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Abstract. We consider two dynamic contact problems between an elastic-visco-
plastic body and an obstacle, the so-called foundation. The contact is frictionless and it is
modelled with normal compliance of such a type that the penetration is not restricted in
the first problem, but is restricted with unilateral constraint, in the second one. We derive
a variational formulation of the first problem and then prove its unique weak solvability,
by using arguments on nonlinear evolution equations with monotone operators and fixed
point. Then, we derive a variational formulation of the second problem and prove its
weak solvability. To this end we consider a sequence of regularized problems which have
a unique solution, derive a priori estimates and use compactness properties to obtain a
solution to the original model, by passing to the limit as the regularization parameter
converges to zero.
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1 Introduction

The aim of this paper is to study two frictionless contact problems for elastic-visco-plastic

materials of the form

(1.1) σ(t) = A ε(u̇(t)) + E ε(u(t)) +

∫ t

0

G (σ(s)−A ε(u̇(s)), ε(u(s))) ds,

where u denotes the displacement field while σ and ε(u) represent the stress and the

linearized strain tensor, respectively. Here A and E are linear operators describing the

purely viscous and the elastic properties of the material, respectively, and G is a nonlinear

constitutive function which describes the visco-plastic behaviour of the material. In (1.1)

and everywhere in this paper the dot above a variable represents derivative with respect

to the time variable t.

Rheological models obtained by connecting in parallel a linear dashpot with various

viscoelastic or viscoplastic models lead to one-dimensional examples of constitutive laws
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of the form (1.1). Indeed, consider first a dashpot connected in parallel with a Maxwell

model; in this case an additive formula holds,

(1.2) σ = σV + σR

where σ, σV and σR denote the total stress, the stress in the dashpot and the stress in

the Maxwell model, respectively. We have

(1.3) σV = Aε̇,

and

(1.4) σ̇R = Eε̇− 1

η
σR

where A and η are positive viscosity coefficients, E > 0 is the Young modulus of the

Maxwell material and ε denotes the strain. We integrate (1.4) on [0, t] with the initial

conditions σR(0) = 0, ε(0) = 0 and use (1.2), (1.3) to obtain

(1.5) σ(t) = Aε̇(t) + Eε(t)− 1

η

∫ t

0

(σ(s)− Aε̇(s)) ds,

which represents a constitutive equation of the form (1.1).

The previous model is a particular case of a more general rheological model, obtained

by connecting in parallel a linear dashpot, (1.3), with a rate-type elastic-visco-plastic

model of the form

(1.6) σ̇R = Eε̇ + G(σR, ε)

in which G is a nonlinear constitutive function. Indeed, we integrate (1.6) with the

initial conditions σR(0) = 0, ε(0) = 0 and use (1.2), (1.3) to obtain

(1.7) σ(t) = Aε̇(t) + Eε(t) +

∫ t

0

G(σ(s)− Aε̇(s), ε(s)) ds,

which, again, represents a constitutive equation of the form (1.1).

The linear standard viscoelastic model is an example of constitutive law of the form

(1.6) and in this case

(1.8)
σ̇R

E
+

σR

η
=

(
1 +

E1

E

)
ε̇ +

E1

η
ε.

Here E, E1 and η are positive constants. The one-dimensional Perzyna law is an example

of nonlinear elastic-visco-plastic constitutive law of the form (1.6) and it can be written

as follows,

(1.9) ε̇ =
1

E
σ̇R +

1

η
(σ − PKσ).

2



Here η > 0 is the viscosity constant, K ⊂ R is a nonempty, closed, convex set and PK

is the projection mapping on K.

More details on the one-dimensional models (1.4), (1.6), (1.8) and (1.9) as well as on

the construction of rheological models obtained by connecting springs and dashpots can

be found in [9] and [13, Ch. 6].

Following the previous one-dimensional examples we see that at each time moment t,

the stress tensor σ(t) in (1.1) is split into two parts,

(1.10) σ(t) = σV (t) + σR(t),

where

(1.11) σV (t) = A ε(u̇(t))

represents the purely viscous part of the stress and the remainder part, σR(t), satisfies

a rate-type elastic-visco-plastic equation,

(1.12) σR(t) = E ε(u(t)) +

∫ t

0

G (σR(s), ε(u(s))) ds.

Various results, examples and mechanical interpretations in the study of elastic-visco-

plastic materials of the form (1.12) can be found in [8, 14] and references therein. Note

also that when G = 0 the constitutive law (1.1) becomes the Kelvin-Voigt viscoelastic

constitutive relation,

(1.13) σ = A ε(u̇) + E ε(u).

Quasistatic contact problems for materials of the form (1.12) and (1.13) were investi-

gated in a large number of papers, see e.g. [1, 2, 3, 12, 24, 25] and the references therein.

A survey of these results can be found in [13]. There, both the variational analysis and

the numerical approach of the problems, including the study of semi-discrete and fully

discrete schemes, were provided. Existence results in the study of dynamic problems

with Kelvin-Voigt materials of the form (1.13) can be found in in [15, 17, 19]. The case

of viscoelastic materials with singular memory was considered in [16, 18] and, for more

details, we send the reader to the monograph [11].

In the present paper we consider two dynamic contact problem for rate-type materials

of the form (1.1); we assume that the contact is frictionless and it is modelled with

normal compliance of such a type that the penetration could be infinite in the first

problem, but is limited and associated to an unilateral constraint, in the second one. The

normal compliance contact condition was first considered in [22] in the study of dynamic

problems with linearly elastic and viscoelastic materials. This condition allows the

interpenetration of the body’s surface into the obstacle and it was justified by considering

the interpenetration and deformation of surface asperities. On occasions, the normal

compliance condition has been employed as a mathematical regularization of Signorini’s

nonpenetration condition and used as such in numerical solution algorithms. Contact
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problems with normal compliance have been discussed in numerous papers, e.g. [4,

5, 6, 20, 21, 24] and the references therein. In particular, the first existence result

in the study of quasistatic contact problems with normal compliance and friction was

obtained in [4] in the case of linearly elastic materials and in [24] in the case of nonlinear

Kelvin-Voigt viscoelastic materials. Unlike the up-to-now research, however, the method

we present in this paper allows to treat also such normal compliance models in which

the compliance term do not necessarily need to represent a compact perturbation of the

original problem, without contact. This will allow to study such models, where a strictly

limited penetration is allowed and/or to perform the limit procedure to the Signorini

contact condition.

The paper is organized as follows. In Section 2 we introduce some notation and

preliminaries. In Section 3 we describe the two contact problems and list the assumption

on the data. In Section 4 we state and prove the unique weak solvability of the problem

with infinite penetration, Theorem 4.1. To this end we use arguments on nonlinear

evolution equations with monotone operators and fixed point methods. Then, in Section

5 we state and prove the weak solvability of the problem with finite penetration and

unilateral constraint, Theorem 5.1. To this end we consider a sequence of regularized

problems which have a unique solution, derive a priori estimates and use compactness

properties to obtain a solution to the model, by passing to the limit as the regularization

parameter converges to zero.

2 Notation and preliminaries

In this short section we present the notation we shall use and some preliminary material.

For further details, we refer the reader to [10, 11, 13, 23].

We denote by r+ and r− the positive and negative part of r, i.e. r+ = max {0, r},
r− = max {0,−r}. We also denote by SN the space of second order symmetric tensors

on RN (N = 2, 3), while “ ·” and ‖ ·‖ will represent the inner product and the Euclidean

norm on SN and RN . Let Ω ⊂ RN be a bounded domain with a Lipschitz boundary Γ

and let ν denote the unit outer normal on Γ . We assume that Γ is partitioned into three

disjoint measurable parts Γ1, Γ2 and Γ3. Everywhere in what follows the index i and j

run from 1 to N , summation over repeated indices is implied and the index that follows

a comma represents the partial derivative with respect to the corresponding component

of the independent spatial variable.

We use the standard notation for Lebesgue (Lp, Lp ≡ (Lp)
N , p ∈ [1,∞]) and Sobolev

spaces W k
p , Hk ≡ W k

2 , Hk ≡ (Hk)N , k ≥ 0, p ∈ [1,∞]) associated to Ω and Γ and their

duals. For the spaces with zero traces H̊k, H̊
k

= (H̊k)N is used if k /∈ 1
2
+N. Moreover,

we use also the spaces
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H = { σ = (σij) : σij = σji ∈ L2(Ω) },
H1 = { u = (ui) : ε(u) ∈ H },
H1 = { σ ∈ H : Div σ ∈ L2(Ω) }.

Here ε and Div are the deformation and the divergence operators, respectively, defined

by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Div σ = (σij,j).

The spaces H, H1 and H1 are real Hilbert spaces endowed with the canonical inner

products given by

(σ, τ )H =

∫

Ω

σijτijdx,

(u,v)H1 = (u,v)L2(Ω) + (ε(u), ε(v))H,

(σ, τ )H1 = (σ, τ )H + (Div σ, Div τ )L2(Ω).

In general, we denote by ‖ · ‖X the norm on a Banach space X, this holds, in particular,

for the associated norms on the spaces H, H1 and H1.

For every element v ∈ H1 we also use the notation v to denote the trace of v on Γ

and we denote by vν and vτ the normal and the tangential components of v on Γ given

by

vν = v · ν, vτ = v − vνν.

We also denote by σν and στ the normal and the tangential traces of a function

σ ∈ H1, and we note that when σ is a regular function then

σν = (σν) · ν, στ = σν − σνν,

and the following Green’s formula holds:

(2.1) (σ, ε(v))H + (Div σ,v)L2(Ω) =

∫

Γ

σν · v da ∀v ∈ H1.

Now, let V be the closed subspace of H1 given by

V = { v ∈ H1 | v = 0 on Γ1 }.
We denote by (·, ·)V the restriction of the inner product (·, ·)H1 to V , i.e

(2.2) (u,v)V = (u,v)L2(Ω) + (ε(u), ε(v))H

and let ‖ · ‖V be the associated norm. It follows that (V, ‖ · ‖V ) is a real Hilbert space;

moreover, by the Sobolev trace theorem, there exists a positive constant cB depending

only on the domain Ω, Γ1 and Γ3 such that

(2.3) ‖v‖L2(Γ3) ≤ cB‖v‖V ∀v ∈ V.
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Let T > 0. For each t ∈ [0, T ] we use the notation Qt = (0, t) × Ω, Sti = (0, t) × Γi

and, if t = T we write Q ≡ QT = (0, T ) × Ω, Si ≡ STi = (0, T ) × Γi. Also, for every

real Banach space X we use the notation C([0, T ]; X) and C1([0, T ]; X) for the space

of continuous and continuously differentiable functions from [0, T ] to X, respectively;

C([0, T ]; X) is a real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X

while C1([0, T ]; X) is a real Banach space with the norm

‖x‖C1([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X + max
t∈[0,T ]

‖ẋ(t)‖X .

Finally, for k ∈ N and p ∈ [1,∞], we use the standard notation for the Lebesgue spaces

Lp(0, T ; X) and for the Sobolev spaces W k
p (0, T ; X).

We end this section with a standard existence and uniqueness result which may be

found in [7, p. 64].

Theorem 2.1 Let V ⊂ H ⊂ V ′ be a Gelfand triple and denote by ‖ · ‖V , ‖ · ‖H , ‖ · ‖V ′

and 〈·, ·〉V ′×V the norm on the spaces V , H, V ′ and the duality pairing between V ′ and

V , respectively. Assume that A : V → V ′ is a linear continuous operator which satisfies

(2.4) 〈Av, v〉V ′×V + α ‖v‖2
H ≥ ω ‖v‖2

V ∀ v ∈ V,

for some constants ω > 0 and α ∈ R. Then, given u0 ∈ H and f ∈ L2(0, T ; V ′), there

exists a unique function u which satisfies

u ∈ L2(0, T ; V ) ∩ C([0, T ]; H), u̇ ∈ L2(0, T ; V ′),

u̇(t) + Au(t) = f(t) a.e. t ∈ (0, T ),

u(0) = u0.

Theorem 2.1 will be used in Section 4 in the proof of the unique solvability of the

frictionless contact problems with normal compliance and infinite penetration.

3 Problems statement

In this section we present the two problems which describe the frictionless contact process

and present the assumption on the data.

The physical setting is as follows. An elastic-visco-plastic body occupies a bounded

domain Ω ⊂ RN (N = 2, 3) with a regular boundary Γ that is partitioned into three

disjoint measurable parts Γ1, Γ2 and Γ3. Let T > 0 and let [0, T ] denote the time interval

of interest. The body is clamped on S1 = (0, T ) × Γ1 and thus the displacement field

vanishes there. A volume force of density f 0 acts in Q = (0, T ) × Ω and a surface
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traction of density f 2 acts on S2 = (0, T )× Γ2. In the reference configuration the body

is in frictionless contact on S3 = (0, T )× Γ3 with an obstacle, the so-called foundation.

In the first problem the contact is modelled with normal compliance in such a way

that the penetration is not limited. Under these conditions, the classical formulation of

the problem is the following.

Problem P1 Find a displacement field u : Ω × [0, T ] → RN and a stress field

σ : Ω × [0, T ] → SN such that

σ(t) = A ε(u̇(t)) + E ε(u(t)) +

∫ t

0

G (σ(s)−A ε(u̇(s)), ε(u(s))) ds in Q,(3.1)

ρü = Div σ + f 0 in Q,(3.2)

u = 0 on S1,(3.3)

σν = f 2 on S2,(3.4)

−σν = p(uν) on S3,(3.5)

στ = 0 on S3,(3.6)

u(0) = u0, u̇(0) = u1 in Ω.(3.7)

Here (3.1) is the elastic-visco-plastic constitutive law already presented in Section 1,

(3.2) represents the equation of motion in which ρ denotes the density of mass, (3.3)

and (3.4) are the displacement and traction boundary conditions, respectively. Condition

(3.6) shows that the tangential shear, denoted στ , vanishes on the contact surface, i.e.

the process is frictionless. Finally, the functions u0 and u1 in (3.7) denote the initial

displacement and the initial velocity, respectively.

We now describe the contact conditions (3.5) in which our main interest is. Here σν

denotes the normal stress, uν is the normal displacement and p is a Lipschitz continuous

increasing function which vanish for a negative argument, i.e.





(a) p : R→ R.

(b) There exists Lp > 0 such that

|p(r1)− p(r2)| ≤ Lp|r1 − r2| ∀r1, r2 ∈ R.

(c) (p(r1)− p(r2))(r1 − r2) ≥ 0 ∀r1, r2 ∈ R.

(d) p(r) = 0 for all r < 0.

(3.8)

Condition (3.5) combined with assumption (3.8) shows that when there is separation

between the body and the obstacle (i.e. when uν < 0), then the reaction of the foundation

vanishes (since σν = 0); also, when there is penetration (i.e. when uν ≥ 0), then the

reaction of the foundation is towards the body (since σν ≤ 0) and it is increasing with

the penetration (since p is an increasing function). Finally, note that in this condition

the penetration is not restricted and the normal stress is uniquely determined by the

normal displacement.
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A first example of normal compliance function p which satisfies condition (3.8) is

(3.9) p(r) = cνr+

where cν is a positive constant. In this case condition (3.5) shows that the reaction

of the foundation is proportional to the penetration and therefore (3.5), (3.8) model

the contact with a linearly elastic foundation. A second example of normal compliance

function p which satisfies condition (3.8) is given by

(3.10) pν(r) =

{
cνr+ if r ≤ α,

cνα if r > α,

where α is a positive coefficient related to the wear and hardness of the surface and,

again, cν > 0. In this case the contact condition (3.5) means that when the penetration is

too large, i.e. when it exceeds α, the obstacle backs off and offers no additional resistance

to the penetration. We conclude that in this case the foundation has an elastic-plastic

behavior.

In the second problem the contact is again modelled with normal compliance but in

such way that the penetration is limited and associated to a unilateral constraint. The

classical formulation of the problem is the following.

Problem P2 Find a displacement field u : Ω × [0, T ] → RN and a stress field

σ : Ω × [0, T ] → SN such that

σ(t) = A ε(u̇(t)) + E ε(u(t)) +

∫ t

0

G (σ(s)−A ε(u̇(s)), ε(u(s))) ds in Q,(3.11)

ρü = Div σ + f 0 in Q,(3.12)

u = 0 on S1,(3.13)

σν = f 2 on S2,(3.14)

uν ≤ g, σν + p(uν) ≤ 0, (σν + p(uν))(uν − g) = 0 on S3,(3.15)

στ = 0 on S3,(3.16)

u(0) = u0, u̇(0) = u1 in Ω.(3.17)

Here g ≥ 0 is given and p is a function which satisfies





(a) p : ]−∞, g] → R.

(b) There exists Lp > 0 such that

|p(r1)− p(r2)| ≤ Lp|r1 − r2| ∀r1, r2 ≤ g.

(c) (p(r1)− p(r2))(r1 − r2) ≥ 0 ∀r1, r2 ≤ g.

(d) p(r) = 0 for all r < 0.

(3.18)

Condition (3.15) combined with assumption (3.18) shows that when there is separa-

tion between the body and the obstacle (i.e. when uν < 0), then the reaction of the
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foundation vanishes (since σν = 0); moreover, the penetration is limited (since uν ≤ g)

and g represents its maximum value. When 0 ≤ uν < g then the reaction of the founda-

tion is uniquely determined by the normal displacement (since −σν = p(uν)) and, when

uν = g, the normal stress is not uniquely determined but is submitted to the restriction

−σν ≥ p(g). Such a condition shows that the contact follows a normal compliance con-

dition of the form (3.5) but up to the limit g and then, when this limit is reached, the

contact follows a Signorini-type unilateral condition with the gap g. For this reason we

refer to the contact condition (3.5) as to a normal compliance contact condition with

finite penetration and unilateral constraint, and we conclude that the foundation has an

elastic-rigid behavior. Also, note that when g = 0 condition (3.15) becomes the classical

Signorini contact condition in a form with a zero gap function,

uν ≤ 0, σν ≤ 0, σνuν = 0,

and when g > 0 and p = 0, condition (3.5) becomes the Signorini contact condition in

a form with a gap function,

uν ≤ g, σν ≤ 0, σν(uν − g) = 0.

The last two conditions model the contact with a perfectly rigid foundation.

A carefully examination of contact conditions (3.5) and (3.15) shows that both of

them can be cast in the abstract formulation

(3.19) −σν ∈ ∂P (uν) on (0, T )× Γ3,

in which P is a prescribed function which satisfies





(a) P : R→ (−∞, +∞].

(b) P is convex and lower semicontinuous.

(c) P (r) = 0 for all r < 0.

(3.20)

Here ∂P denotes the subdifferential of P , i.e. ∂P : R→ 2R is the multivalued operator

given by

∂P (r) = { f ∈ R | P (s)− P (r) ≥ f(s− r) ∀s ∈ R }.

Indeed, the contact condition with normal compliance and infinite penetration (3.5)

can be recovered from (3.19) by taking

P (r) =

∫ r

0

p(s) ds,

whereas the contact condition with normal compliance finite penetration (3.15) can be

recovered from (3.19) by taking

P (r) =





∫ r

0

p(s) ds if r ≤ g,

+∞ if r > g.

9



We see that in both cases above, if p satisfies conditions (3.8) or (3.18), then the

corresponding function P satisfies condition (3.20). However, the contact condition

described by the multivalued relation (3.19) is more general. Indeed, taking in (3.19)

P (r) =





0 if r < 0,

1
λ(α+1)

rα+1 if r ≥ 0,

where α and λ are positive parameters, leads to the contact condition

(3.21) −σν =
1

λ
(uν)

α
+.

We note that (3.21) is of the form (3.5) however, if α 6= 1, the corresponding function p

does not satisfies assumption (3.8)(b). Also, taking in (3.19)

P (r) =





0 if r < 0,

−λ ln (cos r
λ
) if r ∈

[
0,

λπ

2

)
,

∞ if r ≥ λπ

2
,

where λ is a positive constant, leads to the contact condition

−σν =





0 if uν < 0,

tan uν

λ
if uν ∈

[
0,

λπ

2

)
.

(3.22)

In this last condition the penetration is allowed, but limited, since it does not exceed
λπ

2
; however, (3.22) can not be cast on the form (3.19) with p satisfying (3.18).

In this paper we restrict ourselves to the study of the dynamic frictionless contact

problems P1 and P2. Considering more general problems involving the contact condi-

tion (3.19), which contains as special cases (3.21) and (3.22), leads to important math-

ematical difficulties, would represent an important extension of this work, and will be

treated in a furthcoming paper.

We now describe the assumptions on the data we consider in the study of the me-

chanical problems (3.1)–(3.7) and (3.11)–(3.17). We assume that the operators A and

E are linear whereas the operator G may be nonlinear and they satisfy the following

conditions.




(a) A = (Aijk`) : Ω × SN → SN .

(b) Aijk` ∈ L∞(Ω), 1 ≤ i, j, k, ` ≤ N.

(c) A σ · τ = σ ·A τ , ∀σ, τ ∈ SN , a.e. in Ω.

(d) There exists a0 > 0 such that

A τ · τ ≥ a0‖τ‖2 ∀ τ ∈ SN , a.e. in Ω.

(3.23)
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(a) E = (Eijk`) : Ω × SN → SN .

(b) Eijk` ∈ L∞(Ω), 1 ≤ i, j, k, ` ≤ N.

(c) E σ · τ = σ · E τ , ∀σ, τ ∈ SN , a.e. in Ω.

(d) There exists e0 > 0 such that

E τ · τ ≥ e0‖τ‖2 ∀ τ ∈ SN , a.e. in Ω.

(3.24)





(a) G : Ω × SN × SN → SN .

(b) There exists LG > 0 such that

‖G (x, σ1, ε1)− G (x, σ2, ε2)‖
≤ LG (‖σ1 − σ2‖+ ‖ε1 − ε2‖)
∀σ1, σ2, ε1, ε2 ∈ SN , a.e. x ∈ Ω.

(c) For any σ, ε ∈ SN , x 7→ G (x, σ, ε)

is measurable on Ω.

(d) The mapping x 7→ G (x,0,0) belongs to H.

(3.25)

We suppose that the mass density satisfies

ρ ∈ L∞(Ω), there exists ρ∗ > 0 such that ρ(x) ≥ ρ∗ a.e. x ∈ Ω,(3.26)

the body forces and surface tractions have the regularity

f 0 ∈ L2(0, T ; L2(Ω)), f 2 ∈ L2(0, T ; L2(Γ2)),(3.27)

and the initial data satisfy

u0 ∈ V, u1 ∈ L2(Ω).(3.28)

We finish this section with further notation which are needed in the study of Problem

P1 and P2. Thus, in the rest of the paper we use a modified inner product on the

Hilbert space H = L2(Ω), given by

(u,v)H = (ρ u,v)L2(Ω) ∀u, v ∈ H,(3.29)

that is, it is weighted with ρ, and we let ‖ · ‖H be the associated norm, i.e.,

‖v‖H = (ρ v,v)
1/2
L2(Ω) ∀v ∈ H.(3.30)

It follows from assumption (3.26) that ‖ · ‖H and ‖ · ‖L2(Ω) are equivalent norms on H,

and also the inclusion mapping of (V, ‖ · ‖V ) into (H, ‖ · ‖H) is continuous and dense. We

denote by V ′ the dual space of V . Identifying H with its own dual, we can write the

Gelfand triple

V ⊂ H ⊂ V ′.

We use the notation 〈·, ·〉V ′×V to represent the duality pairing between V ′ and V and we

recall that

〈u, v〉V ′×V = (u, v)H ∀u ∈ H, v ∈ V.(3.31)
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Finally, we denote by ‖ · ‖V ′ the norm on V ′.

Assumptions (3.27) allow us, for a.e. t ∈ (0, T ), to define f(t) ∈ V ′ by

〈f(t),v〉V ′×V =

∫

Ω

f 0(t) · v dx +

∫

Γ2

f 2(t) · v da ∀v ∈ V,(3.32)

and note that

f ∈ L2(0, T ; V ′).(3.33)

Also, in the study of Problem P1 we need the set of admissible displacements field

(3.34) K = { v ∈ V | vν ≤ g a.e. on Γ3 }

and we reinforce assumption (3.28) with

(3.35) u0 ∈ K.

Finally, assumption (3.8) or (3.18) allow to consider the functional defined by

(3.36) j(u,v) =

∫

Γ3

p(uν)vν da, ∀u, v ∈ V.

Note that j is defined on V × V in the case of Problem P1 and on K × V in the case

of Problem P2.

4 The problem with infinite penetration

In this section we study the weak solvability of problem P1. We start with a brief

description of the steps in the derivation of a variational formulation for this mechanical

problem. To this end, assume that (u,σ) are smooth functions satisfying (3.1)–(3.7)

and let t ∈ [0, T ]. We take the dot product of equation (3.2) with w where w is an

arbitrary element of V , integrate the result over Ω, and use Green’s formula (2.1) to

obtain

(4.1) (ρ ü(t),w)L2(Ω) + (σ(t), ε(w))H =

∫

Ω

f 0(t) ·w dx +

∫

Γ

σ(t)ν ·w da.

Applying the boundary conditions (3.4) and (3.6) and noting that w = 0 on Γ1, we

have

(4.2)

∫

Γ

σ(t)ν ·w da =

∫

Γ2

f(t) ·w da +

∫

Γ3

σν(t) wν da.

Moreover, (3.5) combined with (3.36) lead to

(4.3)

∫

Γ3

σν(t) wν da = −j(u(t),w).

12



We now use (4.1)–(4.3) and the equalities (3.29), (3.31) and (3.32) to find

〈ü(t),w〉V ′×V + (σ(t), ε(w))H + j(u(t),w) = 〈f(t),w〉V ′×V .(4.4)

Finally, we combine (3.1), (4.4), and (3.7) to derive the following variational formu-

lation of Problem P1.

Problem PV
1 Find a displacement field u : [0, T ] → V and a stress field σ : [0, T ] →

H such that

σ(t) = A ε(u̇(t)) + E ε(u(t)) +

∫ t

0

G (σ(s)−A ε(u̇(s)), ε(u(s))) ds(4.5)

a.e. t ∈ (0, T ),

〈ü(t),w〉V ′×V + (σ(t), ε(w))H + j(u(t),w) = 〈f(t),w〉V ′×V ,(4.6)

∀w ∈ V, a.e. t ∈ (0, T ),

u(0) = u0, u̇(0) = u1.(4.7)

The main result of this section is the following.

Theorem 4.1 Assume that conditions (3.18), (3.23)–(3.28) hold. Then, Problem PV
1

has a unique solution. Moreover, the solution satisfies

u ∈ W 1
2 (0, T ; V ) ∩ C1([0, T ]; H), ü ∈ L2(0, T ; V ′),(4.8)

σ ∈ L2(0, T ;H), Div σ ∈ L2(0, T ; V ′).(4.9)

We conclude by Theorem 4.1 that the frictionless contact problem with normal com-

pliance and infinite penetration (3.1)–(3.7) has a unique weak solution and it satisfies

(4.8)–(4.9).

The proof of Theorem 4.1 will be carried out in several steps. We assume in the

rest of this section that (3.18), (3.23)–(3.28) hold; below in this section c will denote a

generic positive constant which may depend on Ω, Γ1, Γ2, Γ3, A , E , G , p and T , but

does not depend on t nor on the rest of the input data, and whose value may change

from place to place.

Let η ∈ L2(0, T ; V ′) be given. In the first step we consider the following variational

problem.

Problem Pη−disp
1 Find a displacement field uη : [0, T ] → V such that

〈üη(t), w〉V ′×V + (A ε(u̇η(t)), ε(w))H + 〈η(t), w〉V ′×V(4.10)

= 〈f(t),w〉V ′×V ∀w ∈ V, a.e. t ∈ (0, T ),

uη(0) = u0, u̇η(0) = v0.(4.11)
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To solve Problem Pη−disp
1 we apply the abstract existence and uniqueness result

contained in Theorem 2.1.

Lemma 4.1 There exists a unique solution to Problem Pη−disp
1 and it has the regu-

larity expressed in (4.8). Moreover, if ui represents the solution of Problem Pηi−disp
1 for

ηi ∈ L2(0, T ; V ′), i = 1, 2, there exists c > 0 such that

∫ t

0

‖u̇1(s)− u̇2(s)‖2
V ds ≤ c

∫ t

0

‖η1(t)− η2(t)‖2
V ′ ds ∀t ∈ [0, T ].(4.12)

Proof. We define the operator A : V → V ′ by

〈Av,w〉V ′×V = (A ε(v), ε(w))H ∀v, w ∈ V.(4.13)

It follows from (3.23) and (2.2) that A is a linear continuous operator which satisfies

condition (2.4) with α = ω = a0 and recall that by (3.33), (3.28) we have f − η ∈
L2(0, T ; V ′) and u1 ∈ H. It follows now from Theorem 2.1 that there exists a unique

function vη : [0, T ] → V which satisfies

vη ∈ L2(0, T ; V ) ∩ C([0, T ]; H), v̇η ∈ L2(0, T ; V ′),(4.14)

v̇η(t) + Avη(t) + η(t) = f(t) a.e. t ∈ (0, T ),(4.15)

vη(0) = u1.(4.16)

Let uη : [0, T ] → V be the function defined by

uη(t) =

∫ t

0

vη(s) ds + u0 ∀ t ∈ [0, T ].(4.17)

It follows from (4.13)–(4.17) that uη is a solution of the variational problem Pη−disp
1

and it satisfies the regularity expressed in (4.8). This concludes the existence part of

Lemma 4.1. The uniqueness of the solution follows from the uniqueness of the solution

to problem (4.14)–(4.16), guaranteed by Theorem 2.1.

Consider now η1,η2 ∈ L2(0, T ; V ′) and denote ui = uηi
, vi = vηi

= u̇ηi
for i = 1, 2.

We obtain from (4.10)

〈v̇1 − v̇2,v1 − v2〉V ′×V + (A ε(v1)−A ε(v2), ε(v1)− ε(v2))H
+ 〈η1 − η2,v1 − v2〉V ′×V = 0,

a.e. on (0, T ). Let t ∈ [0, T ]. We integrate the previous equality with respect to time

and use the initial conditions v1(0) = v2(0) = u1 and the properties of the operator A
to find

1

2
‖v1(t)− v2(t)‖2

H + a0

∫ t

0

‖v1(s)− v2(s)‖2
V ds

≤ −
∫ t

0

〈η1(s)− η2(s),v1(s)− v2(s)〉V ′×V ds + a0

∫ t

0

‖v1(s)− v2(s)‖2
H ds.
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Now,

−
∫ t

0

〈η1(s)− η2(s), v1(s)− v2(s)〉V ′×V ds

≤
∫ t

0

‖η1(s)− η2(s)‖V ′‖v1(s)− v2(s)‖V ds

≤ 1

2a0

∫ t

0

‖η1(s)− η2(s)‖2
V ′ds +

a0

2

∫ t

0

‖v1(s)− v2(s)‖2
V ds.

The previous two inequalities lead to

1

2
‖v1(s)− v2(s)‖2

H +
a0

2

∫ t

0

‖v1(s)− v2(s)‖2
V ds(4.18)

≤ 1

2a0

∫ t

0

‖η1(s)− η2(s)‖2
V ′ds + a0

∫ t

0

‖v1(s)− v2(s)‖2
H ds.

We use a Gronwall argument in (4.18) and find

(4.19) ‖v1(t)− v2(t)‖2
H ≤ c

∫ t

0

‖η1(s)− η2(s)‖2
V ′ds

then we use (4.18) and (4.19) and obtain

∫ t

0

‖v1(s)− v2(s)‖2
V ds ≤ c

∫ t

0

‖η1(s)− η2(s)‖2
V ′ds,

which implies (4.12). ¦

We use the displacement field uη obtained in Lemma 4.1 to construct the following

Cauchy problem for the stress field.

Problem Pη−st
1 Find a stress field ση : [0, T ] → H such that

(4.20) ση(t) = E ε(uη(t)) +

∫ t

0

G (ση(s), ε(uη(s))) ds

for all t ∈ [0, T ].

In the study of Problem Pη−st
1 we have the following result.

Lemma 4.2 There exists a unique solution of Problem Pη−st
1 and it satisfies ση ∈

W 1
2 (0, T ;H). Moreover, if σi and ui represent the solutions of problem Pηi−st

1 and

Pηi−disp
1 , respectively, for ηi ∈ L2(0, T ; V ′), i = 1, 2, there exists c > 0 such that

‖σ1(t)− σ2(t)‖H ≤ c
(
‖u1(t)− u2(t)‖V +

∫ t

0

‖u1(s)− u2(s)‖V ds
)

∀ t ∈ [0, T ].
(4.21)
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Proof. Let Λη : L2(0, T ;H) → L2(0, T ;H) be the operator given by

(4.22) Λησ(t) = E ε(uη(t)) +

∫ t

0

G (σ(s), ε(uη(s))) ds

for all σ ∈ L2(0, T ;H) and t ∈ [0, T ]. For σ1, σ2 ∈ L2(0, T ;H) we use (4.22) and (3.25)

to obtain

‖Λη σ1(t)− Λη σ2(t)‖H ≤ LG

∫ t

0

‖σ1(s)− σ2(s)‖H ds

for all t ∈ [0, T ]. It follows from this inequality that for m large enough, a power

Λm
η of the operator Λη is a contraction on the Banach space L2(0, T ; V ) and therefore

there exists a unique element ση ∈ L2(0, T ;H) such that Ληση = ση. Moreover, ση is

the unique solution of Problem Pη−st
1 and, using (4.20), the regularity of uη and the

properties of the operators E and G , it follows that ση ∈ W 1
2 (0, T ;H).

Consider now η1, η2 ∈ L2(0, T ; V ′) and, for i = 1, 2, denote uηi
= ui, σηi

= σi. We

have

σi(t) = E ε(ui(t)) +

∫ t

0

G (σi(s), ε(ui(s))) ds ∀ t ∈ [0, T ],

and, using the properties (3.24) and (3.25) of E and G , we find

‖σ1(t)− σ2(t)‖H ≤ c
(
‖u1(t)− u2(t)‖V

+

∫ t

0

‖σ1(s)− σ2(s)‖H ds +

∫ t

0

‖u1(s)− u2(s)‖V ds
)

∀ t ∈ [0, T ].

Using now a Gronwall argument in the previous inequality we deduce (4.21), which

concludes the proof. ¦
We now introduce the operator Θ : L2(0, T ; V ′) → L2(0, T ; V ′) which maps every

element η ∈ L2(0, T ; V ′) to the element Θη ∈ L2(0, T ; V ′) defined by

〈Θη(t),w〉V ′×V = (E ε(uη(t)), ε(w))H

+ (

∫ t

0

G (ση(s), ε(uη(s))) ds, ε(w))H

+ j(uη(t),w) ∀w ∈ V, ∀ t ∈ [0, T ].

(4.23)

Here, for every η ∈ L2(0, T ; V ′), uη and ση represent the displacement field and the

stress field obtained in Lemmas 4.1 and 4.2, respectively. We have the following result.

Lemma 4.3 The operator Θ has a unique fixed point η∗ ∈ L2(0, T, V ′).

Proof. Let η1, η2 ∈ L2(0, T ; V ′), let t ∈ [0, T ] and denote uηi
= ui, σηi

= σi,

i = 1, 2. We use (4.23), (3.24), (3.25) and elementary algebraic manipulations to obtain

|〈Θη1(t)−Θη2(t), w〉V ′×V | ≤ c
(
‖u1(t)− u2(t)‖V

+

∫ t

0

‖σ1(s)− σ2(s)‖Q ds +

∫ t

0

‖u1(s)− u2(s)‖V ds
)
‖w‖V

+ |j(u1(t), w)− j(u2(t),w)|.

(4.24)
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Now, it follows from (3.36) and (3.8) that

|j(u1(t),w)− j(u2(t),w)| ≤ c

∫

Γ3

‖u1(t)− u2(t)‖ ‖w‖ dx

≤ c ‖u1(t)− u2(t)‖L2(Γ3)‖w‖L2(Γ3)

and, using (2.3), we find

|j(u1(t),w)− j(u2(t),w)| ≤ c ‖u1(t)− u2(t)‖V ‖w‖V .(4.25)

We plug (4.25) in (4.24) and find

‖Θη1(t)−Θη1(t)‖V ′ ≤ c
(
‖u1(t)− u2(t)‖V +

∫ t

0

‖u1(s)− u2(s)‖V ds

+

∫ t

0

‖σ1(s)− σ2(s)‖H ds
)
.

(4.26)

We use now (4.21) in (4.26) to obtain

(4.27) ‖Θη1(t)−Θη1(t)‖V ′ ≤ c
(
‖u1(t)− u2(t)‖V +

∫ t

0

‖u1(s)− u2(s)‖V ds
)

and since u1(0) = u2(0) = u0, we have

(4.28) ‖u1(t)− u2(t)‖V ≤
∫ t

0

‖u̇1(s)− u̇2(s)‖V ds,

(4.29)

∫ t

0

‖u1(s)− u2(s)‖V ds ≤ c

∫ t

0

‖u̇1(s)− u̇2(s)‖V ds.

It follows from (4.27)–(4.29) that

‖Θη1(t)−Θη1(t)‖V ′ ≤ c

∫ t

0

‖u̇1(s)− u̇2(s)‖V ds,

which implies that

‖Θη1(t)−Θη1(t)‖2
V ′ ≤ c

∫ t

0

‖u̇1(s)− u̇2(s)‖2
V ds.(4.30)

Lemma 4.3 is now a direct consequence of inequalities (4.30), (4.12) and Banach’s

fixed point theorem. ¦

We have now all the ingredients to prove Theorem 4.1.

Proof of Theorem 4.1. Let η∗ ∈ L2(0, T ; V ′) be the fixed point of the operator Θ

defined by (4.23) and denote

(4.31) u∗ = uη∗ , σ∗ = A ε(u̇∗) + ση∗ .

17



We prove that the couple (u∗,σ∗) satisfies (4.5)–(4.7). Indeed, we write (4.20) for η = η∗

and use (4.31) to obtain that (4.5) is satisfied. Then we use (4.10) for η = η∗ to find

〈ü∗(t),w〉V ′×V + (A ε(u̇∗(t)), ε(w))H + 〈η∗(t),w〉V ′×V

= 〈f(t),w〉V ′×V ∀w ∈ V, a.e. t ∈ (0, T ).
(4.32)

Equality Θη∗ = η∗ combined with (4.23) and (4.31) shows that

〈η∗(t), w〉V ′×V = (E ε(u∗(t)), ε(w))H

+ (

∫ t

0

G (σ∗(s)−A ε(u̇∗(s)), ε(u∗(s))) ds, ε(w))H+

+ j(u(t),w) ∀w ∈ V, t ∈ [0, T ].

(4.33)

We plug now (4.33) in (4.32) and use (4.5), to see that (u∗,σ∗) satisfies (4.6). Next,

(4.7) and (4.8) follow from Lemma 4.1 and the regularity σ∗ ∈ L2(0, T ;H) follows from

Lemmas 4.1, 4.2 and (4.31). Finally (4.6) implies that

ρü∗(t) = Div σ∗(t) + f 0(t) in V ′, a.e. t ∈ (0, T ),

and therefore by (3.27) we find that Div σ∗ ∈ L2(0, T ; V ′), which concludes the existence

part of the theorem.

The uniqueness part can be obtained by standard arguments. It follows from the

uniqueness of the fixed point of the operator Θ defined by (4.23). ¦

5 The problem with finite penetration and unilat-

eral constraint

In this section we study the weak solvability of Problem P2. We start with a brief

description of the steps in the derivation of a variational formulation for this mechanical

problem. To this end, assume that (u,σ) are smooth functions satisfying (3.11)–(3.17).

We use the set of admissible displacements fields, (3.34), as well as the functional j,

(3.36), defined on K × V . Also, we introduce the set of test functions

(5.1) K = { v ∈ W 1
2 (0, T ; V ) | v(t) ∈ K ∀ t ∈ [0, T ] }.

Let t ∈ [0, T ] and let w ∈ K . We take the dot product of equation (3.12) with

w(t)− u(t), integrate the result over Ω and use Green’s formula (2.1) to obtain

(ρ ü(t), w(t)− u(t))L2(Ω) + (σ(t), ε(w(t))− ε(u(t)))H(5.2)

=

∫

Ω

f 0(t) · (w(t)− u(t)) dx +

∫

Γ

σ(t)ν · (w − u(t)) da.

Applying the boundary conditions (3.14) and (3.16) and noting that w(t) = 0 on Γ1,

we have

(5.3)

∫

Γ

σ(t)ν·(w(t)−u(t)) da =

∫

Γ2

f 2(t)·(w(t)−u(t)) da+

∫

Γ3

σν(t) (wν(t)−uν(t)) da.
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Moreover, (3.15) yields

(5.4)

∫

Γ3

σν(t) (wν(t)− uν(t)) da ≥
∫

Γ3

p(uν(t)(uν(t)− wν(t)) da.

We combine now (5.2)–(5.4) and use (3.29), (3.31) and (3.32) to find

〈ü(t), w(t)− u(t)〉V ′×V + (σ(t), ε(w(t))− ε(u(t)))H(5.5)

+j(u(t),w(t)− u(t)) ≥ 〈f(t),w − u(t)〉V ′×V .

Then, we integrate (5.5) on [0, T ], perform an integration by part, use the initial con-

ditions (3.17) and combine the resulting inequality with the constitutive law (3.1) and

with the unilateral constraint in (3.15). As a result we obtain the following variational

formulation of Problem P2.

Problem PV
2 Find a displacement field u : [0, T ] → V and a stress field σ : [0, T ] →

H such that u ∈ K ,

σ(t) = A ε(u̇(t)) + E ε(u(t)) +

∫ t

0

G (σ(s)−A ε(u̇(s)), ε(u(s))) ds(5.6)

a.e. t ∈ (0, T ),

∫ T

0

(σ(t), ε(w(t)− u(t)))H dt−
∫ T

0

(u̇(t), ẇ(t)− u̇(t))H dt(5.7)

+

∫ T

0

j(u(t),w(t)− u(t)) dt + (u̇(T ),w(T )− u(T ))H

≥
∫ T

0

〈f(t),w(t)− u(t)〉V ′×V dt + (u1,w(0)− u0)H ∀w ∈ K .

The main result of this section concerns the solvability of Problem PV
2 and can be

stated as follows.

Theorem 5.1 Assume that conditions (3.20), (3.23)–(3.28) and (3.35) hold. Then

Problem PV
2 has at least a solution. Moreover, the solution satisfies

u̇ ∈ H1,1/2(Q) ≡ L2(0, T ; H1(Ω)) ∩H1/2(0, T ; L2(Ω)),(5.8)

σ ∈ L2(0, T ;H).(5.9)

We conclude by Theorem 5.1 that the frictionless contact problem with normal com-

pliance, finite penetration and unilateral constraint, (3.11)–(3.17), has at least a weak

solution and it satisfies (5.8)–(5.9). The question of the uniqueness of the solution is left

open.

We turn now to the proof of Theorem 5.1 which will be carried out in several steps and

it is based on a limit procedure on estimates for the solutions of a sequence of regularized
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problems, similar to that used in [11, Ch. 4]. Since the modifications are straightforward,

sometimes we omit the details. Everywhere below we assume that (3.18), (3.23)–(3.28)

and (3.35) hold.

We start with the construction of the regularized problems. To this end, for every

λ > 0 we consider the function pλ : R→ R defined by

pλ(r) =





p(r) if r ≤ g,

1
λ
(r − g) + p(g) if r > g,

(5.10)

and let Pλ : R→ R be the function defined by Pλ(r) =

∫ r

0

pλ(s) ds, i.e.

Pλ(r) =





∫ r

0

p(s) ds if r ≤ g,

1
2λ

(r − g)2 + p(g)(r − g) +

∫ g

0

p(s) ds if r > g,
(5.11)

We also consider the functional jλ : V × V → R given by

(5.12) jλ(u,v) =

∫

Γ3

pλ(uν)vν da.

We use the notation above to define the following regularized frictionless contact

problems.

Problem PV
2λ Find a displacement field uλ : [0, T ] → V and a stress field σλ :

[0, T ] → H such that

σλ(t) = A ε(u̇λ(t)) + E ε(uλ(t)) +

∫ t

0

G (σλ(s)−A ε(u̇λ(s)), ε(uλ(s))) ds,(5.13)

a.e. t ∈ (0, T ),

〈üλ(t),w〉V ′×V + (σλ(t), ε(w))H + jλ(uλ(t),w) = 〈f(t),w〉V ′×V ,(5.14)

∀w ∈ V, a.e. t ∈ (0, T ),

uλ(0) = u0, u̇λ(0) = u1.(5.15)

Clearly, problem PV
2λ represents the variational formulation of a contact problem of

the form P1, in which the contact condition (3.5) is defined with the function p = pλ.

In this problem the penetration is allowed and unlimited. However, keeping in mind the

definition of the function pλ, we formally recover condition (3.15) in the limit as λ → 0.

For this reason we refer to Problem PV
2λ as a regularization of the original frictionless

contact problem PV
2 .
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Note that the function pλ defined in (5.10) satisfies assumptions (3.8). Therefore,

using Theorem 4.1 it follows that Problem PV
2λ has a unique solution which satisfies

uλ ∈ W 1,2(0, T ; V ) ∩ C1([0, T ]; H), üλ ∈ L2(0, T ; V ′),(5.16)

σλ ∈ L2(0, T ;H), Div σλ ∈ L2(0, T ; V ′).(5.17)

We now proceed to a priori estimates. Below in this section c will represent a generic

positive constant which may depend on the problem data but does not depend on λ or

T , nor on the positive numbers k and T0 which will be specified later; also its value may

change from line to line.

i) A priori estimates. Let λ > 0. We put w = u̇λ(t) in (5.14) to obtain

〈üλ(t), u̇λ(t)〉V ′×V + (σλ(t), ε(u̇λ(t)))H + jλ(u(t), u̇λ(t)) = 〈f(t), u̇λ(t)〉V ′×V ,(5.18)

a.e. t ∈ (0, T ).

We integrate equation (5.18) with respect to time, use (5.13), the properties (3.23)–

(3.25) of the operators A , E and G , the definition (5.11) of the function Pλ, and the

regularity (3.35) of the initial data u0. After some calculation we obtain that there

exists T0 ∈ (0, T ] such that,

‖u̇λ‖2
L∞(0,T0;L2(Ω)) + ‖u̇λ‖2

L2(0,T0;V )(5.19)

+‖uλ‖2
L∞(0,T0;V ) + ‖Pλ(uλν)‖L∞(0,T0;L1(Γ3)) ≤ c.

Here and below uλν and σλν represent the normal trace of uλ and σλ, respectively. Also,

note that the restriction of the length of the interval of time arise from the need to

obtain a convenient estimate involving the integral term in (5.13); a similar argument

will be used in the step v) of the proof which we present below.

ii) Dual estimate. To obtain the dual estimate we test in (5.14) with an arbitrary

element w ∈ L2(0, T0; H̊
1
(Ω)). This together with (5.19) yields

‖üλ‖2
L2(0,T0;H−1(Ω)) ≤ c.(5.20)

Interpolating (5.19) and (5.20) we finally arrive at

(5.21) ‖u̇λ‖2

H1, 12 (QT0
)
+ ‖u̇λ‖2

L∞(0,T0;L2(Ω)) + ‖Pλ(uλν)‖L∞(0,T0,L1(Γ3)) ≤ c.

Moreover, since −σλν = p(uλν) on S3, using standard trace estimates we have

(5.22) ‖pλ(uλν)‖H−1/4,−1/2((0,T0)×Γ3) ≤ c.

iii) First convergence results as λ → 0. We prove now some convergence results

involving the approximate solution (uλ,σλ). To this end, consider a sequence of positive
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numbers {λn} converging to zero as n → ∞. The validity of (5.19)–(5.21) shows that

there exists an element u such that

(5.23) u̇ ∈ H1/2,1(QT0) ∩ L∞(0, T0; L2(Ω))

and, for a subsequence {λnk
} ⊂ {λn}, the following convergences hold as k →∞:

ε(u̇k) ⇀ ε(u̇) in L2(0, T0;H),(5.24)

ük ⇀ ü in L2(0, T0; H
−1(Ω)),(5.25)

u̇k ⇀ u̇ in H1/2,1(QT0),(5.26)

u̇k → u̇ in L2(QT0),(5.27)

uk → u in L2(ST0),(5.28)

Here and below we use the notation uk = uλnk
and λk = λnk

. Indeed, (5.27) fol-

lows from (5.26) by the standard compact imbedding theorem. An analogous argument

works also for (5.28), and it is based on the convergence in the space H1(0, T0; L2(Ω))∩
L2(0, T0; H

1/2(Γ )).

iv) u is an locally admissible displacement field. We use the notation pk = pλnk

and we denote by ukν the normal trace of uk. Let k ∈ N. It follows from (5.22) that

(5.29)

∫ T0

0

∫

Γ3

pk(ukν)(ukν − g) da dt ≤ c

which implies that

∫ T0

0

∫

Γ3∩{ukν≤g}
pk(ukν)ukν da dt−

∫ T0

0

∫

Γ3∩{ukν≤g}
pk(ukν)g da dt

+

∫ T0

0

∫

Γ3∩{ukν>g}
pk(ukν)(ukν − g) da dt ≤ c.

We neglect the first term in the left hand side of the previous inequality and note that

pk(ukν) ≤ p(g) on Γ3 ∩ {ukν ≤ g}. As a result we obtain

(5.30)

∫ T0

0

∫

Γ3∩{ukν>g}
pk(ukν)(ukν − g) da dt ≤ c.

We use in (5.30) the definition of the function pk, (5.10), and elementary manipulations

to see that
1

λk

∫ T0

0

∫

Γ3∩{ukν>g}
(ukν − g)2 da dt ≤ c.

This last inequality shows that

(5.31)

∫ T0

0

∫

Γ3

[
(ukν − g)+

]2
da dt ≤ cλk.
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We pass now to the limit in (5.31) as k →∞ and use (5.28) to see that

∫ T0

0

∫

Γ3

[
(uν − g)+

]2
da dt ≤ 0,

which shows that (uν(t)− g)+ = 0 a.e. on Γ3, for all t ∈ [0, T0]. We conclude that

(5.32) u(t) ∈ K ∀ t ∈ [0, T0],

i.e. u is an locally admissible displacement field.

v) A strong convergence result. Let k ∈ N. Consider the functions σI
k and σI

defined by the equalities

σI
k(t) = E ε(uk(t)) +

∫ t

0

G (σI
k(s), ε(uk(s))) ds,(5.33)

σI(t) = E ε(u(t)) +

∫ t

0

G (σI(s), ε(u(s))) ds,(5.34)

for all t ∈ [0, T0]. The definition of these functions is based on arguments similar to

those used in Lemma 4.2, which show that the integral equations (5.33) and (5.34) have

a unique solution.

We write (5.14) for λ = λk, take w = u− uk and use (5.33) to obtain

〈ük,u− uk〉V ′×V + (A ε(u̇k), ε(u− uk))H + (σI
k, ε(u− uk))H

+

∫

Γ3

pk(ukν)(uν − ukν) da = 〈f ,u− uk〉V ′×V a.e. on (0, T ).

Next, using the monotonicity of the function pk and (5.32) we obtain

〈ük,u− uk〉V ′×V + (A ε(u̇k), ε(u− uk))H + (σI
k, ε(u− uk))H

+

∫

Γ3

p(uν)(uν − ukν) da ≥ 〈f ,u− uk〉V ′×V a.e. on (0, T ),

which shows that

(A ε(u̇k − u̇), ε(uk − u))H + (σI
k − σI , ε(uk − u))H ≤

(A ε(u̇), ε(u− uk))H + (σI , ε(u− uk))H + 〈ük,u− uk〉V ′×V

+

∫

Γ3

p(uν)(uν − ukν) da + 〈f ,uk − u〉V ′×V a.e. on (0, T ).

Let t ∈ [0, T0]. We integrate the previous inequality over [0, t], use standard integra-

23



tion by parts and the initial conditions to find that

(A ε(uk(t)− u(t)), ε(uk(t)− u(t)))H(5.35)

+

∫ t

0

(σI
k(s)− σI(s), ε(uk(s)− u(s)))H ds ≤

∫ t

0

(A ε(u̇(s)), ε(u(s)− uk(s)))H ds +

∫ t

0

(σI(s), ε(uk(s)− u(s)))H ds

+

∫ t

0

〈u̇k(s), u̇k(s)− u̇(s)〉V ′×V ds− (u̇k(t),uk(t)− u(t))H +

+

∫ t

0

∫

Γ3

p(uν)(uν − ukν) da dt +

∫ t

0

〈f ,uk − u〉V ′×V ≡ Ct(k).

With the bound

(A ε(uk(t)− u(t)), ε(uk(t)− u(t)))H ≥ 0,

inequality (5.35) leads to

(5.36)

∫ t

0

(σI
k(s)− σI(s), ε(uk(s)− u(s)))H ds ≤ Ct(k).

On the other hand, it follows from (5.33) and (5.34) that

(σI
k(s)− σI(s), ε(uk(s)− u(s)))H(5.37)

= (E ε(u(s)− uk(s)), ε(u(s)− uk(s)))H

+(

∫ s

0

[
G (σI

k(r), ε(uk(r))− G (σI(r), ε(u(r))
]
dr, ε(uk(s)− u(s)))H

∀s ∈ [0, T0].

We combine (5.36) and (5.37) and use assumption (3.24) and (3.25) on the operators

E and G to obtain

e0

∫ t

0

‖ε(uk(s)− u(s)))‖2
H ds ≤ Ct(k) +(5.38)

c T0

( ∫ t

0

[‖σI
k(r)− σI(r)‖H + ‖ε(uk(r)− u(r))‖H

]
dr

) ∫ t

0

‖ε(uk(s)− u(s))‖H ds.

We use again (5.33), (5.34), (3.25) and Gronwall’s inequality to see that

‖σI
k(r)− σI(r)‖H ≤ c

(
‖ε(uk(r)− u(r))‖H(5.39)

+

∫ r

0

‖ε(uk(ξ)− u(ξ))‖H dξ
)

∀ r ∈ [0, T0],
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and using this inequality in (5.38) we obtain

e0

∫ t

0

‖ε(uk(s)− u(s))‖2
H ds ≤ Ct(k) +(5.40)

c T0(1 + T0)
( ∫ t

0

‖ε(uk(s)− u(s))‖H ds
)2

.

Since ( ∫ t

0

‖ε(uk(s)− u(s))‖H ds
)2

≤ T0

∫ t

0

‖ε(uk(s)− u(s))‖2
H ds,

it follows from (5.40) that for T0 small enough we have

(5.41)

∫ t

0

‖ε(uk(s)− u(s))‖2
H ds ≤ cCt(k).

We use now the convergences (5.24)–(5.28) and the definition of Ct(k) in (5.35) to see

that

(5.42) ε(uk) → ε(u) in L2(0, T0,H), as k →∞.

This convergence combined with inequality (5.39) shows that

(5.43) σI
k → σI in L2(0, T0,H), as k →∞.

vi) Existence of the solution. Let k ∈ N. We write (5.14) for λ = λk, take

w = v − uk where v ∈ K is an arbitrary test function and use (5.33) to obtain

〈ük, v − uk〉V ′×V + (A ε(u̇k), ε(v − uk))H + (σI
k, ε(v − uk))H(5.44)

+

∫

Γ3

pk(ukν)(vν − ukν) da = 〈f ,v − uk〉V ′×V a.e. on (0, T ).

Now, since the function pk is increasing and v ∈ K we find∫

Γ3

pk(ukν)(vν − ukν) da ≤
∫

Γ3

pk(vν)(vν − ukν) da =

∫

Γ3

p(vν)(vν − ukν) da

and, using this inequality in (5.44), yields

〈ük, v − uk〉V ′×V + (A ε(u̇k), ε(v − uk))H + (σI
k, ε(v − uk))H

+

∫

Γ3

p(vν)(vν − ukν) da ≥ 〈f ,v − uk〉V ′×V a.e. on (0, T ).

We integrate the last inequality on (0, T0), perform integration by parts and use the

convergences (5.24)–(5.27), (5.42) and (5.43) to obtain
∫ T0

0

(A ε(u̇(t)), ε(v(t)− u(t)))H dt(5.45)

+

∫ T0

0

(σI(t), ε(v(t)− u(t)))H dt−
∫ T0

0

(u̇(t), v̇(t)− u̇(t))H dt

+

∫ T0

0

∫

Γ3

p(vν(t))(vν(t)− uν(t)) dt + (u̇(T0), v(T0)− u(T0))H

≥
∫ T0

0

〈f(t),v(t)− u(t)〉V ′×V dt + (u1,v(0)− u0)H ∀v ∈ K .
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Next, we take v = u + θ(w − u) in (5.45), where w is arbitrary in K and θ ∈]0, 1[,

then we divide the resulting inequality by θ. As a result we find

∫ T0

0

(A ε(u̇(t)), ε(w(t)− u(t)))H dt(5.46)

+

∫ T0

0

(σI(t), ε(w(t)− ε(u(t)))H dt−
∫ T0

0

(u̇(t), ẇ(t)− u̇(t))H dt

+

∫ T0

0

∫

Γ3

p(uν(t) + θ(wν(t)− uν(t)))(wν(t)− uν(t)) da dt

+(u̇(T0),w(T0)− u(T0))H

≥
∫ T0

0

〈f(t),w(t)− u(t)〉V ′×V dt + (u1, w(0)− u0)H ∀w ∈ K .

We now use the properties (3.18) of the function p to see that

∫ T0

0

∫

Γ3

p(uν(t) + θ(wν(t)− uν(t)))(wν(t)− uν(t)) da dt →(5.47)

∫ T0

0

∫

Γ3

p(uν(t))(wν(t)− uν(t)) da dt as θ → 0.

Therefore, passing to the limit in (5.46) as θ → 0 and using (5.47) and the definition

(3.36) of the functional j we obtain

∫ T0

0

(A ε(u̇(t)), ε(w(t)− u(t)))H dt(5.48)

+

∫ T0

0

(σI(t), ε(w(t)− ε(u(t)))H dt−
∫ T0

0

(u̇(t), ẇ(t)− u̇(t))H dt

+

∫ T0

0

j(u(t),w(t)− u(t)) dt + (u̇(T0), v(T0)− u(T0))H

≥
∫ T0

0

〈f(t),w(t)− u(t)〉V ′×V dt + (u1, w(T0)− u0)H ∀w ∈ K .

Let σ : [0, T0] → H be the function given by

(5.49) σ(t) = A ε(u̇(t)) + σI(t) a.e. t ∈ (0, T0).

It follows from (5.48), (5.49) and (5.34) that (u,σ) satisfy (5.6), (5.7) on the interval

[0, T0]. Also, it follows from (5.23), (5.34) and (5.49) that the pair (u,σ) has the

regularity expressed in (5.8), (5.9), on the time interval [0, T0]. We conclude that (u, σ)

is a local solution of the Problem PV
2 . Using now the standard successive approximation

argument we obtain a solution on the whole interval [0, T ], which concludes the proof.¦
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