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On the Solvability of a Self-Reference Functional and Quadratic
Functional Integral Equations
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Abstract. In this paper we study the existence of solutions of a self-reference functional integral equation
and functional quadratic integral equation. Some examples will be given.

1. Introduction

Differential (integral) equations with deviating arguments that depends on both the state variable x
and the time ¢, are called self-reference differential (integral) equations. These types of equations play an
important role in nonlinear analysis, and have many applications (for example see [22]).

Buicd [12] proved the existence and uniqueness of the solution of the initial value problem

X(t) = flt,x(x(t), telab]
x(0) = xo

which is equivalent to integral equation
¢
w0 =30+ [ fGsxtc)s
0
where f € C([a, b] X [a, b]) and satisfied Lipshitz condition,

|f(t,X) _f(t/y)| < klx— ]/|, k> 0.

Bana$ and Cabrera [4] studied the existence and asymptotic behavior of solutions of the functional integral

equation
t t
x(t) = f(t, f x(s)ds, f x(h(s,x(s)))ds), £>0,
0 0

by using measure of noncompactness technique where f : R, X R X R — R is continuous. For other works
(see [1], [11], [14] and [19]).
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Our aim in this work firstly, is to relax the assumptions of Buicd [12] and generalized their results. We study
the existence of solutions x € C[0, T] of the self-reference functional integral equation

t
x(t) = f(t, j(; g(s,x(x(s)))ds), te[0,T]. (1)

where the function g satisfies Carathéodory condition. Moreover we study the existence of a unique solution
for this equation.

Secondly, we study the existence of solutions x € C[0, T] of the self-reference quadratic functional integral
equation.

t t
x(t) = f(t, fo £i(s, x(x()ds fo fz(s,x(x(s)))ds), te 0, T]. @)

where fi, f> satisfy Carathéodory condition. The Uniqueness of the solution will be studied also.

2. Functional integral equation

2.1. Existence of solution
Consider the functional integral equation (1) under the following assumptions:

(1) f:10,T] xR — Ris continuous such that
|f(t2, x) = f(t1, )] < Kiltr — t1] + Ko|x — v
where K;, K; are two positive constants.

(i) g : [0, T] x [0,T] — R satisfies Carathéodory condition i.e g are measurable in ¢ for all x € [0, T] and
continuous in x for almost all ¢ € [0, T],

(iii) there exist a measurable bounded function m(t) and a constant b > 0 such that

lg(t, x)| < m(t) + blx].

(iv) LT +|x(0)] < T and L = Ky + KM < 1, where M = A + bT and A is a positive constant such that
[m(f)| < A.

Remark 2.1. Using assumption (i) we have
[f(tx) = f(£,0)] < Kalx,

then
Ift 0l < Kalx| +[f(t0)l.

Theorem 2.2. Let the assumptions (i)-(iv) be satisfied, then the functional integral equation (1) has at least one
solution x € C[0, T].

Proof. Define the set S;, by

St = {x € C[0, T] : [x(t) - x(s)| < LIt —sl} < C[0, T,

It is clear that S; is nonempty ,closed, bounded and convex subset of C[0, T]. Now define the operator G
associated with equation (1) (as in [4] and [12]) by

t

Gx(f) = f(t, fo g(s,x(x(s)))ds), te[0,T].
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Clear that G is makes sense and well-defined. Now, let x € C[0, T], then for ¢ € [0, T], we get

‘f (t’ fot !7(5fx(X(S)))ds)

fo g(s, x(e&))ds| + 1£2,0)

|Gx()]

IA

K

IA

t
0] + Ko fo 1905, x(x(s)))Ids

IN

£, 0)] + Ko fo (m(s) + blx(x(s))ds

IA

t
£(t,0)] + K2[AT +b fo (Llx(s)| + |x(0)|}ds]

IN

£(t,0)] + Ks [A +b(LT + |x(0)|)]T

IN

|f(t,0)| + Ko(A + bT)T
If(t,0)] + KxMT

IA

But

£ (£, 0)l |f(£,0) = £(0,0)l + |£(0,0)
Ki t+£(0,0)|

Ky T + |x(0)I,

IANIN A

then

(G KT + [x(0)] + KoMT
(K1 + KeM)T + [x(0)]

LT+x(0)<T

IN A

which proves that the class {Gx} is uniformly bounded on S;. Now let x € S; and t;, ¢, € [0, T] with t; <t
such that |t,, —t1| < 6, then

|Gx(t2) — Gx(t1)] = ‘f(tz, jo‘tz q(s, x(x(S)))ds) - f(tl’fotl g(s, x(x(S)))dS)

IA

Ki |t = ] + K>

7

tz tl
f g(s, x(x(s)))ds — f 9(s, x(x(s)))ds
0 0

IA

5]
Ky It — b + Kz f 1905, x(x(s)))lds
3]

IA

15}
K |ta — b| + K» f {m(s) + blx(x(s))l}ds

IA

ty
Kilto =t + KZ[A(fz —t)+ bf {LIx(s)| + |X(0)|}d5]
5]

IA

Kilts — h] + Kz(A FBLT+ |x(0)|})(f2 —h)

IA

K1|t2 - i’1| + Kz(A + bT)(tz - f1)

Kilty = t1] + KoM(ty — t1)
Lit, = t4]

INIA
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This proves that Gx(t) € S;, G : S — Si, and the class of functions {Gx} is equicontinuous. By Arzela-Ascoli
Theorem ([21] page (54)), we find that G is compact.

Now we will show that G is continuous. Let {x,} C S such that x, — xp uniformly on [0,T], (ie,
[xa(t) — xo(t)| < €1 (say) ) this implies also |x,(xo(t)) — xo(xo(t))| < € for arbitrary €7, €, > 0, then

|g(t, 2 Cen (O] < m(t) + bl (x (D)

< m(t) + b[LIx(5)] + 1x, (0)]
< m(t) + bT.
and
| (xn () = x0(xo(B)] = |xn(xn(t)) — 20 (x0(£)) + x(x0(£)) — X0 (xo(£))]
< (e (®) = xn(xo(H)] + X (x0(#)) — x0(xo0(#))]
< Llxa(t) = xo(8)] + lxa(xo(t)) — xo(x0(£))]
< Let+e
which implies that

Xn(xu(£))) = (xo(xo(£))) in Sr.

Now the function g is continuous in the second argument, then

g(t, xn(xn(t))) - g(t, Xo(xo(f)))-

Using Lebesgues dominated convergence theorem ([13] page(151)) we have

. t t
lim | g(s,xn(xn(s)))ds= fo g(s,xo(xo(s)))ds

n—oo

and from the continuity of f we obtain
lim (Gx. ) = Jim (1 fo tg(s,xnocn(s)))ds),
= At fm | sts o)

= A fo o5 x0(xo())ds .

= (Gxo)(t).

Then G is continuous.

Now all conditions of Schauder fixed point Theorem ([20] page (482)), are satisfied, then the operator G
has at least one fixed point x € S;. Consequently there exist at leat one solution x € C[0, T] of equation (1)
which completes the proof.

Now, as in Bana$ [10] (page 247) we can prove the following corollaries:

Corollary 2.3. Let the assumptions (ii) — (iv) of Theorem 2.2 be satisfied. Let a : [0,T] — R such that
la(t2) — a(t1)l < alt, — #l,
then the integral equation

t
x(t) = a(t) + fo g(s, x(x(s)))ds,  te[0,T] 3)

has at leat one solution x € C[0, T].
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Corollary 2.4. Let the assumption of corollary (2.3) be satisfied, assume a(t) = xo, then the initial value problem
d
(0 = g((t,x(x(1)) ae, 4)

x(0) = xo (5)

has at leat one solution x € C[0, T].

2.2. Uniqueness of the solution

In this section we prove the uniqueness of the solution of the functional integral equation (1). For this
aim we assume that

@
lg(t, x) — gt I < blx =yl

(i")
lg(t,0)l < A,

Theorem 2.5. Let the assumptions (i), (ii), (iv) of Theorem 2.2 and (i), (ii") be satisfied, if
bTKyL+1)<1,

then the solution x € C[0, T] of equation (1) is unique.

Proof. Assumption (iii) of Theorem 2.2 can be deduced from assumption (i") and (ii") if we put y = 0 in (i)
we get

lg(t,x)] < blx|+|g(t,0)]
< blx|+A (6)

hence we deduce that all assumptions of Theorem 2.2 are satisfied. Then the solution of equation (1) exists.
Now let x, y be two solutions of (1), then

‘f (t, j; ' g(S, x(x(s)))ds) - f(t, j(; i g(s, y(y(s)))ds)
Lt g(S,x(x(s)))ds _ j(; g g(s, ]/(y(S)))ds

Ko [ ol xe90) = ofs o) s

lx(£) = y(®)l

7

IN

K>

IA

IA

t
Ko b fo [(x(5)) — y(y(s))lds

IA

t ¢
K, b[ fo Lix(s) — y(s)lds + fo [x(y(s)) — y(y(s))|ds]

IA

Ko b T[Lnx —yll+ - yn], @)

thus we have
llx = yll < Ko b T(L + 1)[lx = yll,

hence
(1- Ko b T +1))lx - yll < 0.

Since K» b T(L + 1) < 1, then we get x = y and the solution of (1) is unique.
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Corollary 2.6. Let the assumptions (ii), (iv), (i’) and (ii’) of Theorem 2.5 be satisfied. Let a : [0,T] — R such that
a:[0,T] = R is continuous such that
la(t2) — a(t1)l < alt; - tl,

then the solution of the integral equation (3) is unique. Consequently if a(t) = xo, then the solution of the initial value
problem (4) and (5) is unique.

Remark 2.7. In the Theorems 2.2 and 2.5 we generalized the results of Buicd [12] and relaxed their assumptions.

Example 2.8. Consider the following equation

£ —s
x(t) = %(1 +1)+ fo (7L + el—6x(x(s))) (8)

where t € [0,2] here we have

1 et

gt x(x(t))) = = + 7 X(®),

thus
l9(t, ) = g(t, y)l_16lx vl

sowehaveb = &, Ky =1, a(t) = 21 + 1), thus Ky =a = %, g(t,0) = =4, and A = 1, thus we get M = 3 and
L =0.525<1, hence b T(L+1) =0.190625 < 1.
Now clear that all assumptions of Corollary 2.6 are satisfied, then equation (8) has a unique solution.

3. Quadratic integral equation

Quadratic integral equations have many applications in the theory of radiative transfer, kinetic theory
of gases and in the traffic theory, this applications was introduced by several authors (see for example [2],
(3], [6], [71, [9], [3], [8], [15], [17], [16] and [18]).

3.1. Existence of solution

Consider now the quadratic functional integral equation (2) under the following assumptions:
(1) f:[0,T] xR — R satisfies the Lipshitz condition
|f(t2, x) = f(t1, Y| < kilt2 — t1| + kolx =yl
k1, k; are two positive constants.

2 fi:l x [0, T] — R satisfy Carathéodory condition i.e f; are measurable in ¢ for all x € C[0, T] and
contmuous in x for almost all t € [0,T], i =1,2.

(3) There exist two measurable bounded functions my, m, and constants by ,b, > 0 such that
filt, 0] < mi(t) + bilal, i =1,2.
(4) LT+ |X(0)| < Tand L= k1 + 2k2M1M2T < 1, where
M1 = A1 + blT

and
My =A; + sz

where A;, i=1, 2 are two positive constants such that |m;(t)| < A;, i=1, 2.
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Theorem 3.1. Let the assumptions (1) — (4) be satisfied, then the quadratic functional integral equation (2) has at

least one solution x € C[0, T].
Proof. Define the set S;, by

S1, = {x € C[0, T] : Ix(t)

—x(s)| < Lalt = s} € C[0, T],

It is clear that Sy, is nonempty ,closed, bounded and convex subset of C[0, T].

Define the operator F associated with equation (2) by

t t
Fx(t) = f(t, fo Fils, x(x(s))ds fo fz(s,x(x(s)))ds), te[0,T].

Now, let x € C[0, T], then for

|Fx(t)]

IA

ko

IN

If (£, 0)] + k2

IA

[f(t,0)] + k2

IN

Lf(t,0) + k2

IA

Lf(t,0)] + k2

IN

Lf(t,0) + k2

IA

But

If(t,0)] <
< k1 t+ |f(0,
<

t t
, ) d , d
(e [t xtxomas [ s taomas)
t t
[ s xtemas [ s o
0 0

t € [0, T] we can get

FIF,0)
f [fi(5, x(x(6)))lds f o5, x(x(6)))lds

0 0

t t
f {111(5) + brlx(x(s)l}ds f (112(5) + bal(x(s)) )
0 0

!

_ f
AT+, fo (L) + O s [ 42T + b fo (L) + ()|

A+ BT + |x(0)|)][Az F (LT + |x<0>|)]T2

Al + blT][Az + sz]TZ

|f(t/ O)| + 2k2M1M2T2.

[f(£,0) = f(0,0)[ + 1£(0,0)

)l

ki T + |x(0)|.

Then we get

A

IF)®) < KT+ x(0)] + 2k My Mo T?

Ly T+ x(0) < T.

This proves that the class {Fx} is uniformly bounded on Si,.

Now letx € S;, and t1, t, € [0, T] with t; < t; such that |f;, —#;] < §, then



[Fx(t2) — Fx(t1)]

IA

IA

IA

IA

IA IN

IN

IA A
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(e [ sxaomis [ s xtomas) - o, [ st tatoms [ st e

tr tr t t
Kilta - b + k2 fo fi(5, x(x()ds fo fo(s, x(x()ds - fo fi(s, x(x()ds fo fols, x(x(s)))ds],
kiltz — 1]
t ty t ty
k ( fo fu(s, x(x(s)))ds + f fl(s,x(x(s)))ds)( fo fols, x(x(E)))ds + f fz(s,x<x(s>>>ds)

ko fo fi(s, x(x(s)))ds fo fals, x(x(s)))ds

H ty
kilta — ] + Ko fo f1(5, x(x(9)ds f fo(s, x(x()ds
ty t ty ty
ks f Fils, x(x(s)ds fo fols, x(x(&))ds| + ko f fils, x(x(s)ds f fols, x(x(s)ds

1 tr
kit — b + k2 fo |fi(5, x(x(6)))lds f o5, x(x(6)))lds
31
ty t ty ty
k f |fu(s, x(x(6)))lds fo oS, XIS + ko f o5, x(x(s))lds f oS, X(x(6)))lds
1o 5]
Kilta - 1] + k2 fo |fi(5, x(x(6)))lds f [fo(s, x(x(s)))Ids
t

f t1
sz |f1(S,x(x(S)))|de(; |f2(s, x(x(5)))lds

kilts — t1] + ko (j:z{ml(s) +b1|x(x(s))|}ds)(ft
ky ( ft tz{m1(s) + bllx(x(S))l}dS)( fo )

ty
kil = 1 + o 41T + f (L + s [ st = ) + f
0

51

153

{mas) + b2|x<x<s>>|}ds)

(r2) + babe(x (s}

5]

(Lilx(s)| + |x(0>|}ds]
tz tl
o Arte, - 1) + by ft (L) + O ds [ 42T + b fo (L) + )|

Kiltz — ta] + 2Tk2(A1 FbL T+ |x(0)|})(A2 P L T+ |X(0)|})(tz —h)

kilto — t1| + ko TM1Mp)(tr — )
Lilty — t4]

This proves that Fx(t) € S;, hence F : 5, — Sy, and the class of functions {Fx} is equi-continuous. Since
the class of functions {Fx} is uniformly bounded and equicontinuous on [0, T], by Arzela-Ascoli Theorem
[21], we find that F is compact.

Now we will show that F is continuous. Let {x,} C S, such that x, = x; uniformly on [0, T], then

|fit, X (xn(E))I

IA

mi(t) + bilxu (e (D)) < mi(t) + B[ L T + 1x, 0)]]
mi(t) +bT i=1, 2.
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and
[xn (xn(8)) = xo(xo(D) =[x (20 (£)) — xu(x0(£)) + x5 (x0(t)) — x0(x0(t))l
< () = xn(x0(H)] + [xn(x0(#)) — x0(xo0(#))]
< Lalxa(t) = xo(B)] + [xn(x0(t)) — xo(x0())]
< Lie; +er.
This implies that

X (¥ (1)) = (xo(x0(t)).

Now f;, i=1, 2 continuous in the second argument, then
At () = fi(t, xoto®), i=1, 2
By Lebesgues dominated convergence ([13] page(151)) theorem we have,
tim [ s o [ Al = [ Alsaoons [ Ao st

and from the continuity of f we have

lim (Fx)) = lim £(s f | JACENENONE f t fals 1 a(s))s),

= f(t’,}i_{nffl(s X (2 (8)) )dsffz(s xn(xn(s))) )

= f(t,fo‘tfl(s,xo(xo(s)))dsﬁfz(s,xo(xo(s)))dS).
(Fxo)().

Then F is continuous. Now all conditions of Schauder fixed point Theorem ([20] page (482)), are satisfied,
then the operator F has at least one fixed point x € S. Consequently there exist at leat one solution x € C[0, T]
of equation (2) which completes the proof.

Corollary 3.2. Let the assumptions (2) — (4) of Theorem 3.1 be satisfied. Let a : [0, T] — R is continuous such that
la(t2) — a(t1)l < alt; — tl,

then the quadratic integral equation

t t
x(t) = a(t) + fo s x(x(s))ds fo fols,x(x(s))ds,  te[0,T]. )

has at leat one solution x € C[0, T].

Corollary 3.3. Let the assumptions of Corollary 3.2 be satisfied, then the quadratic integral equation

X = at) +( fo t g(s,x(x(s)))ds)z s,  telo,T. (10)

has at leat one solution x € C[0, T].

Proof. If we put fi = f, = g, in equation (9) we get, the quadratic integral equation (10) has at leat one
solution x € C[0, T].
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Example 3.4. Consider the following quadratic integral equation

x(t) = (%t + i) + (j: [3%5 + %x(x(s))]ds)( f: [és + %x(x(s))]ds) (11)
where t € [0,1]. Here we have:

x(0) =1/4,a(t) = 5t + } thena=2/3

1, 3 t 3 1

At x(x(®) = ik ﬁx(x(t)), hence m(t) = 2, b1 = o, A1 = 25,
1, 3 t 3 1

fz(t,x(x(t))) = ﬁt + Ex(x(t)), hence my(t) = VL b, = L A, = L

thus we have My = § and M, = } then Ly = 3/4 < 1.

Now its easy to verify all the assumptions of Corollary 3.2, then the previous quadratic integral equation has at
least one solution x € C[0, T].

Example 3.5. Consider the following quadratic integral equation

_ 28+3t ' . x(x(s))? A 1 .
x(h)= ==+ fo (§(s+e )+ 4(1+|x(x(s))|))ds fo (—7+ —sin(3(s + 1)) + e x(x(s)))ds (12)

where t € [0,2]. Here we have:

x(0) = 4/7, a(t) = % then a = 3/49

_1 -t x(x(1)? 1 _ 1 3

fl(t,X(X(t))) = §(t+e )+ m, hence T}’ll(t) = §(t+€ ), bl = ﬂ’ Al = a,
At x(x(t) = ! sin(3(t + 1)) + le-fx(x(t)) hence my(t) = A
2\ T 742t 14 ’ D T VL A A

hence we have My = % and M, = 2 then Ly = 5/7 < 1.

Now its easy to verify all the assumptions of Corollary 3.2, then the quadratic integral equation (12) has at least one
solution x € C[0, T].

3.2. Uniqueness of the solution

In this section we prove the existence of a unique solution x € C[0, T] of the quadratic integral equation
(2). For the uniqueness of the solution we assume that

1)
Ifit,x) = filt, I <bilx—yl i=1,2

2)
|fi(tl 0)' < Ai

where b;, A; are a positive constants, i =1, 2
Theorem 3.6. Let the assumptions (1), (2), (4), (1") and (2’) be satisfied, if
(N1 bz + N> bl) kz T (L1 + 1) <1,

then equation (2) has a unique solution x € C[0, T].
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Proof. Assumption (3) can be deduced from assumption (1’) and (2’) if we put y = 0 in (1) we get

|fi(t, ) < bi Ix] +

Ifit,0) i=1,2. (13)

hence we deduce that all assumptions of theorem (3.1) are satisfied. Then the solution of equation (2) exists.
Now let x, y be two solutions of (2), then

lx(£) = y(®)l

IA

IA

IA

+

‘f(t, f; f1(s, x(x(s)))ds f: fz(s, x(x(s)) )ds
e fo s ) fo s w(y))ds )|,

t t t t
(s,x(x(s)))ds fo fz(s,x(x(s)))ds— ](; fl(s,y(y(s)))ds ](; fz(s,y(y(s)))ds

k> ffl s,x(x(s)) ds f{f(s x(x( s))) fz(s y(y(s)))} ]
ke f fos,y((s)) ds f Filsx90) = s 9w s |

k2 fo Ifis, x(x(s))l ds Ifzsx(X(S)) Fols y(yis)lds

O

(

k fo s @) ds | Uil 22(69) - (s, ) ds.
(
(

t t
ks fo 1fo(s, y(y(s))! ds by fo [x(x(s)) - Y(y(s))lds (14)

Now using (13) we obtain,

| 1l o)

Moreover we have,

[x(x(s)) — y(y(s))l

IA

t t
b,-j(: |x(x(s))|ds+f0 Ifi(t, 0)lds

t
hjﬁqu+umM%-+AJ
0
bi T + AT = N; (say). (15)

IA

[x(x(s)) — y(y(s)) + x(y(s)) — x(y(s))l
[x(x(s)) — x(y(s))| + lx(y(s)) — y(y(s))]
Lilx(s)) = y(s)| + lx(y(s)) — y(y(s))l (16)

INCIA I

Substituting by (15) and (16) in (14) we get,

() —y®) <

IA

then

t t
kN1 bz (Ly + 1) [lx =yl f ds +kaNz by (L1 + 1) |lx — vl f ds,
0 0
keN1 bz llx = yll Ly + 1) T +kaeNa by llx = yll T (Ly + 1)

lx = yll £ ko(N1 by +koNo by) T (Ly + 1) |Ix — vl
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thus

1= o b+ Na by b T 0+ 1)] -yl <0

since

(N1 bz + N> bl) kz T(Ll + 1) <1,

then we get x = y and the solution of equation (2) is unique solution.

Corollary 3.7. Let the assumptions (2), (4), (1) and (2") of Theorem 3.6 be satisfied, if f(t,x) = a(t) + x where
a:[0,T] = R is continuous such that

la(tz) — a(ty)| < alt2 — ],

then the quadratic integral equation

t t
x() = a(t) + fo (s x(x(s)))ds fo s x(x(s))ds,  te[0,T]. (17)

has a unique solution x € C[0, T].

Example 3.8. Consider Example 3.4, we have

(b0~ Al 9l = k-3

(b0 - At vl < -3

also |f1(t, 0) = 5 < 35, and |f2<t, 0)l = & < 75 thus we get Ny = §, No = £ hence

12 —

(N] bz + N> bl) kz T (Ll + 1) =0.109 <1,

Now clear that all assumptions of Corollary 3.7 are satisfied, then equation (11) has a unique solution.
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