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Abstract. We describe all nontrivial nonnegative solutions to the problem

8><
>:
��u = au

n+2
n�2 in H,

@u

@⌫
= bu

n
n�2 on @H,

where H is the half space of Rn(n � 3).

1. Introduction. The goal of this paper is to describe all nontrivial nonnegative
C2(H) \ C1(H)-solutions to the problem

8<
:
��u = au

n+2
n�2 in H,

@u

@⌫
= bu

n
n�2 on @H,

(1.1)

where H is the half space of Rn(n � 3) defined by H = {x = (x1, x2, . . . , xn) : x1 > 0},
a, b are two real constants, and ⌫ = �e1 is the unit outward normal to @H, the boundary
of H. Note that by the maximum principle if u 6⌘ 0, then u > 0 in H. One is led to
nonlinear Neumann problems of this kind in the study of conformal deformations of
Riemannian manifolds with boundary; see [3], [6–8] and [12]. The case a = 0, b > 0
is related to a problem of sharp constant in a Sobolev trace inequality; see [5]. Yet a
di↵erent motivation to study this kind of problems comes from parabolic equations. In
the case a = 0, b > 0 and when the power n

n�2 is replaced by q > 1, nonexistence of
positive solutions may serve to describe the profile near the “blow-up time” for solutions
of the heat equation with a nonlinear boundary condition. For this subject we refer the
reader to the recent paper [14] and the references therein. Hu has recently shown that
for a = 0, b = 1 and q < n

n�2 there are no positive solutions ([13]). In the “limiting
case” q = n

n�2 , positive solutions do exist (see [14], [13] and also the theorem below).
In [6], Escobar has found all positive solutions of (1.1) which satisfy the condition

u(x) = O(|x|�(n�2)) as |x| ! 1; see also the recent paper of Terracini ([19]). Here,
we are able to remove this assumption and to describe all positive solutions to (1.1)
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without any a priori assumption on the behavior of u at infinity. Roughly speaking,
our main result states that the set of all positive solutions consists of two main groups:
the first contains the solutions found by Escobar which have the behavior O(|x|�(n�2))
at infinity, the second contains solutions which depend on x1 only. After completing
our work we learned that Yan Yan Li and Meijun Zhu ([17]) have independently proved
our Theorem 1.1 in the case a � 0 using essentially the same method. They have
also established an interesting two-dimensional analogous result for an equation with
exponential nonlinearity.

Our main result is the following:

Theorem 1.1. Let u be a nontrivial nonnegative C2(H) \ C1(H)-solution to (1.1).
Then

(i) when a > 0, or a  0, b > B =
q
�a(n�2)

n

u(x) =
↵

(|x� x0|2 + �)
n�2

2
, ↵ > 0, x0 = (x0

1, . . . , x0
n) 2 Rn, (1.2)

where
x0

1 = � b

n� 2
↵

2
n�2 , � =

a

(n� 2)n
↵

4
n�2 ;

(ii) when a = 0, b = 0
u(x) = ↵ = Const. (1.3)

(iii) when a = 0, b < 0

u(x) = ↵x1 +
�
�↵

b

�n�2
n , ↵ > 0; (1.4)

(iv) when a < 0, b = B

u(x) =
� 2
n� 2

Bx1 + ↵
��n�2

2 , ↵ > 0. (1.5)

In the remaining case a < 0, b < B, there is no nontrivial nonnegative solution to (1.1).

Remark 1.1. The constraint b > B in the case a  0 of (i) insures that the denominator
in (1.2) is positive. Note also that whenever u(x) is a solution to (1.1), so is u(x + y0)
for every y0 with y0

1 = 0.

Remark 1.2. It is interesting to note that the solutions given in (1.5) can be recovered
as a limiting case of solutions of the form (1.2). More precisely, given a solution u(x)
as in (1.5) corresponding to a certain a < 0, there exist sequences ↵k %1 and bk & B
such that the corresponding solutions uk(x) (for the same a), given by (1.2), converge
towards u(x) as k !1 uniformly on compacts subsets of H.

Our main device in proving Theorem 1.1 is a variant of the moving plane method.
This method, which goes back to Alexandro↵, has become a powerful tool to prove sym-
metry of positive solutions to nonlinear elliptic equations on bounded and unbounded
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domains. We mention in particular the works [18], [9], [10], [1], [2], [15], [16], [4]. In our
variant, which we shall call “the shrinking sphere method,” we use strongly the confor-
mal invariance of the problem, and in particular its invariance with respect to reflections
in spheres (rather than its invariance with respect to reflections in hyperplanes that is
used in the above-mentioned works).

More precisely, we first apply to u a Kelvin transformation, with respect to some
sphere, to find another solution v which has a “good” behavior at infinity. Then we
compare the solution v to its Kelvin transform, denoted by v�, with respect to a sphere
S�(0), for some � > 0. It turns out that for � big enough we have v� � v on H \ {|x| >
�}. We then decrease �, thus shrinking S�(0), until a critical value �0, below which the
latter inequality fails to hold. Then we are led to an alternative. Either u is a function
of x1 only, or else v�0 ⌘ v. Exploiting the last identity for critical spheres of di↵erent
centers on @H we are able to conclude that u is of the form (1.2).

The paper is divided as follows. In Section 2 we will carry out the “shrinking sphere
method” establishing the alternative mentioned above. In Section 3 we find the solutions
to (1.1) that depend on x1 only. In fact we shall deal with a slightly more general
problem allowing general powers of u instead of restricting ourselves to n+2

n�2 and n
n�2 .

Finally, in Section 4 we shall complete the proof of Theorem 1.1.

2. The shrinking sphere technique. Before starting the shrinking sphere process
we present a preliminary result that will be useful in the sequel:

Lemma 2.1. Let y0 2 @H, Ny0 a neighborhood of y0 in Rn, v1, v2 in C2(Ny0 \H) \
C1(Ny0 \H\{y0}) two solutions to

��v = av
n+2
n�2 , v � 0 in Ny0 \H, (2.1)

@v

@⌫
= bv

n
n�2 on Ny0 \ @H\{y0}. (2.2)

Denote by B�0(y0) the ball of center y0 and radius �0. If

v1 � v2 � 0, v1 � v2 6⌘ 0 on B�0(y0) \H\{y0}

and if there exists M such that

v2 M on B�0(y0) \H\{y0} (2.3)

then there exists ↵ > 0 such that

v1 � v2 � ↵ on B�0(y0) \H\{y0}. (2.4)

Proof. Note that by the mean value theorem w = v1 � v2 satisfies

��w = a{v
n+2
n�2
1 � v

n+2
n�2
2 } = a

n + 2
n� 2

 
4

n�2 w in Ny0 \H, (2.5)
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@w

@⌫
= b{v

n
n�2
1 � v

n
n�2
2 } = b

n

n� 2
⌘

2
n�2 w on Ny0 \ @H\{y0}, (2.6)

where  =  (x), ⌘ = ⌘(x) belong to the interval (v2(x), v1(x)). By the maximum
principle and Hopf boundary lemma one has

w > 0 on B�0(y0) \H\{y0}. (2.7)

The main point then is to find a positive lower bound for w. In what follows, � denotes
a positive number such that �  �0. We set

m(�) = min
S�(y0)\H

w(x) ^ 1, (2.8)

where S�(y0) denotes the sphere of center y0 and radius �, and ^ is the minimum
function between two numbers. For any 0 < ✏ < � set

h✏(x) = h(x) =
�
|x� y0|2 + x1 + � � ✏n�2

|x� y0|n�2

 
m(�). (2.9)

Notice that
h(x)  (�2 + 2�)m(�) 8x 2 B�(y0)\{y0}, (2.10)

h(x)  (�2 + 2� � 1)m(�) 8x 2 S✏(y0) \H. (2.11)

So, provided � is small enough, say �  �1 = �0 ^ 1
3 , one has clearly

h(x)  (�2 + 2�)m(�)  m(�)  1 8x 2 B�(y0)\{y0} (2.12)

h(x)  0 8x 2 S✏(y0) \H. (2.13)

Remark also that
�h = 2nm(�) in H (2.14)

@h

@⌫
= �m(�) on @H\{y0}. (2.15)

Denote by A = A�,✏ the half-annulus

A = {x 2 H : ✏ < |x� y0| < �}. (2.16)

We claim that for � small enough

z = w � h � 0 on A�,✏ 8✏ 2 (0, �) . (2.17)

For �  �1 it is clear from (2.8), (2.12), (2.13) that

z � 0 on @A \H. (2.18)
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Let us denote by x a point of A where z achieves its minimum. If z(x) � 0, we are
done—so without loss of generality we can assume

w(x) < h(x). (2.19)

First we show that x cannot lie in A. Indeed, by (2.5), (2.14) one has

��z = a
n + 2
n� 2

 (x)
4

n�2 w + 2nm(�) in A. (2.20)

If a � 0 then (2.20) implies that ��z(x) > 0 which is impossible for an interior
minimum point. If a < 0, then at x we have

0  �z(x) = �a
n + 2
n� 2

 (x)
4

n�2 w(x)� 2nm(�),

w(x) < h(x)  (�2 + 2�)m(�), (2.21)

and also, since w � 0,

v2(x)  v1(x)  v2(x) + h(x) M + 1. (2.22)

Hence, combining the three above inequalities we obtain, since  (x) 2 (v2(x), v1(x)),

2nm(�)  �a
n + 2
n� 2

(M + 1)
4

n�2 (�2 + 2�)m(�) ,

which is impossible for � small enough, say �  �2  �1 . So either z(x) � 0 or x 62 A.
We proceed in the same way to show that either z(x) � 0 or x 62 @A \ @H. Indeed,

at a point x 2 @A \ @H where a negative minimum is achieved we must have:

@z

@⌫
(x)  0. (2.23)

Due to (2.6), (2.15) one has

@z

@⌫
= b

n

n� 2
⌘(x)

2
n�2 w + m(�) on @A \ @H. (2.24)

If b � 0, then @z
@⌫ (x) > 0 which contradicts (2.23). If b < 0, (2.23), (2.24) imply

m(�)  �b
n

n� 2
⌘(x)

2
n�2 w(x) , (2.25)

and using (2.21), (2.22) we derive

m(�)  �b
n

n� 2
(M + 1)

2
n�2 (�2 + 2�)m(�)



96 M. CHIPOT, I. SHAFRIR, AND M. FILA

which is impossible for �  �3  �2 . So, fixing �  �3 we have (2.17); i.e.,

w(x) � h✏(x) on A�,✏ 8✏ 2 (0, �) .

Letting ✏! 0 we obtain

w(x) � lim
✏!0

h✏(x) � �m(�) on B�(y0) \H\{y0}.

The result follows by setting

↵ = �m(�) ^min{w(x) : x 2 B�0(y0)\B�(y0) \H}. ⇤

Let us now apply our shrinking sphere technique which is a variant of the moving
plane method. We shall use some of the main ideas of [4] which simplify the original
arguments of [10]. We will denote all along by IR

y the inversion with respect to the
sphere SR(y), i.e., the transformation defined by

IR
y (x) = y + R2 x� y

|x� y|2 (2.26)

for every x in Rn. Let u be a positive solution to (1.1). Since we do not have any
information on the behavior of u at infinity we introduce a new function v via a Kelvin
transformation. More precisely, for some fixed y 2 @H we set

v(x) =
1

|x� y|n�2 u
�
I1
y (x)

�
. (2.27)

Note that v may be singular at y. In what follows, we will say that a function v is
singular at a point y if limx!y v(x) does not exist or is not finite.

It is easy to check that v satisfies the same equation as u; that is,
8<
:
��v = av

n+2
n�2 in H,

� @v

@x1
= bv

n
n�2 on @H\{y}.

(2.28)

Moreover, when |x|! +1, I1
y (x)! y and thus v(x) ⇠ u(y)

|x|n�2 which for |x| large enough
implies:

0 < v(x)  C1

|x|n�2 , (2.29)

for some positive constant C1.
Next we choose as the origin of our coordinate system a point on @H di↵erent from

y. So we assume
y 6= 0. (2.30)

For � > 0 we set
⌃� = {x 2 H : |x| > �}. (2.31)
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For x 2 ⌃� we consider

x� = I�
0 (x) =

�2

|x|2
x, v�(x) =

�n�2

|x|n�2 v(x�) (2.32)

w� = v� � v, w� = w�/g, (2.33)

where g is defined by

g(x) = |x + �e1|�↵, e1 = (1, 0, . . . , 0) (2.34)

with
0 < ↵ < n� 2, |b| n

n� 2
C

n
n�2
1 < ↵�. (2.35)

The reason for this choice of ↵ and � will become clear later. Let us notice that w�

and w� may be singular at y and y� = I�
0 (y). If we take � > |y|, y� is the only possible

singular point for these functions on ⌃�, the closure of ⌃�.
In the following we will consider mainly the case where

� > |y| , v singular at y.

We will indicate how to modify the proof in the case when v is nonsingular at y. In this
latter case we will apply the shrinking sphere technique to u instead of v.

Step 1: For every µ > 0 there exists Rµ > 0 such that whenever inf⌃�
w� < 0 with

� � µ, one has
inf
⌃�

w� = inf
⌃�\BRµ

w�

(BRµ denotes the ball of center 0 and radius Rµ; in the case where v is singular at y we
have denoted for simplicity by ⌃� what should be ⌃�\{y�}).

a) The case when v is singular at y. Using (2.29) we have for |x| large

� C1

|x|n�2
 w�(x). (2.36)

Since for |x| large enough g(x) = |x + �e1|�↵ � C2|x|�↵, we obtain by (2.33), (2.35),
(2.36)

w�(x) = w�(x)/g(x) � �C3|x|↵�(n�2) > inf
⌃�

w� (2.37)

for |x| large enough, say |x| � Rµ.
b) The case when v is nonsingular at y. In this case one replaces v by u in the

definition of w� and w�. By (2.26), (2.27) one has, since I1
y (x)! y when |x|! +1,

0 < u(x) =
v(I1

y (x))
|x� y|n�2

 C01
|x|n�2

, (2.38)

for |x| large, for some constant C01. This replaces (2.29) and one can then argue as above
to obtain the desired conclusion. This completes the proof of Step 1.
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Step 2: There exists �1 > 0 such that inf⌃�
w� < 0 for some � � �1 implies that

inf⌃�
w� is achieved.

a) The case when v is singular at y. First note that by Step 1 for � > 1

inf
⌃�

w� = inf
⌃�\BR

w�

for some R. Next, remark that if we choose �0 < |y|, then applying Lemma 2.1 with
v1 = v, v2 = 0, y0 = y we obtain for some constant ↵:

v � ↵ on B�0(y) \H\{y}. (2.39)

Then, for � large enough x 2 B�0(y�) implies x� 2 B�0(y) so that by (2.39)

w�(x) = v�(x)� v(x) =
�n�2

|x|n�2
v�(x�)� v(x) � �n�2

|x|n�2
↵�

u
�
I1
y (x)

�
|x� y|n�2

=
1

|x|n�2

�
�n�2↵� |x|n�2

|x� y|n�2
u
�
I1
y (x)

��
.

When |x|! +1 one has

|x|n�2

|x� y|n�2
u
�
I1
y (x)

�
! u(y).

Also, as � ! +1 one has |x| ! +1 for x 2 B�0(y�). For � large enough, say � � �1

it follows that
w�(x) � 0 on B�0(y

�) \H\{y�} . (2.40)

This completes the proof of this step since for � � �1 the (negative) infimum of w�

must lie in the compact set

K� = ⌃� \ {x : |x|  R, |x� y�| � �0}. (2.41)

b) The case when v is nonsingular at y. It is clear in this case that the infimum of

w� = (u� � u)/g (2.42)

is achieved on the compact set

K� = ⌃� \ {x : |x|  R }. (2.43)

Step 3: There exists an R0, independent of � (� > |y| when v is singular at y),
such that if x0 is a point of ⌃�\{y�} (⌃� in the case where v is nonsingular) where w�

achieves a negative minimum, then |x0|  R0.
a) The case when v is singular at y. Since v� satisfies the same equation as v, from

(2.28) one deduces by the mean value theorem that

��w� = a{v
n+2
n�2
� � v

n+2
n�2 } = C(x)w� in ⌃� (2.44)
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with
C(x) = a

n + 2
n� 2

 (x)
4

n�2 ,

where  (x) denotes a number between v(x) and v�(x).
We may also write the above equation as

��(gw�) = C(x)gw�,

or
�w� + 2

rgrw�

g
+
��g

g
+ C(x)

�
w� = 0. (2.45)

A simple calculation gives

�g

g
= ↵(↵� (n� 2))|x + �e1|�2.

Moreover, if w�(x) < 0 and |x| is large enough then we have in light of (2.29)

v�(x)   (x)  v(x)  C1

|x|n�2
,

so
|C(x)|  |a|n + 2

n� 2
C

4
n�2
1 |x|�4

and thus for |x| � R1, using the first inequality of (2.35),

�g

g
+ C(x) < 0. (2.46)

It follows from (2.45), (2.46) that if x0 is an interior point of ⌃� where w� achieves a
negative minimum then |x|  R1.

Next we deal with the possibility that x0 2 @⌃� \ @H\{y�} (note that x0 cannot
belong to @⌃� \ {x1 > 0} since on this set we have w� = 0). We have

�@v�

@x1
= bv

n
n�2
� on @H\{y�}

and thus by the mean value theorem

�@w�

@x1
= D(x)w� on @H\{y�}, (2.47)

where
D(x) = b

n

n� 2
⌘(x)

2
n�2 (2.48)

with ⌘(x) lying between v(x) and v�(x).
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We then deduce that

�@w�

@x1
=
�
D(x) +

gx1

g

�
w� on @H\{y�}. (2.49)

If w�(x) < 0 and |x| is large enough, then by (2.29)

v�(x)  ⌘(x)  v(x)  C1

|x|n�2

and thus by (2.48)
|D(x)|  |b| n

n� 2
C

n
n�2
1 |x|�2.

But gx1
g = �↵�|x + �e1|�2, so by the second inequality of (2.35) we conclude that for

|x| large enough, say |x| > R2,
gx1

g
+ D(x) < 0 . (2.50)

Thus, by (2.49) and (2.50), if x0 is a point of @H \ ⌃�\{y�} where w� achieves a
negative minimum then we must have |x0|  R2. The conclusion of Step 2 follows by
taking R0 = max(R1, R2).

b) The case when v is nonsingular at y. In this case the proof is identical—except
that x0 can be located at y�—but then (2.47) holds on @H and one can conclude as
above, ↵, � chosen as in (2.35) with C01 instead of C1.

Step 4: Decreasing � until a critical value. Let us set

�0 = inf{� > 0 (� > |y| if v is singular at y) : w�(x) � 0 on ⌃�}. (2.51)

For � > max(R0,�1) it is clear by combining Step 2 and Step 3 that

w� � 0 on ⌃� . (2.52)

Thus, �0 is well defined.
a) In the case where v is singular at y one has �0 = |y| and v|y| = v. Looking for a

contradiction we assume that �0 > |y|. Since for � > �0 one has

v� � v on ⌃� , (2.53)

letting �& �0 we obtain
v�0 � v on ⌃�0 . (2.54)

Let us show that
v�0 = v. (2.55)

Note that it is enough to establish this equality on ⌃�0 in order to have it on H. Let
us assume that (2.55) fails. Then, by the maximum principle and (2.54) one has (see
(2.44), (2.47))

w�0 > 0 on ⌃�0 . (2.56)
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Then, a contradiction with the definition of �0 will follow if we can show that for some
� < �0

w� > 0 on ⌃�. (2.57)

By the definition of �0 there exists a sequence �k % �0, |y| < �k with inf⌃�k
w�k < 0.

By Step 1 we know that for some R

inf
⌃�k

w�k = inf
⌃�k

\BR

w�k , 8k . (2.58)

From Lemma 2.1 with v1 = v�0 , v2 = v, y0 = y�0 , �0 < �0 � |y�0 | we see that for some
↵ > 0 one has

w�0 � ↵ on B�0(y�0) \H\{y�0}.

Thus, by continuity, for �k close to �0 one has

w�k �
↵

2
on B�(y�0) \H\{y�k} (2.59)

for some small �, � < �0. Then, define

⌦k = (⌃�k \BR)\B�(y�0).

Clearly, w�k achieves its minimum at some point xk 2 ⌦k. Consider

D = D✏ = ⌦k\B�0+✏

with 0 < ✏ < |y�0 |� �0 � � to be chosen later. By the maximum principle

min
D

w�0 = � = �(✏) > 0

hence for k large enough (note that w�k converges toward w�0 uniformly on D)

min
D

w�k =
�

2
> 0 . (2.60)

It follows that xk 2 Ek where Ek = {B�0+✏\B�k} \H. Using the maximum principle
we will show that

w�k � 0 on Ek for k large enough, (2.61)

hence the desired contradiction. We will need the following lemma:

Lemma 2.2. Assume � > 0. Given M > 0 there exists "0 = "0(M) > 0 such that for
any " < "0 on the domain A = A" = {B�+✏\B��✏}\H the following maximum principle
holds. Whenever w 2 C2(A) \ C1(A) satisfies

��w � c(x)w on A, (2.62)
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� @w

@x1
� d(x)w on @A \ @H, (2.63)

with
sup
A

|c(x)|, sup
@A\@H

|d(x)| M,

and
w � 0 on @A \H ,

then w � 0 on A.

Proof. We shall first construct a positive function z on A satisfying

��z > Mz on A (2.64)

� @z

@x1
> Mz on @A \ @H. (2.65)

Indeed, denoting r = |x| we define

z = e��x1 cos(µ(r � �))

with µ ⌘ 1
" and � to be determined. First note that on @H we have

� @z

@x1
= �e��x1 cos(µ(r � �)) = �z .

Choosing � = M + 1, (2.65) is satisfied. Next, a simple calculation gives

��z = (µ2 � �2)z + µe��x1 sin(µ(r � �))
�n� 1

r
� 2�

x1

r

�

=
⇥
(µ2 � (M + 1)2) + µ tan(µ(r � �))

�n� 1
r

� 2(M + 1)
x1

r

�⇤
z.

Hence for " small enough (i.e., µ large) we have on A

��z �
⇥
(µ2 � (M + 1)2)� µ tan(1)

��n� 1
r

� 2(M + 1)
x1

r

��⇤z > Mz .

Next we set f = w/z. It satisfies on A:

�f =
1
z
�w � 2

z2
rz ·rw +

2
z3

w|rz|2 � w

z2
�z (2.66)

=
1
z
(�w + c(x)w)� 2

z
rz ·rf � �z + c(x)z

z

w

z
 �2

z
rz ·rf + c(x)f,

where c(x) = ��z+c(x)z
z > 0 by (2.64). Moreover, on @A \ @H we have

� @f

@x1
= �1

z

@w

@x1
+

w

z2

@z

@x1
(2.67)

=
1
z

�
� @w

@x1
� d(x)w

�
+ d(x)

w

z
+

w

z2

@z

@x1
� d(x)f,
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where d(x) = 1
z ( @z

@x1
+ d(x)z) < 0 by (2.65). By the maximum principle we see that

f � 0 on A, hence the result. ⇤
We return to the proof of (2.61). By (2.44), (2.47) we have for each k

��w�k = Ck(x)w�k on Ek,

�@w�k

@x1
= Dk(x)w�k on @Ek \ @H.

For some constant M we clearly have

sup
Ek

|Ck(x)|, sup
@Ek\@H

|Dk(x)| M 8 k.

Applying Lemma 2.2 for w�k with � = �0 we find that for k large enough so that
�k > �0 � "0, (2.61) holds. Hence the desired contradiction and (2.55) follows.

We next show that (2.55) leads to a contradiction. Indeed if �0 > |y| as we assumed,
then v is singular at two points: y and y�0 , impossible. It follows then that �0 = |y|.
To complete this case of Step 4 we need only to show that (2.55) holds for �0 = |y|.
For that matter we consider ṽ = v�0 , �0 = |y|. The function ṽ satisfies (2.28) and is
singular at y only. Indeed, ṽ is not singular at 0 since when |x|! 0

ṽ(x) =
�n�2

0

|x|n�2
v(x�0) ⇠ �n�2

0

|x|n�2

C

|x�0 |n�2
=

C

�n�2
0

.

So we can apply the shrinking sphere procedure as described above to ṽ and define

�̃0 = inf{� > |y| : ṽ�(x) � ṽ(x) on ⌃�}.

Since the unique singularity of ṽ is at y, we must have �̃0 = |y| as above. So,

v�0 � v, ṽ�0 � ṽ.

But ṽ�0 = v and ṽ = v�0 so,
v�0 = v (2.68)

and the proof of Step 4 is complete in this case.
b) In the case when v is nonsingular at y, (2.55) holds for some �0 > 0.
Recall that in this case �0 is defined by:

�0 = inf{� > 0 : u�(x) � u on ⌃�}.

Next, we claim that �0 > 0. Indeed, if not, fixing any x 2 H, we would have for some
sequence �k ! 0

w�k(x) =
�n�2

k

|x|n�2
u
� �2

k

|x|2 x
�
� u(x) � 0 ,

which is impossible for �k small enough (since u(x) > 0).
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Next we show exactly as in the first part of Step 4 that (2.55) holds. Some simplifi-
cations occur due to the absence of singularity.

Step 5: If v is singular at y then u is a function of x1 only. From the previous steps
we have v�0 = v with �0 = |y|. Let us rewrite (2.68) in terms of u. We have :

v(x) =
1

|x� y|n�2 u
�
I1
y (x)

�
, x�0 = I�0

0 (x) =
�2

0

|x|2
x, v�0(x) =

�n�2
0

|x|n�2 v(x�0).

Hence

v�0(x) =
�n�2

0

|x|n�2

1
|x�0 � y|n�2 u

�
I1
y (x�0)

�
.

But,

|x|2|x�0 � y|2 = |x|2
� �4

0

|x|2
� 2�2

0(x, y)
|x|2

+ �2
0

�

= �2
0(|y|

2 � 2(x, y) + |x|2) = �2
0|x� y|2

(2.69)

since �0 = |y|. Thus, combining (2.68) and (2.69) we find

v�0(x) =
1

|x� y|n�2 u
�
I1
y (x�0)

�

and (2.55) is equivalent to

u
�
I1
y (x)

�
= u

�
I1
y (x�0)

�
8 x 2 H\{y}. (2.70)

Now the points x and x�0 are symmetric with respect to reflection in the sphere
S�0(0). So the points I1

y (x) and I1
y (x�0) are symmetric with respect to reflection in the

“generalized sphere” I1
y (S�0(0)). Since this latter “generalized sphere” passes through

I1
y (y) =1, it is in fact a hyperplane which is in addition orthogonal to @H, as this was

the case for S�0(0). So (2.70) just says that u is symmetric with respect to reflection
in this hyperspace. But the choice of origin is arbitrary. We may apply the “shrinking
sphere” method with spheres centered at x0 2 @H as long as x0 6= y (see (2.30)). The
critical sphere will be S|y�x0|(x0) and the corresponding analogue of the identity (2.70)
will mean that u is symmetric with respect to the hyperplane I1

y (S|y�x0|(x0)). Varying
x0 in this way we find that u is symmetric with respect to each hyperplane orthogonal
to @H which does not pass through y. By continuity we get this symmetry also for
orthogonal hyperplanes that pass through y. It follows that u depends on x1 only. This
completes the proof of Step 5.

In this case where v is nonsingular we know that u�0 = u for some �0. So we are
finally ending up with the following symmetry property:

Lemma 2.3. Assume u is a solution to (1.1) that is not a function of x1 only; then

8x0 2 @H, 9R0 = R0(x0) > 0 such that

u(x) =
R0

n�2

|x� x0|n�2 u
�
IR0
x0 (x)

�
8x 2 H.

(2.71)
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3. Solutions depending on x1 only. As we saw in Section 2, either u satisfies
the symmetry property (2.71), or it is a function of x1 only. In this section we shall
treat the latter possibility by finding all the solutions of (1.1) which are depending on
x1 only. In fact, we shall consider a more general problem allowing di↵erent powers
then n+2

n�2 , n
n�2 . So, for a, b 2 R, p > 1, q > 0 consider the system

⇢
u00(x) = �aup(x) x > 0,
u0(0) = �buq(0),

(3.1)

where u is a nonnegative C2-function. Then we have:

Lemma 3.1. Let u be a nontrivial nonnegative solution of (3.1).
(i) If a = 0 and b = 0, then u = ↵ = Const.
(ii) If a = 0 and b < 0, then u = ↵x + (�↵

b )
1
q , ↵ > 0.

(iii) If a < 0, b > 0 and q 6= p+1
2 , then

u =
�p� 1

2
Ax +

�A

b

�� p�1
2q�(p+1)

�� 2
p�1 , A =

p
�2a/(p + 1).

(iv) If a < 0, b < 0, q = p+1
2 , and b = A, then u = (p�1

2 Ax + ↵)�
2

p�1 , ↵ > 0.
In all the other cases there are no nontrivial nonnegative solutions.

Proof. We distinguish two cases according to the sign of a.
I. a � 0 . In this case u00  0 and u0 is nonincreasing.
If u0(0) = 0, b 6= 0, then due to the second equation of (3.1), u(0) = 0 and u ⌘ 0 by

uniqueness of the solution of the Cauchy problem.
If u0(0) = 0, b = 0, then we have two cases:
(i) u0 ⌘ 0. This implies u00 ⌘ 0 and if a 6= 0, then u ⌘ 0. If a = 0, then u = Cst. .
(ii) u0 6⌘ 0. Then there exists an x0 such that u0(x0) < 0.
Since u0 is nonincreasing

u(x) = u(x0) +
Z x

x0

u0(s) ds  u(x0) + u0(x0)(x� x0) < 0

for x large enough, which is impossible.
If u0(0) < 0, then we can argue as in (ii) to show that (3.1) has no solution. So, there

remains only the case when u0(0) > 0; this imposes b < 0. Of course, for the reason we
just pointed out, we must have u0 � 0. Since u0 is nonincreasing l0 = limx!+1 u0(x) � 0,
exists.

From the first equation of (3.1), multiplying by u0 and integrating, we obtain

u02

2
+

a

p + 1
up+1 ⌘ C = Const. (3.2)

Assume first that a 6= 0. Then, u has a limit l at +1 and necessarily l0 = 0. If l 6= 0
then from the first equation of (3.1) it follows that u00  �✏ < 0 for x large. Then, for
x0, x large

u0(x) = u0(x0) +
Z x

x0

u00(s) ds  u0(x0)� ✏(x� x0)
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which contradicts l0 = 0. Thus, l = l0 = C = 0. But then {u02

2 + a
p+1up+1}(0) = 0,

which is impossible.
Assume now that a = 0. Then u0 ⌘ l0 > 0, l0 = �bu(0)q and u(0) = (� l0

b )
1
q . Thus,

in this case we obtain u = l0x + (� l0

b )
1
q .

II. a < 0 . In this case u00 � 0 hence u0 is nondecreasing. We distinguish two cases.
(i) There is a point x0 such that u0(x0) � 0. Then for x > x0 we have u0(x) > 0.

Indeed, if u0(x0) > 0 this is clear. If u0(x0) = 0, then u(x0) > 0 or else u ⌘ 0 by
uniqueness for the Cauchy problem. But then u00(x0) > 0 and u0(x) > 0 for x > x0.
From the equation (3.2) we then derive for x > x0

u0 =
p

A2up+1 + 2C

hence, Z x

x0

u0(s)p
A2u(s)p+1 + 2C

ds = x� x0.

Since u0 > 0 for x > x0 we may change variables to get
Z u(x)

u(x0)

dup
A2up+1 + 2C

= x� x0.

Since p > 1, the above integral converges at +1 and so u must blow up. Thus, the
only possible case is when:

(ii) u0 < 0. This imposes b > 0. Since u0 is nondecreasing, u0 has a limit at +1, and
u too since u � 0, and u is nonincreasing.

Set
l0 = lim

x!+1
u0(x)  0, l = lim

x!+1
u(x) � 0.

The only possibility is of course l0 = 0 (otherwise l would not exist) but then l = 0.
Indeed, if not, for x large u00 � ✏ > 0 which contradicts the existence of l0. Then, going
back to (3.2) we get l = l0 = C = 0. Hence

u0 = �Au
p+1
2 . (3.3)

From (3.3) at 0 we get

uq� p+1
2 (0) =

A

b
. (3.4)

When q 6= p+1
2 we deduce from (3.3), (3.4) (using u(0) 6= 0 otherwise u ⌘ 0) that u

solves (3.1) if and only if it solves

u0 = �Au
p+1
2 , u(0) = (

A

b
)

2
2q�(p+1) . (3.5)

When q = p+1
2 , (3.4) implies that the problem has a solution only when b = A and any

solution to (3.1) is a solution to

u0 = �Au
p+1
2 , u(0) = ↵, for some ↵ > 0. (3.6)
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The first equation of (3.5) can be integrated to give

u =
�p� 1

2
Ax + u(0)�

p�1
2
�� 2

p�1 .

Combining this with (3.5), (3.6) we obtain the last two cases of Lemma 3.1.

4. The proof of Theorem 1.1 completed. By the previous steps we need only
to show that the solutions to (1.1) not depending on x1 only are all of the form (1.2).
Note that for those solutions we have the conclusion of Lemma 2.3. We will need the
following lemma.

Lemma 4.1. For p � 1 let g 2 C1(Rp) be a function with the following property:

8 x0 2 Rp, 9R0 = R0(x0) > 0 such that

g(x) =
|x� x0|2

R0
2 g

�
IR0
x0 (x)

�
8x 2 Rp.

(4.1)

Then there exist constants ↵, �, � 2 R, v 2 Rp such that

g(x) = ↵|x|2 + �(x, v) + �. (4.2)

Proof. First note that the value of R0 = R0(x0) can be easily determined. Indeed,
letting |x|!1 in (4.1) we find that ↵ = lim|x|!+1

g(x)
|x|2 = g(x0)

R2
0

. The case ↵ = 0 yields
g ⌘ 0 so we shall assume in the sequel that ↵ 6= 0. The identity (4.1) now reads

g(x0)g(x)
↵

= |x� x0|2g
⇣
IR0
x0 (x)

⌘
8x 2 Rp. (4.3)

Denoting by

{IR0
x0 (x)}j = x0

j + R2
0

xj � x0
j

|x� x0|2 = x0
j +

g(x0)
↵

xj � x0
j

|x� x0|2

the jth entry of IR0
x0 (x), we find by a simple calculation

@

@xi
{IR0

x0 (x)}j =
g(x0)

↵

|x� x0|2�ij � 2(xi � x0
i )(xj � x0

j)
|x� x0|4 . (4.4)

We denote y0 = IR0
x0 (x) and then di↵erentiate (4.3) with respect to xi. Using (4.3) and

(4.4) we obtain

g(x0)
↵

@g

@xi
(x) = 2(xi � x0

i )g(y0) + |x� x0|2
pX

j=1

@g

@xj
(y0)

@

@xi
{IR0

x0 (x)}j

= 2(xi � x0
i )g(y0) + |x� x0|2

pX
j=1

@g

@xj
(y0)

g(x0)
↵

|x� x0|2�ij � 2(xi � x0
i )(xj � x0

j)
|x� x0|4

= 2(xi � x0
i )

g(x0)g(x)
↵|x� x0|2 +

g(x0)
↵

@g

@xi
(y0)� 2g(x0)

↵

pX
j=1

@g

@xj
(y0)

(xi � x0
i )(xj � x0

j)
|x� x0|2 ,
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hence
@g

@xi
(x) =

@g

@xi
(y0) +

2(xi � x0
i )

|x� x0|2
⇣
g(x)�

pX
j=1

@g

@xj
(y0)(xj � x0

j)
⌘
. (4.5)

We can do the same calculation for any x0 2 Rp. For x1 2 Rp, (4.5) reads

@g

@xi
(x) =

@g

@xi
(y1) +

2(xi � x1
i )

|x� x1|2
⇣
g(x)�

pX
j=1

@g

@xj
(y1)(xj � x1

j)
⌘

, (4.6)

with y1 = IR1
x1 (x), R1 = R1(x1) =

p
g(x1)/↵ . Next we subtract (4.5) from (4.6) to get

0 =
@g

@xi
(y1)� @g

@xi
(y0) + 2g(x)

✓
xi � x1

i

|x� x1|2 �
xi � x0

i

|x� x0|2
◆

+ 2
pX

j=1

@g

@xj
(y0)

(xi � x0
i )(xj � x0

j)
|x� x0|2 � 2

pX
j=1

@g

@xj
(y1)

(xi � x1
i )(xj � x1

j)
|x� x1|2 . (4.7)

Next we pass to the limit in (4.7) with x = x(m) such that x(m)
i ! 1 while x(m)

j = 0
for i 6= j. Since y0 ! x0, y1 ! x1 and g(x)

|x|2 ! ↵ , we find

@g

@xi
(x1)� @g

@xi
(x0) = 2↵(x1

i � x0
i ) , i = 1, . . . , p .

Taking x0 = 0 and x1 equal to any x 2 Rp, we find

rg(x) = v + 2↵x 8x 2 Rp , with v = rg(0) 2 Rp ,

hence (4.2) .

Lemma 4.2. A function u 2 C2(H) \ C1(H) satisfies the property (2.71) if and only
if the following holds: there exists a point z 2 Rn \H such that on Br(y0) = I1

z (H), the
Kelvin transform of u, w(x) = 1

|x�z|n�2 u
�
I1
z (x)

�
, is a radially symmetric C2-function.

Proof. Let us define g = u�
2

n�2 on H. By (2.71) we deduce in particular that g
satisfies (4.1) on @H = Rn�1. Applying Lemma 4.1 we find that the restriction of g
to @H is of the form (4.2) with ↵ > 0 and �2|v|2 < 4↵�. Next we claim that all the
spheres {SR0(x0)(x0) ; x0 2 @H} pass through a point z 2 Rn \H (and also through its
symmetric point in H). In fact, by the proof of Lemma 4.1 we may write for x0 2 @H:

R2
0 =

g(x0)
↵

= |x0|2 +
�

↵
(x0, v) +

�

↵
=
��x0 +

�

2↵
v ±

r
�

↵
� (

�

2↵
)2|v|2 e1

��2 .

Hence all the spheres pass through the two points � �
2↵v±

q
�
↵ � ( �

2↵ )2|v|2 e1. We define
z as the point out of these two which does not belong to H.
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Now consider the function w(x) = 1
|x�z|n�2 u

�
I1
z (x)

�
which is a C2-function defined

on the closure of the ball Br(y0) = I1
z (H). Note that w is regular at z since (2.71)

implies that u has the required regularity at infinity. Next we interpret the symmetry
property (2.71) in terms of w. Arguing as in Step 5 of Section 2 we find that w satisfies

w
�
I1
z (x)

�
= w

⇣
I1
z

�
I |z�x0|
x0 (x)

�⌘
8x0 2 @H, 8x 2 H. (4.8)

From (4.8) we deduce that w is symmetric with respect to reflections in the“generalized
spheres” which are the images by I1

z of the spheres {SR0(x0)(x0) ; x0 2 @H}. Since all
those spheres pass through z and z goes to 1, these images are hyperplanes. More-
over these hyperplanes pass through y0 since they should be orthogonal to Sr(y0) as
the original spheres are orthogonal to @H. Hence (4.8) just means that w is radially
symmetric. We can apply the same argument in the other direction to get the complete
result. ⇤

Now we are ready to finish the proof of Theorem 1.1. Let u > 0 be a solution of (1.1)
which is not a function of x1 only. By Lemma 2.3 and Lemma 4.2 we conclude that
w(x) = 1

|x�z|n�2 u
�
I1
z (x)

�
is a positive radially symmetric function on Br(y0) = I1

z (H).
But w satisfies the same equation as u, namely,

��w = aw
n+2
n�2 in Br(y0) . (4.9)

It is well known that all the radially symmetric solutions of (4.9) are of the form

w(x) =
A

(B|x� y0|2 + C)
n�2

2
for some A,B,C 2 R. (4.10)

Going back to u we find that it is of the form (1.2).
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Anal., 92 (1990), 403–447.

[13] B. Hu, Non existence of a positive solution of the Laplace equation with a nonlinear boundary
condition, Di↵erential and Integral Equations, 7 (1994), 301–313.

[14] B. Hu and H.M. Yin, The profile near blowup time for solution of the heat equation with a
nonlinear boundary condition, IMA Preprint Series, No. 1116, 1993, to appear in Transactions
of AMS.

[15] C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded
domains, Comm. Partial Di↵erential Equations, 16 (1991), 491–526.

[16] C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded
domains, Comm. Partial Di↵erential Equations, 16 (1991), 585–615.

[17] Y.Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, preprint.
[18] J. Serrin, A symmetry problem in potential theory, Arch. Rat. Mech., 43 (1971), 304–318.
[19] S. Terracini, Symmetry properties of positive solutions to some elliptic equations with nonlinear

boundary conditions, Di↵erential and Integral Equations, to appear.


