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ON THE SOLUTIONS OF QUARTIC DIOPHANTINE
EQUATIONS

MAHNAZ AHMADI, ALI SARBAZ JANFADA, and KAMRAN NABARDI

Abstract. In this article, first, using the elliptic curve method, it is proved that
the quartic Diophantine equations x4 − y4 = k(tλ − u4 ± v4) for positive even λ
and integers k and t have infinitely many non-trivial rational solutions. Then,
by direct ways, parametric solutions for equations x4 − y4 = k(t3 ± u4 − v4) are
found.
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1. INTRODUCTION

Diophantine equations, i.e., equations with integer coefficients for which
integer solutions are sought, are among the oldest subjects in mathematics.
In the following we would like to review some efforts done for the quartic
Diophantine equation.

A quartic Diophantine equation is called m − n, if a sum of m quartics
equals to a sum of n fourth powers. For simplicity, we omit the word ’quartic’.
The 2 − 1 equation x4 + y4 = z4, is a case of Fermat’s Last Theorem and
therefore has no solutions. Generally, the equations x4 ± y4 = z2 have no
integer solutions.

In 1772, Euler proposed that the 3 − 1 equation A4 + B4 + C4 = D4 has
no integer solution. This assertion is known as the Euler Quartic Conjecture
and was disproved by Elkies [3]. Using a geometric construction, he showed
that many solutions existed, however, it is not known if a parametric solution
exists.

There are many known solutions of the equation A4 + B4 + C4 = 2D4.
Parametric solutions to the 2−3 equation A4+B4 = C4+D4+E4 are known
[5]. The smallest solution is 74 + 74 = 34 + 54 + 84.
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Ramanujan [11] gave the general expression to the 3−3 equation A4+B4+
C4 = D4 + E4 + F 4 as:

34 + (2x4 − 1)4 + (4x5 + x)4 = (4x4 + 1)4 + (6x4 − 3)4 + (4x5 − 5x)4.

Some numerical integer solutions were found for A4 + B4 + C4 +D4 = E4

[8, 9, 10], however, the existence of any parametric solution is not known.
The equation A4 + hB4 = C4 + hD4 was considered by several number

theorists. Probably, Gerardin [2, pp. 647] was the first to study it but, in the
cases h = 2 and h = 5, Grigorief and Werebrusow recorded solutions earlier
than Gerardin. Choudhry [1], considered this equation and solved it for 75
positive integer values h ≤ 101.

The equation A4 + B4 = 2(C4 + D4) and the general case A4 + B4 =
n(C4 +D4) were studied in [6, 7]. The former one was solved by the elliptic
curve method, while the solutions of the latter one are found by some rational
transformations imposing extra conditions.

In this article, all rank computations are implemented by the ‘mwrank’
software. Moreover, we assume that all solutions are nontrivial. By a trivial
solution of the equation axm + byn + czk = aum + bvn + cwk we mean either
of the following cases as well as similar circumstances.

(i) x = u, y = v, z = w;
(ii) x = rnk, y = smk, z = tmn, u = tnk, v = rmk, w = smn, for some

rationals r, s, t, when a = b = c.

2. PRELIMINARIES

Let K be a field and C be the algebraic curve defined over K by

v2 = au4 + bu3 + cu2 + du+ e, a ̸= 0.

Consider the K-rational affine point (u, v) = (p, q) on C. We may assume
p = 0 by changing u to u + p, if necessary. Then e = q2 and the above
equation turns to

(1) v2 = au4 + bu3 + cu2 + du+ q2, a ̸= 0.

Let q = 0. If d = 0, the curve (1) will have a singularity at (u, v) = (0, 0).
Therefore, assume d ̸= 0. Dividing both side of (1) by u4 we get( v

u2

)2
= d

(1
u

)3
+ c

(1
u

)2
+ b

(1
u

)
+ a.

Put X = 1/u and Y = 1/u2. Then, we obtain the elliptic curve Y 2 =
dX3 + cX2 + bX + a in the Weierstrass form. The harder case is when q ̸= 0
in which case we have the following result [12, Theorem 2.17].

Theorem 2.1. Let K be a field of characteristic not 2 and C be the algebraic
curve defined over K by

C : v2 = au4 + bu3 + cu2 + du+ q2, q ̸= 0.
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Suppose C has a K-rational point (p, q). Let

X =
2q(v + q) + du

u2
, Y =

4q2(v + q) + 2q(du+ cu2)− (d2u2/2q)

u3
.

Define

a1 = d/q, a2 = c− (d2/4q2), a3 = 2qb, a4 = −4q2a, a6 = a2a4.

Then the curve C is in a one to one correspondence with the elliptic curve

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.

The inverse transformation is

u =
2q(X + c)− (d2/2q)

Y
, v = −q +

u(uX − d)

2q
.

The point (u, v) = (0, q) on C corresponds to the point (X,Y ) = ∞ on E and
(u, v) = (0,−q) on C corresponds to (X,Y ) = (−a2, a1a2 − a3) on E.

3. THE EQUATIONS x4 − y4 = k(tλ − u4 ∓ v4) FOR EVEN λ

Consider the Diophantine equations

x4 − y4 = k(t2r − u4 ∓ v4), k ∈ Z.
Put x = u+v, and y = u−v. Then, after some straightforward computations,
we get (

tr

v2

)2

= ±
(u
v

)4
+

8

k

(u
v

)3
+

8

k

(u
v

)
+ 1.

Now, taking h = tr/v2 and g = u/v we arrive at

h2 = ±g4 +
8

k
g3 +

8

k
g + 1

which, by Theorem 2.1, corresponds to the elliptic curve in generalized Weier-
strass forms

E∓
k : Y2 +

8

k
XY +

16

k
Y = X 3 − 16

k2
X 2 ∓ 4X ± 64

k2
.

These curves may be changed to the (short) Weierstrass forms as follows.

E−
k : y2 = x3 +

(
64

k2
− 4

)
x+

128

k2

E+
k : y2 = x3 +

(
64

k2
+ 4

)
x.

Clearly P = (2, 16k ) is on E−
k and Considering k = 8(65t2−18t+1)

1−65t2
, where t ∈

Q − { 1
13 ,

1
5}, one can show that Q =

(
1
4 ,

585t2−130t+9
8(13t−1)(5t−1)

)
is a point on E+

k .

We need k to be an integer. To reconcile with that, we can take t = ±m
n ,

where n2 − 65m2 = ±1. Thus, (n,m) = (X,Y ) is a positive integer solution
of the Pell equation X2 − 65Y 2 = ±1. The smallest solution of which is
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(n,m) = (8, 1). This has infinitely many solutions (n,m) so there are infinitely
many possibilities for such t not in { 1

13 ,
1
5} which lead to integer values of k

for which E+
k has a rational point presumably of infinite order. For a large

number of values of k, except for k = 8 in which case the curve is singular,
rank records in Table 1 show that all ranks are positive.

k rank(E−
k ) rank(E+

k ) k rank(E−
k ) rank(E+

k ) k rank(E−
k ) rank(E+

k )

1 1 2 11 1 1 21 3 2

2 1 1 12 2 2 22 2 2

3 2 1 13 3 2 23 2 1

4 1 1 14 1 2 24 2 2

5 2 2 15 2 3 25 1 2

6 1 2 16 1 2 26 2 1

7 1 1 17 2 2 27 2 1

8 singular 1 18 1 1 28 2 2

9 2 2 19 1 1 29 1 2

10 2 1 20 1 1 30 2 2

Table 1 – The rank of E∓
k

4. THE EQUATION x4 − y4 = k(t3 + u4 − v4)

We want to find a family of integer solutions for

(2) x4 − y4 = k(t3 + u4 − v4).

Put

(3) x = at+ k, y = bt− k, u = ct+ 1, v = t+ 1.

Plugging (3) in (2), one can get

At4 +Bt3 + Ct2 +Dt = 0,

where,

A = a4 − b4 − (c4 − 1)k,

B = (4a3 + 4b3 − 4c3 + 3)k,

C = 6(a2 − b2)k2 − 6(c2 − 1)k,

D = 4(a+ b)k3 − 4(c− 1)k.

Now, let D = 0. Then, c = (a+ b)k2 + 1. Inserting this in (3) and then in (2)
we have

A′t4 +B′t3 + C ′t2 = 0,

where A′, B′, and C ′ are in terms of a, b, c, k and

C ′ = −6b2k2 − 12ak5b− 12bk3 − 6b2k5 − 6a2k5 − 12ak3 + 6a2k2.
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Again, let C ′ = 0. So, b = −ak3−a+2k
k3+1

. Finally, from (3), we obtain

t = − 1

H

(
(k + 1)(k2 − k + 1)(−7k6 + 24ak5 − 24a2k42

+ (10 + 8a3)k3 − 24ak+24a2k + 1− 8a3)
)
,

and

x = − 1

H

(
ak9 + 8k7 − 29ak6 + 48a2k5 − (32a3 + 8)k4

+ (35a+ 8a4)k3 − 48a2k2 + 32a3k − 8a4 + a
)
,

y = − 1

H

(
− ak9a+ 6k7 − 33ak6 + 48a2k5 − (32a3 + 12)k4

+ (8a4 − 8a4 + 33a)k3 − 48a2k2 + (32a3 − 2)k
)
,

u = − 1

H

(
7k9 − 30ak8 + 48a2k7 − (32a3 + 9)k6 + (36a+ 8a4)k5

− 48a2k4 + (32a3 + 1)k3 − (8a4 + 2a)k2 + 1
)
,

v =
1

H

(
7k9 − 32k8a+ 48a2k7 − (32a3 + 11)k6 + (8a4 + 32a)k5

− 48a2k4 + (32a3 − 3)k3 − 8a4k2 − 1
)
,

where, H = 8(k − 1)(k2 + k + 1)(ak2 + 1)(a − k)3, in which the factors k −
1, a− k, ak2 + 1 are assumed nonzero.

Example 4.1. Take k = 3. Then we get x4 − y4 = 3(t3 + u4 − v4). Then,
by letting a = −1 we have

x =
489

1664
, y =

1077

1664
, t =

5481

1664
, u =

6949

1664
, v =

7145

1664
.

5. THE EQUATION x4 − y4 = k(t3 − u4 − v4)

We are dealing with Diophantine equation

(4) x4 − y4 = k(t3 − u4 − v4).

Let

x = as+ k, y = bs− k, t = cs+ 1, u = s+ 1, v = s.

Putting these in (4), we have,

As4 +Bs3 + Cs3 +Ds = 0,
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where,

A = a4 − b4 + 2k,

B = 4a3k + 4b3k − kc3 + 4k,

C = 6a2k2 − 6b2k2 − 3kc2 + 6k,

D = 4ak3 + 4bk3 − 3kc+ 4k,

(5)

where, c = 4(k2+1)
3 . Now if, D = 0, one will get b = −4−3c+4ak2

4k2
. Considering

this and plugging in (5), we have

A = 4a3 − 6a2 + 4a+ 2k − 1,

B = 12ka2 − 12ka− 64

27
k7 − 64

9
k5 − 64

9
k3 +

152

27
k,

C = 12ak2 − 16

3
k5 − 32

3
k3 − 6k2 +

2

3
k.

Let C = 0. Therefore, a = 8k4+16k2+9k−1
18k and then from (4) we have

s =
54k2(64k6 + 48k4 + 39k2 + 1)

512k12 + 3072k10 + 5952k8 + 3976k6 + 3468k4 − 33k2 − 1
.

And following that,

x = k
(
− 1053k3 − 27k − 1296k5 − 1728k7 + 1716k4 + 36k2 + 928k6

+ 1728k8 + 1536k10 + 512k12 + 2
)
G2,

y = −k(1053k3 + 27k + 1296k5 + 1728k7 + 1716k4 + 36k2

+ 928k6 + 1728k8 + 1536k10 + 512k12 + 2)G2,

t = (−2288k6 + 588k4 − 2112k8 − 1536k10 − 105k2 + 512k12 − 1)G3,

u = (1362k4 − 87k2 + 1384k6 + 2496k8 + 3072k10 + 512k12 − 1)G2,

v = −54k2(39k2 + 1 + 48k4 + 64k6)G2,

where G = 512k12 + 3072k10 + 5952k8 + 3976k6 + 3468k4 − 33k2 − 1.

Example 5.1. Taking k = 3, we obtain

x = 273386918368014786254081976,

y = 279465527282684531065966392,

t = 20212790587004292934996436166624016,

u = 115743586666025623792077800,

v = 6078608914669744811884416.
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