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ON THE SOLUTION OF CERTAIN DIFFERENTIAL EQUATIONS
BY CHARACTERISTIC FUNCTION EXPANSIONS*

BY

TSE-SUN CHOW
Research Staff, General Motors Corporation, Warren, Michigan

1. In this article we seek for the solution of the differential equation

d\ , du . du ,,
PodS+Pldi + P2U = Jt> (1"1}

where p0, p- , p2 are functions of x, (x real) with the initial condition

u{x, t) = u0(t), t = 0, (1.2)

and the following boundary conditions

a Ma, t) + oc2u(b, t) + a3ux(a, t) + a4 ux(b, t) = f(t), (1.3)

PMa, t) + &«(&, t) + P3ux(a, t) + /34mx(6, t) = g(t), (1.4)
where a,- , /3, are constants1, and ur = du/dx. Equation (1.1) is a differential equation of
the second order of the parabolic type. Special cases of problems of this kind occur in
heat conduction and diffusion, usually with simpler types of boundary conditions.
Since the boundary conditions (1.3) and (1.4) are non-homogeneous and time-dependent,
the method of separation of variables cannot be used directly. We shall first use a trans-
formation2 to remove the non-homogeneous boundary conditions and then separate
the variables. This results in the well known Sturm-Liouville system and the solution
of (1.1) ••• (1.4) will be sought as expansions of the characteristic functions of this
system. With arbitrary values of a, , /?, the resulting Sturm-Liouville system is in general
not self-adjoint, and the characteristic functions are not orthogonal. Yet, it is known
in the theory of differential equations that if we introduce the adjoint system, the
characteristic functions of the two systems will be bi-orthogonal, i.e., the characteristic
function of one system for one particular characteristic number will be orthogonal to
all the characteristic functions of the other system with the exception of one of the same
characteristic number. In carrying out the expansion procedure to find the solution of
(1.1) • • • (1.4) we shall make use of this bi-orthogonality relationship and shall show
in the final solution how the time-dependent functions, j{t) and g(t) are related to the
boundary forms complementary to those of the adjoint system. These are given by
(4.3), (4.4) and (4.5)3.
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He is also indebted to the referee for pointing out a somewhat misleading statement in the manuscript.
'We assume that an , <j ia , 0-24 , 0-31 ̂ 0, where <r12 = on ft — a2f)i etc.
2A homogeneous differential equation with non-homogeneous boundary conditions is equivalent

to a non-homogeneous differential equation with homogeneous boundary conditions [1],
3The theory of non-self-adjoint boundary value problems and the associated expansions of functions

in terms of bi-orthogonal systems of characteristic functions does not appear nearly as well known as
the theory of self-adjoint systems. Readers are referred to Coddington and Levinsen [2] for information
on this subject.
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2. To remove the non-homogeneous boundary conditions we make the substitution

u(x, t) = f(z, <) + Z)
»-1

in Eqs. (1.1) • • • (1.4) where X,- and T, are functions of x and t respectively. We get

v° S + Pi fx+ p2f ~ ft= £{X<T' ~ T<L(X<)} - (2-x)

f(z, 0) = u0(x) - t, XtTM, (2.2)
i-1

<*if(a, t) + <*2t(b, 0 + aafi(®) 0 + «4f*(&, <)

+ t {^.-(a)?^) + a2Xi(b)T^(t) + a3X,'(a)7\«) + a4X,'(&)7\«)} = /«), (2'3)
t-1

ftf(o, <) + ftf(6, <) + ftf.(a, <) + &fx(&, 0

+ E {ftx.wr.w + ftxi(6)r<«) + p3xmT<(t) + ^z,'(6)r,.«)} = ?(<). (2'4)»-i
In these equations L = p0 d2/dx2 -f- d/cte + p2, fa: = df/dx and all primes, the corre-
sponding derivatives. We next choose X, such that

JX.fa) = 1, X,(6) = X[(a) = X[(b) = 0,
1 Xa(6) = 1, X2(a) = X'2(a) = X'2(b) = 0.

and furthermore

fTl{t) — {&2 /(0 a29(,t)}/<T 12 )

[^(i) = {a!gr(i) ft/(0}/<ri2 •

Then the boundary conditions to be satisfied by f (x, t) are

(«,««, t) + a2£(b, t) + a3{x(a, 0 + <xt{x(b, t) = 0,

W(a, 0 + &{•(&, <) + ftfx(o, <) + Af,(6, 0 = 0.

(2.5)

(2.6)

(2.7)

In the meantime a particular choice of X, (x) can be immediately determined by (2.5).
Thus

x M _ (» ~ *>)' _ o (» - b)2(x - a)
lW ~ (a - 6)3 d (a - 6)3 ' (2"8)

x w - (x ~ a)3 - s (x ~ a)2(x ~ b) f2
(6 - a)3 d (6 - a)3 (2,9)

3. With Xi , T, determined, the right-hand side of (2.1) is known completely, and
we are led to consider the following ordinary differential equation associated with (2.1),

LM = PoW + ViVn + (p, + K)4>n = o, (3.1)
with the boundary conditions

ftMlM = «i^„(a) + «2t„(b) + a3^(a) + Ciiittb) = 0, ^ ^
UMlM = + MJb) + MXa) + M'nQ>) = 0,
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where X„ is the characteristic number. Let ^nl , ^„2 be two fundamental solutions of
(3.1), then the characteristic numbers X„ are the roots of the following determinant:

u i{*„2}

cm*-}
= 0. (3.3)

Now consider the following system which is adjoint to the original system defined
by (3.1), (3.2):

L*(x*) = L*(x„) + KXn = (PoXn)" ~ (PlXnY + (j>2 + K)Xn = 0, (3.4)

[Vi {x„l = 7iX»(a) + 72Xn(b) + 7sXn(a) + y<xL(b) = 0, ^ ^

iTj {x»} = 5,x„(a) + SiXnib) + 83Xn(a) + 5tXn(.b) = o,

where 7t , • • • , -y4 , 5, , • • ■ , <5< are constants. The characteristic functions of the two
systems are ^„(x) and x*(x). It is known in the theory of differential equations [2, 3]
that ^„(x), x»0®) are orthogonal in the interval (a, b). We further write J' \j/„Xndx = C„ .
These properties will be utilized in obtaining the solution of the system (2.1) • • • (2.4)
in terms of expansions of

We now expand the right-hand side of (2.1) into a series of ^n(x). Let

X<T'< = T'< ZaMx), (3.6)
n«= 1

TMX.) = T< £ bniUx), (3.7)

where

assuming further that

a„, = / X,Xn dx/C„ etc.;
J a

ttx, 0 = £ Fn(t)Ux), (3.8)
n=» 1

and substituting (3.6), (3.7), (3.8) into (2.1), and collecting coefficients of ypn(x) we have

-KFn(t) - F'M = £ {aniT'i - bniT<], (3.9)
t'-l

where use has been made of L(^„) = — X„^„, by (3.1). Upon integration of (3.9) we have
immediately

Fn(t) = F„(0) exp {-XJj

- [ IE aniT'i(r) - £ bni7\(r)J exp {-X„« - r)} dr. (3ll0)

The coefficients Fn(0) are to be determined by the initial condition (2.2); thus

£ FMUx) = U0(x) - £ X.(x)7',(0),
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and

FM = J* |w0(x) - ± Xt(x)Tt(0)Jx,(«) dx/Cn . (3.11)
Integrating E?-i M exp {—X„(i — t)} dr in (3.10) by parts and remembering
that

t(x, 0 = Z Fn(t)i„(x) and u(x, t) = f(x, 0+2 .
n— 1

le formal solution of the given systei

w(x, <) = Z exP {—M} f u0(x)xn(x) dx
n = l ^ n vo

n—1 » — 1

we obtain the formal solution of the given system (1.1) • • • (1.4) in the following form:

\f/n(x) rb
— — exp {— A„f} I «owx»w

(3,12)
+ Z Z f Xn(x)Ln(X<) dx f 7\(r) exp {-X„« - r)} dr,

t = l n=l ^ n J a J0

where Xt and T, are given by (2.8), (2.9) and (2.6).
4. As written in (3.12) the solution contains the functions X, which are rather

arbitrary: they have only to satisfy (2.5). These functions have already been determined;
however, it is possible to eliminate them in the final solution. To this 6nd we make use
of the Green's formula relating the two systems (3.1), (3.2) and (3.4), (3.5)

f {XnLJXd - XiL*(Xn) } dx
J a

= Po(6)x.(6)XK6) - PoiVxmX^b) - p&b)x»(b)X,(b) + pa(6)x.(fc)X.(&) (4.1)
- Po(a)Xn(a)X',(a) + p0(a)x«(a)Xi(a) + p£(a)x„(a)X,(a) - p1(o)x»(a)X,(a)

= Ux[Xi\VA{xM\ + £MX,.}F3{x„} + UAX^VAxn} + U^X^VAxn},
where U3 {X,}, U4 {X<} are linear combinations of X,(a), X,(6), X'(a), X'(b) and
V3 {x»}, V4 {xn} are linear combinations of x„(a), Xn(b), Xn(a), x»(&)- C/x , U2 and Vx , V3
have been defined by (3.2) and (3.5) respectively. Noting that

L*(x«) = 0, V1{Xn\ = F2{x„} = 0,
and remembering Xt(x) has to satisfy (2.5), we have

£ X„L„(X,) dx = 5f, \p0(a)xn(a) + p'0(a)xn(fl) - Pi(a)xn(fl)} ^ ^

+ 5,2 { ~Po(b)xn(b) - po(b)xn(b) + Pi(6)xn(6)} = «. F4{x»} + PiV3{x„},

where Sn , Si2 are the Kronecker deltas. Substituting the expressions for Tt as given
by (2.6) and the result (4.2) just obtained into (3.12) we obtain the solution in the
following form:

co I / \ nb

u(x, t) = Z —fT~ exp {-X„<} / uv(x)xn(x) dx
tj = 1 Ja

+ Z Ux)J,Ax"] [' f(r) exp {-K(t - t)} dr (4.3)
n= 1 ^ n J 0

+ t f g(r) exp {-Ut - r)} dr,
n= I JO
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where

F3{X»} = ~~ {«i[(po(&) - Pl(b))Xn(b) + Po(b)xn(b)] ^ ^

+ a2[(pS(a) - Pi(.a))xn(a) + pn(a)x'n(a)}\,

and

F4{Xn} = — mw) - Pmxn(b) + p0(bum
+ M(p'o(a) - p,(a))x„(a) + p0(a)xn(a) ] I •

5. As an example of the previous discussions, consider the diffusion equation for the
axi-symmetric case, a < r < b:

d2u 1 du du ..= (0-1}

with the initial condition

u(r, t) = u0(t), t = 0, (5.2)

and the boundary conditions

[otiuia., t) + a2u(h, t) + a3ur(a, t) + a4ur(b, t) = f(t),

li8,m(o, t) + p2u(b, t) + 183ur(a, t) + BiUr(b, t) = g(t).
(5.3)

By following the same procedure as outlined in the previous paragraphs we are led
to consider the system:

lma = (£ + 7|; + x»V» = 0' . <5-4>
= aitn(a) + oi2\pn(b) + a3^(a) + a4\p'„(b) = 0, ^ ^

L UM = MM + Mn(b) + + M'Sb) = 0
and the adjoint system:

+ + <5-6)

f^l{x»} = yixjfl) + 7iXn(b) + 73Xn(a) + 74X~(&) = 0, ^ ^

i. ̂  2 {Xn} = <5,X„(cO + 82Xn(b) + dzx'nia) + 54Xn(&) = 0,

where 7, , • ■ • , 54 are to be determined. Now the fundamental solutions of (5.4) are
J0(\lf2r), Y0(\y2r), being Bessel functions of the first and the second kind of the zero
order. The characteristic function of the system (5.4), (5.5) is therefore

Ur) = Jo(K/2r) - EY0(\Y2r), (5.8)

where E is a constant and is determined by C/, {*/-„} = U2 {\j/n} — 0. Similarly the funda-
mental solutions of (5.6) are rJn{\\/2r) and rY0(\\/2r), and the characteristic function of
the system (5.6), (5.7) is

X.(r) = rJ0{\\nr) - E'rYa(\\/2r), (5.9)
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E' to be determined by Fi {x„} = F2 {%«} =0. The Green's formula connecting the two
systems is:

f {XnLn(\f>„) ~ L*(Xn)} &
J a

= tnitfXn(b) ~ tn(b)x!,(b) + | tnifyXn(fy ^ jqj

- t'n{a)Xn(a) + iA„(a)x»(a) - \ ^„(a)x„(a)a

= C/t{^„}F4{Xn} + U2{*n}V3{Xn\ + U3{*n}V2{Xn} + U< { *„} F, {X-} •

Here Ux \ipn\, U2 {^„} have already been defined, as by (5.5); if we take4

EM>An} =  ~ |«4 — in{a) + a3<An(f>)} , (5.11)
°'l30'24 V *>24 )

UM = — {& — Ua) + MM} , (5.12)
0"l3°*24 L 0*24 J

we can find Vj {xn}, ■ ■ • , V4 fx™} by comparing the coefficients of i„(a), ipjb), ^'n(a),
ipi(b) in (5.10). This results5

F{x„) = - ^)x„(a) - Xn(a)| + - f)x„(b) - xi^)} , (5.13)

F2{x„! = /33^,{(i - ^)xn(a) - x'(«)| + &*„{(£ - &)x.(&) - , (5.14)

F3 [ Xn} = — !«4X,.(a) + OtzXnib)}, (5.15)
C34

F4fx„} = —- l/3,X» + AXn(b)\- (5.16)
Now we introduce

12,,. = J,.(Xi/2a)F,(x:/26) - J^VY^a), (5.17)

P(a) = —aifioi + a3X!/2fin ,

Q(a) = —tvi^oo + a3\'n/2Q

R(a) = a2Sl0o — a4Xn/2fioi ,

1/2/.
10 ) (5.18)

_S(a) = a2^io — a4\l/2Q 'ii j

K(a) = ai«/0(X»/2a) — a:s\'n'2J i(Xi/2a),

L(a) = a2J0(\l/2b) - aX/2Jt(\Y2b), (g lg)
M{a) = a1F„(Xi/2a) - aX/2Y,(K/2a),

. N(a) = a2Y„(X'n/2b) - aX/'Y^y'b),

4Of course, other forms of *73{f»! and EMiM may be chosen as long as  — , CMiM
form an independent set in the quantities n(a), W>), t'n(a), 4/'n{b).

6 Equations (5.15) and (5.16) are equivalent to (4.4) and (4.5) if we put in the latter p0 = 1, pi(a) =
1 /a, etc., and make use of Vilx„) = V2 |x»! = 0.
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and similar expressions for P(|8), • • • , N(0). Also let a = b<Tl3/a<T2i , then, using the fact
that J'0(K/2r) = — K/2 Ji(K/2r), F£(Xi/2r) = — XBFi(Xi/3r), where the prime denotes
the derivative with respect to r and that JI(\y2r)F0(Xi/2r) — F,(xy2r) J0(K/2r) =
2/jrXi/ar we obtain, after some algebraic details,

_ K(a) + Ha) _ K{0) + m
M(a) + N(a) M{ff) + Nifi) ' { )

i _ P(") + 2a J it a _ R(fi) + 2/33/ira . .
M(a) + N(a) MQ3) + N(0) ' { )

, /ia _ Q(a) + 2a4/a-b _ Q(ff) + 2/3i/irb .
~ M(a) + iV(a) ~ M(0) + JV(/3) '

_ if (a) + <jL(a) _ K(J3) + vL(0)
M(a) + <rN(a) M{&) + <jN(fl) ' { )

/ \ , <rR(a) + 2a3/ira oP(/3) + 2/33/tta ,r „ .
X"(a) = a M(a) + <rN(a) = a ' (5 )

/i\ , Q(a) + 2at(r/irb , Q(/3) + 2/34<r/ir6 ,r .
X"(&) = 6 M(a) + crtf(«) = b M{0) + am" (5'25)

Furthermore, since ^m(r) and Xn(r) are orthogonal in the interval (a, b), we have

$m(r)xn(r) dr = 0, m ^ n,fJ a

and

Lb

fn(r)x*(r) dr

= b2 (P(a) + 2a2/7rX1/26} {P(«) + 2a2a/7rXy26} + {£(«) + 2aJirb}\Q{a) + 2«4<x/7rfrj
2 {Jf(a) + Ar(a)| {M(a) + <riV(a)}

_ ^ jfl(a) -f- 2a3/-Ka \ {<jR(a) -(- 2a3/7ra} -f" {S(a) 4~ 2a.i/ifk\/2a} {<rS(ct) -f- 2ai/Tr\\naj
2 j {M(ar) + N(a)} {M(a) + aN(a)}

= C. . (5.26)

In the last expression we can replace all the P(a), • • • , N(a) by the corresponding
P(/3), • • • , 7V(/3). The characteristic numbers X„ are the roots of the equation

<rs4fiiiXn - ((Tufioi + <r32Q10)Xi/a + <rI2fi00 + I (v + ^) = °- (5,2?)

With these preliminaries the solution of the given problem can be written down according
to (4.3). We note in particular that the system (5.4), (5.5) becomes self-adjoint if a<r2i =
ba,3 , i.e., if ar = 1, in which case E — E' and x»M = rvJ-„(r).

6. We now consider a special case of the previous example. Let

a2 = 0, a3 = a, a< = 0, ^ ^

02 ~ 1> $3 = 0, j3t = {},
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then the boundary conditions are reduced to

j—u(a, t) + aur{a, t) = /«), , ^

1 u(b, t) + Pur(b, t) = g{t).

This problem arises in the evaluation of transient temperature distribution in a homo-
geneous hollow circular cylinder, a g r ^ b, when the gas temperatures inside and out-
side the cylinder are functions of time, being f(t) and g{t) respectively, and the initial
temperature distribution in the cylinder is u0(r). The constants a and /? are associated
with the heat transfer coefficient and the thermal conductivity of the cylinder material
(here a, 0 > 0). Then a<j.H = b<rlx = 0, and the system is self-ad joint. Here we have

TV -v - ./o(Xn/2«) + a\Y2JAl/2a) _ JoM2b) - /3Xyy,(X'/26) o\
Y0(xy2a) + aK/2Y1(K/2a) Yn(Xl„/2b) - p\1„/2Y1(\1n/2b) '

Mr) = \ x„(r) = J0(K/2r) - EY0(\\/2r) (6.4)

1^ / s   la/icq    "Qo ftXn Oqi 
axM) - Fo(xy2a) + aX^Yl(xra) ~ Y0(\ln/2b) - pXV'Y^b)

I n\ _ /ja   ^00 ~f~ <*Xn Oio  _ 2/3/Tb  . .
W ) ~ bXn[b) ~ Y0(x'n/2a) + aX'n/2YAK/2a) Y0(K/2b) - pX^Y^b) (6"6)

Cn = J Mr)xJf) dr = £ r\f/2n(r) dr

2j 1 + PX   1 + a A; (6.7)
~ tt2X„ I { Y0(K/2b) - PXY-! Y^xTb)}2 { Y0(Xln/2a) + «Xi/!i Y^b)}2J

and Xn is a root of

a/30uX„ (afiio /3i2oi)X„ 00o = 0. (6.8)

Furthermore, from (5.15) and (5.16) we have

V3{Xn} = xM/P,

^{Xn} = -Xn(a)/a,

so that the solution of this special case can be written down, according to (4.3),

u(r, <) = Z) exp (-XJ) f ruu(r)\p„(r) dr
n=» 1 ^ n J a

- - E *"Ta) f Kt) exp - T)f dr (6-9)
CK n-1 ^ n Jo

+ | Z Ur)^{h) £ g(r) exp - r)} dr.

The solution of this special case for f(t) and g(t) equal to constants has already been
given by Carslaw and Jaeger [4], using the method of the Laplace transform. It is easy
to verify that the result presented here is the same as that given in [4], For, if <p(r) —
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Y,n-i Ant„(r), a < r < b, then

A" = Ja dr = ia + \ t»)dr

= pY <p{b)4<n(b) + ^ <p(a)tn(a) + ^ r<p'{r)t'n{r) drj ,

where use has been made of — \f/n(a) + mp'Ja) = \pn(b) + j3ip'n{b) = 0. By putting <p(r) = 1
and log r successively in (6.10) we can find the summation of the series
fn(r) iA„(a)/C„X„ and XXi ypn{b)/Cn\n . Replacing /(<) and g(t) by the constants
/ and g respectively in (6.9) and using the results just obtained after performing the
integration, we get

u(r, t) = X) exp (-A J) f ru0(r)tn(r) dr
n-1 ^ n Ja

af{b log b/r + /3} + bg\a log a/r — a} , .
ab log b/a + a/3 + ba

^ ,l, MSgS{« ^ «p (-M,
which is the form given by Carslaw and Jaeger. In this expression ^„(r), ^„(a) and
^„(6) are given by (6.4), (6.5) and (6.6) respectively.
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