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1. In this article we seek for the solution of the differential equation

po%+p1%§+pzu=%, SR
where p, , p- , p. are functions of z, (x real) with the initial condition
u(z, ) = wuo(t), t=0, (1.2)
and the following boundary conditions ‘
au(a, ) + au(d, ) + azula, ) + au.(b, ) = (1), (1.3
Brula, &) + Bau(b, ) + Bsula, ) + Bau(b, ) = g(?), (1.4)

where a; , 8; are constants', and u, = du/dx. Equation (1.1) is a differential equation of
the second order of the parabolic type. Special cases of problems of this kind occur in
heat conduction and diffusion, usually with simpler types of boundary conditions.
Since the boundary conditions (1.3) and (1.4) are non-homogeneous and time-dependent,
the method of separation of variables cannot be used directly. We shall first use a trans-
formation® to remove the non-homogeneous boundary conditions and then separate
the variables. This results in the well known Sturm-Liouville system and the solution
of (1.1) --- (1.4) will be sought as expansions of the characteristic functions of this
system. With arbitrary values of «; , 8; the resulting Sturm-Liouville system is in general
not self-adjoint, and the characteristic functions are not orthogonal. Yet, it is known
in the theory of differential equations that if we introduce the adjoint system, the
characteristic functions of the two systems will be bi-orthogonal, i.e., the characteristic
function of one system for one particular characteristic number will be orthogonal to
all the characteristic functions of the other system with the exception of one of the same
characteristic number. In carrying out the expansion procedure to find the solution of
(1.1) --- (1.4) we shall make use of this bi-orthogonality relationship and shall show
in the final solution how the time-dependent functions, f(f) and g(t) are related to the
boundary forms complementary to those of the adjoint system. These are given by
(4.3), (4.4) and (4.5)°.
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1We assume that o12, 013, o, 03¢ # 0, where 012 = o182 — a1 ete.

2A homogeneous differential equation with non-homogeneous boundary conditions is equivalent
to a non-homogeneous differential equation with homogeneous boundary conditions [1].

3The theory of non-self-adjoint boundary value problems and the associated expansions of functions
in terms of bi-orthogonal systems of characteristic functions does not appear nearly as well known as
the theory of self-adjoint systems. Readers are referred to Coddington and Levinsen [2] for information
on this subject.
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2. To remove the non-homogeneous boundary conditions we make the substitution

2
u(z, §) = ¢z, 1) + ;xr

in Eqgs. (1.1) --- (1.4) where X, and T, are functions of x and ¢ respectively. We get

3 3 3 z
Po g + P gs + it — 5 = 3 (XTI — TLX)), @1
2
i@ 0) = w@ — X X.T.0), (2.2)

alg'(a, t) + azl’(b, t) + aafz(a: ) + ad’,(b, t)

+ > @X@TWD + aXOTO + wX@TO + aX BT} = 10,
Bis(a, &) + B:(b, 1) + Bss.(a, t) + Bit.(b, 1)
(2.4)

+ 3 BX@T) + BXOTW + BX @I + BXLBTO) = o).

In these equations L = p, d’/dz* + p, d/dz + p,, ¢z = 8¢/dz and all primes, the corre-
sponding derivatives. We next choose X, such that

{Xl(a) =1, X = Xi(@ = Xit) =0, @5
X.(b) =1, Xia) = Xia) = X3(b) = 0.
and furthermore
{m) = {B:1() = aug()} /s , ©.6)
T(t) = {ag(t) — B:f({D)}/012
Then the boundary conditions to be satisfied by {(x, ) are
{alf(ay ) + asf(b, t) + ast.(a, ) + a.(b, t) =0, (2.7)
Blg.(a) t) + Bg;‘(b, t) + ﬁag'g(a, t) + ﬂd'z(b) t) = 0.

In the meantime a particular choice of X.(x) can be immediately determined by (2.5).
Thus

(x — b)® z — bz — a)

_ ¢

X!(x) = (a — b)s (a — b)s ’ (2'8)
_(z—a)° (x — a)’(x — b)
Xz(x) = (b _ a)s -3 (b — a)a * (2°9)

3. With X, , T, determined, the right-hand side of (2.1) is known completely, and
we are led to consider the following ordinary differential equation associated with (2.1),

L.(¥w) = po¥s’ + pi¥e + (02 + N)¥m = 0, . 3.1

with the boundary conditions
{U:M} = (@) + cudulb) + es¥i(a) + audi(h) = 0,
Uz{dn} = Bi¥a(@) + B2¥a(b) + Bat¥a(a) + Buvn(d) = 0,

3.2
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where \. is the characteristic number. Let ¥,, , ¥,, be two fundamental solutions of
(3.1), then the characteristic numbers A\, are the roots of the following determinant:

Ul {\I/ul } Ul {‘I’nz}
U2 {‘I,nl } Uz {‘I,nz}

= o. | (3:3)

Now consider the following system which is adjoint to the original system defined
by (3.1), (3.2):

L0x) = L*() + Mxa = @oxa)” = @ixa)’ + @2 + M)xa = 0, 34

{Vx{x.} = 71xa(@) + 72xa(B) + Ysxa(@) + vaxa(b) = 0, (3.5)
Valxal = 8ixa(@) + 8:xa(d) + 8sxala) + 8xa(d) = 0,
where v, , -+ , 74, 6, -+ -, 8, are constants. The characteristic functions of the two

systems are ¥,(z) and x.(z). It is known in the theory of differential equations [2, 3]
that y.(x), x.(z) are orthogonal in the interval (a, b). We further write [ ¢, x.dx = C, .
These properties will be utilized in obtaining the solution of the system (2.1) --- (2.4)
in terms of expansions of ¢,(x).

We now expand the right-hand side of (2.1) into a series of ¥,(z). Let

XT =TS aua(@), 3.6)
TLX) = T: 3. buta®), 3.7

where
Qi = ‘/;b X.x. dz/C, etec.;
assuming further that
e, ) = 3 F0%@), (3.
and substituting (3.6), (3.7), (3.8) into (2.1), and collecting coefficients of y,(x) we have
SNE) = B = X laT! = BT, 69

where use has been made of L(¥,) = — A, , by (3.1). Upon integration of (3.9) we have
immediately

F.() = F.(0) exp {—\t}

- j;‘ {:V-: a,;Ti(r) — g bm‘Ti(T)} exp {—A\(t — 1} dr. (3.10)

t=1

The coefficients F,(0) are to be determined by the initial condition (2.2); thus

S ROWE = u@ — X X @10,

n=1
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and

F.(0) = f b {uo(x) - i} X (2)T:(0) pxo(2) dz/C., . (3.11)

Integrating [¢ 2., a..T/(r) exp {—\.(t — 7)} dr in (3.10) by parts and remembering
that
© 2
(@, 1) = 2 Fu)va(®) and ulz, ) = ¢, ) + 2 X.Ts,

n=1 i=1
we obtain the formal solution of the given system (1.1) - -- (1.4) in the following form:

uz, 0 = 33 YD exp (—0i) [ walana@ da

n=1

3.12)
2 2O [ @nE) @ [ 10 e (-0~ ) dr,

i=1 n=1

where X; and T; are given by (2.8), (2.9) and (2.6).

4. As written in (3.12) the solution contains the functions X; which are rather
arbitrary: they have only to satisfy (2.5). These functions have already been determined;
however, it is possible to eliminate them in the final solution. To this &nd we make use
of the Green’s formula relating the two systems (3.1), (3.2) and (3.4), (3.5)

f¢ {xaLn(X ) — X:L*(xa)} dx

Do(D)x(D) X (D) — Do(D)xn (D)X :(b) — Po(B)xa(D) X (D) + P1(D)xa(D) X :(D) (4.1)
— po(@xx(0) X (@) + po(@)xn(@)X:(a) + ps(@)x.(@)X (@) — pi(@)xn(a)X(a)
= U;{X;}de,,} + U2{Xi}V3{Xn} + Ua{Xi}Vz{Xn} + Ud{Xo'}Vl{xn})

where U; {X;}, U, {X;} are linear combinations of X,(a), X,(b), X!(a), X!(b) and
Vs {xa}, Vi {x.} are linear combinations of x,(a), x.(b), x.(a), x.(). U, , U,and V,, V,
have been defined by (3.2) and (3.5) respectively. Noting that

L::(Xn) = 0) Vl{Xn} = Vz{Xn} = 0,
and remembering X, (x) has to satisfy (2.5), we have

f x-Ln(X:) dz = 8.1 {po(@)xa(a) + po(@)xa(@) — pi(@)xa(a)} 4.2)
+ Si2{ —Po(D)xn(D) — PI(D)xa(D) + Pr(D)xa(D)} = ;Vilxa} + B:Valxa},

where 8;, , 8;, are the Kronecker deltas. Substituting the expressions for 7'; as given
by (2.6) and the result (4.2) just obtained into (3.12) we obtain the solution in the
following form:

u(x, t) = Z ‘l/"(x) >‘nt} f Qlo(a)Xn(l) dx

n Z \l/,.(x)V4 X} f f(5) exp {=A(t — D} dr  (4.3)

+ 3 L@ 1//,,(%‘)‘ £aral f o ) exp {—\(t — 7} dr,

n=1
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where

W&J——“WMWMWWMWMM+MW&@] (4.4
+ alpi@) — P(@hl@) + polani@]],

and

Vil = 2 (BIGIO) — 2B + polBixi)] ws

+ Bal(pi(@) — pi(a))xa(@) + po(@)xi(@)]}.

5. As an example of the previous discussions, consider the diffusion equation for the
axi-symmetric case, a < r < b:

a?

I3

19 I¢] -
Wt e -0
with the initial condition
'II,(T, ) = uo(t); t=0, (52)

and the boundary conditions
{alu(a.) ) + au(b, t) + azu.(a, 1) + au, (b, ) = f(1), (5.3)
Biula, t) + Bau(b, 1) + Bsu.(a, &) + Baw(b, 1) = ¢(b).

By following the same procedure as outlined in the previoué paragraphs we are led
to consider the system:

L.{y.} = (;f + rdr+ A )n/z,. =0, ' (5.4)
Ur{dal = (@) + bl + as¥i(@) + aabl®) = 0, 5.5

LU {¥n} = Bi¥na(@) + Bo¥a(b) + Batbi(a) + Butn(b) = 0

and the adjoint system:
Li{x.} = <d£:§ 1;7« + N+ ) =0, (5.6)
{mu&=mmw+%mw+%w@+mmw=m 5.2)
Vafxa) = 0ixa(@) + 8:xa(b) + dixal@) + dxa(b) = 0, 4

where v, , --- , 8, are to be determined. Now the fundamental solutions of (5.4) are

Jo(\?r), Yo(AY?r), being Bessel functions of the first and the second kind of the zero
order. The characteristic function of the system (5.4), (5.5) is therefore

V() = Jo*) — EYo(N), (5-8)

where E is a constant and is determined by U, {¢.} = U, {¢.} = 0. Similarly the funda-
mental solutions of (5.6) are rJ,(\.*r) and r¥o(\; /21y, and the characteristic function of
the system (5.6), (5.7) is

%™ = rJo(AYr) — E'rY (\J%), (5.9
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E’ to be determined by V, {x.} = V., {x.} = 0. The Green’s formula connecting the two
systems is:

j; {XnLn(‘l’n) - wnLt(Xn)} dr
= UOKO) = XD + § BOxO)

(5.10)
— V@@ + @0 — > ¥ @)
= Ul Valod + Ualdd Vbl + Ustdal Vala) + Uslgal Vil
Here U, (¢}, U, (¥} have already been defined, as by (5.5); if we take*
D) = {22 @) + ) (5.11)
Uddta) = =5 {64 7y (a) + ﬁs'k.(b)} : (5.12

we can find V; {x.}, -+, Vi {x.} by comparing the coefficients of ¥,(a), ¥.(b), ¥.(a),
Y.(b) in (5.10). This results®

Vilxa) = aaou{(}z - Z—;)xn(a) - xi(a)} + 0‘40'13{(% -2 h®) — x.((b)} ,  (6.13)

Oy

Vatied = B (2 = Bt - @) + i (5~ &)ty - KO, 619
Vbl = 2= la(@ + e}, (5.15
Vil = =2 (8@ + Bx®)]. (5.16)

Now we introduce :
2 = JN)Y,(\%D) — J D) YN %a), (5.17)

P(Ol) = —a; Qo + aa)\yzﬂn )
Q(a) = —o; Qo + aa)\:;/zﬂlo )

(5.18)
R(a) = azﬂoo - a4xrl;/2901 )
S(a) = Qo — a4)\r1./29n )
K(@) = a;Jo(A\%a) — A2 T (A %),
L@ = a;Jo\/*D) — a\/*J.(\*D), (5.19)

M@ = &, Yo\ a) — as\*Yi(\a),

N(@) = a, Yo(Ay?b) — a2 Y, (\%D),

Of course, other forms of Us{yn} and Us{y.} may be chosen as long as Ur{¢n}, — — —, Usl¢a}
form an independent set in the quantities y.(a), ¥.u(b), ¥i(a), ¥i(b).

5 Equations (5.15) and (5.16) are equivalent to (4.4) and (4.5) if we put in the latter po = 1, p:(a) =
1/a, etc., and make use of Vi{xa} = Va{xa} = 0.
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and similar expressions for P(8), --- , N(8). Also let ¢ = be)3/as., , then, using the fact
that J5(\Y?r) = — AV2 J,(A\Y%), Y5(\Y?r) = — N Y.(A\Y?r), where the prime denotes

the derivative with respect to r and that J,(\Y*r)Y,(\Y*r) — Y,(\Y*r) Jo(\Y?r) =
2/x\)*r we obtain, after some algebraic details,

g = K@ + L@ _ K@) + LB)

T M@ + N@ ~ M@) + N@)’ (5.20)

W@ = %0(11)127\7(/3 = %T?G&“ ' - (5.2
B = ﬁi‘? > :1%/((3 = ﬁégg T :]I(r((l;)) ’ (5.23)
R == T
x(B) = b %OE) )++2333(/o15b b %Z)S)tzﬁ%b (5.25)

Furthermore, since ,,(r) and x,(r) are orthogonal in the interval (a, b), we have
b
[ ¥ dr =0,  mxn,
and
b
[ arxat) ar

b’ {P(2) + 20,/7\"*b} {P(a) + 2a,0/7N/*b} + {Q(@) + 204/7b} {Q() + 20,0/7b)
{M() + N(a)}{M(a) + oN(a)}

_ @’ {R(a) + 2a:/xa} {oR(e) + 2as/ma} + {S(a) + 20:/7)\%a}{oS(e) + 2a,/1r)\,1./2a}

2 \ {M(e) + N(@)} {M() + oN(a)}
=C,. v (5.26)
In the last expression we can replace all the P(a), --- , N(a) by the corresponding
P(B), - -+, N(B). The characteristic numbers A, are the roots of the equation
2
038l — (0'14901 + 032910))\:/2 + 012000 + ; (%g + fbﬁ_&) = 0. (527)

With these preliminaries the solution of the given problem can be written down according
to (4.3). We note in particular that the system (5.4), (5.5) becomes self-adjoint if as,, =

ba,s , 1.e., if ¢ = 1, in which case £ = E’ and x,(r) = w.(r).
6. We now consider a special case of the previous example. Let
[al = -1, a; = 0, ag = a, a, =0,

61=0; ﬁz=1: I33=0: Bl-—_ﬁy

(6.1)
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then the boundary conditions are reduced to
{_u(a’ t) + au,(a, t) = f(t)r R (62)
u(b, t) + Bu.(b, &) = g(?).

This problem arises in the evaluation of transient temperature distribution in a homo-
geneous hollow circular cylinder, ¢ < r < b, when the gas temperatures inside and out-
side the cylinder are functions of time, bemg f(©) and g(¢) respectively, and the initial
temperature distribution in the cylinder is u,(r). The constants « and g8 are associated
with the heat transfer coefficient and the thermal conductivity of the cylinder material
(here «, 8 > 0). Then as,s = boy; = 0, and the system is self-adjoint. Here we have

J o()\:/za) + 01)\:1‘/2*] 10\:/2‘1) _ J o()\rl»/zb) - B)\:;NJ 1()\:1;/217)

= F' = -
F == v,07%0) + PV ,07) Vo0 — aeror 8
h) = 2x) = T — EY, ) (6.4)
_1 — 20/7a _ Qo0 — BN Qi
la) = 520 =~y R T T T Y0 — entyor (69
= l _ Qoo + ak:/zﬂlo _ 26/1rb
W) = 500 = ~7 o7 a7 Y. 0 ) T Y00 — e (69

Cu= [ wox® dr = [ r4i0) ar

2 { 1+ &\, ~ 1+ o, } (6.7)
T Yo%) — BNY.NPD)Y (Yo %) + oY (D))

and X, is a root of
aB\, — (afio — BRIN* — Qoo = 0. (6.8)
Furthermore, from (5.15) and (5.16) we have
Vi{xa} = xa(0)/8,
Vi) = —x(0)/a,

so that the solution of this special case can be written down, according to (4.3),

ulr, t) = E "I/"(T) exp (—\,0) f TUo(r) Yu(r) dr

n=1

_a Z V/n(r)ll/n(a) /‘ () exp { =\t — 1)} dr (6.9)

a n=1

E "’"(T)"m(b) f g() exp [—\(t — 7} dr.

n=1

The solution of this special case for f(t) and ¢g(f) equal to constants has already been
given by Carslaw and Jaeger [4], using the method of the Laplace transform. It is easy
to verify that the result presented here is the same as that given in [4]. For, if o(r) =
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n-l n‘l’n(r), a<r< b then

A, = Ci f rel) () dr = —m— w(r)( vl ¢.'.)dr

= o L eon® + Lo@via + [ w6 dr}

where use has been made of — y,(a) + al(a) = ¥.(b) + BYL(D) = 0. By putting¢(r) = 1
and log r successively in (6.10) we can find the summation of the series .o,

Va(®) ¥a(a)/Cahe and D2, ¥a(r) ¥a(b)/C.\. . Replacing f(f) and g(f) by the constants
f and g respectively in (6.9) and using the results just obtained after performing the
integration, we get

utr, 0 = 30 oxp (20 [t ar

n=1

(6.10)

_af{blog b/r + B} + bglaloga/r — o} 6.11)
ab log b/a + aB + ba )

+ 340 {“’ ) = 2 %(b)} exp (=M,

n=1

which is the form given by Carslaw and Jaeger. In this expression ¢,(r), ¥.(a) and
¥a(b) are given by (6.4), (6.5) and (6.6) respectively.
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