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We study the solvability of the time-independent matrix Schrödinger differential

equations of the quantum Rabi model and its 2-photon and two-mode generalizations

in Bargmann Hilbert spaces of entire functions. We show that the Rabi model and its 2-

photon and two-mode analogs are quasi-exactly solvable. We derive the exact, closed-

form expressions for the energies and the allowed model parameters for all the three

cases in the solvable subspaces. Up to a normalization factor, the eigenfunctions for

these models are given by polynomials whose roots are determined by systems of alge-

braic equations. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4826356]

I. INTRODUCTION

The quantum Rabi model describes the interaction of a two-level atom with a single harmonic

mode of electromagnetic field. It is perhaps the simplest system for modeling the ubiquitous matter-

light interactions in modern physics, and has applications in a variety of physical fields, including

quantum optics,1 cavity and circuit quantum electrodynamics,2, 3 solid state semiconductor systems,4

and trapped ions.5

Recently, Braak6 presented a transcendental function defined as an infinite power series with

coefficients satisfying a three-term recursive relation, and argued that the spectrum of the Rabi

model is given by the zeros of the transcendental function. This theoretical progress has renewed

the interest in the Rabi and related models.7–12 However, since Braak’s transcendental function

is given as an infinite power series, unless the model parameters satisfy certain constraints for

which the infinite series truncates, its exact zeros and, therefore, closed-form expressions for the

energies of the Rabi model cannot be obtained even for those corresponding to the low-lying

spectrum.

This is not surprising because, as pointed out in Refs. 8 and 12, the Rabi model is not ex-

actly solvable but quasi-exactly solvable.13–15 A typical feature of a quasi-exactly solvable sys-

tem is that only a finite part of the spectrum can be obtained in closed form and the remaining

part of the spectrum is not algebraically accessible (i.e., can only be determined by numerical

means).

In this paper, we examine the solvability of the quantum Rabi model and its multi-mode

and multi-quantum generalizations within the framework of Bargmann Hilbert spaces of entire

functions.16 We show that the Rabi model and its 2-photon and two-mode generalizations are quasi-

exactly solvable. We derive the explicit, closed-form expressions for the energies, the allowed model

parameters as well as the wavefunctions for all the three cases once and for all in terms of the roots

of the systems of algebraic equations. We note that the energies for the Rabi and 2-photon Rabi

models were obtained previously17–20 by different methods.

The work is organized as follows. In Sec. II, we recall the widely accepted characterization

of solvability of a linear differential operator in terms of invariants subspaces. In Secs. III–V, we

obtain the exact solutions of the Rabi model and its 2-photon and 2-mode generalizations in their

respective solvable subspaces.

0022-2488/2013/54(10)/102104/13/$30.00 C©2013 AIP Publishing LLC54, 102104-1
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II. EXACT SOLVABILITY VERSUS QUASI-EXACT SOLVABILITY

Exact solvability and quasi-exact solvability are closely related.22 A quantum mechanical system

is exactly solvable in the Schrödinger picture if all the eigenvalues and the corresponding eigen-

functions of the system can be determined exactly. In contrast, a system is quasi-exactly solvable

if only a finite number of exact eigenvalues and eigenfunctions can be obtained. Among various

characterizations of solvability, the one about the existence of invariant polynomial subspaces is

conceptually the simplest.

A linear differential operator H is called quasi-exactly solvable if it has a finite-dimensional

invariant subspace VN with explicitly described basis, that is,

HVN ⊂ VN , dimVN < ∞,VN = span{ξ1, · · · , ξdimVN }.

An immediate consequence of this characterization of quasi-exact solvability for the operator H is

that it can be diagonalized algebraically and exact, closed-form expressions of the corresponding

spectra can be obtained in the (solvable) subspace VN . The remaining part of the spectrum is not

analytically accessible and can only be computed through approximations (though sometimes rather

accurately). If the space VN is a subspace of a Bargmann-Hilbert space of entire functions in which

H is naturally defined, the solvable spectra and the corresponding vectors in VN give the exact

eigenvalues and eigenfunctions of H, respectively.

A linear differential operator H is exactly solvable if it preserves an infinite flag of

finite-dimensional functional spaces,

V1 ⊂ V2 ⊂ · · · ⊂ VN ⊂ · · · ,

whose bases admit explicit analytic forms that is there exists a sequence of finite-dimensional

invariant subspaces VN ,N = 1, 2, 3, · · · ,

HVN ⊂ VN , dimVN < ∞,VN = span{ξ1, · · · , ξdimVN }.

As will be seen in Secs. III–V, based on the above characterization of solvability of a quantum

system, the Rabi model and its 2-photon and two-mode analogs are not exactly solvable, contrary

to the claims by Refs. 6, 7, 10, and 11. Rather they are quasi-exactly solvable, as was also noted by

Moroz12 for the Rabi model, because only a finite part of their spectra can be determined exactly.

III. QUASI-EXACT SOLVABILITY OF THE QUANTUM RABI MODEL

Quasi-exact solvability of the Rabi model has recently been noted by Moroz.12 Special exact

spectrum of the model was obtained in Refs. 17,18, and 20 by different methods. In this section, we

re-examine this model within the framework of the Bargmann Hilbert space of entire functions. We

will solve the time-independent Schrödinger matrix differential equations by means of the functional

Bethe ansatz method.23–25 In addition to the exact spectrum, we are also able to obtain the closed

form expressions for the allowed model parameters and the polynomial wavefunctions in terms of

the roots of a set of algebraic equations.

The Hamiltonian of the Rabi model is

H = ωa†a + �σz + g σx

[

a† + a
]

, (3.1)

where g is the interaction strength, σ z, σ x are the Pauli matrices describing the two atomic levels

separated by energy difference 2�, and a† (a) are creation (annihilation) operators of a boson mode

with frequency ω. In the Bargmann realization a† → z, a → d
dz

, the Hamiltonian becomes a matrix

differential operator

H = ωz
d

dz
+ �σz + g σx

(

z +
d

dz

)

. (3.2)

Working in a representation defined by σ x diagonal and in terms of the two-component wavefunction

ψ(z) =
(

ψ+(z)

ψ−(z)

)

, the time-independent Schrödinger equation gives rise to a coupled system of two

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.42.98 On: Thu, 22 Sep 2016

03:44:42



102104-3 Yao-Zhong Zhang J. Math. Phys. 54, 102104 (2013)

1st-order differential equations6

(ωz + g)
d

dz
ψ+(z) + (gz − E)ψ+(z) + �ψ−(z) = 0,

(ωz − g)
d

dz
ψ−(z) − (gz + E)ψ−(z) + �ψ+(z) = 0. (3.3)

If � = 0 these two equations decouple and reduce to the differential equations of two uncoupled

displaced harmonic oscillators which can be exactly solved separately.26 For this reason in the

following we will concentrate on the � �= 0 case.

With the substitution ψ ± (z) = e− gz/ωφ ± (z), it follows6

[

(ωz + g)
d

dz
−

(

g2

ω
+ E

)]

φ+(z) = −�φ−(z),

[

(ωz − g)
d

dz
−

(

2gz −
g2

ω
+ E

)]

φ−(z) = −�φ+(z). (3.4)

The differential operator

L1
R ≡ (ωz + g)

d

dz
−

(

g2

ω
+ E

)

(3.5)

in the first equation is then exactly solvable. Eliminating φ − (z) from the system we obtain the

uncoupled differential equation for φ + (z),
[

(ωz − g)
d

dz
−

(

2gz −
g2

ω
+ E

)] [

(ωz + g)
d

dz
−

(

g2

ω
+ E

)]

φ+ = �2φ+. (3.6)

This is a second-order differential equation of Fuchs’ type. Explicitly,

(ωz − g)(ωz + g)
d2φ+

dz2
+

[

−2ωgz2 + (ω2 − 2g2 − 2Eω)z +
g

ω
(2g2 − ω2)

] dφ+

dz

+
[

2g

(

g2

ω
+ E

)

z + E2 − �2 −
g4

ω2

]

φ+ ≡ Lφ+ = 0. (3.7)

It is easy to see that for any positive integer n,

Lzn =
[

−2nωg + 2g

(

E +
g2

ω

)]

zn+1

+
[

n(n − 1)ω2 + (ω2 − 2g2 − 2ωE)n + E2 − �2 −
g4

ω2

]

zn

+lower order terms. (3.8)

Due to the zn + 1 term on the right-hand side of (3.8), the operator L is not exactly solvable. Only

if n = N such that −2Nωg + 2g
(

E + g2

ω

)

= 0, the zn + 1 term disappears from the right-hand

side, and L preserves a finite dimensional subspace VN = span{1, z, z2, · · · , zN }. Therefore, L is

quasi-exactly solvable with invariant subspace VN = span{1, z, z2, · · · , zN }.
We now seek exact solutions of the differential equation in the solvable subspace VN . Obviously,

they are polynomials in z of degree N , which can be written as

φ+(z) =
N
∏

i=1

(z − zi ),N = 1, 2, · · · , (3.9)

where zi are the roots of the polynomial to be determined. The energies follow immediately from

the equation in the 2nd line below (3.8),

E = ω

(

N −
g2

ω2

)

. (3.10)
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The differential equation (3.7) is, in fact, a special case of the general equation studied in Refs. 25.

Applying the results of this reference, we obtain the constraint for the system parameters

�2 + 2N g2 + 2ωg

N
∑

i=1

zi = 0. (3.11)

Here, zi satisfy the set of algebraic equations

N
∑

j �=i

2

zi − z j

=
2ωgz2

i + (2N − 1)ω2zi + g(ω2 − 2g2)/ω

(ωzi − g)(ωzi + g)
, i = 1, 2, · · · ,N . (3.12)

The corresponding wavefunction component ψ + (z) of the model is then given by

ψ+(z) = e− g

ω
z

N
∏

i=1

(z − zi ) (3.13)

and the component ψ − (z) = e− gz/ωφ − (z) with φ − (z) determined by the first equation of (3.4) for

� �= 0, i.e., φ−(z) = − 1
�
L1

R φ+(z). Because L1
R preserves VN for any system parameters, φ − (z)

automatically belongs to the same invariant subspace as φ + (z).

As an example to the above general expressions, let us consider the N = 1 solution. The energy

is E = ω
(

1 − g2

ω2

)

. Equation (3.12) becomes

2ωgz2
1 + ω2z1 +

g

ω
(ω2 − 2g2) = 0, (3.14)

which has two solutions

z1 = −
g

ω
,

2g2 − ω2

2ωg
. (3.15)

Substituting into (3.11) gives the constraints � = 0 and �2 + 4g2 = ω2, respectively. The constraint

� = 0 corresponds to the case of degenerate atomic levels. The other constraint agrees with that

obtained in Ref. 20 by a different approach. The corresponding wave function is

ψ+(z) = e− g

ω
z

(

z −
2g2 − ω2

2ωg

)

. (3.16)

IV. QUASI-EXACT SOLVABILITY OF THE 2-PHOTON QUANTUM RABI MODEL

The Hamiltonian of the 2-photon Rabi model reads

H = ωa†a + �σz + g σx

[

(a†)2 + a2
]

. (4.1)

Introduce the operators K± , K0 by19–21

K+ =
1

2
(a†)2, K− =

1

2
a2, K0 =

1

2

(

a†a +
1

2

)

. (4.2)

Then the Hamiltonian (4.1) becomes19, 20

H = 2ω

(

K0 −
1

4

)

+ �σz + 2g σx (K+ + K−). (4.3)

The operators K± , K0 form the usual su(1, 1) Lie algebra,

[K0, K±] = ±K±, [K+, K−] = −2K0. (4.4)

The quadratic Casimir operator C of the algebra is given by

C = K+K− − K0(K0 − 1). (4.5)
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In what follows we shall use an infinite-dimensional unitary irreducible representation of su(1, 1)

known as the positive discrete series D+(q). The parameter q is the so-called Bargmann index. In

this representation the basis states {|q, n〉} diagonalize the operator K0,

K0|q, n〉 = (n + q)|q, n〉 (4.6)

for q > 0 and n = 0, 1, 2, · · · , and the Casimir operator C has the eigenvalue q(1 − q). The operators

K+ and K− are hermitian to each other and act as raising and lowering operators, respectively,

within D+(q),

K+|q, n〉 =
√

(n + 1)(n + 2q) |q, n + 1〉,

K−|q, n〉 =
√

n(n + 2q − 1) |q, n − 1〉. (4.7)

For the single-mode bosonic realization (4.2), C = 3
16

and q is equal to either 1
4

or 3
4
. In terms of the

original Bose operators the states |q, n〉 are given equivalently as

|q, n〉 =
(a†)2(n+q− 1

4
)

√

[

2
(

n + q − 1
4

)]

!

|0〉, q = 1/4, 3/4; n = 0, 1, 2, · · · . (4.8)

Thus by means of the su(1, 1) representation, we have decomposed the Fock-Hilbert space of the

boson field into the direct sum of two independent subspaces labeled by q = 1/4, 3/4, respectively.

Let us now derive a single variable differential operator realization of K± , K0 (4.2), i.e.,

differential realization of the infinite-dimensional unitary irreducible representation corresponding

to q = 1/4, 3/4. Using the Fock-Bargmann correspondence a† → w, a → d
dw

, |0〉 → 1, we can

make the association

|q, n〉 −→
w2(n+q−1/4)

√

[

2
(

n + q − 1
4

)]

!

=
w2q−1/2 (w2)n

√

[

2
(

n + q − 1
4

)]

!

.

Since q is constant for a given representation we can rewrite the above as a mapping of the Fock

states |q, n〉 to the monomials in z = w2,

�q,n(z) =
zn

√

[

2
(

n + q − 1
4

)]

!

, q = 1/4, 3/4; n = 0, 1, 2, · · · . (4.9)

Then in the Bargmann space with basis vectors �q, n(z), the operators K± , K0 (4.2) are realized by

single-variable 2nd differential operators as

K0 = z
d

dz
+ q, K+ =

z

2
, K− = 2z

d2

dz2
+ 4q

d

dz
. (4.10)

It can be checked that the differential operators (4.10) satisfy the su(1, 1) commutation relations

(4.4) and their action on �q, n(z) gives the representation (4.6) and (4.7) corresponding to q = 1/4,

3/4. In checking, e.g., K−�q,n(z) =
√

n(n + 2q − 1) �q,n−1(z), it is useful to note that (q − 1/4)

(q − 3/4) ≡ 0 for both q = 1/4, 3/4 and the differential operator K− above can be expressed as

K− = 2z−1
(

z d
dz

+ q − 1
4

) (

z d
dz

+ q − 3
4

)

.

In terms of the differential realization (4.10), the 2-photon Rabi Hamiltonian becomes

H = 2ω

(

z
d

dz
+ q −

1

4

)

+ �σz + 2g σx

(

z

2
+ 2z

d2

dz2
+ 4q

d

dz

)

. (4.11)
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Working in a representation defined by σ x diagonal and in terms of the two component wavefunction,

the time-independent Schrödinger equation leads to two coupled 2nd-order differential equations,

4gz
d2

dz2
ψ+(z) + (2ωz + 8gq)

d

dz
ψ+(z) +

[

gz + 2ω

(

q −
1

4

)

− E

]

ψ+(z) + �ψ−(z) = 0,

4gz
d2

dz2
ψ−(z) + (−2ωz + 8gq)

d

dz
ψ−(z) +

[

gz − 2ω

(

q −
1

4

)

+ E

]

ψ−(z) − �ψ+(z) = 0.

(4.12)

If � = 0 these two equations decouple and reduce to the differential equations of two uncoupled

single-mode squeezed harmonic oscillators which can be exactly solved separately.26 For this reason

in the following we will concentrate on the � �= 0 case.

With the substitution

ψ±(z) = e
− ω

4g
(1−	)z

ϕ±(z),	 =
√

1 −
4g2

ω2
, (4.13)

where

∣

∣

∣

2g

ω

∣

∣

∣
< 1, it follows,

{

4gz
d2

dz2
+ [2ω	z + 8gq]

d

dz
+ 2qω	 −

1

2
ω − E

}

ϕ+ = −�ϕ−,

{

4gz
d2

dz2
+ [2ω(	 − 2)z + 8gq]

d

dz
+

ω2

g
(1 − 	)z + 2qω(	 − 2) +

1

2
ω + E

}

ϕ− = �ϕ+.

(4.14)

Then the differential operator

L2−p ≡ 4gz
d2

dz2
+ [2ω	z + 8gq]

d

dz
+ 2qω	 −

1

2
ω − E (4.15)

appearing in the first equation is exactly solvable. Eliminating ϕ − (z) from the system, we obtain the

uncoupled differential equation for ϕ + (z)
{

4gz
d2

dz2
+ [2ω(	 − 2)z + 8gq]

d

dz
+

ω2

g
(1 − 	)z + 2qω(	 − 2) +

1

2
ω + E

}

×
{

4gz
d2

dz2
+ [2ω	z + 8gq]

d

dz
+ 2qω	 −

1

2
ω − E

}

ϕ+(z) = −�2ϕ+(z). (4.16)

This is a 4th-order differential equation of Fuchs’ type. Explicitly,

16g2z2 d4ϕ+

dz4
+ 64g2

[

ω

4g
(	 − 1)z2 +

(

q +
1

2

)

z

]

d3ϕ+

dz3

+
{

4ω2(	2 − 3	 + 1)z2 + 16ωg

[

3

(

q +
1

2

)

	 − 3q − 1

]

z + 64g2q

(

q +
1

2

)}

d2ϕ+

dz2

+
{

2
ω3

g
	(1 − 	)z2 +

[

8ω2q(1 − 	) + 8ω2

(

q +
1

2

)

(1 − 	)2

+4ω

(

E − 2ω

(

q +
1

4

))]

z + 32ωgq

[(

q +
1

2

)

	 − q

]}

dϕ+

dz

+
{

ω2

g
(1 − 	)

(

2qω	 −
1

2
ω − E

)

z

+4ω2q2(1 − 	)2 −
[

E − 2ω

(

q −
1

4

)]2

+ �2

}

ϕ+ = 0. (4.17)
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By the arguments similar to those in Sec. III, this equation is quasi-exactly solvable provided that

the system parameters �, ω, and g satisfy certain constraints, and exact solutions are polynomials

in z in the solvable sector. We thus seek polynomial solutions of the form to the above differential

equation,

ϕ+(z) =
M
∏

i=1

(z − zi ),M = 1, 2, · · · , (4.18)

where M is the degree of the polynomial solution and zi are the roots of the polynomial to be

determined. Substituting into (4.17) and dividing both sides by φ + (z) yield

[

E − 2ω

(

q −
1

4

)]2

− �2 − 4ω2q2(1 − 	)2

= 16g2z2

M
∑

i=1

1

z − zi

M
∑

p �=l �= j �=i

4

(zi − z p)(zi − zl)(zi − z j )

+64g2

[

ω

4g
(	 − 1)z2 +

(

q +
1

2

)

z

] M
∑

i=1

1

z − zi

M
∑

l �= j �=i

3

(zi − zl)(zi − z j )

+
{

4ω2(	2 − 3	 + 1)z2 + 16ωg

[

3

(

q +
1

2

)

	 − 3q − 1

]

z

+64g2q

(

q +
1

2

)} M
∑

i=1

1

z − zi

M
∑

j �=i

2

zi − z j

+
{

2
ω3

g
	(1 − 	)z2 +

[

8ω2q(1 − 	) + 8ω2

(

q +
1

2

)

(1 − 	)2

+4ω

(

E − 2ω

(

q +
1

4

))]

z + 32ωgq

[(

q +
1

2

)

	 − q

]} M
∑

i=1

1

z − zi

+
ω2

g
(1 − 	)

(

2qω	 −
1

2
ω − E

)

z. (4.19)

The left-hand side is a constant and the right-hand side is a meromorphic function with simple poles

at z = zi and singularity at z = ∞. The residues of the right-hand side at the simple poles z = zi are

Resz=zi
= 16g2z2

i

M
∑

p �=l �= j �=i

4

(zi − z p)(zi − zl)(zi − z j )

+64g2

[

ω

4g
(	 − 1)z2

i +
(

q +
1

2

)

zi

] M
∑

l �= j �=i

3

(zi − zl)(zi − z j )

+
{

4ω2(	2 − 3	 + 1)z2
i + 16ωg

[

3

(

q +
1

2

)

	 − 3q − 1

]

zi

+64g2q

(

q +
1

2

)} M
∑

j �=i

2

zi − z j

+2
ω3

g
	(1 − 	)z2

i +
[

8ω2q(1 − 	) + 8ω2

(

q +
1

2

)

(1 − 	)2

+4ω

(

E − 2ω

(

q +
1

4

))]

zi + 32ωgq

[(

q +
1

2

)

	 − q

]

. (4.20)
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Using the identities

M
∑

i=1

M
∑

j �=i

1

zi − z j

= 0,

M
∑

i=1

M
∑

j �=i

zi

zi − z j

=
1

2
M(M − 1),

M
∑

i=1

M
∑

l �= j �=i

1

(zi − zl)(zi − z j )
= 0,

M
∑

i=1

M
∑

l �= j �=i

zi

(zi − zl)(zi − z j )
= 0,

M
∑

i=1

M
∑

p �=l �= j �=i

1

(zi − z p)(zi − zl)(zi − z j )
= 0,

M
∑

i=1

M
∑

p �=l �= j �=i

zi

(zi − z p)(zi − zl)(zi − z j )
= 0, (4.21)

we can show that

[

E − 2ω

(

q −
1

4

)]2

− �2 − 4ω2q2(1 − 	)2

=
M
∑

i=1

Resz=zi

z − zi

+ 4ω2(	2 − 3	 + 1)M(M − 1) + 2
ω3

g
	(1 − 	)

M
∑

i=1

zi

+
[

8ω2q(1 − 	) + 8ω2

(

q +
1

2

)

(1 − 	)2 + 4ω

(

E − 2ω

(

q +
1

4

))]

M

+
ω2

g
(1 − 	)

[

(2M + 2q)ω	 −
1

2
ω − E

]

z. (4.22)

The right-hand side of (4.22) is a constant if and only if the coefficient of z as well as all the residues

at the simple poles are vanishing. We thus obtain the energy eigenvalues,

E = −
1

2
ω +

[

2M + 2

(

q −
1

4

)

+
1

2

]

ω	 (4.23)

and the constraint for the model parameters �, ω and g,

�2 + 4ω2(1 − 	)

[

M(M + 2q − 1) +
ω

2g
	

M
∑

i=1

zi

]

= 0. (4.24)

Here, the roots zi satisfy the following system of algebraic equations,

g2z2
i

M
∑

p �=l �= j �=i

4

(zi − z p)(zi − zl)(zi − z j )

+g

[

ω(	 − 1)z2
i + 4g

(

q +
1

2

)

zi

] M
∑

l �= j �=i

3

(zi − zl)(zi − z j )

+
{

ω2

4
(	2 − 3	 + 1)z2

i + ωg

[

3

(

q +
1

2

)

	 − 3q − 1

]

zi + 4g2q

(

q +
1

2

)} M
∑

j �=i

2

zi − z j

+
ω3

8g
	(1 − 	)z2

i +
ω2

2

[

M	 +
(

q +
1

2

)

	(	 − 2) + q

]

zi

+2ωgq

[(

q +
1

2

)

	 − q

]

= 0, i = 1, 2, · · ·M. (4.25)
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Here, we have also used the relation (4.23) in obtaining (4.24) and (4.25). The corresponding

wavefunction component ψ + (z) of the system is given by

ψ+(z) = e
− ω

4g
(1−	)z

M
∏

i=1

(z − zi ) (4.26)

and the component ψ−(z) = e
− ω

4g
(1−	)z

φ−(z) with φ − (z) computed from (4.14) for � �= 0,

φ−(z) = − 1
�
L2−p φ+(z). Because for any positive integer n, L2−pzn ∼ zn + lower order terms,

φ − (z) automatically belongs to the same invariant subspace as φ + (z).

Some remarks are in order. The results obtained in Ref. 27 on the solution of the 2-photon Rabi

model are incorrect. The reason is simple. As the author himself noted in the paper, the solution for

the 2nd component of the two-component wavefunction of the 2-photon Rabi model does not belong

to the same invariant subspace as the 1st component. Therefore, his two-component wavefunction

does not satisfy the matrix Schrödinger differential equation of the model and thus is not a solution

to the coupled equations.

As an example to the above general expressions, let us consider the M = 1 case. The energy is

E = −
1

2
ω + (2q + 2) ω	. (4.27)

Equation (4.25) becomes

ω2	(1 − 	)z2
1 + 4ωg

[

	 + q +
(

q +
1

2

)

	(	 − 2)

]

zi + 16g2q

[(

q +
1

2

)

	 − q

]

= 0.

(4.28)

The solutions to this equation are

z1 = −
4gq

ω	
,

4gq(1 − 	) − 2g	

ω(1 − 	)
. (4.29)

Substituting into (4.24) gives the constraints � = 0 and

�2 + 8qω2 = 8

(

q +
1

2

)

ω2	2, (4.30)

respectively. The constraint � = 0 corresponds to the case of degenerate atomic levels. The con-

straint (4.30) agrees with those obtained in Ref. 20 by the Bogoliubov transformation method. The

corresponding wavefunction ψ + (z) is given by

ψ+(z) = e
− ω

4g
(1−	)z

(

z −
4gq(1 − 	) − 2g	

ω(1 − 	)

)

. (4.31)

V. QUASI-EXACT SOLVABILITY OF THE TWO-MODE QUANTUM RABI MODEL

The Hamiltonian of the two-mode quantum Rabi model reads

H = ω(a
†
1a1 + a

†
2a2) + �σz + g σx (a

†
1a

†
2 + a1a2), (5.1)

where we assume that the boson modes are degenerate with the same frequency ω. Introduce the

operators K± , K0,

K+ = a
†
1a

†
2, K− = a1a2, K0 =

1

2
(a

†
1a1 + a

†
2a2 + 1). (5.2)

Then the Hamiltonian (5.1) becomes

H = 2ω

(

K0 −
1

2

)

+ �σz + gσx (K+ + K−). (5.3)
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The operators K± , K0 form the su(1, 1) algebra (4.4). As in Sec. IV, we shall use the unitary

irreducible representation (i.e., the positive discrete series). However, to avoid confusion in this

section we shall use κ to denote the Bargmann index of the representation. Using this notation the

action of the operators K± , K0 and the Casimir C (4.5) on the basis states |κ , n〉 of the representation

reads

K0|κ, n〉 = (n + κ) |κ, n〉,

K+|κ, n〉 =
√

(n + 2κ)(n + 1) |κ, n + 1〉,

K−|κ, n〉 =
√

(n + 2κ − 1)n |κ, n − 1〉,

C |κ, n〉 = κ(1 − κ) |κ, n〉, (5.4)

for κ > 0 and n = 0, 1, 2, ···.
For the two-mode bosonic realization (5.2) of su(1, 1) that we require here the Bargmann index

κ can take any positive integers or half-integers, i.e., κ = 1/2, 1, 3/2, ···. In terms of the original Bose

operators the states |κ , n〉 are given equivalently as

|κ, n〉 =
(a

†
1)n+2κ−1(a

†
2)n

√
(n + 2κ − 1)!n!

|0〉, κ = 1/2, 1, 3/2, · · · ; n = 0, 1, 2, · · · . (5.5)

Thus, by means of the su(1, 1) representation we have decomposed the Fock-Hilbert space into the

direct sum of infinite number of subspaces labeled by κ = 1/2, 1, 3/2, ···, respectively.

As in Sec. IV, using the Fock-Bargmann correspondence a
†
i → wi , ai → d

dwi
, |0〉 → 1, we can

make the association

|κ, n〉 −→
wn+2κ−1

1 wn
2√

(n + 2κ − 1)!n!
=

w2κ−1
1 (w1w2)n

√
(n + 2κ − 1)!n!

.

Then, with κ being constant in a given representation, we can show that the set of monomials in

z = w1w2,

�κ,n(z) =
zn

√
(n + 2κ − 1)!n!

, κ = 1/2, 1, 3/2, · · · ; n = 0, 1, 2, · · · , (5.6)

forms the basis carrying the unitary irreducible representation (5.4) corresponding to κ = 1/2, 1,

3/2, ···. That is the operators K± , K0 (5.2) have the single-variable differential realization,

K0 = z
d

dz
+ κ, K+ = z, K− = z

d2

dz2
+ 2κ

d

dz
. (5.7)

It is straightforward to verify that these differential operators satisfy the su(1, 1) commutation

relations (4.4) and their action on �κ , n(z) gives the unitary representation (5.4) corresponding to

κ = 1/2, 1, 3/2, ···.
By means of the differential representation (5.7), we can express the Hamiltonian (5.3) as the

2nd-order matrix differential operator

H = 2ω

(

z
d

dz
+ κ −

1

2

)

+ �σz + g σx

(

z + z
d2

dz2
+ 2κ

d

dz

)

. (5.8)

Working in a representation defined by σ x diagonal and in terms of the two-component wavefunction

ψ(z) =
(

ψ+(z)

ψ−(z)

)

, we see that the time-independent Schrödinger equation yields the two coupled

differential equations,

gz
d2

dz2
ψ+(z) + 2(ωz + gκ)

d

dz
ψ+(z) +

[

gz + 2ω

(

κ −
1

2

)

− E

]

ψ+(z) + �ψ−(z) = 0,

gz
d2

dz2
ψ−(z) + 2(−ωz + gκ)

d

dz
ψ−(z) +

[

gz − 2ω

(

κ −
1

2

)

+ E

]

ψ−(z) − �ψ+(z) = 0.

(5.9)
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If � = 0 these two equations decouple and reduce to the differential equations of two uncoupled

two-mode squeezed harmonic oscillators which can be exactly solved separately.26 For this reason

in the following we will concentrate on the � �= 0 case.

With the substitution

ψ±(z) = e
− ω

g
(1−�)z

ϕ±(z),� =
√

1 −
g2

ω2
, (5.10)

where
∣

∣

g

ω

∣

∣ < 1, it follows,

{

gz
d2

dz2
+ 2[ω�z + gκ]

d

dz
+ 2κω� − ω − E

}

ϕ+ = −�ϕ−,

{

gz
d2

dz2
+ 2[ω(� − 2)z + gκ]

d

dz
+

4ω2

g
(1 − �)z + 2κω(� − 2) + ω + E

}

ϕ− = �ϕ+.

(5.11)

Then the differential operator

L2−m ≡ gz
d2

dz2
+ 2[ω�z + gκ]

d

dz
+ 2κω� − ω − E (5.12)

in the 1st equation is exactly solvable. Eliminating ϕ − (z) from the system, we obtain the uncoupled

differential equation for ϕ + (z)

{

gz
d2

dz2
+ 2[ω(� − 2)z + gκ]

d

dz
+

4ω2

g
(1 − �)z + 2κω(� − 2) + ω + E

}

×
{

gz
d2

dz2
+ 2[ω�z + gκ]

d

dz
+ 2κω� − ω − E

}

ϕ+(z) = −�2ϕ+(z). (5.13)

This is a 4th-order differential equation of Fuchs’ type. Explicitly,

g2z2 d4ϕ+

dz4
+ 4g2

[

ω

g
(� − 1)z2 +

(

q +
1

2

)

z

]

d3ϕ+

dz3

+
{

4ω2(�2 − 3� + 1)z2 + 4ωg

[

3

(

κ +
1

2

)

� − 3κ − 1

]

z + 4g2κ

(

κ +
1

2

)}

d2ϕ+

dz2

+
{

8
ω3

g
�(1 − �)z2 +

[

8ω2κ(1 − �) + 8ω2

(

κ +
1

2

)

(1 − �)2

+4ω(E − 2ωκ)] z + 8ωgκ

[(

κ +
1

2

)

� − κ

]}

dϕ+

dz

+
{

4
ω2

g
(1 − �) (2κω� − ω − E) z

+4ω2κ2(1 − �)2 −
[

E − 2ω

(

κ −
1

2

)]2

+ �2

}

ϕ+ = 0. (5.14)

As we show below, this equation is quasi-exactly solvable provided that the system parameters �,

ω, and g satisfy certain constraints, and exact solutions are polynomials in z. To this end, we seek

polynomial solutions of the form to the differential equation (5.14),

ϕ+(z) =
M
∏

i=1

(z − zi ),M = 1, 2, · · · , (5.15)
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where M is the degree of the polynomial and zi are roots of the polynomial to be determined.

Following the procedure similar to that in Sec. IV, we obtain the energies

E = −ω +
[

2M + 2

(

κ −
1

2

)

+ 1

]

ω� (5.16)

and the constraint for the model parameters �, ω, and g,

�2 + 4ω2(1 − �)

[

M(M + 2κ − 1) +
2ω

g
�

M
∑

i=1

zi

]

= 0. (5.17)

Here, the roots zi satisfy the following system of algebraic equations,

g2z2
i

M
∑

p �=l �= j �=i

4

(zi − z p)(zi − zl)(zi − z j )

+4g

[

ω(� − 1)z2
i + g

(

κ +
1

2

)

zi

] M
∑

l �= j �=i

3

(zi − zl)(zi − z j )

+
{

4ω2(�2 − 3� + 1)z2
i + 4ωg

[

3

(

κ +
1

2

)

� − 3κ − 1

]

zi + 4g2κ

(

κ +
1

2

)} M
∑

j �=i

2

zi − z j

+8
ω3

g
�(1 − �)z2

i + 8ω2

[

M� +
(

κ +
1

2

)

�(� − 2) + κ

]

zi

+8ωgκ

[(

κ +
1

2

)

� − κ

]

= 0, i = 1, 2, · · ·M. (5.18)

Here, we have also used the relation (5.16) in obtaining (5.17) and (5.18). The corresponding

wavefunction component ψ + (z) is given by

ψ+(z) = e
− ω

g
(1−�)z

M
∏

i=1

(z − zi ) (5.19)

and the other component is ψ−(z) = e
− ω

g
(1−�)z

ϕ−(z) with ϕ − (z) determined from the first equation

of (5.11) for � �= 0, ϕ−(z) = − 1
�
L2−m ϕ+(z). Because for any positive integer n, L2−m zn ∼ zn

+ lower order terms, ϕ − (z) automatically belongs to the same invariant subspace as ϕ + (z).

As an example of the above general expressions, we consider the M = 1 case. The energy is

E = −ω + (2κ + 2)ω�. (5.20)

Equation (5.18) becomes

ω2�(1 − �)z2
1 + ωg

[

� + κ +
(

κ +
1

2

)

�(� − 2)

]

zi + g2κ

[(

κ +
1

2

)

� − κ

]

= 0.

(5.21)

It has two solutions

z1 = −
κg

ω�
,

gκ(1 − �) − g�

ω(1 − �)
. (5.22)

Substituting into (5.17) gives the constraints � = 0 and

�2 + 8κω2 = 8

(

κ +
1

2

)

ω2�2 = 0, (5.23)
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respectively. The constraint � = 0 corresponds to the case of degenerate atomic levels. The constraint

(5.23) is the non-trivial one. The corresponding wavefunction ψ + (z) is given by

ψ+(z) = e
− ω

g
(1−�)z

(

z −
gκ(1 − �) − g�

ω(1 − �)

)

. (5.24)
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