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ABSTRACT 

A method is described to solve constrained HFB-equationswithout 

introduction of a Lagrangian multiplier. To demonstrate the versatility 

of the method rotational bands in l64Er and l6~ are calculated . 



0 0 ,""" ,q s 0 J l) 
I f1~ 6 :2 

-1-

1. Introduction 

The interest in solutions of the HFB-equations stems mainly from the 

success of the theory in 
1) , 

the calculation of energy surfaces and 

properties of rotational states. 2), In the first case the expectation 
A 

value of the quadrupole operator Q, and if necessary of higher multipo]e 

operators, must be constrained whereas in the second case the expectation 

value of the angular momentum operator must be fixed at a given value. 

The conventional technique for solving such problems is to introduce a 

Lagrangian multiplier l.e .. to add a term -wJx or -nQ to the Hamiltonian. 

Difficulties arise if the expectation value is not a single valued 

function of the Lagrangian multiplier. They can be overcome by using a 

quadratic constraint like c( Q - Qo)2, which is added to the energy 

expression to be varied. In this paper a method is described which also 

circumvents such difficulties and has moreover the advantage that the 

energy is only calculated for a single given value of the expectation 

value of the constraining operator. For instance, lJl the case of 

rotational states one obtains solutions which exactly fulfill 

(J >=' J(J+l) - (J2 > x z (T.l) 

And these are the only physically significant solutions. TIlere is no 

need to do a calculation for several values of the Lagrangian multiplier 

and then interpolate between them. 
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II. Review of HFB-Theory 

For the convenience of the reader the important equations of HFB-theory 

are gIven once more. Details can be found in reference 2 and the litera-

ture cited there. 

A Bogolyubov transformation is defined by 

(II .1) 

The coefficients Akv and Bkv are only restricted by the requirement that 

the set of Fermi operators C~, Ck are transformed into a new set of Fermi 

operators "I-a , a . v v 
. "l-To each set of FCTIm operators a ,a he longs ;( 

o v v 0 

uniquely defined vacuum state / ¢) with the property 

a /¢} = 0 v (II. 2) 

Given a rlamiltonian H one may now ask the question which vacuum state 

/ ¢} minimizes the expectation value (¢ / H / ¢ ). TIle equations of thi s 

variation principle are most conveniently formulated by transfonning the 

Hamiltonian H into the quasi-particle representation~ 

with 

* In order to simplify matters A and B will be taken as real from now on. 
0' 

j 



o 0 

H2O = 

H22 = 

"':3-

+ aa 
'J jJ 

E (H20 )'J 
+ + 

(a' a + a a ) 
'JjJ jJ 'J jJ jJ 'J 

+ + 
E (H) a a a aA A 22 'JjJAP 'J jJ P 'JjJ P 

(II.3) 

( 
+ + + + 

E (H) a a a, a + a a a a) 
'JjJAP 40 'JjJAP 'J jJ A P P A jJ .'J 

(IT.4) 

(H) 1:.2 (<p I ajJa'J H I <P ) 20 'JjJ 

1he tenns with four quasi-particle operators are defined analogously 

hut are not needed here. (HII ) and (H20) can he expressed in tenns 'JjJ . . 'JjJ 

of the coefficients Akv ' ~ and the Hamiltonian H = t + v. 

with h = t + r 

+ + + + 
(A hA-B hB + A 6B - B AA) 'JjJ 

(T T. 5) 

I' ;md f\. arc the self-consistent single particle potential and pairing 

potential respectively. (For details see reL 2 [:411. 3.(1) 
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Next a theorem on HFB-functions (vacuum states) due to Thouless3) is used. 

The theorem is stated without proof, which is given in reference 2. Any 

two vacuum states I <P) and I X) whose scalar product is non zero 

(xl<p) f 0 

+ . 
and the corresponding sets of quasi-particle operators {Y Y} 

ll. II 
{. -r } av ' av are related as follows: 

Ix ) 

(K normalization constant) 

+ 
Yll 

= L S (a + E C
pv 

a
p

) 
Vll v v p 

av I <P ) = 0 

Ylli X ) .- 0 

+ R + 
Yll 

= E P a a 
Vll v Vll v v 

C
llV 

(RP- l ) 
llV 

(TJ.6) 

;J !lei 

(I,I . 7) 

(IT.8) 

(ll.9) 

(JJ.lO) 

Equations IT. 7 and IT. 8 glve I X} and Y in terms of ( whereas in 
II llV 

.. . t I" 
I:quatiolls 11.9 and 11.10 e pv is glven 111 tellllS of av~ av ' ~Hld Yp ' Y~I. 
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Consider now: 

~ (X X ) 

Obviously one has: 

~H 
de 

1l\J 

= 

.,f\'J', . ,"'",J ~~ 'U" , / "' • ..., '::.G ~ 

-s-

* 1 2: C"a a" 
( <pleL "P p P 

* 1 2: 

( <pI e2 "P 
C"papa" 

E ({C }) 
1l\J 

6 4 

1 2: C 
+ + 

a a 
H e2 1l\J 

1l\J II \J 
I <p ) 

(ILll) + + 
1 L C a a 
L 1l\J 

1l\J II \J 
e I <l> ) 

elL 12) 

Because Equations II. 7 and IL 8 establish the most general variation of 

I <p } , Equations IL 12 gives the variation of any expectation value 
A 

(<I>IQI<I» (just replace H by Q in ILll and IL12). This variation or the 

derivative with respect to C is determined by the coefficients A1_. and 
1l\J I\. V 

Bkv through Equations II.3 to EE.S. Therefore not only any expectation 

value but also its derivative is given in tenns of these coeffi-

, cients. 

This forms the basis of a numerical method fOT the solution of constrained 

HFB-equations which is described in the following sect jon. 
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III. Numerical Method of Solution. 

The equations to start with are 

d 
< <I> I HI <I> } (H20\JV X--

].lV 

"- (ITL 1) 

d A 

~ < <I> IJI <I> } (J20 )].lV 
].lV. 

~ E = ~ C (H2o) + 0(C2 ) 
].lv].lV ].lV ].lV 

(ITT.2) 

from now only the terms linear in C will be taken into account. Clearly 
].lV 

/:, E is negative and has its greatest absolute value if one sets 

n > 0 (III.3) 

Then ~ J I s given by 

• 
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(lIT.4) 

<J An expression like I: (H20)jJV (J20)jJv can be iriterpreted as a scalar 
jJV \ 

product of two vectors H20 and J 20 . 'With this simplified notation 1\1: 

and J 20 take the form 

f.,J =. -n (H20 . J 20) 

'" 
Of course f.,J should vanish provided the, expectation value ( ct> I J I ct>. ) 

equals J ,the desired value. If this is not the case on sets o , 

(J
o 

- (J > 
CjJv = ___ _ 

. 2 
(J20) 

J 
lJV 

and repeats this procedure if necessary until (J > equals J o' 

(ITT.S) 

(III.6) 

From now on one decreases the energy without changing (J >oy setting 

1

- H . J J C = -n (H) ~ (20 20) (J ) 
lJV 20 lJV (J)2 20 lJV 

- 20 
(TTT. 7) 

-
With the coefficients C from Eqn. III. 7 the new quasi-particle operators jJV 

Y lJ follow from equation II. 8. 'me quanti tics S are detcTIlri ncLI by . VjJ 

the requirement that the operators y ful Till Fcnlli conunutation relations. 
. ~.' , , 

In I)ractice this is achieved by orthogonal j sati on of :J sct of vectors g' p' 
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These are related to the operators y' which fulfill the relations 
jJ 

by 

y' 
jJ 

= a + L: C at 
v p pv p 

of {y' y' } = 8 ~ L: C C va va ppv pa 

If the orthogonal vectors g are 
jJ 

g = L: S g' jJ VjJ v 

then the operators Yv are 

YjJ - L: S y' VjJ v 

'This implies for the new coefficients A~, BkjJ 

A' 
kjJ 

B' kjJ 

= 

= 

TTI.8 

TII.9 

lIT. 10 

IIT.l1 

It is clear that any mlll1ber of constraints can be handled in the manner 

described. Only Equ. III.7 has to be generalized. 
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IV Applications 

The constraints used in applying HFB-theory to the problem of nuclear 

;J r"ot;ltions were the following 

A 

<<I>/N /<1» = Z 
P 

(proton number) TV. 1 

A 

<<I>/N 1<1» = N = A-Z n (neutron number) TV. 2 

A 

< <I>/Jxl<l> > = J(JH) - < J2 > 
z (angular momentum) lV. 

< <I> / <l>o} = 0 (for excited states / <I> > ) TV. 4 

In the case of Equ. IV. 4, / <1>0 > 1S the wavefunction of the energeti­

cally lowest state with the same quantum numbers as / <I> >. It should he 

noted at this point that the relation 

a 
ac 

IN 
<<1>/<1» / = <<I>/aa /<1» =0 

o {c= O} jJ v 0 jJV 
jJV 

holds. The requirement on H
20 

is in this case 

IV. 5 

IV. 6 

3 

in every step of the iterative solution of the constr;Jjned IIFB - equ:ltiolls. 

Calculations were performed for l64Er and l68Yb . The single particle 

can fib'1lration space was the same as used earlier2). The strength 

constants of the «uuorupolc-quadrupole force (Q) plus pai ring force (Cl 



-10-

were slightly changed compared to the earlier work In order to give some-

what more quantitative agreement with experimental data. Besides that, a 

moment of inertia of the core was introduced. The core consists of 40 

protons and 70 neutrons in single particle states not taken into accotmt 

explicitly. The magnitude of this moment of inertia was chosen as 

G . core 
-1 

= 6 MeV . Single particle energies an<;l force constants are given 

in Table 1 and 2. This establishes the Hamiltonian and the expression 

for the energy to be used in the variational principle. It should be 

mentioned that the use of Gcore req~ires the knowledge of the angular 

frequency wwhich is obtained from the relation 

w = aE 
am x 

(H20 . J
20

) 

(J
20

)2, 

HereHZO and J 20 are those parts of the vectors H20 and J 20 that ar~ 

orthogonal to Np20 and Nn20 (compare Equs. 111.4 to 111.7 and the notation 

introduced there). 

Calculated and experimental results are shown in Figs. Ito 4. It is 

evident that the calculation reproduces the general trend of the experi­

mental data. In particular~ the two 16+ states lie very close. This 

indicates that in this approach the Coriolis matrix elements are auto­

matically reduced to a sufficient degree in order to have states of the 

4) same angular momentum and parity very close to each other . 

Th 1 168Yb . d' ] 1 . J . ].. 1 " e resu ts on . In lcate t 1at at east W.I t un a .. 11111 tee range 0 lIIass 

numbers experimental data are reproduced by th~ ~ame simple effective 

interaction. 



. ' 

O· o· ~'. ~~ 7 

-11-

The results are encouraging enough to warrant the use of more sophistjcatcd 

effective interactions in calculations of the type described here . 

\ 
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Table 1 

Quantum numbers of single-particle states and their energies in MeV 

PROTONS NElITRONS 

State Energy State Ener!,'Y 

19 g/2 -5.4792 lh 11/2 -6.5503 

19 7/2 -0.7415 19 g/2 -0.8651 

2d 5/2 0.0000 2f 7/2 -1. 7303 

lh 11/2 1.0464 Ii 13/2 0.5200 

2d 3/2 2.6531 3p 3/2 1. 6067 ,... 

3S 1/2 2.9662 2f 5/2 2.1010 

lh g/2 6.7975 3p 1/2 3.2134 

2g 9/2 7.1930 

Table 2 

Strength constants of the interaction used. These constants are to be 

multiplied by dimension-less matrix elements like (n 1 j m , r 2 0, () -) r· nl'j'm'} Y'2 r 2 

Here ro is the oscillator length. 
o 

G++ is the pairing force constant acting 
nn 

+- -- . 
between neutron states of positive parity G and Gare analogous. 

nn nn 

Q = -0.0418 G -0.2200 pp pp 

-0.110 
++ -0.] 980 Qpn = G ::= 

nn 

-0.0418 +-Q ::= G ::= '-0.1870 
nn . nn 

Co ::= -(l.1727 
nn 
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FIGURE CAPTIONS 

1. ijxperimental(4) and calculated energy levels of l64Er . 

2. Experimental and calculated energy levels of l68Yb . 

3. d .. d 'f 164 Calculate intrlnslc qua ropole moments 0 Br. g.s. = ground 

state band, ex.b. = excited state band, - = negative parity hand. 

4. Calculated intrinsic quadrapo1e moments of l68Yb . 
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