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ABSTRACT
A method is described to solve constrained HFB-equations without

introduction of a Lagrangian multiplier. To demonstrate the versatility

164

of the method rotatidnal bands in ~° Er and 168y, are calculated.



I. Introduction

The intefest invsolutions of the HFB-equations stems mainly from the
success of the theory in the calculation of energy surfacesl) and
properties of rotational sfates.zl In tﬁe first case the expectation
value of the quadrupdle»operator 6, and if necessary of highcr multipole
opcrators, must be constrained whereas in the second case the expectation
vélué'of‘the angular moméntumvoperator'must be fixed at a given Valuc.
The.conventional technique for solving:suéh pfoblems is to introduce a
Lagrangian multiplier i.e. ﬁo add a term -w&x or —ha to the Hamiltonian.
Diffiéulties arise if the expeCtatioh value is not a single valued
function of the Lagrangian multiplier. They can be overcome by uéing a
quadratic constraint like c(.a - Qo)z, which is added to the energy
expression to be varied. In this paper a method 1is described which also
circumventé such difficulties and has moreover the advantage that the
énorgy 1s only calculated for a single given value of the'expectatidn
value of the constraining operator. For instance, in the casc of
rotational states one obtains solufions-wﬁich exactly fulfill

- 2

J= JE) -3y (.

And these are the only physically significant solutions. There 1s no-
need to do a calculation for several values of the Lagrangian multiplicr

" and then interpolate between them.



IT1. .Review of HFB-Theory

For the convenience of thé reader the.important equations of HFB—theory
are given once more. Details can be found in reference 2 and the litcra-
ture cited there. |

A Bogolyubov transformation is defined by
(IT.1)

The coefficients Akv and BkQ are only restricted by the requirement that
. . + . . : i .

the set of Fermi operators C,, Ck are transformed into a new set of Fermi

operators ai, o - To each set of Fermi_operators a+v, o, bolongs-d

uniquely defined vacuum state |¢ ) with the property

a\)ld)) =0 (11.2)

Given a Hamiltonian H one may now»ask the question which vacuum statc

| ) minimizes the expectation value <(&|H|®). The equations.of this
variation principlé are most conveniently formulated by transforming the
Hamiltonian H into the quasi-particle fepreéentation%

H = Ho +-Hl] + HZO + H22 + H3] + H40

with

* In order to simplify matters A and B will be taken as real from now on.
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Hy = ColH[o)
iy ‘vﬁ(Hll)vp'“C' y
Ha0 = Eu(ﬂzo)vu (af o *+ o) . (11.3)
Hy, = vﬁxé(HZZ)anp o, a; @, %
oy = Vixp(H3l)vuAO (a: AR a; u; a;.ay)
H40 i vuié (H40)VUXD (d; a; a; a; * ao‘al *u Qv)
where (Hll)vu and (HZO)vu are given by:

(Hll)vu = (@Iav H aul o) |
(11.4)
1
.(HZO)vu = 7—(¢ lquuv H| )

The terms with four quasi-particle operators are defined analogously
but are not needed here. (Hll)vu.and (HZO)vu can be expressed in terms

of the coefficients Akv’ BkV and the Hamiltonian H = t + v

. X : _ + + + 4 '
), = ABABTRB « ATAB - BTAA)
= (at gt + oot (11.5)
(Hyp)y, = (TRB - BT+ ATan - BTAB)
with h=t+T

' and A are the self-consistent singlc pdrticic potential and pairing

potential reSpectively. (For details see ref. 2 Lgn. 3.61)
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Next a theorem on HFB-functions (vacuum states) due to "I'houlesss) is used.
The theorem 1s stated without proof, which is given in reference 2. Any .

two vacuum states |¢ ) and |x ) whose scalar product is non zero -

(x| #0 | (11.6)

and the corresponding sets of quasi-particle operators {Yu Yu} and

{a;t, ocv} are related as follows:

: : Tt
x > = Kexp (5 ﬁv Cv % %y NER _ (;1.7)

(K normalization constant)

' Y, T 3 SVU (uv + g va ap) (17.8)
av|¢ > =0
Yu?x ) =0
Y =P o + OL+ (IT 9
- v VU OV . VMV
c =@l O (11.10)
uv uv : | LT

Iiiquati.on# IT.7 and T11.8 give |x ) and Y, in terms of C“V whereas 1n

. or ‘1 . . . : e + T
Wi 3 9 L0 C S plve s X and - Y .
Equations '11.9 mq IT.10 ( yv s glven in terms of ays O, mnd yu, Y,
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Consider now:
*

15 oo LI Cy a:u;
y[HIY O <@|éz Ap H el W |9 ) o
Ox[x? - * + ¥+ (II.-l_l)

1% C,ao, 1 C oo '
. 7 Ap Ap P Ty HVOHV

(dle e” T [® )
= E ({Cuv})

Obviously one has:

un
it

_ (¢|avau H| o) = (H (11.12)

20)uv

Hv {c

- 0}

Because Equations II.7 and II;8 establish the most general variation of

|¢ >, Equations I1.12 gives the variation of any expectation valuc

(¢|a|¢ ) (just repiacé Hvby Q in II.li and 11.12). This variation or the
derivative with respect to Cuv is,deterﬁined'by the coefficients AkQ and
Bkv through Equations 11.3 to EE.S, Therefore not only any expectation
value but also its derivative is given in terms of theée coeffi-. |

. clents. |

This forms the basis of a numericél method for the soiutioniof constrained

HFB-equations which is described in the following section.



ITI. Numerical Method of Solution.

The cquations to start with are

o (o|H|® > = (HZO)uv
Y '
~
o (elJ|e) = (J,)
207 uv
W |

2

AE =2 C () o+ 0
ne .
AJ=% C_ (J,0) . +0 ().
_ 1 uv - 207 pv v

(TTT.1)

(IT1.2)

From now only the terms linear in Cuv_will be taken into account. Clearly

A L is negative and has its greateét absolute value if one sets’

Cuv s n(HZO?uv n,> 0

Then A J is given by

(111;3)



AJ=-n2 (HZO)uv (Jzo)uv (117.4)
v .

An expression like % (”20) (JZO)uv can be interpreted as a scalar
IV \ .

product of two vectors HZO and JZ With this simplified notation Al

and JZO take the form | |

A2
AE = n (Hzo)

(I11.5)
Of course AJ should vanish provided the expectation value ¢ ¢|J|¢"?
equals Jo,the desired value. If this is not the case on sets
- ¢I) | | |
W= e | (IT1.6).
(J50) '

and repeats this procedure if necessary until (J) equals J

From now on one decreases the energy without changing (J ) by setting

H

_ . (207 20
Cow = 1 )y — )(]zo)pvi] '

(arr.7)
(Jp)”

i

With the coefficients C‘v from Eqn. IiI;V the new quasi-particle operators
Yy follow from equation IT.8. The quantities S\)u are determined by

the requirement that the operators | fulfill Fermi commutation relations

. , ‘ ,
In practice this is achieved by orthogonalisation of a sct of vectors g&.



These are related to the operators yﬁ which fulfill the relations

. +
! =
Yu o, * z; Cp\) a,
' IT1.8
v'i‘ ] = 7
v, v5? vo * 5 Cov Cpo
by
! >, > ' 1 t ] ' .
@ &) - mvy | o TIL9
Tf the orthogonal vectors gﬁ are
" = ° ' . .
By =TS, 8 , R
then the operators Y, are
Y =IS y' ITT.11

TR ATV

This implies for the new coefficients A} - Bﬁu
. ’

A T gp Suu (Akv 5 G Bko)

Bk“ = gp Svu (Bku * g va Akp)

It is clear that any number of constraints can be handled in thc manncr

described. Only Equ. ITI.7 has to be generalizéd.



IV App1ications
The constraints used in applying HFB-theory to the problem of nuclear

rotations were the following

<¢|§pi¢> = Z (p’rotdn number) V. 1
(¢|ﬁnl¢ ). = N = A—Z. (neutron number) v' V. 2
(¢|3x|¢ ) = J(JH) -.<J§ ) (ahgulaf momentumj ]V.v3
(¢l¢o Y = 0 (for excited states 4 ) V. 4

In the case of Equ. IV. 4, |¢O > 1s the wavefunction of the energeti-
cally lowest state with the same quantum numbers as |¢ ). It should be

noted at this point that the relation

3 ’ .
2 (e = (¢laa e =0 V. s
aCU\) lo '{Cu\) =0 'lu\)l 0 LA

holds. The requirement on HZO is in this case
, (0 Hy) =0 » | V. 6

in every step of the iterative solution of the constrained HFB - cquations.

164 168y the single particle

2)

Calculations were perfofmed for Er and

configuration space was the same as used earlier The strength

constants of the quadrupole-quadrupole force (Q) plus pairing force (G)-



.were slightly changed compared to the earlier work in order to give some-
what more quantitatiye agreement Qith experimental data. Besides that, a
moment of inertia of the core was introduced. The core consists 6F 40
protons and 70 neuffons in single particle states not taken into account
explicitly. The magnitude of this moment of inertia was chosen as

Ocore =06 MeV_l.r Single particle energies and foréé constants are given
in Table 1 and 2. This establishes_the Hamiltonian and the expression
for the energy toAbe used in. the variational principle. Itiéhoﬁld be

requires. the knowledge'bf the :angular

mentioned that the use of ©_, . .

frequency w which is obtained from the  relation
‘ C T
3E _ My - Ty

m: =
d X (J26)2~

Here Hj, and jéo-are those parts of the vectors Hy, and J,, that are.-
orthogonal to szo’and NnZO (compare Equs. III.4 to TII.7 and the notation
“introduced there).

Calculated and experimental results are shownrin Figs. 1 to 4. 1Tt is |
evident thaf the calculation reproducés the general trend of the experi-
mentél data. In parficﬁlar; the two 16" states lie Very close. This
indicates that in this approach the Coriolis matrix elements are auto-
matically reduced to a sufficient degree in order to have statés of the
same angular momenfum and parity very close to cach other4)f

The results on 168Yb'indicatc that at least within a limited range of mass

numbers experimental data are reproduced by the same simple effective

interaction.
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IS

The results are encouraging enough to warrant the use of more sophisticated

effective interactions in calculations of the type described here.
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Table 1

Quantum numbers of single-particle states and their energies in MeV -

_‘PROTQNS . - " NEUTRONS

State Energy } State Energy -

lgg/z2  -5.4792 - Ih 11/2 -6.5503

1g 7/2 -0.7415 1g g/2 -0.8651

2452 0.0000 22 -1.7303

1h 11/2 o 10464 1i 13/2 0.5200

2d 3/2 2653 3 3/2 1.6067 .

35 1/2 2.9662 . 2652 2.1010

1h g/2 6.7975 3p 1/2 3.2134

| 2 9/2 7.1930
Table 2

Stréngth constants of the interaction used. These constants are to be
multipijed by‘dimension—less matrix elements like ¢n 1 jm |’ ;i?z'rglnl'jWHW Y;

“Here s is the oscillator length. G;; is the pairing force constant acting

.- : . +- ~-— . h
-between neutron states of positive parity Gnn and Gnn‘are analogous.

.

= -0.0418 G = -0.2200
PP S . pp T
» : +

Q= -0.110 , G ' = -0.1980

pn- . : m- )

| nn _

Q, = -0.0418 G o= -0.1870
G = -0.1727
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FIGURE CAPTIONS

Experimental(4) and calculated energy levels of 164Er.
Experimental and calculated energy levels of 168Yb.

Calculéted intrinsic quadropole moments of 164Er. g.s. = ground
state band, ex.b. = excited state band, ¥_='negativc_parity band.
Calculated intrinsiciquadrapole'moménts of 168Yb. |
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