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Abstract. In this paper a certain class of singular integral equations that may arise from
the mixed boundary value problems in nonhomogeneous materials is considered. The
distinguishing feature of these equations is that in addition to the Cauchy singularity, the
kernels contain terms that are singular only at the end points. In the form of the singular
integral equations adopted, the density function is a potential or a displacement and
consequently the kernel has strong singularities of the form (t - x)~2, x"~2(t + x)"
(n > 2,0 < x, t < b). The complex function theory is used to determine the fundamental
function of the problem for the general case and a simple numerical technique is described
to solve the integral equation. Two examples from the theory of elasticity are then
considered to show the application of the technique.

1. Introduction. In elasticity or in potential theory if the medium contains a planar
imperfection representing a discontinuity in displacements or potential (e.g., a crack, a
plane insulation, a barrier), or in stress or flux vector (e.g., a plane inclusion, a distributed
source), the related mixed boundary value problem may be formulated in terms of either a
system of dual integral equations [1] or a singular integral equation [2,3], If the "cut"
corresponding to the plane of potential or flux discontinuity is fully embedded in a
homogeneous component in the medium, it is known that the dominant part of the
integral equation contains only a simple Cauchy kernel associated with the corresponding
infinite domain and the remaining geometry of the medium is represented by a Fredholm
kernel. On the other hand, if the medium is nonhomogeneous with discontinuous material
parameters and if the cut intersects such a plane of discontinuity, then it is also known
that the dominant kernel of the integral equation contains other singular terms in addition
to the Cauchy kernel [3], These kernels (which are sometimes known as the generalized
Cauchy kernels) become unbounded as the variables approach the end of the cut
responding to the point of intersection with the bimaterial interface.
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In the case of singular integral equations with ordinary Cauchy kernel the solution of
the problem is quite straightforward and there are very highly efficient numerical
techniques to obtain it. Most of these simple techniques are based on a variety of
quadrature formulas developed for singular integrals (see, for example [4]). Another such
technique introducing further computational economy as well as maintaining the basic
numerical simplicity in the applications was discussed in a recent article [5], The main
features of this technique are (i) potential rather than flux type quantities are used as the
unknown functions in deriving the integral equations resulting in a dominant kernel with a
singularity stronger than that of the standard Cauchy kernel, (ii) the unknown function is
expressed in terms of the fundamental solution of the problem and a bounded function
containing a set of unknown coefficients, (iii) interpreting the integrals with strong
singularities in the Hadamard sense, some useful formulas are developed to evaluate the
integrals corresponding to the dominant part of the integral equation in closed form, and
(iv) an appropriate collocation method is used to solve the resulting functional equation
for the unknown coefficients. In [5] this method was used to solve also a special case of
singular integral equations with a generalized Cauchy kernel, namely that of a cut
intersecting a free boundary, and was shown to have distinct advantages over the
conventional quadrature methods with regard to accuracy and computer time.

In this paper the mixed boundary value problems leading to singular integral equations
with a generalized Cauchy kernel are reconsidered by formulating them in terms of
"potentials" as the unknown functions. The terms in the resulting dominant kernel would
then have strong singularities and must be interpreted in the Hadamard sense. It is shown
that the complex function theory can again be used to determine the fundamental
solution. The main objective of the paper is to develop a simple and efficient technique for
solving singular integral equations with generalized Cauchy kernels.

2. Integral equations. Consider first the simple problem in potential theory described in
Fig. 1. In the terminology of elasticity the problem is one of antiplane shear loading of a
nonhomogeneous medium which consists of two bonded half spaces with shear moduli /xj
and n2■ The medium contains a crack along 6 = it, a < r < b and, in the perturbation
problem considered, the crack surface traction al9z(r,-n) = q(r) is the only nonzero
external load. If wl and w2 are the z-component of the displacement vector in materials 1
and 2, respectively, it was shown that (see, for example, [6,7]) the differential equations
and boundary conditions

V 2wl = 0, V2 w2 = 0, (la, b)

= 0 < r < ooj, (2a,b)

(r,0) = 0 (0 ^ r < oo), (3)

i(r,ir) = 0 (0 ^ r < a, b < r < oo), (4a)

oie,{r,v) = q(r) (a < r < b), (4b)

wl — w2, aie, — a2e.

w
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Fig. 1 Bonded Half-Planes (Antiplane Shear Loading)

would give the following integral equation:

where

^('") = ^[wi(',.^ + 0)-w1(r,9r-0)], (6)

A = (m 1 - M2)/(m 1 + Ma) (7)
and, because of symmetry, only one half of the medium is considered. We note that for
a = 0 and /11 ¥= ji2 the term \(t + r)~l becomes unbounded for r = 0 = t and the kernel
is one of generalized Cauchy type.

Integrating (5) by parts and using (4a) it may be seen that

ljh
■n J,

1 +
(t - rf (t + r)2

w(t) df = ~q(r) (a < r < b), (8)
I i

where

w(t) = wx{t,-n + 0) — w1(?,7T — 0). (9)

The integrals in (5) and (8) are to be interpreted in Cauchy principal value and Hadamard
sense, respectively [5]. The integral equation can also be obtained by using w(t) rather
than ip(t) as the unknown function and, for example, following the procedure outlined in
[6], It may be noted that in terms of w some of the stress components of physical interest
may be expressed as

^(^O) = ~ 2 ~ f W^\2 dt (0 < r < oo), (10)
Ml + /*2 77 Ja (/ + r)
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M1M2 1 fh rt
°ieAr>v/2) = o2gz(r,iT/2) = - \2~ J . ? ' 7.2WU) dt (0 < r < 00),

Mi + M2 •'a (?2 + r2)

(11)

I \ fh r<W^) = —/
(t~r)2+ (t-r)2

(t) dt (0 < r < a, b < r < 00). (12)

Similarly, for the crack geometry shown in Fig. 1, under the following symmetric
in-plane loading condition:

= -p(r), alr9(r,w) = 0 (a < r < b), (13)

the integral equation may be obtained as (see, for example, [8] for the procedure)

4 —- - dt + /" K(r, t)v(t) dt = ~'n~7 ~/'(r) (a < r < b), (14)
a (t — r) " Ml

where

u(/) = uie(t,ir + 0) — uie(t,7r — 0) (a < t < b), (15)

S(r,,),^!_ + -2£2i7 + (16)
(/ + /■) (/ + r) (t + r)

1
Cl = 2

^ (1 + Kx)m 3(1 - m)
m + K2 1 + WKj

6(1 — m) 4(1 — m) , ,,
c? =  , C-, =  , m = u,/u,. 17a-d)2 1 + m/c, 3 1 + wkj r2/ ri 7

In the above formulation fil and ju2 are the shear moduli, k, = 3 — Av, for plane strain.
k ■ = (3 — Vj)/( 1 + vi) for plane stress (/ = 1,2), and and p2 are the Poisson's ratio of
the two materials. Once the integral equation is solved, in this problem too all the desired
field quantities may be expressed in terms of v(t) and the corresponding kernels. For
example, the cleavage stresses along the planes 0 = 0,# = it/2, and 6 = tt may be written
as [8]

<W'.° )-^r ( 1 \ 1
m + k2 1 + mKI J (t .1- /-)2

4 r
1 4- mic, m + K2 I (^t + r)

o,„(r.,/2) -a2(,, ,/2) - ^jf* ^ ' 2'

i'(0 dt (0 < r < 00), (18)

1+
1 + miCj

14r2 16r*
+

t + ' (t2 + r2y (t2 + r2)

t2 + r2 (/2 + r2)2

v(t) dt (0 < r < 00), (19)
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2/i i
}\ee

( \ zr l fh= ——   /
77(1 + Kj) Ja

 ? + K(r,t)
(t-r)2

y(?) dt (0 < r < a,b < r < oo),

(20)
where AT(/\ /) is given by (16).

In the problems given by the integral equations (8) and (14) for a crack embedded in a
homogeneous phase, (i.e., for a > 0), the dominant kernel consists of (t - r)~2, the
fundamental function of the integral equations is (b — r)1/2(r — a)L/2, and the solutions
may be obtained by using the technique described in [5], On the other hand, if a = 0
clearly the kernels are of the generalized Cauchy type and, before attempting to solve the
problem, the fundamental function of the integral equation needs to be determined. This
may easily be done by using certain properties of Cauchy integrals [2],

3. The fundamental function. For a = 0 we note that the general form of the integral
equations (8) and (14) is

77 J0
+ EA' Bk_2xk~2

(t - X)2 k = 2 (t + x)k
f(t)dt=p(x) (0 <x<b). (21)

To determine the behavior of /(/) near and at the end points, following [2] we define
f(t) = g(t)t^b - t)" = g(t)e-'iatHt - b)a

(Re(a,j8) > 0, g(0) + 0, g(b) * 0,0 < t < b), (22)
where g(t) is bounded in the closed interval [0, 6] and the function t^'ib - t)ai constitut-
ing the leading term is generally known as the fundamental function of the integral
equation (a = aij, a2,..., /3 = /?l5 /?2,..., 0 < Re^) < Re(a2),..., 0 < Re(^j) <
R e(&),...).

Defining the sectionally holomorphic function

(z = x + iy), (23)
7T Jq t ~ Z

it may be seen that

i/" - C(z) - £ FU) - ^/V(, - d,. (24)■nJ0 (t-z)2 dz 77 Jo (t-z)

From (24) the asymptotic behavior of G(z) near the ends may be expressed as

G(z) = -g{0)ba@r-—-jrz^~^ + g(b)b^—r~—(z — b)" 1 + G0(z), (25)
sin ■up sin 77a

where GQ(z) is bounded everywhere except possibly the end points near which it may have
the following behavior:

\G0(z) | < C,|z - d, (' 1 (dx = 0, pl > Re(/3); d2 = b,p2 > Re(a)). (26)
First we note that if z is not on the cut, then G(z) is holomorphic and at a point

z = z0 = xe'e, (0 < x < b), we can write
i ,h f(t\ RpUdi-Do-v0]
~ / 2 dt = °(zo) = ^' + Ci(2o), (27)
77 Jo (t-z0y sin77P
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where G, is bounded everywhere and near z0 = 0 has a behavior similar to that of G0. For
example, if 6 = tt (i.e., if z0 = -x), by differentiating from (27) it may easily be shown
that near the end x = 0 we have

I J" /{t\k dt = + ^ S(0)baxfl+1'k + 0(xPl + l~k)
77 •'o (t + x) (k ~ l)!sinw/3

(k > 2,x > 0,Pl > Re(fi)). (28)
Similarly, substituting 6 = tt/2 and 6 = -it/2 (i.e.. for z0 = +ix) and using

1 1/1 1 \ , 1/ 1 . 1 \ (29)
t2 + x2 2ix \ t — ix t + ix !' f2 + x2 2 \ t — ix t + ix

it can be shown that

- f" -~~2dl = ^—E-g(0)bttxfi-1 + 0(x"'1) {x > 0,Pl > Re(/?)), (30)
77 o * 2 cos ^

i r w m -w -» - u*+ * - 2k)gi0)baxft+1_„
77 0 (?2 + *2) (A: - l)!4cos^

+ 0(JC/'. + i-2*) (A, ̂  2,jf > 0,p2 > Re(/?)), (31)

- f"  tlill  dt = (_!)*£(£ ~ 2) • • ■ (ft + 4 ~ 2/0 g(0)baxM2-2A
77 J0 (t2 + x2) (A: — l)!4sin~-

+ 0(x',| + 2"2A) (A- > 2,jc > 0,p2 > Re(j8)). (32)

Next, by using the Plemelj formula [2]

if = + (0<*<fe)> (33)
TT Jq t — X I

we find

U"+ <0<*<»)• <34>
Thus, for example, using properties of the form

[Z^] + = lim [*«?*]'-1 =x""1,
s->+o ^
lim [xe>e] 1 _ xp-lei2irfi

from (34) and (25) it follows that

~~ /' —dt = -g(0)bapcot(7T/3)x13 1 — g(b)bliacot(Tra)(b — x)a 1
77 J0 (t-x)

+ 0( xPl _1, (6 - x)Pl '), (0 < x < b, px > Re(yS), p2 > Re(a)). (36)
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Substituting now from (36) and (28) into the integral equation (21) we obtain

.(/icoW) -

— g(b)baacot(Tra)(b — x)a 1 + o(xp'~1, (b — x)P2 l) = p(x) (0 < x < b). (37)

Now, by observing that g(0) ¥= 0, g(b) # 0, px > Re(/S) > 0, p2 > Re(a) > 0 and p(x)
is bounded in 0 < x < b, from (37) multiplying both sides first by xl~& and letting jc 0
then by (b — x)l~a and letting x -* b, for the leading terms 0 < Re(a, j3) < 1 we obtain
the following characteristic equations:

jScotttfl- E Bk_+2) =0, cottt(x — 0.
k = 1 (k — ljlsmw/j

(38a, b)
Note that for the end x = b that is embedded in a homogeneous component of the
medium, (38b) gives the known result a = 1/2.

For the integral equation (8), if a = 0,by defining

w(t) = g(t)t/1(b — t)" (0 < t < b,Re(a,p) > 0), (39)
from (36) and (37) we find

cos 77-/? — A = 0, cotwa = 0. (40a, b)
Similarly, for a = 0 in the in-plane elasticity problem given by (14), if we let

u(t) = g(t)tl3(b - t)" (0 < t < b,Re(a, /3) > 0) (41)
from (14), (16), (21), and (38a, b), it may be shown that

-COS77/S + + c2(l - /?) + c3(l - yS)(2 - P)/2 = 0, cot we* = 0. (42a, b)
We also note that after determining the unknown function g(t), the asymptotic behavior
of the stress components around the end points x = 0 and x = b may be obtained by
substituting from the asymptotic relations such as (28)-(30) and (36) into the expressions
of stresses (e.g., (9)—(11) and (18)—(20)).

4. The numerical technique. To solve the integral equation (21) having the generalized
Cauchy kernel we express the unknown function as

f(t) = g(t)tp,(b - t)1/2, (43)
where is the smallest positive root of (38a) and g(t) is an unknown bounded function.
By defining the following normalized quantities

? = |(1+t), x = |(1 + p), /(f) = !<J>(t), p(x)=p1(p), (44)

from (21) we obtain

i/77 J_

J  y Bk..2(l+p)k
\ 2 ^ / . ~\k «#>(r) dr = pi(p) (-1 < p < 1), (45)

(t - p) k = 2 (r + p + 2)

4>(r) = h( t)(1 — t)1/2(1 + t)^1 (-1 < t < 1), (46)
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where h(T) is the new unknown function. As in [5], the numerical solution of (45) may
now be obtained by expanding Ii(t) into a series with known coordinate functions and
unknown coefficients and by reducing the resulting functional equation to a system of
algebraic equations through a suitable collocation technique. No particular system of
coordinate functions seems to have a special advantage and a simple power series such as

N
h(r)=I,anT" (-1 < t < 1), (47)

n = 0

seems to be quite adequate. Also, expressing the finite-part integral as [5]

/' i dr = f h(T) ~ ~
-1 (r-P) (t -p)~

-♦<")(i^7 + TT7) + ̂ p)l08(TTf) <48»
seems to give very satisfactory results.1 Higher accuracy is obtained in the numerical
solution if the density of collocation points is increased near the ends by, for example,
selecting p- (j = 0,1   N) as the roots of Chebyshev polynomials.

Numerically the technique described above would give fast converging results provided

a,--a, 3*1, 1 (i,j = 2,3,...). (49)

On the other hand, if the characteristic equations contain roots for which a, - < 1 or
(/', j = 2, 3,...), then the numerical technique would converge slowly and

would have to be modified. To see this we note that for the problem under consideration
formulated in terms of a potential-type quantity f(t) (see (21)), the physically acceptable
roots of the characteristic equations are a1; a2,. ■ • and /?2,... with Re(a,-,/J-)> 0
(/, j = 1,2,...) and the solution may generally be expanded as

fit) = L L AiJ{b - t)a'tp< (0 <t<b). (50)
/-1j=l

If we now identify the fundamental function as (b — and express

f(t) = g(t)(b-tr(si)
it is seen that

00 00

g(t)= E T,Aij(b-t)*-ait'>-K. (52)
i=l7=1

Since a, > and ^ (/, j = 2,3 ), g(t) would be bounded at the ends t = 0 and
I = b. On the other hand, if we consider the derivative of g(t).

00 00

gV) = E E - Ul)(b - +(Pj- Mb -
/=!7=1

(53)

'Note that for t -» p the integrand on the right-hand side of (48) is (f>"(p)/2.
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it is seen that if there are characteristic roots for which

a,-«i-KD. P, -A-KO {i,j = 2,3,...), (54)

then at the corresponding end point g'(t) would become unbounded and consequently
g{t) would be ill-defined. Since g(0) and g(b) invariably represent the magnitude of
parameters of primary physical importance, it would then be necessary to modify the
numerical procedure in order to compute these quantities more accurately.

As will be shown by the examples given in the next section, the convergence of the
calculations can be improved quite considerably by introducing the following simple
modification. Let (54) be valid for a, (i = 2,3,..., L) and ( / = 2,3, The
corresponding terms are then embedded into the definition of f(x) as

L M
f(t) = gn(t)(b - t)">t* + £ gn(t)(b - O'V' + Y. gij(<)(b - O'V'. (55)

1=2 j=2

The functions g,,(?) are determined by again expanding them, for example, into power
series with unknown coefficients and by using a suitable collocation method.

5. Examples. First we consider the mixed boundary value problem in potential theory
for the nonhomogeneous medium described in Fig. 1 and formulated by the integral
equation (8). For a > 0, the fundamental function of the integral equation is
(b - t)l/2(t - a)l/2, the unknown function can be expressed as

w(t) = g(t)(b - t)l/2{t - a)l/2 (a < t < b), (56)

and the stress intensity factors or the parameters giving the strength of the flux singularity
at the end points r = a and r = b may be defined and evaluated from

k3(a) = lim \/2(a — r) ol6:(r,ir) (r < a)
r—> a

= lim —=r=2=r = ~g(a)^(b — a)/2 , (57)
1 ]j2(t — a) 1

k3(b) = lim /2(r - b) ol0z(r97r) (r > b)
r^b

= lim = ^Sib)i(b - a)/2 . (58)
2 <-/> v!2(b - t)

The problem is solved by introducing the normalized quantities

b — a b + a b — a b + a , , b — a , x' = —2—t + ^-, r = w(0 = —*( t),

(/>( T ) = /l( t)VT — T2 , (59)

and by letting

/j(t) = £ a„r", pj = cos( ^ | f) (j = 0,1,,..,N). (60)
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The integrals that arise in this solution are evaluated by using the following formulas
[5]:

rVT
/: 7' (»>»)•1 ( T — p) k = 0

r0, for n — k = odd
n — k — 1

c* = ^ ^ f—for „ - it = even. (61a'b>
2yV r f « - * + 2 *

For a material pair corresponding to aluminum and epoxy and for a uniform shear
stress q(r) = qQ applied to the crack surface some results are given in Table 1, where the
previous results, calculated by using a Gauss-Chebyshev quadrature technique [6], are
also displayed. From the table it may be observed that the method seems to give rather
good results even with a relatively small number of terms used for approximating the
unknown function h, the convergence improves as the crack moves away from the
interface, and at the crack tip near the interface the convergence for \x2 > Hi appears to be
slower than the case for which /u, > /u2. Analytically, the difference in these two cases is
only in the sign of A in (8) and, for a > 0, is difficult to relate it to the convergence.
However, as mentioned in the previous section, for a = 0 there is a good reason for slow
convergence and physically the two processes are clearly related.

Consider now the case of a = 0 for which the characteristic equations are given by (40).
For various material combinations the first two roots of (40a) are shown in Table 2. In
this problem

MO = g(t)(b - /)1/2A (62)
and the stress intensity factors are defined by

i

23.077

0.04333

kj(b) = lim /2(r - b) a,77), (63)
r—*b

&,(0) = lim ill r1 ~P'oie,(r,0). (64)
/■—»o

Table 1. Stress intensity factors for a crack near an
interface (anti-plane shear).

k}(a) k3(b)b + a
b- a

1.1

1.1

N + 1

4
Ref. [6]

6
10

Ref. [6]

6
Ref. [6]

<7o

0.958968
0.95897
0.712470
0.712075
0.71208

1.440085
1.44009

<7o
b - a

0.976071
0.97607
0.924184
0.924190
0.92419

1.109604
1.10958
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Table 2. The roots of the characteristic equation
cosw/3 - A = 0.

Hi/Hi ^ Pi Pi ~ 2 — fil
0.04333 0.91694 0.13065 1.86935
0.1 0.81818 0.19498 1.80502
0.25 0.60000 0.29517 1.70483
0.5.0.33333 0.39183 1.60817
1. 0.00000 0.50000 1.50000
2. -0.33333 0.60817 1.39183
4. -0.60000 0.70483 1.29517
10. -0.81818 0.80502 1.19498
23.077 -0.91694 0.86935 1.13065
40. -0.95122 0.90017 1.09983

Substituting now from (12) and (36) into (63) and from (10) and (28) into (64) and
observing that sin77/^ = 2^//x1ju,2 /(/xl + ju2) we find

MM = (65)

M°) = -yViM2/W0)\/V2 • (66)

For q(r) = q0 a closed form solution of the integral equation (5) is given in [7] and [9]
which, in terms of the normalized quantities

i = t/b, *!(«) = *(/) (0 <t<b, 0<f<l), (67)
may be expressed as [10]

\ y /
+ 1ny

fi 1 sin —

£

1 + yi -e /w

+ —f=] (7==^-1) - ? = i-/v
V1 + v 1 - €2 / W1 - £

By observing that \p(t) = dw/dt, from (68) the exact expressions of the stress intensity
factors may be obtained as

£3,(6) = -y lim/2(ft - 7j"^(0 = -<70\/fc \ , , (69)
^ /-/> COS(77-/51/2)

?o R 7— (70)M») - -^W2 Jim,'-''HO ' cos(^i/2) ■
The numerical results given in Tables 3-5 have been normalized as follows:

M0) = —~7r^, k3(b) = -^=r. (71a,b)
<?o (V2) *

Tables 3 and 4 show the calculated results obtained by assuming the solution of (8) in
the form

= g(')(t> ~ t)l/2t<>> = j Y. a„T"(l - 7)1/2(1 + T)P> (72)
71 = 0
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and by following the procedure described in Section 4 above with the collocation points
given in (60). The tables also show the exact values of the stress intensity factors
calculated from (69) and (70). It is seen that for fi2 < fil excellent agreement is obtained
by using only six terms in (72). However, for ji2 > fi1 Table 2 shows that /32 — — 1 < 0
and, as indicated in the previous section, one would expect the convergence to be slow.
This may indeed be seen from Tables 3 and 4.

Referring to Section 4, for fi2 > /xl we now define the unknown function w in (8) as
follows:

w(t) = g(t)(b - t)l/2t^

N, N2
_\0i V „ . n _ , \/»2= - (1 - t) (1 + t)"1 I a-T" +(1 - t) (1 + t)^ Z V

L n=0 n-G

(0 < t < b, -1 < r < 1). (73)
The collocation points are again selected as the roots of Chebyshev polynomials, namely

Pj = COS( ~N^+Jj^+2 f) U = 0.1.'....(AT1 + JV;1+1)). (74)

Table 3. Normalized stress intensity faetors for a crack terminating
at the interface (anti-plane shear) ( N + 1 =6 terms are used
in the expansion (72)).

M2
Pi

0.04333
0.1
0.25
0.5
1.
2.
4.
10.
23.077
40.

M0)

(Exact)

0.0656 0.0656
0.13% 0.1396
0.3101 0.3100
0.5576 0.5575
1.0000 1.0000
1.8036 1.8134
3.2694 3.3558
7.0560 7.8231

13.6113 17.3673
20.3490 29.6029

k3(h)

(Exact)

1.2558 1.2558
1.1940 1.1940
1.1144 1.1144
1.0958 1.0958
1.0000 1.0000
0.9598 0.9598
0.9334 0.9334
0.9146 0.9146
0.9067 0.9067
0.9040 0.9040

Table 4. Stress intensity factor at the interface, — = 23.077.
Mi

N + 1 *3(0)
6 13.61
10 14.49
12 14.76
16 15.14
20 15.36
25 15.59

Ref. [6] 13.13
Ref. [11] 14.0

Exact 17.37
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For two values of jh2/Mi the results obtained by using the expansion given in (73) are
shown in Table 5. It is seen that without the second terms in (73) the convergence is very
slow, whereas with the second term included very accurate results can be obtained even
with a few terms in each series.

As a second example we consider the plane elasticity problem described by Fig. 1 and
equations (12)-(17). In this case the characteristic equations are given by (42a, b).
Examination of (42b) and the results given in [8] show that in all material combinations
considered fil is real and ft2 — fi1> 1. No convergence difficulty is therefore expected.
The stress intensity factors at the crack tips are defined by

k\{0) = Yimj2rl~^oiee{r,ti), (75)
r-*0

k\(b) = lim <j2(r - b) a1$e(r, 77). (76)
r—*b

By using (18), (20), (41), (28), and (36), from (75) and (76) we obtain
3 1 \ „ J 1 1MO) = ̂ i~V«(0)/2A

Sin 77/0! m + k2
    ) + 2(1 - pA-r-1 + fflKj J \ 1

(77)

k'(b)'rhbig(b)- (78)

Table 5. Normalized stress intensity factors for a crack terminating
at the interface (improved results).

^ =4

P2 = 1.29517)

U f— = 23.077
Mi

(j8j = 0.86935
P2 = 1.13065)

Ni + 1 + 1 0)

6 0 3.2694
10 0 3.3086
2 1 3.3149
3 1 3.3420
3 3 3.3550
5 2 3.3553

10 1 3.3553
10 2 3.3558

EXACT 3.3558

/V, + 1 N2 + 1 k3( 0)

6 0 13.61
10 0 14.49
25 0 15.59

1 1 14.89
2 1 16.62
2 2 17.11
5 1 17.26
3 3 17.35
4 4 17.35
5 10 17.36

EXACT 17.37



468 A. C. KAYA AND F ERDOGAN

For a uniform crack, surface pressure p(r) = p0 and for one material pair, the plane
strain and plane stress results are given in Table 6. The normalized stress intensity factors
shown in the table are defined by

- / \ MO) - / % k, (b) , .M0)= , LP > kiW=rrk- ^79a'b)
Poib/2)1 P< P0][b72

The results shown in Table 6 were obtained by using ten terms in the series given in (72)
and no convergence difficulties were encountered in the calculations.

In conclusion one may note that the technique would be readily applicable to more
complicated problems involving, for example, finite dimensions, multiple cuts and general
nonsymmetric loading conditions. In this case the coupled system of singular integral
equations would have Fredholm as well as generalized Cauchy kernels and the fundamen-
tal functions may again be obtained by using the complex function technique described in
this paper. Also, one should again emphasize the importance of examining the second
(and subsequent) roots of the characteristic equations and, if necessary, taking them into
consideration from the viewpoint of the convergence of the calculations and the accuracy
of the results.

Table 6. Normalized stress intensity factors for a crack ter-
minating at the interface (normal loading).

Epoxy-Aluminum

— = 23.077
Mi

Aluminum-Epoxy

— = 0.0433
M i

Plane strain
0, = 0.6619
Plane stress
0, = 0.7110
Plane strain
/j, = 0.1752
Plane stress
/J, = 0.1758

M0)

2.7997

4.2321

0.0981

0.0955

Ai(fc)

0.8826

0.8787

1.3421

1.3398
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