equations. Solving it makes possible to
determine the desired coefficients. The set matrix condition is quickly worsened with the increase in the slab
optical depth. To eliminate this effect, it is necessary to use the scale transformation [8].

Fig. 1 shows the comparison of the calculation of the radiance angular distribution of the reflected slab
radiation by the offered method with that by the classical SH method [8] using Chandrasekhar’s
representation. The calculations are carried out for a scattering phase function in the Henyey–Greenstein
form with one parameter g. M in Fig. 1 is the number of zenith terms in the series (8).

The presented diagrams visually demonstrate the essential convergence acceleration made by the suggested
method that does not require any procedure of the solution oscillations smoothing that is of great importance
for the classical approach [8].

The weak spots of the offered method are the boundary conditions in Marshak’s form impeding the
generalization for the arbitrary non-isotropic reflection law of the slab borders that is of considerable practical
interest. The best solution of the indicated problem is the transition to Mark’s boundary conditions, under
which the equality of the radiance angular distribution to an exterior flux for the fixed directions is required:

½ 0
2

G
2

1 �
~Cð0Þ ¼~0; ½ 0

2

G
2

2 �
~Cðt0Þ ¼ �~LSAðt0Þ, (12)

where

½G
2

1�ik ¼
2k þ 1

4p
PkðmiÞ

����
mi40

; ½G
2

2�ik ¼
2k þ 1

4p
PkðmiÞ

����
mio0

; ~LSAðt0Þ ¼ ½LSAðt0; miÞ
��
mio0
�,

and mi are the roots of the polynomial PN+1(mi) ¼ 0.
The calculation comparison of the angular distribution of the reflected radiation by both approaches is

shown in Fig. 1. The precision of the both approaches is approximately identical; however, in the case of
Mark’s boundary conditions, it is easy to take into account an arbitrary reflection law from the slab borders.

Further development of the method is possible for the case of 3D medium geometry, but the statement of
the SH method has considerable analytical difficulties for the arbitrary geometry. Actually, the development
of Mark’s boundary conditions is a discrete ordinates method (DOM) where not only the boundary conditions
but RTE is also stated for the fixed space directions.
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Fig. 1. Determination of the solution smooth part by the different numerical methods: t0 ¼ 5.0, y0 ¼ 401, L ¼ 0.8, g ¼ 0.97, N ¼ 101,

M ¼ 8.
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4. Discrete ordinates method

Let us present the scattering phase function by (4), and the desired function by Fourier series on an azimuth

~Lðt; l̂Þ ¼
X1

m¼�1

Cmðt;mÞeimj, (13)

that will reduce after substitution in RTE (5), taking into account (7) and the orthogonality of an azimuth
harmonics to the connected set of equations

m
dCmðt; mÞ

dt
¼ �Cmðt;mÞ þ

X1
k¼0

2k þ 1

4p
Fm

k ðtÞQ
m
k ðmÞ þ

L
2

XN

k¼m

ð2k þ 1Þxk Qm
k ðmÞ

Z 1

�1

Qm
k ðm
0ÞCmðt;m0Þdm0.

(14)

Let us replace the integral in Eq. (14) by Gaussian quadratureZ 1

�1

Qm
k ðm
0ÞCmðt;m0Þdm0 �

XN

j¼1

wj Cm
j ðtÞQ

m
k ðmjÞ, (15)

where Cm
j ðtÞ � Cmðt;mjÞ, wj are the weight coefficients of Gaussian quadrature, mj are the roots of the

polynomial PN+1(m).
In this case, the set (14) can be replaced with the set of the N ordinary differential equations

M
2 d

dt
~C

m
ðtÞ ¼ �~C

m
ðtÞ þ S

2
~C

m
ðtÞ þ ~F

m
ðtÞ, (16)

where

M
2
¼ diagðmiÞ; ~F

m
¼

X1
k¼m

2k þ 1

4p
Fm

k ðtÞQ
m
k ðmiÞ

" #
; S
2

¼
wj

2

XN

k¼m

ð2k þ 1Þxk Qm
k ðmiÞQ

m
k ðmjÞ

" #
; ~C

m
¼ Cm

i

	 

.

The further solution corresponds completely to the SH method, and the boundary conditions are similar to
Mark’s boundary conditions. The results of calculations for the medium parameters similar to those that were
used earlier are given in Fig. 1. It is evident that DOM has the best convergence. Moreover, N ¼ 101 is taken
for the identity of the comparison parameters, although it is possible to use N ¼ 51 without noticeable
deterioration of precision. But the DOM key feature is that all expressions obtain the simple physical sense of
the space selected ‘‘rays’’.

5. Usage of the finite element method

The representation (2) really makes the rest ~Lðt; l̂Þ a smooth, slowly varying function in space of arguments.
Our analysis has shown that practically for any case the zenith directions amount corresponds to No51, and
the azimuth harmonics amount to Mo8. According to a finite element method [9], it allows to construct in the
space the tetrahedrons or hexahedrons mesh to store in every vertex the discrete ordinate of the decomposition
coefficients in the series of the azimuth angular distribution. The values between the knots are calculated using
one of the approximation schemes [9]. The suggested method of RTE solution allows solving problems in the
transport theory in media with an arbitrary 3D geometry. However, the total number of equations in the
gained set can be as large as hundreds thousands.

The best technique for the solution of such connected equation set is the method of iterations. This could be
done by employing an integral transfer equation obtained from the boundary-value problem by the formal
solution in the assumption of a known right-hand member. In this case the integral equation set is

~Lðt; l̂Þ ¼
Dðt; l̂Þ þ L

4pm

R t
0 e
�ðt�tÞ=m

H
xðl̂; l̂

0
Þ ~Lðt; l̂

0
Þdl̂
0
dt; mX0;

Dðt; l̂Þ þ L
4p mj j

R t0
t e�ðt�tÞ=m

H
xðl̂; l̂

0
Þ ~Lðt; l̂

0
Þdl̂
0
dt; mo0;

8<
: (17)



ARTICLE IN PRESS
V.P. Budak, S.V. Korkin / Journal of Quantitative Spectroscopy & Radiative Transfer 109 (2008) 220–234 225
where the source function has the form Dðt; l̂Þ ¼
P1

k¼0ðð2k þ 1Þ=4pÞDkðt; mÞPkðl̂ � l̂0Þ:

Dkðt;mÞ ¼

m0Lxk

m0�bkm
exp ðm0 � bkmÞ t

mm0

h i
� 1

n o
e�t=m � exp �bk

t
m0

� 
þ expð�t=m0Þ; mX0;

m0Lxk

m0�bkm
1� exp ðm0 � bkmÞ t0�tmm0

h in o
� 1

� 
exp �bk

t
m0

� 
þ expð�t=m0Þ; mo0:

8><
>: (18)

Let us expand the scattering phase function into a series (4), and the regular solution part ~Lðt; l̂Þ and the
source function into an azimuth series (13). Transferring to DOM, we will present a space integral by the
Gaussian quadrature that reduces the set (17) to the expressions

Cmðt;miÞ ¼

Dmðt;miÞ þ
PN
j¼1

Sij

R t
0
expð�ðt� tÞ=miÞC

mðt; mjÞdt; miX0;

Dmðt;miÞ þ
PN
j¼1

Sij

R t0
t expð�ðt� tÞ=miÞC

mðt;mjÞdt; mio0;

8>>>><
>>>>:

(19)

where

Sij �
Lwj

2jmij

X1
k¼0

ð2k þ 1Þxk Qm
k ðmiÞQ

m
k ðmjÞ; D

mðt; mÞ ¼
X1
k¼0

2k þ 1

4p
Dkðt; mÞQm

k ðm0ÞQ
m
k ðmÞ.

The obtained set (19) is easily solved by a method of iterations. At the calculation of a spatial integral, we
will use a grid of values Cm

l ðt;miÞ by the depth with the intermediate magnitude approximation by a cubic
spline. In Fig. 2, the calculation of the radiance angular distribution of the radiation reflected by the slab is
shown depending on the number of iterations. Let us note that the convergence for the downward radiation is
essentially better and the amount of iterations does not exceed 2–4.
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Fig. 2. Convergence of the method of iteration for the reflected radiation: t0 ¼ 5.0, y0 ¼ 101, L ¼ 0.8, g ¼ 0.9. The solid curve is the exact

solution. Numbers near the dotted curves are the number of iteration.
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6. Small-angle modification of the SH method (MSH)

The main difficulty to expand the present method on other geometries is that SA in the form Goudsmit and
Saunderson [10,11] is possible only for the flat geometry at the almost normal incidence of the radiation on the
medium.

From the analysis of the angular spectrum of the radiance distribution, it is possible to formulate the
approximate equation describing an anisotropic part of the solution—small-angle MSH [11]: in the
neighborhood of the singularity, the spectrum slowly decreases with the number of harmonics. This approach
makes it possible to select analytically the singularities from an RTE solution and to state the boundary-value
problem for the regular part of the solution. The analytic form of MSH as a radiance decomposition on the
surface harmonic essentially simplifies the calculation of the source function in the equation for the regular
part.

Let us consider MSH on the basis of the slab irradiation by a plane unidirectional source under an
arbitrary incidence angle and pass from RTE to the infinite set of ordinary differential equations of
the SH method. However, in this case we will not truncate the numbers of the series terms and assume
the following:
�
 a continuous dependence of the series coefficients Cmðk; tÞ on the index k, which in integer points coincides
with values of the coefficients Cm

k ðtÞ;

�
 at a strong anisotropy of the angular distribution its spectrum Cm

k ðtÞ is a slowly monotonically
decreasing function of the index k that allows to expand it in a Taylor series preserving two or three
first terms

Cmðt; k 	 1Þ � Cmðt; kÞ 	
qCmðt; kÞ

qk
þ

1

2

q2Cmðt; kÞ

qk2
; (20)
�
 owing to the anisotropy of the radiance angular distribution the basic contribution to the solution is given
by the terms with kb1 and its anisotropy is much greater than its asymmetry kbm.

These assumptions reduce the infinite set of the SH method (9) to one partial equation

m0
qCm

qt
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m20

q
2

q
qt

qCmþ1

qk
þ

qCm�1

qk

�
þ
1

k
ððmþ 1ÞCm � ðm� 1ÞCmÞ

�
¼ �ð1� LxkÞC

mðt;kÞ,

permitting the approximate analytical solution [11]

Cm
k ðtÞ ¼

e�t=m0

2p

Z 2p

0

cos mj exp
Lt
m0

Z 1
0

xðrÞ e�z dz
� �

dj, (21)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2z2 � 2kaz cos j

q
, k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ

p
, a ¼ tan y0.

The obtained solution passes to Goudsmit–Saunderson approximation at the small incidence angles, but, in
contrast to it, this solution describes the rotation of the maximum of the radiance angular distribution from an
incidence direction on the upper slab border to a vertical one in the medium depth. The analytical form of
expression (21) is more complex, and its usage in the approach (2) is possible with difficulties, but we
succeeded to formulate the analytical approach to a determination of the solution singularities for an arbitrary
medium geometry.
7. MSH in arbitrary medium geometry

Applying the formulated approach, we succeeded in the solutions of RTE for all the fundamental sources.
Let us consider for example the boundary-value problem of the point isotropic source located in the origin of
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coordinates in the infinite turbid medium [12]:

m qLðr;mÞ
qr
þ

1�m2

r
qLðr;mÞ
qm ¼ ��Lðr;mÞ þ L�

4p

H
Lðr;m0Þxðl̂; l̂

0
Þdl̂
0
;

Lðr;mÞ
��
r!0;m40

¼ 1
4pr2

dð1� mÞ; Lðr;mÞ
��
r!1
¼ 0;

8<
: (22)

where, in consequence of the spherical symmetry of the problem, the solution Lðr; l̂Þ ¼ Lðr;mÞ; m ¼ ðr; l̂Þ=r.
We present the angular dependences of all the functions in RTE as the decomposition on the Legendre

polynomials

Lðr;mÞ ¼
X1
k¼0

2k þ 1

4pr2
CkðrÞPkðmÞ (23)

that according to the SH method gives us the infinite set of the ordinary differential equations

d

dr
½ðk þ 1ÞCkþ1ðrÞ þ k Ck�1ðrÞ� þ

kðk þ 1Þ

r
ðCkþ1ðrÞ � Ck�1ðrÞÞ ¼ �ð2k þ 1Þ�ð1� LxkÞCkðrÞ. (24)

Now we determine the continuous dependence of the series coefficients C(k,r) on the index k and expand it
in a Taylor series preserving two first terms (20). In this case, Eq. (24) takes the following form:

qC

qk
þ

2kðk þ 1Þ

2k þ 1

1

r

qC

qk
þ �ð1� LxðkÞÞCðk; rÞ ¼ 0, (25)

where x(k) is the continuous representation of the angular spectrum of the phase function xk.
Let us make the transformation of variables in Eq. (25):

ðr; kÞ ! ðr; x ¼ r=kÞ; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ

p
(26)

that reduces it to the ordinary differential equation

dC

dr
þ �½1� Lxðr=xÞ�Cðr=x; rÞ ¼ 0, (27)

which is explicitly solvable:

Y ðk; rÞ ¼ f r
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðk þ 1Þ
p� 

exp �� 1�
L

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ

p Z ffiffiffiffiffiffiffiffiffiffiffi
kðkþ1Þ
p

0

xðxÞdx

 !
r

( )
, (28)

where f( � ) is an arbitrary smooth function defined by boundary conditions.
Neglecting the backscattering in SA, the boundary conditions take the form

8k 2 1;1 :
CkðrÞ ! 1; r! 0;

CkðrÞ ! 0; r!1;

(
(29)

which gives us the final solution for the radiance angular distribution in the field of the point isotropic source

Lðr;mÞ ¼
X1
k¼0

2k þ 1

4pr2
exp �� 1�

L

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ

p Z ffiffiffiffiffiffiffiffiffiffiffi
kðkþ1Þ
p

0

xðxÞdx

 !
r

( )
PkðmÞ. (30)

In this case, the solution has the singularities not only in the direct radiation but also in the first two orders
of scattering. Let us analyze the singularities of MSH in this case. We expand the expression for MSH in
Taylor series on the single scattering albedo. It is equivalent to the solution representation by the scattering
orders. We take into account the first three terms:

L0ðr;mÞ ¼
X1
k¼0

2k þ 1

4pr2
e��r PkðmÞ ¼

e��r

2pr2
dð1� mÞ, (31)



ARTICLE IN PRESS
V.P. Budak, S.V. Korkin / Journal of Quantitative Spectroscopy & Radiative Transfer 109 (2008) 220–234228
L1ðr;mÞ ¼
X1
k¼0

2k þ 1

4pr2
e��r

L�rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ

p Z ffiffiffiffiffiffiffiffiffiffiffi
kðkþ1Þ
p

0

xðxÞdx

 !
PkðmÞ, (32)

L2ðr;mÞ ¼
X1
k¼0

2k þ 1

4pr2
e��r

1

2

L�rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ

p Z ffiffiffiffiffiffiffiffiffiffiffi
kðkþ1Þ
p

0

xðxÞdx

 !2

PkðmÞ. (33)

As can be seen from (31), zero scattering order includes the d-singularity of the exact solution. Since we are
interested in the behavior of (32) and (33) about the singular point m ¼ 1, the greatest contribution will be given
by the series terms with kb1. According to Mie theory, it is possible to note for an arbitrary phase functionZ ffiffiffiffiffiffiffiffiffiffiffi

kðkþ1Þ
p

0

xðzÞdz �!
k!1

C0, (34)

where C0 is an arbitrary constant.
Therefore, expressions (32) and (33) about the point mffi1 become

L1ðr;mÞ ¼
L�C0

2pr
e��r

X1
k¼0

PkðmÞ; L2ðr; mÞ ¼
ðL�Þ2C2

0

8p
e��r

X1
k¼0

1

k þ 1
þ

1

k

� �
PkðmÞ, (35)

where we used the approximate equality 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ

p
� 2k þ 1 for the case kb1.

On the basis of the course-of-value function properties for Legendre’s polynomials, it is possible to sum the
last series, and finally we have

L1ðr;mÞ ¼
L�C0

2pr
e��r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� mÞ

p ; L2ðr; mÞ ¼
ðL�Þ2C2

0

8p
e��rð� lnð1� mÞÞ. (36)

Thus, MSH contains all the singularities of the exact solution of RTE [3].
Now let us consider the simplest 3D boundary-value problem of the point isotropic source in the turbid

medium slab. Using expression (30) and the method that is similar to the one using Section 5 with the coaxial
cylindrical mesh, we calculated the radiance angular distribution on one slab bound from a point isotropic
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Fig. 3. The radiance angle distribution of the light field of the point isotropic source on the other slab bound. r is the distance to the point

from the origin in the XOY plane.
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source allocated on the other bound in the origin. The position of all the points in the space is specified by (t,
r), where r is the distance to the point from the origin in the XOY plane. The results are given in Fig. 3 for the
slab with optical parameters: L ¼ 0.8, t ¼ 1.0 and g ¼ 0.9.

Similarly, it is possible to find the RTE solution for the point unidirectional source located in the origin of
coordinates in the infinite medium [13]:

Lðr; Z;m;jÞ ¼
1

2p

X1
l¼0

X1
k¼0

X1
m¼�1

2k þ 1

2

2l þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk �mÞ!

ðk þmÞ!

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl �mÞ!

ðl þmÞ!

s
Cm

klðrÞP
m
k ðmÞP

m
l ðZÞ e

imj, (37)

where

Cm
klðrÞ ¼

e��r

2pr2

Z 2p

0

exp �imcþ L�r
Z 1

0

xðrðzÞÞdz
� �

dc; rðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ð1� z2Þ þ k2z2 � 2zð1� zÞlk cos c

q
,

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl þ 1Þ

p
, m ¼ ðl̂; rÞ=r; Z ¼ ðq̂; rÞ=r; q̂ is the radiation direction of the point unidirectional source, j is the

dihedral angle between the ðl̂� rÞ plane and ðq̂� rÞ plane.
The idea of the solution representation as sum (2) was proposed on the basis of Goudsmit–Saunderson

approximation in articles [14,15] that restricted this approach only to frameworks of the plane-parallel
geometry. Expressions (30) and (37) allow to select the solution singularities of the RTE and to state the
equation for the regular part of the solution in the arbitrary medium geometry.

It is possible to show that MSH is the most general form of SA and all the rest forms follow from it under
the requirements of a normal incidence, small sighting angle and strong scattering anisotropy. MSH neglects
only the variance of the trajectory length of the scattered rays and their backscattering. MSH contains all the
singularities of the exact solution of RTE. The prevalent form of the SA as a Fourier transform of the radiance
distribution on the boundary [9,10] does not allow selecting similarly the solution singular part, since it gives
an expression for the source function, which considerably complicates the initial equation.

8. Generalization of MSH for the vectorial case of polarized radiation

However, in the vectorial case, there is still another problem: the reference planes of the incident and
scattering rays as well as the scattering plane do not coincide [16]. Therefore, it is necessary to apply the
rotator R

2
ðwÞ that disturbs the transformation symmetry of the different Stokes parameters and makes

impossible using the addition theorem for the surface harmonics. In paper [16], the determination of the
polarization on the basis of the circular polarization (CP-presentation) is presented, which is connected with
Stokes polarization (SP-presentation) by the linear relation

LCP ¼

Lþ2

Lþ0

L�0

L�2

2
6664

3
7775 ¼ 1

2

Q� iU

I � V

I þ V

Qþ iU

2
66664

3
77775 ¼ 1

2

0 1 �i 0

1 0 0 �1

1 0 0 1

0 1 i 0

2
6664

3
7775

I

Q

U

V

2
6664

3
7775 � T

2

CSLSP; LSP ¼ T
2�1

CSLCP � T
2

SCLCP,

(38)

where L ¼ {I, Q, U, V} is the Stokes vector parameter.
In this case, the rotator takes a simpler form

R
2

CPðwÞ ¼ T
2

CS R
2
ðwÞT

2

SC ¼ diagðeþi2w; 1; 1; e�i2wÞ, (39)

which makes it possible using for every component LCP a special type of the generalized spherical harmonic
Pl

mnðxÞ, for which its own form of the addition theorem [16] is correct:

e�imw Pl
mnðl̂ � l̂

0
Þ e�inw

0

¼
Xl

q¼�l

ð�1Þq Pl
mqðl̂ � ẑÞP

l
qnðẑ � l̂

0
Þ eiqðj�j

0Þ, (40)

where w (w0) is a dihedral angle between the l̂� ẑ plane (l̂
0
� ẑ plane) and the l̂� l̂

0
plane.
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Unfortunately, in CP presentation, all the coefficients in the vectorial RTE (VRTE) become complex, which
makes it difficult to use the effective numerical methods of the VRTE solution that is based on the sorting
algorithm. Therefore, to solve problem (1) by taking into account the radiation polarization, we at first
convert the equation to CP presentation, then subtract SA and get the equation for the smooth part

~~Lðt; l̂Þ,
and finally return to SP presentation and solve the obtained equation. Let us present the angular distribution
of all the functions in VRTE as decomposition by the generalized SH

½ x
2

CPðcos gÞ�rs ¼
X1
k¼0

ð2k þ 1Þxk
rs Pk

r;sðcos gÞ; Lðt; n;jÞ ¼
Xþ1

m¼�1

X1
k¼0

2k þ 1

4p
eimj Y

2m

k ðnÞ f
m
k ðtÞ. (41)

Here Y
2m

k ðmÞ ¼ diagfPk
m;þ2ðmÞ;P

k
m;þ0ðmÞ;P

k
m;�0ðmÞ;P

k
m;�2ðmÞg; each of the indices r, s runs through +2, +0, �0,

�2; n ¼ ðl̂; l̂0Þ is a cosine of the zenith angle and j is the azimuth angle l̂ with reference to the direction of the

radiation incidence; m ¼ nm0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m20

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2
p

cos j; ð x
2

k
Þrs � xk

rs.

After the substitution in VRTE, taking into account the orthogonality of the general SH will result in the
combined set of the ordinary differential equation

1

2k þ 1

d

dt
m0ðA

2

k
fm

k�1 þ A
2

kþ1
fm

kþ1 þm B
2

k
fm

k Þ þ
i

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m20

q
dþðm�1Þ C

2

k
fm�1

k�1 � g�ðm�1Þ C
2

kþ1
fm�1

kþ1

��

þ h�ðm�1Þ B
2

k
fm�1

k þ d�ðm�1Þ C
2

k
fmþ1

k�1 � gþðmþ1Þ C
2

kþ1
fmþ1

kþ1 þ h�ðmþ1Þ B
2

k
fmþ1

k

��
þ ð 1

2

�L x
2

k
Þfm

k ¼ 0. ð42Þ

Symbols from (42) denote the following:

A
2

k
¼

k2
� s2

k
drs; B

2

k
¼
ð2k þ 1Þs

kðk þ 1Þ
drs; C

2

k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� s2

p
k

drs,

d	m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk 	mþ 1Þðk 	mþ 2Þ

p
; g	m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk 	m� 1Þðk 	mÞ

p
; h	m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk 	mÞðk �mþ 2Þ

p
.

Let us determine the continuous dependence fmðk; tÞ of the coefficients fm
k ðtÞ on the numbers. In the case of

the strong anisotropy, this dependence is a slow monotonic decreasing function that allows expanding it in a
Taylor series with the maintenance of the first two terms [17]:

fm
k	1ðtÞ � fmðk 	 1; tÞ � fmðk; tÞ 	

q
qk

fmðk; tÞ. (43)

Assumption (43) transforms the infinite equation set of the SH method (42) to a partial equation, the
solution of which has a very complicated analytical form for the numerical calculation. But since it is
important to express only the solution singularities, we can simplify it. Let us assume that the incident angle is

near 01, and that it is possible to present that
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m20

q
� 0. Under these conditions we obtain a very simple set

of the ordinary differential equation

m0
dfm

k

dt
þ ð 1

2

�L x
2

k
Þ fm

k ðtÞ ¼ 0, (44)

the solution of which has the following form:

fm
k ðtÞ ¼ exp �

ð 1
2

�L x
2

k
Þ

m0
t

2
64

3
75 fm

k ð0Þ � I
2

kðtÞ fm
k ð0Þ. (45)
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For the boundary conditions of the incident radiation with the radiance L, the polarization degree p, the
ellipticity q and the polarization azimuth j0, we can set the solution in the following form:

LMSHðt; n;jÞ ¼
Xþ1

m¼�1

X1
k¼0

2k þ 1

4p
eimj Y

2m

k ðnÞ I
2

kðtÞ fm
k ð0Þ; fm

k ð0Þ ¼ pL

pe�i2j0dm2

ð1� qÞdm0

ð1þ qÞdm0

pei2j0dm;�2

2
66664

3
77775. (46)

9. Regular part of VRTE solution

Now let us consider the smooth part of Stokes parameters field in the slab irradiated above the PU source
(46). In this case we have VRTE

m
q
qt

~Lðt; l̂Þ þ ~Lðt; l̂Þ ¼
L
4p

I
R
2
ðl̂� l̂

0
! l̂� l̂0Þ x

2
ðl̂; l̂
0
Þ R
2
ðl̂0 � l̂

0
! l̂� l̂

0
Þ ~Lðt; l̂

0
Þdl̂
0
þ Dðt; l̂Þ, (47)

where the full solution is presented by the expression

Lðt;m;jÞ ¼ ~Lðt;m;jÞ þ LMSHðt;m;jÞ, (48)

and the source function is

Dðt; l̂Þ ¼
L
4p

I
R
2
ðl̂� l̂

0
! l̂� l̂0Þ x

2
ðl̂; l̂
0
Þ R
2
ðl̂0 � l̂

0
! l̂� l̂

0
ÞLMSHðt; l̂

0
Þdl̂
0
� m

q
qt

LMSHðt; l̂Þ � LMSHðt; l̂Þ.

(49)

Then we deal with the scattering integral. We convert all the functions under the integral to CP
presentation, expand the scattering matrix in series on a generalized SH, use the addition theorem and return
to SP presentation. It can be written as follows:

IS ¼ T
2

SC
L
4p

I
T
2

CS R
2
ðwÞT

2

SCT
2

CS x
2
ðl̂; l̂
0
ÞT
2

SCT
2

CS R
2
ðw0ÞT

2

SCT
2

CS Lðz; l̂
0
Þdl̂
0

¼
L
4p

I X1
l¼0

ð2l þ 1Þ
Xl

n¼�l

einðj�j
0Þ P
2l

nðmÞ w
2

l

P
2l

nðm
0Þ

 !
Lðt; l̂

0
Þdl̂
0
, ð50Þ

where x
2

k ¼ T
2

SC x
2

k T
2

CS, x
2

k is defined by (41):

P
2l

nðmÞ ¼

Qn
l ðmÞ 0 0 0

0 Rn
l ðmÞ �iT

n
l ðmÞ 0

0 iTn
l ðmÞ Rn

l ðmÞ 0

0 0 0 Qn
l ðmÞ

2
66664

3
77775 � P

2

RðmÞ þ iP
2

I ðmÞ,

1

2
Pl

n;þ2ðmÞ þ Pl
n;�2ðmÞ

� 
� inRn

l ðmÞ;
1

2
Pl

n;þ2ðmÞ � Pl
n;�2ðmÞ

� 
� inTn

l ðmÞ.

It is easy to get convinced by the direct verification that P
2l

nðmÞ ¼ P
2l

�nðm0Þ, where the line above indicates
the complex-conjugate number. It means that the local transformation matrix is a real function. Therefore,
there is no necessity to keep all the terms in the azimuth series (50) and to combine the terms of the series with
m and �m:

IS ¼
L
4p

I X1
k¼0

ð2k þ 1Þ
Xl

m¼0

ð2� d0;mÞ C
2m

k ðm;m
0Þ cos mðj� jÞ þ S

2m

k ðm;m
0Þ sin mðj� j0Þ

� � !
Lðt; l̂

0
Þdl̂
0
,

(51)
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where

C
2m

k ðm;m
0Þ ¼ P

2k

RðmÞ w
2

k P
2k

Rðm
0Þ � P

2k

I ðmÞ w
2

k P
2k

I ðm
0Þ; S

2m

k ðm; m
0Þ ¼ P

2k

I ðmÞ w
2

k P
2k

Rðm
0Þ þ P

2k

RðmÞ w
2

k P
2k

I ðm
0Þ.

The obtained expression (51) is similar to the corresponding expression in [18]. Thus, we determine the
matrices as [18]

f
2

1ðjÞ ¼ diagfcos j; cos j; sin j; sin jg; f
2

2ðjÞ ¼ diagf� sin j;� sin j; cos j; cos jg; D
2

1 ¼ diagf1; 1; 0; 0g,

D
2

2 ¼ diagf0; 0;�1;�1g,

P
2m

k ðmÞ ¼

Qm
k ðmÞ 0 0 0

0 Rm
k ðmÞ �Tm

k ðmÞ 0

0 �Tm
k ðmÞ Rm

k ðmÞ 0

0 0 0 Qm
k ðmÞ

2
66664

3
77775. (52)

This allows transforming (51) into the following form:

IS ¼
L
4p

I X1
l¼0

ð2l þ 1Þ
Xl

n¼0

ð2� d0;nÞðf
2

1ðnðj� j0ÞÞ A
2

D
2

1 þ f
2

2ðnðj� j0ÞÞ A
2

D
2

2Þ

 !
Lðt; l̂

0
Þdl̂
0
, (53)

where A
2m

k ðm;m
0Þ ¼ P

2m

k ðmÞwk P
2m

k ðm
0Þ.

Let us consider the source function (49) from (47). It is possible to show that, using (49), (53) and (52) after
some tedious transformations, we can get the expression for the source function

Dðt;m;jÞ ¼
X1
m¼0

X1
k¼m

2k þ 1

2
f
2

1ðmjÞP
2k

mðmÞ F
2

kðtÞP
2k

mðm0ÞD
2

1 þ f
2

2ðmjÞP
2k

mðmÞ F
2

kðtÞP
2k

mðm0ÞD
2

2

� �
fkð0Þ,

(54)

where

F
2

kðtÞ ¼
1

2k þ 1
A
2

kþ1 b
2

kþ1 X
2

kþ1ðtÞ~ak þ 4
ð2k þ 1Þ

kðk þ 1Þ
b
2

k X
2

kðtÞ B
2
þA

2

k b
2

k�1 X
2

k�1ðtÞ~ak

� �
� b

2

k
X
2

kðtÞ,

b
2

k ¼ 1
2

�L w
2

k; X
2

kðtÞ ¼ T
2

SC I
2

kðtÞT
2

CS; a
2

k ¼ diagfk; k; k; kg; A
2

k ¼
a
2

k

k
; B
2
¼ diagf0; 1; 1; 0g; k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� 4

p
.

Let us present the smooth part of the solution similar to the diffusion component

~Lðt;m;jÞ ¼
X1
m¼0

f
2

1ðmjÞ ~L
m

1 ðt;mÞ þ f
2

2ðmjÞ ~L
m

2 ðt;mÞ
� �

. (55)

that gives us two integral equations (i ¼ 1, 2)

m
q
qt

~L
m

i ðt;mÞ þ ~L
m

i ðt; mÞ ¼
L
2

X1
k¼0

ð2k þ 1Þ

Z 1

�1

A
2m

k ðm; m
0Þ ~L

m

i ðt;m
0Þdm0 þ Diðt;mÞ, (56)

with the boundary conditions

~L
m

i ð0; mÞ
��
m0 ¼ 0; ~L

m

i ðt0;mÞ
��
m0 ¼ � Lm

MSHðt0;mÞ
	 


i
, (57)

where

Diðt; mÞ ¼
X1
k¼0

2k þ 1

2
P
2k

mðmÞ F
2

kðtÞP
2k

mðm0ÞD
2

i f kð0Þ.
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Fig. 4. The polarization degree of the slab reflected radiation depending on the slab thickness t by the normal incident irradiation.
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Thus, Eq. (56) can be already solved by the discrete ordinate method. The polarization degree of the slab
reflected radiance is given in Fig. 4 for the scattering matrix of Deirmendjian Water Haze L for wave length
equal to 700 nm, depending on the slab thickness by the normal incident irradiation.

10. Conclusion

From the analysis of the angular spectrum of the radiance distribution, it is possible to formulate the
approximate equation describing an anisotropic part of the solution as the small-angle modification of the
spherical harmonic method (MSH). This approach makes possible to eliminate analytically the singularities
from the RTE solution and to state the boundary-value problem for the regular part of the solution. The
analytic form of MSH as a decomposition on the surface harmonic essentially simplifies the calculation of the
source function in the equation for the regular part. The regular part of the solution is found numerically by
the finite element method that enables to extend the solution to the arbitrary medium geometry. The
application of the developed method for the solution of the simple problem of the medium slab showed its
high performance. However, its expansion to the case of the arbitrary medium geometry demands the
development of the mesh-building technique for the numerical determination of the regular part of solution.
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