On the Solvability of Dynamic
Elastic-visco-plastic Contact Problems

Jit{ Jarusek ! and Mircea Sofonea?

Abstract. We consider two dynamic contact problems between an elastic-visco-
plastic body and an obstacle, the so-called foundation. The contact is frictionless and it is
modelled with normal compliance of such a type that the penetration is not restricted in
the first problem, but is restricted with unilateral constraint, in the second one. We derive
a variational formulation of the first problem and then prove its unique weak solvability,
by using arguments on nonlinear evolution equations with monotone operators and fixed
point. Then, we derive a variational formulation of the second problem and prove its
weak solvability. To this end we consider a sequence of regularized problems which have
a unique solution, derive a priori estimates and use compactness properties to obtain a
solution to the original model, by passing to the limit as the regularization parameter
converges to zero.

Keywords and Phrases: elastic-visco-plastic material, dynamic process, frictionless
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1 Introduction

The aim of this paper is to study two frictionless contact problems for elastic-visco-plastic
materials of the form

(1.1) o(t) = de(u(t)) + Ee(u(t)) + /0 Y(o(s) — Ae(u(s)),e(u(s)))ds,

where u denotes the displacement field while o and e(u) represent the stress and the
linearized strain tensor, respectively. Here &/ and & are linear operators describing the
purely viscous and the elastic properties of the material, respectively, and ¢ is a nonlinear
constitutive function which describes the visco-plastic behaviour of the material. In (1.1)
and everywhere in this paper the dot above a variable represents derivative with respect
to the time variable ¢.

Rheological models obtained by connecting in parallel a linear dashpot with various
viscoelastic or viscoplastic models lead to one-dimensional examples of constitutive laws
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of the form (1.1). Indeed, consider first a dashpot connected in parallel with a Maxwell
model; in this case an additive formula holds,

(1.2) o=0"+of

where o, 0" and ¢ denote the total stress, the stress in the dashpot and the stress in
the Maxwell model, respectively. We have

(1.3) oV = A¢,
and
R . 1 R
(1.4) o' =Fe— -0
n

where A and 7 are positive viscosity coefficients, £ > 0 is the Young modulus of the
Maxwell material and € denotes the strain. We integrate (1.4) on [0,¢] with the initial
conditions o*(0) = 0, £(0) = 0 and use (1.2), (1.3) to obtain

(15) o(t) = Aé(t) + Be(t) — = /0 (o(s) — Aé(s)) ds,

Ui

which represents a constitutive equation of the form (1.1).

The previous model is a particular case of a more general rheological model, obtained
by connecting in parallel a linear dashpot, (1.3), with a rate-type elastic-visco-plastic
model of the form

(1.6) & = B¢ + G(o",¢)

in which G is a nonlinear constitutive function. Indeed, we integrate (1.6) with the
initial conditions ®(0) = 0, £(0) = 0 and use (1.2), (1.3) to obtain

(1.7) o(t) = Ae(t) + Ee(t) + /0 G(o(s) — Aé(s),e(s)) ds,

which, again, represents a constitutive equation of the form (1.1).

The linear standard viscoelastic model is an example of constitutive law of the form
(1.6) and in this case

- R R
ot o EnN. B
1.8 = (1+2)e+ 2
(1.8) T +— .,
Here /| E/; and n are positive constants. The one-dimensional Perzyna law is an example
of nonlinear elastic-visco-plastic constitutive law of the form (1.6) and it can be written
as follows,

1
(1.9) é:—dR—i—ﬁ(o—PKo).



Here 1 > 0 is the viscosity constant, K C R is a nonempty, closed, convex set and Py
is the projection mapping on K.
More details on the one-dimensional models (1.4), (1.6), (1.8) and (1.9) as well as on

the construction of rheological models obtained by connecting springs and dashpots can

be found in [9] and [13, Ch. 6].

Following the previous one-dimensional examples we see that at each time moment ¢,
the stress tensor o () in (1.1) is split into two parts,

(1.10) a(t) = oV (t)+ ah(t),
where
(1.11) a’(t) = Fe(u(t))

represents the purely viscous part of the stress and the remainder part, o(t), satisfies
a rate-type elastic-visco-plastic equation,

(1.12) O'R(t):é"s(u(t))—l—/o G (o(s), e(u(s))) ds.

Various results, examples and mechanical interpretations in the study of elastic-visco-
plastic materials of the form (1.12) can be found in [8, 14] and references therein. Note
also that when ¢ = 0 the constitutive law (1.1) becomes the Kelvin-Voigt viscoelastic
constitutive relation,

(1.13) o =de(u)+ Ee(u).

Quasistatic contact problems for materials of the form (1.12) and (1.13) were investi-
gated in a large number of papers, see e.g. [1, 2, 3, 12, 24, 25] and the references therein.
A survey of these results can be found in [13]. There, both the variational analysis and
the numerical approach of the problems, including the study of semi-discrete and fully
discrete schemes, were provided. Existence results in the study of dynamic problems
with Kelvin-Voigt materials of the form (1.13) can be found in in [15, 17, 19]. The case
of viscoelastic materials with singular memory was considered in [16, 18] and, for more
details, we send the reader to the monograph [11].

In the present paper we consider two dynamic contact problem for rate-type materials
of the form (1.1); we assume that the contact is frictionless and it is modelled with
normal compliance of such a type that the penetration could be infinite in the first
problem, but is limited and associated to an unilateral constraint, in the second one. The
normal compliance contact condition was first considered in [22] in the study of dynamic
problems with linearly elastic and viscoelastic materials. This condition allows the
interpenetration of the body’s surface into the obstacle and it was justified by considering
the interpenetration and deformation of surface asperities. On occasions, the normal
compliance condition has been employed as a mathematical regularization of Signorini’s
nonpenetration condition and used as such in numerical solution algorithms. Contact



problems with normal compliance have been discussed in numerous papers, e.g. [4,
5, 6, 20, 21, 24] and the references therein. In particular, the first existence result
in the study of quasistatic contact problems with normal compliance and friction was
obtained in [4] in the case of linearly elastic materials and in [24] in the case of nonlinear
Kelvin-Voigt viscoelastic materials. Unlike the up-to-now research, however, the method
we present in this paper allows to treat also such normal compliance models in which
the compliance term do not necessarily need to represent a compact perturbation of the
original problem, without contact. This will allow to study such models, where a strictly
limited penetration is allowed and/or to perform the limit procedure to the Signorini
contact condition.

The paper is organized as follows. In Section 2 we introduce some notation and
preliminaries. In Section 3 we describe the two contact problems and list the assumption
on the data. In Section 4 we state and prove the unique weak solvability of the problem
with infinite penetration, Theorem 4.1. To this end we use arguments on nonlinear
evolution equations with monotone operators and fixed point methods. Then, in Section
5 we state and prove the weak solvability of the problem with finite penetration and
unilateral constraint, Theorem 5.1. To this end we consider a sequence of regularized
problems which have a unique solution, derive a prior: estimates and use compactness
properties to obtain a solution to the model, by passing to the limit as the regularization
parameter converges to zero.

2 Notation and preliminaries

In this short section we present the notation we shall use and some preliminary material.
For further details, we refer the reader to [10, 11, 13, 23].

We denote by 7, and r_ the positive and negative part of r, i.e. ry = max{0,7},
r_ = maz {0,—r}. We also denote by SV the space of second order symmetric tensors
on RY (N = 2,3), while “-” and || - || will represent the inner product and the Euclidean
norm on SV and R¥. Let 2 C R" be a bounded domain with a Lipschitz boundary I’
and let v denote the unit outer normal on I'. We assume that I is partitioned into three
disjoint measurable parts I}, I and I3. Everywhere in what follows the index ¢ and j
run from 1 to N, summation over repeated indices is implied and the index that follows
a comma represents the partial derivative with respect to the corresponding component
of the independent spatial variable.

We use the standard notation for Lebesgue (L, L, = (L,)", p € [1,00]) and Sobolev
spaces WF, H" = W, H" = (H*)N k>0, p € [1,00]) associated to £2 and I and their

o o k o
duals. For the spaces with zero traces H*, H = (H*)" is used if k ¢ 1 4+ N. Moreover,
we use also the spaces



H={o0=(0y) : 05 =05 € La(2) },
Hy={u=(u) : e(u)eH},
Hi={oe€H : Dive € Ly(2) }.
Here € and Div are the deformation and the divergence operators, respectively, defined
by
e(u) = (ei5(w),  eiy(u) = 5 (wiy +ug), Dive = (0i,).

The spaces ‘H, Hy and H; are real Hilbert spaces endowed with the canonical inner
products given by

(0', T)'H = O'ijTijdl',
Q
(u7U)H1 - (’U,, /U)Lz(f?) + (6(’11,),6(’1)))7.(7
(o, 7)1, = (0, 7)n + (Dive,Div )L, 0.
In general, we denote by || - ||x the norm on a Banach space X, this holds, in particular,

for the associated norms on the spaces ‘H, H; and H;.

For every element v € H; we also use the notation v to denote the trace of v on I'
and we denote by v, and v, the normal and the tangential components of v on I" given
by

v, =V -V, V=V — U,

We also denote by o, and o, the normal and the tangential traces of a function
o € H;, and we note that when o is a regular function then

o, = (ov)- v, o, =0V —0,V,

and the following Green’s formula holds:

(2.1) (0,e(v))n + (Dive,v)r,0) = / ov-vda Vv e H.
r

Now, let V' be the closed subspace of H; given by
V={veH |v=0 on I}
We denote by (-, )y the restriction of the inner product (-,-)g, to V, i.e
(2.2) (u, v)y = (w,0)L,(2) + (e(u), e(v))n

and let || - || be the associated norm. It follows that (V|| - ||i/) is a real Hilbert space;
moreover, by the Sobolev trace theorem, there exists a positive constant cg depending
only on the domain {2, I'7 and I3 such that

(2.3) [vllLos) < csllvlly - Vo eV
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Let T > 0. For each t € [0,T] we use the notation Q; = (0,t) x 2, Sy; = (0,¢) x I;
and, if t = T we write Q@ = Qr = (0,T) x 2, S; = Sr; = (0,T) x I;. Also, for every
real Banach space X we use the notation C'([0,T]; X) and C'([0,T]; X) for the space
of continuous and continuously differentiable functions from [0,7] to X, respectively;
C([0,T]; X) is a real Banach space with the norm

) = t
||$||0([0,T],X) tgﬁ% ||$( )le

while C'([0,T]; X) is a real Banach space with the norm

a— t r(t .
]| fo,77:) nax |z(t) ] x + max () || x

Finally, for £ € N and p € [1, 0c], we use the standard notation for the Lebesgue spaces
L,(0,7; X) and for the Sobolev spaces W]f(O, T; X).

We end this section with a standard existence and uniqueness result which may be
found in [7, p. 64].

Theorem 2.1 Let V C H C V' be a Gelfand triple and denote by || - ||v, || - ||z, || - ||v/
and (-, -Yyrxy the norm on the spaces V., H, V' and the duality pairing between V' and
V', respectively. Assume that A :V — V' is a linear continuous operator which satisfies

(2.4) (Av,v}lev+a||v||§{ Zw||v||%/ YoelV,

for some constants w > 0 and o € R. Then, given ug € H and f € Ls(0,T;V"), there
exists a unique function u which satisfies

u€ Ly(0,T;V)NC([0,T); H), w € La(0,T; V"),
u(t) + Au(t) = f(t) ae. t€(0,T),
u(0) = up.

Theorem 2.1 will be used in Section 4 in the proof of the unique solvability of the
frictionless contact problems with normal compliance and infinite penetration.

3 Problems statement

In this section we present the two problems which describe the frictionless contact process
and present the assumption on the data.

The physical setting is as follows. An elastic-visco-plastic body occupies a bounded
domain 2 C RY (N = 2,3) with a regular boundary I" that is partitioned into three
disjoint measurable parts Iy, I'; and I'3. Let T > 0 and let [0, T] denote the time interval
of interest. The body is clamped on S; = (0,7T) x I and thus the displacement field
vanishes there. A volume force of density f, acts in @ = (0,7) x {2 and a surface
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traction of density f, acts on Sy = (0,7") x I5. In the reference configuration the body
is in frictionless contact on S3 = (0,7") x I3 with an obstacle, the so-called foundation.

In the first problem the contact is modelled with normal compliance in such a way
that the penetration is not limited. Under these conditions, the classical formulation of
the problem is the following.

Problem 22, Find a displacement field w : 2 x [0,T] — RY and a stress field
o: 2 x[0,T] — SN such that

(3.1)  o(t) = Ae(u(t)) + Ee(ul(t)) + /0 G(o(s) — Ae(u(s)),e(u(s)))ds in Q,
(3.2) pu = Dive + f, in Q,

(3.3) w=0 on Sy,

(3.4) ov =f, on Sy,

(3.5) —0, = p(u,) on Ss,

(3.6) o, =0 on S,

(3.7)  u(0) =wup, w(0)=wu; in £2.

Here (3.1) is the elastic-visco-plastic constitutive law already presented in Section 1,
(3.2) represents the equation of motion in which p denotes the density of mass, (3.3)
and (3.4) are the displacement and traction boundary conditions, respectively. Condition
(3.6) shows that the tangential shear, denoted o, vanishes on the contact surface, i.e.
the process is frictionless. Finally, the functions uy and w; in (3.7) denote the initial
displacement and the initial velocity, respectively.

We now describe the contact conditions (3.5) in which our main interest is. Here o,
denotes the normal stress, u, is the normal displacement and p is a Lipschitz continuous
increasing function which vanish for a negative argument, i.e.

;

(a)p:R—R.
(b) There exists L, > 0 such that
(3.8) p(r1) = p(r2)| < Lylry — 2| Vri, ra €R.

(c) (p(r1) = p(re))(r1 —m2) >0 Vry, mo € R.
| (d) p(r) =0 forall r <O0.

Condition (3.5) combined with assumption (3.8) shows that when there is separation
between the body and the obstacle (i.e. when u, < 0), then the reaction of the foundation
vanishes (since 0, = 0); also, when there is penetration (i.e. when u, > 0), then the
reaction of the foundation is towards the body (since o, < 0) and it is increasing with
the penetration (since p is an increasing function). Finally, note that in this condition
the penetration is not restricted and the normal stress is uniquely determined by the
normal displacement.



A first example of normal compliance function p which satisfies condition (3.8) is

(3.9) p(r) = cyry

where ¢, is a positive constant. In this case condition (3.5) shows that the reaction
of the foundation is proportional to the penetration and therefore (3.5), (3.8) model
the contact with a linearly elastic foundation. A second example of normal compliance
function p which satisfies condition (3.8) is given by

ey if r<a,
(3.10) pu(r) = { co if r>a,

where « is a positive coefficient related to the wear and hardness of the surface and,
again, ¢, > 0. In this case the contact condition (3.5) means that when the penetration is
too large, i.e. when it exceeds «, the obstacle backs off and offers no additional resistance
to the penetration. We conclude that in this case the foundation has an elastic-plastic
behavior.

In the second problem the contact is again modelled with normal compliance but in
such way that the penetration is limited and associated to a unilateral constraint. The
classical formulation of the problem is the following.

Problem %, Find a displacement field w : 2 x [0,T] — RN and a stress field
o: 02 x[0,T] — SN such that

o(t) = e(u(t)) + e(ul(t)) +/0 G(o(s) — de(u(s)),e(u(s)))ds in Q,

(3.11)

(3.12) pt = Dive + f, in @,

(3.13) u=0 on Sy,

(3.14) ov =f, on Sy,

(3.15) u, <9, o, +pu) <0, (0, +pw))(uw —g)=0 onS;,
( ) o, =0 on Ss,

(3.17)  w(0) =wug, w(0) =wu; in §2.

Here g > 0 is given and p is a function which satisfies

p

(a) p:] —o0,9] = R.

(b) There exists L, > 0 such that

(3.18) p(r1) = p(r2)| < Lylri — o Vry, m2 < g.
(€) (p(r1) = p(r2))(ry —712) 20 Vry, ry < g.

[ (d) p(r) =0 forall r <0.

Condition (3.15) combined with assumption (3.18) shows that when there is separa-
tion between the body and the obstacle (i.e. when u, < 0), then the reaction of the
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foundation vanishes (since o, = 0); moreover, the penetration is limited (since u, < g)
and g represents its maximum value. When 0 < u,, < g then the reaction of the founda-
tion is uniquely determined by the normal displacement (since —o, = p(u,)) and, when
u, = ¢, the normal stress is not uniquely determined but is submitted to the restriction
—0, > p(g). Such a condition shows that the contact follows a normal compliance con-
dition of the form (3.5) but up to the limit ¢ and then, when this limit is reached, the
contact follows a Signorini-type unilateral condition with the gap ¢g. For this reason we
refer to the contact condition (3.5) as to a normal compliance contact condition with
finite penetration and unilateral constraint, and we conclude that the foundation has an
elastic-rigid behavior. Also, note that when g = 0 condition (3.15) becomes the classical
Signorini contact condition in a form with a zero gap function,

u, < 0; o, < 07 OylUy = 07

and when g > 0 and p = 0, condition (3.5) becomes the Signorini contact condition in
a form with a gap function,

u, < g, o, <0, o,(u, —g) = 0.

The last two conditions model the contact with a perfectly rigid foundation.

A carefully examination of contact conditions (3.5) and (3.15) shows that both of
them can be cast in the abstract formulation

(3.19) -0, € 0P(u,) on (0,7) x I,
in which P is a prescribed function which satisfies

(a) P: R — (—o0,+0o0.
(3.20) (b) P is convex and lower semicontinuous.
(c) P(r)=0 forall r <0.

Here OP denotes the subdifferential of P, i.e. 9P : R — 2% is the multivalued operator
given by
OP(r)={feR|P(s)—P(r)> f(s—r) VseR}.

Indeed, the contact condition with normal compliance and infinite penetration (3.5)
can be recovered from (3.19) by taking

whereas the contact condition with normal compliance finite penetration (3.15) can be
recovered from (3.19) by taking

Plr) = /Orp(s) ds if r<gy,

+00 it r>g.



We see that in both cases above, if p satisfies conditions (3.8) or (3.18), then the
corresponding function P satisfies condition (3.20). However, the contact condition
described by the multivalued relation (3.19) is more general. Indeed, taking in (3.19)

0 if r <0,
Py =1{
1 .
m Ta+ if r Z O,
where o and A are positive parameters, leads to the contact condition

(3.21) o= 5 ().

We note that (3.21) is of the form (3.5) however, if  # 1, the corresponding function p
does not satisfies assumption (3.8)(b). Also, taking in (3.19)

(0 if r <0,
A
P(r)=q—AIn(cos §) ifre {O, ;) ,
AT
00 if r>—
\ 2

where A is a positive constant, leads to the contact condition

0 if u, <0,

(3.22) _o, = \
tan % if u, € bx-éf).

In this last condition the penetration is allowed, but limited, since it does not exceed
AT
- however, (3.22) can not be cast on the form (3.19) with p satisfying (3.18).

In this paper we restrict ourselves to the study of the dynamic frictionless contact
problems &?; and ;. Considering more general problems involving the contact condi-
tion (3.19), which contains as special cases (3.21) and (3.22), leads to important math-
ematical difficulties, would represent an important extension of this work, and will be

treated in a furthcoming paper.

We now describe the assumptions on the data we consider in the study of the me-
chanical problems (3.1)—(3.7) and (3.11)—(3.17). We assume that the operators &/ and
& are linear whereas the operator ¢ may be nonlinear and they satisfy the following
conditions.

(a) ( z]kﬂ) 2 % SN — SN.
(b) Hijke € Loo($2), 1 <1i,j,k, ¢ < N.
(3.23) (c)do-T=0-d1, Vo, 7 €SV, ae. in .
(d) There exists ag > 0 such that
AT -1 > a7|* VT e SV, ae. in (2.
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(a) & = (Cg;;jkg) D f2 X SN — SN.

(b) &t € Loo(2), 1 <i,j,k, ¢ < N.
(

(

(3.24) c)o-T=0-E1,Vo,7€ S, ae in .
d) There exists ey > 0 such that
ET-T > eo|T]]? VT € SV, ae. in 0.
(((a) 9 : 2 x SV x SN — SN,
(b) There exists Ly > 0 such that
|9 (x,01,€1) — 9 (@, 03, 8)||
(3.25) < Ly (lloy — oaf[ + [ler — &)

Voi,09,€1,69 € SN, a.e. x € (2.
(c) For any 0,6 € SN, x — Y(x,0,¢)
is measurable on (2.
(d) The mapping « — ¥(x,0,0) belongs to H.

\
We suppose that the mass density satisfies

(3.26) p € Loo(£2), there exists p* > 0 such that p(x) > p* a.e. © € £2,

the body forces and surface tractions have the regularity

(3.27) fo € La(0,T5 La(£2)), [y € L2(0,T La(13)),

and the initial data satisfy

(3.28) uy €V, uy € Ly(02).
We finish this section with further notation which are needed in the study of Problem

P and P5. Thus, in the rest of the paper we use a modified inner product on the
Hilbert space H = Ly({2), given by

(3.29) (w,v)g = (pu, V)0 Yu,veH,
that is, it is weighted with p, and we let || - || be the associated norm, i.e.,
(3.30) vl = (pv,v) g Vo€ H

It follows from assumption (3.26) that || - ||z and || - ||z,(2) are equivalent norms on H,
and also the inclusion mapping of (V|| - ||v) into (H, || - ||z) is continuous and dense. We
denote by V' the dual space of V. Identifying H with its own dual, we can write the
Gelfand triple

VcHcCV.

We use the notation (-, )y« to represent the duality pairing between V' and V' and we
recall that

(3.31) (u, vV)yrwy = (u,v)g YVuec HveV.
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Finally, we denote by || - ||y the norm on V".

Assumptions (3.27) allow us, for a.e. t € (0,T), to define f(t) € V' by

(3.32) Oy = [ foft)-vidos [ £, vda VoeV.
0 I
and note that
(3.33) £ € Ly(0,T; V).
Also, in the study of Problem £; we need the set of admissible displacements field
(3.34) K={veV|u<g aeonl;}
and we reinforce assumption (3.28) with
(3.35) uy € K.
Finally, assumption (3.8) or (3.18) allow to consider the functional defined by
(3.36) Jjlu,v) = / p(uy)v, da, Yu,veV.
I3

Note that j is defined on V' x V in the case of Problem &7, and on K x V in the case
of Problem £,.

4 The problem with infinite penetration

In this section we study the weak solvability of problem &;. We start with a brief
description of the steps in the derivation of a variational formulation for this mechanical
problem. To this end, assume that (u, o) are smooth functions satisfying (3.1)—(3.7)
and let t € [0,7]. We take the dot product of equation (3.2) with w where w is an
arbitrary element of V, integrate the result over (2, and use Green’s formula (2.1) to
obtain

(4.1) (,o'i),(t),w)LQ(Q)+(0'(t),e('w))H:/Qfo(t).wdx—i—/ra(t)y-wda.

Applying the boundary conditions (3.4) and (3.6) and noting that w = 0 on 7, we
have

(4.2) / ot)v-wda= [ f(t) "wda—i-/ o, (t) w, da.
r I I3
Moreover, (3.5) combined with (3.36) lead to
(4.3) / o,(t)w, da = —j(u(t), w).
I3
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We now use (4.1)—(4.3) and the equalities (3.29), (3.31) and (3.32) to find
(4.4) (W(t), w)yry + (o (t), e(w))w + j(u(t), w) = (f(t), w)yrxy.

Finally, we combine (3.1), (4.4), and (3.7) to derive the following variational formu-
lation of Problem 4.

Problem 22} Find a displacement field w : [0,T] — V and a stress field o : [0,T] —
H such that

(4.5) o(t) = de(u(t)) + Ee(u(t)) + /0 Y(o(s) — Ae(u(s)),e(u(s)))ds

a.e. t € (0,7),

(4.6) (@(t), wyvxv + (a(t),e(w))y + j(u(l), w) = (f{t), w)v v,
VweV, ae. te(0,T),

(4.7) u(0) = ug, u(0) =wuy.
The main result of this section is the following.

Theorem 4.1 Assume that conditions (3.18), (3.23)—(3.28) hold. Then, Problem 2}
has a unique solution. Moreover, the solution satisfies

(4.8) we Wy (0, T;V)NCH[0, T H), i€ Ly(0,T; V),
(4.9) o € Ly(0,T;H), Dive € Ly(0,T;V").

We conclude by Theorem 4.1 that the frictionless contact problem with normal com-
pliance and infinite penetration (3.1)—(3.7) has a unique weak solution and it satisfies

(4.8)-(4.9).

The proof of Theorem 4.1 will be carried out in several steps. We assume in the
rest of this section that (3.18), (3.23)—(3.28) hold; below in this section ¢ will denote a
generic positive constant which may depend on (2, I, Iy, I3, o/, &, 94, p and T, but
does not depend on ¢ nor on the rest of the input data, and whose value may change
from place to place.

Let m € Ly(0,7; V') be given. In the first step we consider the following variational
problem.

Problem 22]"“*? Find a displacement field w, : [0,T] — V such that

(4.10) (ty (1), whvixy + (Fe(ty(l)), e(w))n + (N(t), w)vixv
=(f(t),w)yxy YweV, ae te(0,7T),

(4.11) u,(0) = ug, u,(0) = v,.
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To solve Problem 2] %% we apply the abstract existence and uniqueness result
contained in Theorem 2.1.

Lemma 4.1 There exists a unique solution to Problem 27" and it has the regu-
larity expressed in (4.8). Moreover, if w; represents the solution of Problem 227~ for
n; € Lo(0,T;V"), i = 1,2, there exists ¢ > 0 such that

(4.12) / s (5) — tea(s) 2 ds < / I (t) = my(®)[2ds vt € [0,T).

Proof. We define the operator A:V — V' by
(4.13) (Av, w)yrxy = (Fe(v), e(w))n Vo, weV.

It follows from (3.23) and (2.2) that A is a linear continuous operator which satisfies
condition (2.4) with @ = w = a( and recall that by (3.33), (3.28) we have f —n €
Ly(0,7;V") and uwy; € H. It follows now from Theorem 2.1 that there exists a unique
function v, : [0,7] — V which satisfies

(4.14) v, € Ly(0,T;V)NC([0,T]; H), v, € Lo(0,T; V"),
(4.15) B, (1) + Avy () +n(t) = F(t) ae. te (0,T),
(4.16) v,(0) = uy.

Let w, : [0,7] — V be the function defined by

(4.17) u,(t) = /Ot v,(s)ds+ug Vte[0,T].

It follows from (4.13)-(4.17) that u, is a solution of the variational problem 22}~ %
and it satisfies the regularity expressed in (4.8). This concludes the existence part of

Lemma 4.1. The uniqueness of the solution follows from the uniqueness of the solution
to problem (4.14)—(4.16), guaranteed by Theorem 2.1.

Consider now n,,m, € Ly(0,7;V’) and denote u; = u,,, v; = vy,

=, fori=12.
We obtain from (4.10)

(01 — Vg, v1 — V2)yixy + (& €(v1) —  €(v2),€(v1) — €(V2)) 1
+ <"71 — 7y, V1 — ”2>V’xV =0,

a.e. on (0,7). Let t € [0,7]. We integrate the previous equality with respect to time
and use the initial conditions v;(0) = v2(0) = u; and the properties of the operator o
to find

1 5 t )
31010 = wa(0)y +a0 [ o1(5) = va(s) -
<- / (71(5) — ma(s), v1(5) — va(8)) oy ds + ag / [o1(s) — wa(s) 2 ds.
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Now,

_/0 (M1(5) = My(8), v1(s) — v2(8))vixy ds
< [ lm(s) = ma(s)llv[lvi(s) — va(s) v ds

t

t
Qg
<o | lmu(s) = ma(s)l5ds + = / [vi(s) — va(s) [} ds.
0
The previous two inequalities lead to
1 2 aO ' 2
(4.18) 5 llva(s) = va(s)llg + ||v1(s) — va(s)[|y ds
< g [ 1) = ma s + a0 [ onts) = wato) Iy s,

We use a Gronwall argument in (4.18) and find

(4.19) lv1(t) — w2(t)I[ < 0/0 7, (s) — ma(s)I[5-ds

then we use (4.18) and (4.19) and obtain

/ lor(s) — wa(s) 13 ds < / Ima(s) — ma(s) 2ds,

which implies (4.12). o

We use the displacement field u, obtained in Lemma 4.1 to construct the following
Cauchy problem for the stress field.

Problem 2] Find a stress field o, : [0,T] — H such that

(4.20) o,(t) = Ee(u,(t / G (o,(s),e(uy(s)))ds

for all ¢ € [0,T].
In the study of Problem 22]* we have the following result.

Lemma 4.2 There exists a unique solution of Problem c@{’fst and it satisfies o, €
WQI(O,T; H). Moreover, if o; and w; represent the solutions of problem P and
PP pespectively, form, € Ly(0,T; V'), i = 1,2, there exists ¢ > 0 such that

lors(t) = aa(t)ln <  (Jlua(t) = wa(®)llv+

(4.21)
/||U1 — uy(s )||Vd3> Vtelo,T].
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Proof. Let A, : Ly(0,T;H) — L4(0,7T; H) be the operator given by

(4.22) Ao (t) = Ee(u,(t / Y (o wu,(s))) ds

for all & € Ly(0,T;H) and ¢ € [0,T]. For o1, o2 € Ly(0,T;H) we use (4.22) and (3.25)
to obtain

14,10) = Ay ra(®)ln < L [ ll(5) = rals) s

for all t € [0,7]. It follows from this inequality that for m large enough, a power
Ay of the operator A, is a contraction on the Banach space Ly(0,7;V) and therefore
there exists a unique element o, € Ly(0,7’; H) such that A,0, = o,. Moreover, o, is
the unique solution of Problem 227 *" and, using (4.20), the regularity of u, and the
properties of the operators & and ¥, it follows that o, € W3 (0,T;H).

Consider now ny, 1, € L2(0,7;V’) and, for i = 1,2, denote u,, = u;, o,, = o;. We
have

oi(t) = Ee(ut /gal (wi(s)))ds Vit € [0,T),
and, using the properties (3.24) and (3.25) of & and ¢, we find
lors(t) = aa®)llne < e (1) = wa(t)llv

—l—/o ||01(3)—0'2(s)||Hds+/0 ||u1(s)—uQ(s)||Vds> Vtel0,T].

Using now a Gronwall argument in the previous inequality we deduce (4.21), which
concludes the proof. o

We now introduce the operator @ : Ly(0,T;V') — Lo(0,T; V') which maps every
element n € Ly(0,7;V’) to the element On € Ly(0,T; V') defined by

(On(t), w)yxv = (Ee(uy(t)),e(w))n
(4.23) / Y(r,(5), e(uy(s))) ds. £(w))
+j(u,(t),w) NYweV, VYtel0,T].

Here, for every m € Ly(0,7; V'), u, and o, represent the displacement field and the
stress field obtained in Lemmas 4.1 and 4.2, respectively. We have the following result.

Lemma 4.3 The operator © has a unique fized point n* € Ly(0,T,V").

Proof. Let n,, m, € Ly(0,7;V"), let t € [0,7] and denote u,, = wu;, oy, = o,
i=1,2. We use (4.23), (3.24), (3.25) and elementary algebraic manipulations to obtain

(O (1) = Omy(t), whvrsr| < ¢ (llur(t) = us(t) |

(4.24) _|_/0 ||o-1(s)—a'2(s)]|st+/0 ||U1(s)—u2(8)||vds>“w||v

+ 7 (ua(t), w) — j(ua(t), w)|.
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Now, it follows from (3.36) and (3.8) that

7 (w1 (t), w) = j(us(t), w)| < ¢ /F i (t) — uz(t)| [Jw]| dz
sc Hul(t) - U2(t)HL2(F3)HwHL2(F3)

and, using (2.3), we find
(4.25) 7w (t), w) = j(ua(t), w)| < cllui(t) — wa(t)v|[wlly.
We plug (4.25) in (4.24) and find
6, (6) — Em0)]v < ¢ (Jus(0) ~ wale)ly + [ fus(s) = )l ds

(4.26) t
+/0 Hal(s)—ag(s)HHds).

We use now (4.21) in (4.26) to obtain

(427)  Omy(t) = Om (D)l < e (Il (1) = wa(t) + / () = ws(s)]lv ds)

and since u1(0) = u2(0) = up, we have

(4.28) [ua (1) — wa (D)l < /0 141 (s) — ea(s)[|v ds,

(4.20) / () — wals) v ds < e / i (s) — tea(s) | ds.

It follows from (4.27)—(4.29) that

|©m(t) — Om (1)llv < / s (5) — taa(s)llv ds,

which implies that
t
(4.30) 1Om,(t) — Om (B)I} < ¢ / 1 (s) — 12 (s)[I} ds.
0
Lemma 4.3 is now a direct consequence of inequalities (4.30), (4.12) and Banach’s
fixed point theorem. o

We have now all the ingredients to prove Theorem 4.1.

Proof of Theorem 4.1. Let n* € Ly(0,T;V’) be the fixed point of the operator ©
defined by (4.23) and denote

(4.31) U = Uy, o' =de(u’)+ o).
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We prove that the couple (u*, o*) satisfies (4.5)—(4.7). Indeed, we write (4.20) for n = n*
and use (4.31) to obtain that (4.5) is satisfied. Then we use (4.10) for n = n* to find

(@ (t), w)vxy + (Fe(u (1)), e(w))n + (N (1), whvixv
= (f(t),w)yxy YweV, ae te(0,T).

Equality ©n* = 1* combined with (4.23) and (4.31) shows that
(0 (1), w)yrey = (S’ (1)), £(w))n
(4.33) / (0" (s) — (" (5)), e(u"(5)) ds, e (w) et
+j(u(t),w) YweV, tel0,T]

We plug now (4.33) in (4.32) and use (4.5), to see that (u*,o*) satisfies (4.6). Next,
(4.7) and (4.8) follow from Lemma 4.1 and the regularity o* € Ly(0,T;H) follows from
Lemmas 4.1, 4.2 and (4.31). Finally (4.6) implies that

(4.32)

pu*(t) = Diva™(t) + fo(t) in V', ae te(0,T),

and therefore by (3.27) we find that Dive* € Ly(0,7'; V'), which concludes the existence
part of the theorem.

The uniqueness part can be obtained by standard arguments. It follows from the
uniqueness of the fixed point of the operator © defined by (4.23). o

5 The problem with finite penetration and unilat-
eral constraint

In this section we study the weak solvability of Problem &2,. We start with a brief
description of the steps in the derivation of a variational formulation for this mechanical
problem. To this end, assume that (u, o) are smooth functions satisfying (3.11)—(3.17).
We use the set of admissible displacements fields, (3.34), as well as the functional j,
(3.36), defined on K x V. Also, we introduce the set of test functions

(5.1) H ={veWM0,T;V) | v(t)e K Vte[0,T]}.

Let t € [0,7] and let w € #. We take the dot product of equation (3.12) with
w(t) — u(t), integrate the result over {2 and use Green’s formula (2.1) to obtain

(5:2) w(t) — U(t))Lg(Q) +(o(t),e(w(t)) — e(u(t)))n
/ Folt) —u(t)) dr + /FO'(t)V (w — u(t)) da.

Applying the boundary conditions (3.14) and (3.16) and noting that w(¢) = 0 on I7,
we have

(5.3) /Fa(t)l/-(w(t)—u(t))da: : f2(t)-(w(t)—u(t))da+/F o, (t) (w,(t)—u,(t)) da.

3
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Moreover, (3.15) yields

(5.4) [ o0 )~ w0)da > [ plo0)(ouf6) = (0 do

We combine now (5.2)~(5.4) and use (3.29), (3.31) and (3.32) to find

(5.5) (1), w(t) — w(t)) vy + (@ (1), £(w(t)) — e(u(t))
Fjult) w(t) —u() > (F(0),w — ul®))yrer.

Then, we integrate (5.5) on [0, 7], perform an integration by part, use the initial con-
ditions (3.17) and combine the resulting inequality with the constitutive law (3.1) and
with the unilateral constraint in (3.15). As a result we obtain the following variational
formulation of Problem £2,.

Problem 22 Find a displacement field w : [0,T] — V and a stress field o : [0, T] —
H such that w € F,

(5.6) o(t) = de(u(t)) + Ee(u(t)) + /0 Y(o(s) — de(u(s)),e(u(s)))ds

a.e. t € (0,7),

(5.7) A<dmaw®—um»wﬁ—l<mmw@—uwmﬁ
+/0 Jlu(t), w(t) — u(t)) di + (@(T), w(T) — w(T))u

> /0 (F(t),w(t) —u(t))ywy dt + (ur,w(0) —ug)yg Vwe x.

The main result of this section concerns the solvability of Problem £, and can be
stated as follows.

Theorem 5.1 Assume that conditions (3.20), (3.23)—(3.28) and (3.35) hold. Then
Problem 2 has at least a solution. Moreover, the solution satisfies

(5.8) we HY?(Q) = Ly(0,T; H'(2)) N HY?(0,T; Ly(2)),
(5.9) o € Ly(0,T; H).

We conclude by Theorem 5.1 that the frictionless contact problem with normal com-
pliance, finite penetration and unilateral constraint, (3.11)—(3.17), has at least a weak
solution and it satisfies (5.8)—(5.9). The question of the uniqueness of the solution is left
open.

We turn now to the proof of Theorem 5.1 which will be carried out in several steps and
it is based on a limit procedure on estimates for the solutions of a sequence of regularized
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problems, similar to that used in [11, Ch. 4]. Since the modifications are straightforward,
sometimes we omit the details. Everywhere below we assume that (3.18), (3.23)—(3.28)
and (3.35) hold.

We start with the construction of the regularized problems. To this end, for every
A > 0 we consider the function py : R — R defined by

r if r <g,
(5.10) NGRS o
%(r—g)—i—p(g) if r> g,

and let Py : R — R be the function defined by Py(r) = / pa(s)ds, ie.
0

/rp(s)ds if r <g,
(5.11) Py(r) = ¢ 7o

(=9 +p(9)(r —g) + /ng(5> ds it r>g,

We also consider the functional j, : V x V — R given by
(5.12) Ia(u,v) :/ pa(uy,)v, da.
I3

We use the notation above to define the following regularized frictionless contact
problems.

Problem 2}, Find a displacement field wy : [0,T] — V and a stress field oy :
0, 7] — H such that

(5.13) o\(t) = Te(uy(t)) + Ee(uy(t)) +/0 G(or(s) — de(uy(s)),e(ur(s))) ds,
a.e. t € (0,7),

(5.14) (n(t), whvrxy + (at), e(w))n + ja(ur(t), w) = (f(t), w)vixv,
VweV, ae te(0,T),

(5.15) ux(0) = ug, Ux(0) = uy.

Clearly, problem 22}, represents the variational formulation of a contact problem of
the form &1, in which the contact condition (3.5) is defined with the function p = p,.
In this problem the penetration is allowed and unlimited. However, keeping in mind the
definition of the function p,, we formally recover condition (3.15) in the limit as A — 0.
For this reason we refer to Problem £2), as a reqularization of the original frictionless
contact problem ) .
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Note that the function p, defined in (5.10) satisfies assumptions (3.8). Therefore,
using Theorem 4.1 it follows that Problem £2), has a unique solution which satisfies

(5.16) uy € W0, T; V)N CH[0,T); H), iy € Ly(0,T; V"),
(5.17) oy € Ly(0,T;H), Divey € Ly(0,T; V).

We now proceed to a priori estimates. Below in this section ¢ will represent a generic
positive constant which may depend on the problem data but does not depend on A or
T, nor on the positive numbers k and Ty which will be specified later; also its value may
change from line to line.

i) A priori estimates. Let A > 0. We put w = 4, (t) in (5.14) to obtain

(5.18)  (@a(t), ua(t))vruv + (aa(t), €(@(t)) 2 + Jia(w(t), wr(t)) = (F(t), wr(t))vxv,
a.e. t € (0,7).

We integrate equation (5.18) with respect to time, use (5.13), the properties (3.23)-
(3.25) of the operators &7, & and ¥, the definition (5.11) of the function P, and the
regularity (3.35) of the initial data wg. After some calculation we obtain that there
exists Ty € (0,77 such that,

(5.19) Hu/\H%w(O,To;LQ(Q)) + Hu)\”%g((),To;V)
Hlluall? om0y + 1P (uri) | Loo 1020 (15)) < €

Here and below uy, and o, represent the normal trace of u, and o), respectively. Also,
note that the restriction of the length of the interval of time arise from the need to
obtain a convenient estimate involving the integral term in (5.13); a similar argument
will be used in the step v) of the proof which we present below.

ii) Dual estimate. To obtain the dual estimate we test in (5.14) with an arbitrary
element w € Ly (0, Tp; ﬁl(Q)) This together with (5.19) yields

(5.20) I, 0,702 (2)) < €
Interpolating (5.19) and (5.20) we finally arrive at

(5.21) HﬂAHi,l,%(QTO) 1l 01020 02)) F 1A () e 0.0, 20()) < €

Moreover, since —oy, = p(uy,) on S3, using standard trace estimates we have

(5.22) 1A Cux) =170 =120 x 1) < €

iii) First convergence results as A — 0. We prove now some convergence results
involving the approximate solution (uy, o). To this end, consider a sequence of positive
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numbers {\,} converging to zero as n — oo. The validity of (5.19)—(5.21) shows that
there exists an element w such that

(5.23) e HY* (Qrn) N Loo(0, Ty: Ly(£2))
and, for a subsequence {\,, } C {\,}, the following convergences hold as k — oo:

(5.24) e(uy) — e(u) in Ly(0, Ty; H),
(5.25) iy, =4 in Ly(0,Ty; H'(£2)),
(5.26) a, =4 in HY”N(Qr,),
(5.27) , — 1 in Ly(Qg),

(5.28)

up, —u  in Ly(Sp),

Here and below we use the notation uy = wuy, and A\, = A,,. Indeed, (5.27) fol-
lows from (5.26) by the standard compact imbedding theorem. An analogous argument
works also for (5.28), and it is based on the convergence in the space H'(0, To; Lo(£2)) N
Ly(0, Ty; HY(I)).

iv) u is an locally admissible displacement field. We use the notation p;, = P,
and we denote by uy, the normal trace of uy. Let k € N. It follows from (5.22) that

(5.29) /0 " /F () o — ) dah < c

which implies that

To To
/ / Pr (U ) Uk da dt — / / pr(ug,)gdadt
0 I'sn{ug, <g} 0 I3n{ug, <g}

To
Jr/ / Pr (k) (U — g) dadt < c.
0 FSm{uku>g}

We neglect the first term in the left hand side of the previous inequality and note that
pr(ug) < p(g) on I3 N {ug, < g}. As a result we obtain

To
(5.30) / / (g ) (U — g) dadt < c.
0 s {ug,>g}

We use in (5.30) the definition of the function pg, (5.10), and elementary manipulations

to see that .
1 0
— / (Upy — g)* dadt < c.
Ak Joo Jrsnqur, >0y

This last inequality shows that

(5.31) /OTO /P [(uky — g)1]" dadt < Xy
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We pass now to the limit in (5.31) as k — oo and use (5.28) to see that

To
/ / dadt<0
I

which shows that (u,(t) — ¢g); = 0 a.e. on I3, for all £ € [0,T;]. We conclude that
(5.32) u(t) e K Vit e [0, Ty,
i.e. u is an locally admissible displacement field.

v) A strong convergence result. Let & € N. Consider the functions o and o
defined by the equalities

(5.33) ol () = Ee(up(t / G (ol (s), e(un(s))) ds,

(5.34) ol(t) = Ee(u(t)) + /0 G (ol (), e(u(s))) ds,

for all t € [0,7p]. The definition of these functions is based on arguments similar to
those used in Lemma 4.2, which show that the integral equations (5.33) and (5.34) have
a unique solution.

We write (5.14) for A = A, take w = u — uy, and use (5.33) to obtain
(g, w — wg)yiuy + (Fe(iy), e(u —up))y + (ol e(u — up))y
—I—/ Pr(Ugy) (U, — upy) da = (f,u — u)yrxy a.e.on (0,7).
I3
Next, using the monotonicity of the function p; and (5.32) we obtain
<’l.,'l,]€, u — uk>v/><v + (%8(’11,]6), e(u — uk))H + (Ué, 8(’[1, — uk))H
—|—/ p(uy)(uy, — ugy,)da > (f,u —ug)yrxy a.e on (0,7),
I
which shows that
(el — ), e(u, —u))y+ (o) — o’ e(up — u))y <
(Ae(i), e(u —up)n + (0, e(w — wp))p + (i, w — wp)vicy

+/ p(uu)(uu - uku) da + <f,uk — u>V’><V a.e. on (O,T)
I3

Let t € [0,Tp]. We integrate the previous inequality over [0, ¢], use standard integra-

23



tion by parts and the initial conditions to find that
(5.35)  (Fe(u(t) — u(t)), e(ur(t) — u(t)))n

+/0 (Ui(s) — JI(S),e(uk(s) — u<3)))H ds <
| (et etuts) s )ds + [ (o (s),elun(s) =~ uls)) s
[ ). () = sy ds = (a0 wnlt) = wlt) +

+/0t/F3p(ul,)(u,,—u;w)dadtnL/ot(f,uk—U>v'><v = Cy(k).

With the bound
(e(ui(t) — u(t)), e(ur(t) — u(t))n = 0,

inequality (5.35) leads to
(5.36) /0 (o1(s) — a'(s), e(ur(s) — u(s)))r ds < Cy(k).

On the other hand, it follows from (5.33) and (5.34) that

(5.37)  (ok(s) — ' (s), e(un(s) — u(s)))x
= (Fe(u(s) — ur(s)), e(u(s) — ur(s)))n

+(/OS [ (ok(r), e(ur(r)) =4 (o (r), e(u(r))] dr,e(ui(s) — u(s)))x

Vs € [0, T()] .

We combine (5.36) and (5.37) and use assumption (3.24) and (3.25) on the operators
& and ¢ to obtain

53%) o [ le(usls) —u(s))lfds < Culk) +
Tl [ [letr) =" )l + letuar) = wlr)) o dr) [ lletun(s) = u(s)) s
We use again (5.33), (5.34), (3.25) and Gronwall’s inequality to see that

(5.39) lo(r) =o' (r)ln < ¢ (Hé‘(uk(?") —u(r))lx

T / le(un(©) — ()l de) Ve 0.7
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and using this inequality in (5.38) we obtain

(5.40) e / le(un(s) — u(s))|2 ds < Cy(k) +

cTo(1+ TO)(/Ot [e(ur(s) — u(s))llx d3>2~
Since
(/0 le(ur(s) —u(s))||x d3)2 < TO/O le(ur(s) — u(s))||7 ds,

it follows from (5.40) that for T small enough we have

(5.41) /0 le(wr(s) — u(s))ll3 ds < ¢ Cy(k).

We use now the convergences (5.24)—(5.28) and the definition of Cy(k) in (5.35) to see
that

(5.42) e(ug) — e(u) in L*(0,Ty,H), ask — oo.
This convergence combined with inequality (5.39) shows that
(5.43) ol — o' in  L*(0,Ty,H), ask — oo.

vi) Existence of the solution. Let & € N. We write (5.14) for A = A, take
w = v — u;, where v € J is an arbitrary test function and use (5.33) to obtain

(5.44) (g, v — up) vy + (Fe(y), e(v —ug))w + (o1, e(v — up))n
+/F pr(un) (v, — ) da = (f,v —ug)yrwy  ae on (0,7).

Now, since the function py is increasing and v € % we find

/r3 Pr(Ugy) (V) — Ugy) da < /r3 (V) (v, — ugy) da = / p(0,)(vy — upy) da

I
and, using this inequality in (5.44), yields
(i, v — up) vy + (Fe(y), e(v —up))y + (oh, (v — ug))x

+/ p(v,) (v, —up) da > (f,v —ug)yrxy  ae. on (0,7).

We integrate the last inequality on (0,7), perform integration by parts and use the
convergences (5.24)-(5.27), (5.42) and (5.43) to obtain

545 [ (elaln) et - u(t)
- " (0 (0), e(w(t) — ult) )t — / " @), 5(0) — (e
- " | P 040) = o) i + (T, 0(T) ~ Ty
> [T U000~ wO)v di+ n,00) ~w) Vv et

0
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Next, we take v = u + f(w — u) in (5.45), where w is arbitrary in £ and 6 €]0, 1],
then we divide the resulting inequality by 6. As a result we find

(5.46) / (e (i(t)), e(w(t) — u(t)) dt
n / (o (1), e(w(t) — e(ult)))r di — / (i), i (t) — a(t))g dt

—I—/O 0 /F3 p(uy (t) + 0w, (1) — u,(t)))(w,(t) — u,(t)) dadt
+(u(To), w(To) — u(To))u

> [ 0.0 ) w0~ Vw e
We now use the properties (3.18) of the function p to see that

(5.47) [ bttty 600,10 = w60 ) =, 0) da —

[ [ st~ wiendode aso—o

Therefore, passing to the limit in (5.46) as § — 0 and using (5.47) and the definition
(3.36) of the functional j we obtain

(5.48) / (e in(t)), e(w(t) — w(t))) dt
" / (o (1), ew(t) — e(u(t)))pdt - / (), io(t) — a(t))y di

+/0 Oj(U(t)w(t) —u(t)) dt + (a(Tp), v(To) — w(To))n

>/0O(f(t),w(t)—u(t))vfxvdt+(u1,w(To)—uO)H Vw e 7.

Let o : [0,75] — H be the function given by
(5.49) o(t) = de(u(t)) +a’(t) a.e. t € (0,Tp).

It follows from (5.48), (5.49) and (5.34) that (u, o) satisfy (5.6), (5.7) on the interval
[0,T0]. Also, it follows from (5.23), (5.34) and (5.49) that the pair (u,o) has the
regularity expressed in (5.8), (5.9), on the time interval [0, Tp]. We conclude that (u, o)
is a local solution of the Problem £2) . Using now the standard successive approximation
argument we obtain a solution on the whole interval [0, T'|, which concludes the proof.c
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