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Abstract. Let FG be the group algebra of a finite group G over a field F of charac-
teristic/? a 0; and let C be the group of units oí FG. We prove that t/is solvable if and
only if (i) every absolutely irreducible representation of G at characteristic p is of
degree one or two and (ii) if any such representation is of degree two, then it is
definable in Fand F=GF(2) or GF(3). This result is translated into intrinsic group-
theoretic and field-theoretic conditions on G and F, respectively. Namely, if Op(G)
is the maximum normal ^-subgroup of G and L = G/Op(G), then (i) L is abelian, or (ii)
F=GF(3) and L is a 2-group with exactly (\L\ — [£:L'])/4 normal subgroups of index
8 that do not contain V, or (iii) F=GF(2) and L is the extension of an elementary
abelian 3-group by an automorphism which inverts every element.

Conditions are found for the nilpotency, supersolvability, and ^-solvability of U.

This paper presents necessary and sufficient conditions for the solvability of the
group U(FG) of two-sided units in the group algebra FG of a finite group G over
a field F. The results are essentially those of the author's doctoral dissertation,
presented in a more general form. The author is indebted to D. B. Coleman for
many helpful suggestions and for continued encouragement.

In §1 the contribution of a nilpotent ideal of a ring with 1 to its unit group is
considered. Three general results are given in §2 for unit groups of finite-dimen-
sional algebras that are separable modulo their radicals. In §3 there is given a
necessary and sufficient condition for the solvability of the unit group of such an
algebra. In §4 the group U(FG) is considered. Its solvability is related to the
representations of G and the nature of G and F. The groups Op(G) and G/Op(G)
are considered here. In §5 the solvability, nilpotency, and /?-solvability of U(FG)
are related to the internal structure of G.

1. Let R be a ring with 1 and let the set of two-sided units of R be designated
U(R).

Theorem 1. Let N be a nilpotent ideal of R. Then the set 1 4- TV is a nilpotent
normal subgroup of U(R) of class c^a, the index of nilpotency of N. Furthermore,
ifR is an algebra over afield F of prime characteristic p, then 1 + N is a p-group with
an exponent.
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Proof. That 1+iVis a normal subgroup is trivial. The nilpotency of l+N and
that its class is at most a follows by an easy induction argument on the degree of
nilpotency a (cf. [2]).

Suppose further that R is an algebra. Let/?" be the least power of/? not less than
a. Now if ne N, (1 + «)p<,= 1 +npe= 1. Thus 1 + N is a /?-group and there is an ex-
ponent for l+N dividing pe.

2. Each finite-dimensional P-algebra A has a maximum nilpotent ideal, rad A,
called its radical. We have ^4/rad A = @JJ=1 Q for simple ideals Ch each of which
is isomorphic with a total matrix algebra Mn.(Di) of degree nx over a division algebra
D¡ of finite dimension over F. We have an obvious

Proposition. U(A/rad A)^ Tl U(Q) where [/(CJ^GLfa, A)-

We assume in this section that A is a finite-dimensional /•'-algebra that is sepa-
rable modulo its radical; that is, A/rad A is a separable algebra over F. By Wed-
derburn's Principal Theorem, A has a semisimple subalgebra S with A/rad A^S
and A = S+ rad A (vector space direct sum). Clearly 1 e S.

For rings with 1 it is easy to see that an epimorphism maps units to units.

Lemma. Any epimorphism of finite-dimensional semisimple algebras with 1 induces
(by restriction) an epimorphism of their unit groups.

Proof. Let ß: Si -> S2 be such an epimorphism. Let e be the unity for ker ß and
if « e U(S2) let u' be its unique pre-image in a complementary ideal for ker ß.
Then (e + u')ß = u and e+u' e U(S]_).

Theorem 2. Any epimorphism of finite-dimensional algebras with 1 that are
separable modulo their radicals induces an epimorphism of their radicals and an
epimorphism of their unit groups.

Proof. Let a: Ax -> A2 be the algebra epimorphism. We have A1 = S1 + rad Ax
for semisimple Si. Since 1 e Su U(S1)^U(A1). Hence A2 = a(S1) + a(rad AJ, a
sum of a semisimple subalgebra and a nilpotent ideal. Since 1 =a(l) e a(Sx),
U(<x(S1))-¿U(a(A1))=U(A2). Clearly a(rad/(1)na(5,1) = 0 since it is a nilpotent
ideal of a(Si); consequently, A2 = a(Sx) + a(rad Ax), a vector space direct sum and
there is an epimorphism ß of A2 onto a(Sj) defined by

ß(s+r) = s   for j e a(Si) and r e a(rad Ax).

Since v42/cc(rad AJ^afêJ, a(rad Ax) = rad A2.
Let u2e U(A2). Then u2 = s2 + r2, s2ea(Si), r2eradA2. The unit s2 = ß(u2) of

<*(Si) is o¡(íi) for some sx e £/(Si) by the lemma; r2 is the image of some rx e rad Ax.
Now «i=ii+/'i is a unit of Ax with inverse (l+sï1r1)~1sï1 and we have <x(hi)
= 0£(Si) + a(ri) = W2.

Theorem 3. Let A be a finite-dimensional algebra with 1 that is separable modulo
its radical. Then U(A) is a split extension of 1 +rad A by U(A/rad A).
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Proof. We can assumed = S +rad A. As in the last proof there is an epimorphism
ß:A-+S with ß(s + r) = s. Hence S^A/md A and U(S)Z U(A/md A). If s e U(S)
and r e rad A, then (j,+r)"1=(l-r'i~1r)~1Jr"1. Therefore the restriction ßu=ß\ U(A)
is an epimorphism of U(A) onto U(S) with ker J3U = 1 + rad A. Finally, U(S) ^U(A)
and the inclusion map is a splitting isomorphism for ßu.

Next we characterize l+rad,4. Define Op(H) to be the maximum normal /?-
subgroup of a group H.

Lemma. Op(GL(n, D)) =1 if D is a division ring of characteristic p.

Proof. Let P be a normal />subgroup of GL(n, D). For ae D,ap=\ only if a = 1 ;
hence Op(GL(\, D))=l. Next, Op(GL(2, D))=l for D = GF(2) or GF(3), by direct
computation. Finally, suppose P^ 1 and either a?2:3 or both « = 2 and |Z)| ^4. By
Theorem 4.9 of [1], P^ Center (GL(n, D)) or SL(n, D)^P. In the first case there is
a nonsingular 7t of order/? and an a eZ* = Center (D) — {0} for which n(v) = va for
all vectors t?. Hence vap = v, av=\, a=\, and n=l, a contradiction. On the other
hand, since (_? J) e SL(n, D) and has order 3 or 6 for/? = 2 or/?>2, respectively,
we cannot have SL(n, D)^P. Hence P= 1 and the lemma is proved.

Theorem 4. 1 +rad A = Op(U(A)) if A is a finite-dimensional F-algebra with 1
that is separable modulo its radical and F has characteristic p, a prime.

Proof. We have U(A)/l+rad Azfl GL(nu A) and so Op(U(A)/l +rad A)
= xn¡ Op(GL(nh A))- But 1 + rad A^Op(U(A)). Hence 1 +rad A = Op(U(A)).

3. We maintain the assumptions of §2 on the algebra A. If U(A) is solvable, then
its homomorph U(A/ra.d A)^ "0=1 GL(n,, A) and hence also the groups
GL(nu A) are all solvable.

Suppose «> 1 for H=GL(n, D). If D is an infinite field, H is not solvable; if D
is a finite division ring then H is solvable if and only if « = 2 and D = GF(2) or
GF(3) [9]. If D is infinite and not commutative, then U(D) is not solvable [8] and
for any n, H^ U(D) and is not solvable.

We have a

Proposition. If D is a division ring, GL(n, D) is solvable if and only if
(a) n= 1 and D is afield, or
(b)n = 2 and D = GF(2) or GF(3).

We can now prove our first solvability theorem.

Theorem 5. If A is an algebra over F with 1 that is finite dimensional and sepa-
rable modulo its radical, then U(A) is solvable if and only if in the decomposition

A/rad A^2 M4DÙ
i=X

either
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(1) each «¡= 1 and each Dt is afield, or
(2) each «¡= 1 or 2, F=GF(2) or GF(3), Z),~F whenever «¡ = 2, and some «¡ = 2.

Proof. From the above it is clear that for U(A) to be solvable it is necessary that
each «j= 1 and each £/(/),) be solvable or that (2) hold.

Notice that in condition (2) each D, is finite and hence a field.
The alternatives (1) and (2) are sufficient since in either case the groups GL(n¡, D¡)

are all solvable and U(A) is an extension by their direct product of the group
1+rad^.

In preparation for Theorem 6 we establish a

Lemma. Let F* be the algebraic closure of F. For an F-algebra separable modulo
its radical, condition (2) of Theorem 5 holds if and only if

(i) every irreducible representation of A ® F* is of degree one or two and
(ii) some irreducible representation is of degree two and any such representation

is definable over F=GF(2) or GF(3) (i.e., it is afforded by M ® F* for some irre-
ducible left A-module M).

Proof. Assume condition (2) of Theorem 5. Then ^4/rad A =2ie/lUÍ2 B„ B¡
SM2(F) for iel2, B^ GF(q¡) for i e Iu It n I2= 0, F= GF(p), and p = 2 or 3.

Let S be one of the subalgebras of A isomorphic with ,4/rad A. Then S ®F F*
is semisimple over F*. Furthermore, rad A ®F F* is a nilpotent ideal of A <g)F F*.
Since A = S + rad A as an F-space, A ®F F* = (S ®F F*) + ((rad A) ®F F*) as an
F*-space. Thus rad (A ®F F*) = (rad A) ®F F* and (A ® F*)/rad (A ® F*)
^(A/radA) ® F*.

The algebra L4 ® F*)/rad (A ® F*) decomposes as

(*) 2C>= 2 5'®F*
ie/ ie/iU/2

with Q~ Mmj(Df) and Z>* a division algebra of finite dimension over F*. It follows
that each Df^F*. The isomorphism (*) induces a partition of/ into sets Jx and
y2 and induces isomorphisms

2 C, S 2 5' ® f *   for fc = !' 2-
¡eJk is/«

Since 2¡=7! A <8> P* is commutative, wy = 1 fory e /x. For i e I2, Bt ® F*^ M2(F*),
which is simple; and so P( ® F* must correspond to one C¡ withy e /2. This results
in a one-to-one correspondence a of 72 onto 72- It also shows that mt = 2 ifjeJ2.
Thus (A <g) P*)/rad (A ® F*)s^;i Mi(P*) © 2ie/2 M2(P*) and the irreducible
representations of A ® P* are of degrees one and two [5, p. 171]. Since I2^0,
some of these are of degree two.

Let R be an irreducible representation of A ® P* of degree two, choosing as
representation space any minimal left ideal L* of C7s M2(F*). ThenjeJ2 and it
corresponds under a to some i e I2. Let L be a minimal left ideal of B¡. Then
Pi.= M2(P) and L ® P*, regarded naturally as a subspace of P¡ (g) P*, is a minimal
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left ideal of Bt ® F*zC}. Hence L ® F*^L* as a representation space and the
left ^4-module L affords an irreducible representation of A proving that R is
definable over F.

For the converse assume (i) and (ii) of the lemma so that (A ® F*)/rad (A ® F*)
= 2 Cj for simple C„ Cj~Mm(F*) with wy=l or 2, and at least one OTj = 2.
Similarly, ^4/rad A=^ B¡ with B¡^Mn¡(Dt) for some finite (commutative) division
algebra A over F=GF(2) or GF(3).

There is an isomorphism r¡: 2 Cj -* 2 -#¡ ® F* so for each C,= M2(F*) there is
a ¿?¡ such that the 77-pre-image of ßf ® F* contains Cy, i.e., Z) © Cj^Bt ® F*
where Z) is a sum of Cfc's. Let L be a minimal left ideal of 5¡; then L ® F* is a
representation module for ^4 ® F* and is a direct sum containing at least one copy
of each of the irreducible modules afforded by simple components of B¡ ® F*,
since the regular representation of (A/rad A) ® F* is equivalent to the scalar
extension of the regular representation of ^4/rad A. Hence any minimal left ideal
L* of Cj is isomorphic with some summand of L ® F*. However, by assumption,
L* = M ® F* for some irreducible module M of A. Thus L ® F* and M ® F*
have a common composition factor and hence so do L and M [5, p. 200], i.e.,
L^M and L*^L ® F*.

Hence B¡ ® F* has only the one component r¡(C,) which means Mni(A) ® F*
^M2(F*) and, since now n¡ dimf. A = 2, «¡ = 2 and D^F. Thus for each com-
ponent Q with m, = 2, r)(C,) = Bi ® F* with «¡ = 2 and D^F. If C is the sum of
the commutative C/s, then tj(C) = B ® F* where B is the sum of the remaining
5¡'s. Thus each of these B¡s is of the form Mx(Dt), i.e., «¡= 1 if «¡#2 or D^F.

4. The motivation for the last two sections is the fact that if F is a field and G a
finite group then FG is separable modulo its radical. Thus U(FG) is a split extension
of 1+radFG by a direct product x]li U(Q) where C¡sMn¡(A) and £/(C¡)
S GL(/2¡, A)-

The radical is nontrivial only when F has prime characteristic /? in which case
1+rad FG is the maximum normal /^-subgroup of U(FG) and has an exponent.
Any group epimorphism r¡: G —^ H extends linearly to an algebra epimorphism
■n': FG -> FH; hence, the restriction r¡'u: U(FG) -* U(FH) is an epimorphism.

Theorem 6. Let G be a finite group and F be a field of characteristic /?^0. Then
U(FG) is solvable if and only if

(i) every absolutely irreducible representation of G at characteristic p is of degree
one or two and

(ii) if any such representation is of degree two, then it is definable in F and
F=GF(2) or GF(3).

Proof. By Theorem 5 and the lemma of §3 we know U(FG) is solvable if and
only if one of the two conditions below occurs. Let A = FG and let F* be the
algebraic closure of F
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Condition 1. ^4/rad A 3 2¡ = i A vvith each A a field. This is equivalent to
having all absolutely irreducible representations p~¡ of G of degree one. If each A
is commutative then each p~t has degree one. If each p¿ has degree one, then
(A/rad A) ® F* is a sum of fields; hence, so is A/rad A and Condition 1 holds.

Condition 2. Every irreducible representation of A ® F* is of degree one or
two, some irreducible representation is of degree two, and any of degree two is
definable over F, which must by GF(2) or GF(3).

Since there is a one-to-one degree-preserving correspondence between the
irreducible representations of A ® F* and the absolutely irreducible representa-
tions of G over F*, this condition is equivalent to the conjunction of (i) and (ii) of
the theorem with the condition that there be at least one absolutely irreducible
representation of degree two for G.

Theorem 7. If G is a finite group and F is a field of characteristic p, a prime, and
Pi,.. ., ps is a complete set of inequivalent absolutely irreducible representations of
G at characteristic p then

(i) Op(G) = G n (1 + rad FG) and
(ii) G/Op(G) is a subdirect product of p±(G),.. .,ps(G).

Proof, (i) Let P be a normal /?-subgroup of G. Then [6, p. 36] the left ideal of
FG generated by the elements g — 1, g e P, is a nilpotent two-sided ideal of FG and,
consequently, is a subset of rad FG so that P—lçradFG. Hence Op(G)
^G n (1 +rad FG). By Theorem 1, G n (1 +rad FG) is a normal /?-subgroup and
must be contained in Op(G).

(ii) Consider the /?¡'s as matrix representations and define

P(g) = Pl(g)@---®Ps(g),

the direct sum of these matrices. Then p is a matrix representation of G by a sub-
direct product of pi(G),..., ps(G). Finally, p(g)=l if and only if each p¡(g) = l,
which happens precisely when g e G n (I +rad FG) = Op(G).

5. In this section is given a group-theoretic characterization of finite groups G
for which U(FG) is solvable. Theorems 8, 10, and 11 contain the characterization
in view of Theorem 6. Theorems 13, 14 and 15 take up nilpotence and/?-solvability.

Theorem 8. The first three conditions below are equivalent and they imply the
fourth.

(i) G' is a p-group.
(ii) G/Op(G) is abelian.

(iii) All absolutely irreducible representations of G at characteristic p are linear.
(iv) U(FG) is solvable.

Proof. By Theorem 6, (iii) implies (iv). Conditions (i) and (ii) are clearly equiv-
alent. From Theorem 7, (ii) holds if and only if each absolutely irreducible p¡(G)
is abelian and hence of degree one (linear).
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It follows from this theorem that if H is a group of matrices over F of degree
n> 1 and is an abelian extension of a/?-group (/? = char F) then H is not absolutely
irreducible. We will also need the following fact in later arguments: If A 5= GL(2,p)
and A is reducible over some field of characteristic/?, then A is abelian or p\ \A\. To
see this consider the map

C ¡K D-
We will have use for the following lemma.

Lemma 1. If U(FS) is solvable, \S\=n, S has s inequivalent absolutely irreducible
representations Pi at characteristic p, I of these are of degree one, and p\n, then

(i) n = l+4(s-l),
(ii) l=[S:S'],and

(iii) s — l is the number of Pi's of degree two.

Proof. Immediate from Theorem 6 and [5].
Suppose U(FG) is solvable and G' is not a /?-group. Then by Theorems 6 and 8,

F=GF(p), p = 2 or 3 and for each nonlinear absolutely irreducible representation
P¡ of G at characteristic /?, Pi is definable over F. By Theorem 7 and the remark
about epimorphisms at the beginning of §4, each U(FPi(G)) is solvable. Therefore,
in the subdirect factorization of G/Op(G), the groups Pi(G) that are nonabelian
can be thought of as absolutely irreducible subgroups S of GL(2, F) with the added
property that U(FS) is solvable.

Suppose S is such a group. Clearly S' is not a /?-group by the remarks following
Theorem 8.

For p = 2, GL(2,F)^D3. But GL(2, F) is absolutely irreducible and U(FD3)
= C2xD3, where Cm will mean henceforth a cyclic group of order m. Hence
S=GL(2, F)sA-

For /? = 3, we need only to consider S when |5| e{8, 12, 16, 24, 48} since
|GZ,(2, F)| =48. First we examine two groups of order eight. The quaternion group
Q has four linear representations and the faithful irreducible representation. By
[5] these are the absolutely irreducible representations and by Theorem 6 U(FQ)
is solvable. Similarly the dihedral group A has four linear representations and the
faithful irreducible one, these are the absolutely irreducible representations, and
U(FDi) is solvable.

If |S| =8, S^ ß or fl4; the faithful representation is unique up to equivalence.
Hence S is equivalent (conjugate) to

KU-U>~*-<fo K')>
If \S\ = 12, S is dihedral since any subgroup of order 12 of GL(2, 3) is dihedral.

Consequently, 5" is a /?-group, a contradiction.
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If \S\ = 16, U(FS) is not solvable. To see this, notice first that S is conjugate to

Since (A,B) = A2, |S'| = [S:S']=4.
Since U(FS) is solvable, S must have, according to the lemma after Theorem 8,

(16 —4)/4 = 3 absolutely irreducible representations of degree two definable in F.
The kernel of such a representation must be </> or <—/>; there are, up to equiv-
alence, only two such representations, again a contradiction. In particular, £/(F2)
is not solvable.

// |S| =48, £/(FS)^ U(FS) so U(FS) is not solvable.
Suppose |S|=24. Write L for GL(2, 3). Then L' = S, the unique subgroup of F

of order 24. Consider any absolutely irreducible representation of L' in L with
kernel (say) N. If 3| \N\, then N contains all 3-elements, and |jY| Sí 12, but then
\L'/N\ fi2 and the representation is not absolutely irreducible after all. Suppose
then that N is a 2-group. Then NS Q=L". The subgroups of order 4 of L' are not
normal in L'; hence Ar=</>, < —/>, or Q and \L'/N\ =24, 12, or 3, respectively.
Unless A/=</>, the representation is not absolutely irreducible and so L' has at
most one absolutely irreducible representation in L. But L' has only one linear
representation and it has three 3-regular classes, so U(FS) is not solvable [3].

The proof of the following lemma is now complete.

Lemma 2. // S¿GL(2,/?) and p = 2 or 3 then S is absolutely irreducible and
U(GF(p)S) is solvable if and only if p = 2 and S=GL(2, 2)3 D3 or p = 3 and S is
quaternion or dihedral of order 8.

Lemma 3. Suppose F has prime characteristic p, Ax G is finite, U(FG) is solvable,
A is abelian of order relatively prime to p, and G' is not a p-group. Then U(F(A x G))
is solvable if and only if

(i) F=GF(2)andA = \ or
(ii) F= GF(3) and A has exponent 2.

Proof. Clearly U(F(A x G)) is solvable, under the assumptions stated, if (i)
holds. If (ii) holds then Aü TI C2, FA^®Yl FC&2F, F(A x G)^FA ®F FG
3(2 E) ®F FG^2 EG, and finally, U(F(A x G))3 TI U(FG) which is solvable.

Assume U(F(A x G)) is solvable. Since A has order prime to p and is commuta-
tive, FA^ZFi for fields F¡ over F Thus F(AxG)^FA ®F FG^2 1 ®f EG
S 2 EtG. The solvability of U(F(A x G)) now implies the solvability of each group
U(FtG). Since G is not an abelian extension of a/?-group, each field F¡3GF(2) or
GF(3). If/? = 2, then FA^J,GF(2), U(FA)=\, A = \. If p = 3, FA^ZGF(3),
U(FA)?*YlC2,A2=l.

For reference, here are some facts on subdirect products. See [7, p. 63]. Let
S^GxH, M = {geG\ (g, 1) e S}, N={heH\ (l,h)eS}. Then S is a subdirect
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product of G and H if the projections of 5 into G and H are onto. If S is a sub-
direct product,

(i) there is an isomorphism m : G\M —> H/N such that (g, h) e S if and only if
m(gM) = hN;

(ii) MxN is the maximal external direct product contained in S* and will be
designated cart S;

(iii) if a and ß are homomorphisms on G and H, respectively, with kernel a á M
and kernel ß^N, then S*={(a(g), ß(h)) | (g, h) e S} is a subdirect product of 0(G)
and ß(H) with cart S* = a(AOx0(AO, and a(G)/a(M)^ß(H)/ß(N)^G/M^H/N;

(iv) ifJV=l, S^G;
(v) if M= G and Af=i/, then S=GxH;

(vi) if 5 is a subdirect product of G1;..., Gn with elements written
(gi, g2,---, gn), gi 6 G¡, then each mapping (gu g2,..., gn) -^ (gh, gi2,..., gik) is a
homomorphism onto a subdirect product of Gh,..., Gjfc.

In particular, if in (vi) for each distinct pair i\ < i2 the resulting product of Gh
and Gi2 is not a direct product we will say that 5 is pairwise nondirect.

If (i) holds for normal M and A^, then S is a subdirect product of G and H.

Theorem 9. The following three conditions are equivalent.
(i) The unit group  U(GF(2)S) is solvable and S is a subdirect product of

G1;..., Gm with each G¡= D3.
(ii) The group S is a pairwise nondirect subdirect product of Gu ..., Gm with

each G¡2 A-
(iii) The group S is an extension of an elementary abelian 3-group N of order 3m

by an element a of order 2 which transforms each element of N into its inverse.

Proof, (i) implies (ii). To see this let F=GF(2), A = <a, b~), a2 = b3 = \,ba = b~1.
If S is not pairwise nondirect then m > 1 and U(FS) has a factor group of the form
U(F(D3 x D3)), which has in turn a nonsolvable subgroup Í/(F«¿?> x Aï)) accord-
ing to Lemma 3.

To prove (ii) implies (iii) let G¡ = <aj, ¿?¡>, a2 = b3 = \, bf' = b¡~x and use induction.
If «7=1, then just let S=D3, N=<[b1), and a = ax. Assume for all k<m that any
pairwise nondirect subdirect product of Gl5..., Gk has the property of S in (iii)
and let S be a pairwise nondirect subdirect product of Gu ..., Gm. Then S is a
subdirect product of S* and Gm where S* is a subdirect product of G1;..., Gm_!.
Now S* is pairwise nondirect so S* = (N*, a*} as in condition (iii). There are
subgroups Ni A S* and N2 A Gm and an isomorphism a: S*/N1 •?*■ GJN2 such that
(s*,gm)e S if and only if a(s*N1)=gmN2. If a(S*/N1) = GJN2=l, S=S*xGm,
which means S is not pairwise nondirect, a contradiction. If a(S*/N1)^D3, then
S=S* and has the desired property. If a(S*/N1)'^C2, then N1 is of index 2,
N, = N*,N2 = <Z?m>, and S= (N* x </3m» u (a*N x am{bm}). Let N=N*x </3m> and
a = (a*,am). Then aeS, a2 = l and (tí*, ¿4)a = (n*, b^)"1 for every «* in N* and
every i. Hence S has the desired property.
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And finally we prove (iii) implies (i). Consider S=(,N, a} as in (iii). Any subgroup
of N is normal in S and N= S'. Hence the absolutely irreducible linear representa-
tions of S correspond one-to-one with those of S/N^C2; at characteristic 2 there
is only one such representation. The 2-regular classes of S are {1} and all pairs
{«, n'1} for n in N since nî = nï1 but n\^ = nx for «i, «2 in N; there are thus
(3m— l)/2 2-regular classes different from {1}. But this is just the number of sub-
groups of index 3 in N, which is the number of normal subgroups of index 6 in N.
To see this, notice that the number of ordered bases for a fixed maximal GF(3)-
subspace N* of N times the number of complementary vectors for A^* is just the
number of ordered bases for N such that all but the last vector form together a
basis for N*. This number, (3n~1-l)-■ ■(3n-1-3n-2)(2-3n-1), divided into the
number (3n—1)- • -(3n —3n_1) of ordered bases for N, gives the number of sub-
groups of index 3 in N. Such subgroups do not contain S', so S modulo any one
of them is isomorphic to D3. These (3m—1)/2 subgroups are kernels for nonlinear
absolutely irreducible representations for S by GF(2, 2)—in fact, for all the non-
linear ones. By Theorem 6, U(GF(2)S) is solvable. The fact that S is a product of
m copies of D3 follows by induction on m. The result is trivial for m = \. If
S = <A/, a> with N of order 3m then N=N*x(bmy with bm of order 3. Let S*
= (N*, a>; by the induction hypothesis this is a subdirect product of m— 1 copies
of D3. Next S*/N*^D3/<b")^C2 where D3 = (a', b'}. Defining

S' = (N* x <Z>'» U (aN* x a\b'y),

we have a subdirect product of S* and D3, hence of m copies of D3. But
S' = (N, (a, a')> and (nu «2)<a'a') = («ï, n$) = (n1, «2)_1 for «i in N* and «2 in <¿?'>;
hence, S'^S.

Theorem 10. Suppose F is afield of characteristic 2 and G is a finite group such
that G' is not a 2-group. Then U(FG) is solvable if and only if F= GF(2) and
G* = G/02(G) is a pairwise nondirect subdirect product of copies of D3.

Proof. As before, let pu ..., ps be the absolutely irreducible representations of G
at characteristic 2 where pu..., p, are the linear ones. If pt is linear, then pt(G) is a
subgroup of nonzero elements of a field of characteristic 2 and so p¡(G) is cyclic
of odd order. If l=s, G*, as a subdirect product of Pi(G),..., /?S(G), is abelian,
contrary to assumption; hence l<s.

Suppose U(FG) is solvable. Then F= GF(2) and Pi(G)^GL(2, 2) for i>l accord-
ing to Theorem 6. Thus G* is a subdirect product of odd order cyclic groups
/?i(G),.. . ,/?¡(G) and one or more copies pl + 1(G),..., ps(G) of D3. This makes G*
a subdirect product of A and B for an odd order abelian A and a subdirect product
B^= 1 of copies of D3. There are subgroups Nx A A, N2 A B, and an isomorphism
A/Ni^B/N^ Since A/Nx is of odd order, A/N^B/N^l, G*^AxB; so by Lem-
ma 3 and the fact that U(FG*) is solvable, A = 1 and G*3 B. Thus U(FB) is solvable
and B is pairwise nondirect by Theorem 9.
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Conversely, if F=GF(2) and G* is such a product of copies of D3, then by
Theorem 9, U(FG*) is solvable. Then by Theorem 6, U(FG) is solvable because
representations of G* are essentially representations of G.

Theorem 11. Suppose F is a field of characteristic 3 and G is a finite group such
that G' is not a 3-group. Then U(FG) is solvable if and only if F= GF(3) and
G* = G/03(G) is a 2-group with e(G*) = (|G*| — [G*:G*'])/4 normal subgroups of
index 8 that do not contain G*'.

Proof. Assume U(FG) solvable. Then F=GF(3) and G* is a subdirect product
of A and B where A is a subdirect product of cyclic groups Pl(G),..., Pi(G) of
orders prime to 3 and B is a subdirect product of Pl + X(G),..., Ps(G), each of which
is a 2-group isomorphic to Q or A by Theorems 6, 7 and Lemma 2. Then
A = A1xA2 where A1 is odd-order abelian and A is an abelian 2-group. Hence G*
is a subdirect product of A1 and C where C is a subdirect product of A2 and B
and is a 2-group. Since (|^i|, |C|)=1, G* ^A1xC. Since G* is nonabelian, C is
too. By Lemma 3, A1 is an elementary abelian 2-group, so A1 — \ and G*^C.

By Lemma 1, G* has e(G*) absolutely irreducible representations of degree 2.
The kernels of these representations must be the normal subgroups of index 8 in
G* that fail to contain G*' since the images are of the form Q or A. Consequently,
G* has exactly e(G*) such subgroups.

Conversely, if F= GF(3) and G* is a 2-group which has exactly e(G*) normal
subgroups N¡ of index 8 that do not contain G*', then there is a different absolutely
irreducible representation for each N¡ and each such representation is of degree 2
and definable over GF(3). But from the equation

|G*| = 2nf = l+4(b-l)+   J   n2,

where «¡>2 if and only if i>b and the «¡'s are the degrees of the absolutely irre-
ducible representations of G*, we see that 2f=b + i «? = 0 so b = s and so by Theorem
6, U(FG) is solvable.

The last result can be refined by adding necessary conditions for U(FG*) to be
solvable.

Theorem 12. Suppose U(FS) is solvable, F=GF(3), and S is a nonabelian 2-
group. Then S is a subdirect product of copies of C2, C4, A, and Q.

Proof. With m>\ let S be a subdirect product of C2«> = (cy and Q. Then
S=(c}xQ or S=<c> * g = <c2> x </> u c<c2>x/'</> where /' and /' are non-
commuting elements of Q of order 4. For m^3 there is an epimorphism
a: C2"> —> C8 with kernel a^<[c2}. Hence there are epimorphisms C2»> x <2 —>- CBx Q
and C2m * ß—>• C8 * Q. It suffices to show that for m = 3 U(FS) is not solvable.
Let m = 3. By Lemma 3, <c> x ß does not have a solvable unit group over F
Consider  S=<c>*ß,  of order  32.   Obviously,  S=<{c2, 1),  (1,/),  (c,/)>.   <S"
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= <(1, -1)> of index 16, and e(S) = 4. The subgroups Afi = <(c2, 1)> and N2
= <(c2, —1)> are normal, are of index 8, and do not contain S'. Suppose N is
another such group. Then N^ <c2> x </> since c is of order 8, and N cannot contain
(c2, 1), (c6, 1), (c2, — 1), or (ce, — 1) since any one of them generates A\ or N2. Also
(1, -\)$N since it generates S'. If g = (c2q, ±Í) eN, then (I, -l)=rYc,i>e^
The only elements of <c2>x</> that N could contain are (1, 1), (c4, 1), and (c4, -1),
an absurdity. Hence Nx and N2 are the only possibilities and U(FS) is not solvable.
It follows that for m 2: 3 the subdirect products S of C2™ and ß do not have solvable
J7(F5).

Let S be a subdirect product of C2*> = (c} and Aj = <«, ¿>>, a2 = bi=\, ba = b~1.
Then, up to an isomorphism, S=(c} x Dt, S=(c} * A = <c2> x <&> u c<c2> x a<Z?>,
or S=(c} ** D1 = (c2} x <a, ¿>2> u c<c2> x b(fl, b2}. Again it suffices to consider
m = 3. First, U(FS) is not solvable if S=(c} x A- Consider secondly S= <c> * A>
of order 32. We have S=(,(c2, 1), (1, b), (c, a)}, S' = <(1, ¿>2)> of index 16, and
e(S) = 4. The only two normal subgroups of index 8 not containing S' are
Af1 = <(c2, l)> and N2 = ((c2, b2)). Hence U(FS) is not solvable. Thirdly, the group
S = (c} ** A has order 32. Clearly we have S=((c2, 1), (1, a), (1, ¿?2), (c, b)~), so
S'=<(1,62)> of index 16, and e(S)=4. Again we have only Ar1 = <(c2, 1)> and
N2 = <(c2, ¿?2)>, so U(FS) is not solvable. Thus for m g3 if S is a subdirect product
of C2" and At then U(FS) is not solvable.

Finally, if S is a 2-group with U(FS) solvable, then S is a subdirect product of
cyclic 2-groups and copies of Q and A- If S is also nonabelian, then at least one
copy H of Q or At wm be present. If C2m is one of the cyclic groups, then some
subdirect product of C2m and H is a homomorph of S. Hence m < 3 for each C2m
in the factorization of S.

Corollary 1. If S is a nonabelian 2-group with U(GF(3)S) solvable, then S has
exponent 4, Z(S) has exponent 2, S/Z(S) has exponent 2, and conjugate elements
of S are congruent modulo Z(S).

Proof. A subdirect product of groups of exponents 2 or 4 must have exponent
2 or 4. A group S of exponent 2 would be abelian.

Consider S^ Pi x ■ ■ ■ xTn with each T¡ isomorphic to C2, C4, At* or Ô- Then if
« = («i,..., hn) eZ(S), each ha is central in Ta. If Ta = C4 = <ca> and Tß=Q or A
(which happens for at least one ß), then «„= + 1 e Q, or he=b2 e At- Since H
= {(h<xi he) I (hi, ■ ■ -, hn) e S} has solvable U(FH), ha=\ or c2. Obviously, «2 = 1
and «2 = 1. Therefore Z(S) has exponent 2.

If F= Q or At, then Z(F) has exponent 2 and T/Z(T) has exponent 2. Let jeS.
Then g2 = (g2,. -., g2), each g2 with Te = Q or At is central, the other factors g2
are central in the cyclic groups Ta. Thus g2 eZ(S) and S/Z(S) has exponent 2.

Since conjugate elements of C2, C4, g, or A arc congruent modulo their respec-
tive centers, the same property is possessed by any subdirect product S of such
groups.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1971] SOLVABILITY OF UNIT GROUPS OF GROUP ALGEBRAS 85

Corollary 2. If S is a nonabelian 2-group and U(GF(3)S) is solvable, then
S = ExI where E is elementary abelian and I is an indecomposable nonabelian
subdirect product of copies of C4, Q, and A. Conversely, if U(GF(3)I) is solvable,
I is a 2-group, and E is an elementary abelian 2-group, then U(GF(3)(ExI)) is
solvable.

Proof. It is clear from Lemma 3 that S=ExI with E elementary abelian and I
indecomposable and nonabelian. Now /is a subdirect product of 7\,..., Tm where
each Ta is of the form C2, C4, Q, or A- If Ta^C2, then /is a subdirect product of
Ta and a nonabelian /x. But I£TaxIu hence Isli where /j is a subdirect product
°f {Tß}ß#a- An inductive argument shows that all Ta^C2 can be ignored. The con-
verse is immediate from Lemma 3.

The necessary conditions presented in Theorem 12 and its corollaries are not
sufficient. The group

S=((a, \),(b2,\),(\,b),(b,c)y

is a subdirect product of A with A; but U(GF(3)S) is not solvable.

Theorem 13. If G is finite and F has characteristic /?s?0, then U(FG) is nilpotent
if and only ifG — A xP for a p-group P and an abelian group A.

Proof. If G = AxP, FG^FA ®FFs(2F) ® FP for fields F over F. Thus
FG^2(Fi ® FP)^2FP, and U(FG)^ "FT U(FiP). But each

U(FP) s F* x(l+rad FF)

[4], so that U(FiP) is nilpotent. Hence U(FG) is nilpotent.
Conversely, if U(FG) is nilpotent, then G^U(FG) is nilpotent, so that

G=PxP*, where P* is a/?'-group. Now U(FP*) is nilpotent—hence, solvable—
so U(FP*)^ "FTj GL(n{, P) where each «¡= 1 or 2. In fact, no «¡ = 2, for no GL(2, /?)
is nilpotent. Hence P* is abelian.

Theorem 13 appeared in [2].

Lemma. Let D be a division ring. Then U(D) is supersolvable if and only if D is
finite.

Proof. If D is finite, U(D) is finite abelian. Conversely, if U(D) is supersolvable
then there exist ax,..., am such that each S # 0 in D has the form Y\T= i of'- If «» has
infinite order, cc¡ is transcendental overZp. But then U(Zp(at)) is not finitely generated
because there is an infinite set of unassociated primes in Zp[a^\. Thus each a, has
finite order and D is finite.

Theorem 14. Let A be a finite-dimensional F-algebra with 1 that is separable
modulo its radical. Then U(A) is supersolvable only if F is finite and in the decompo-
sition A¡rad A s 2 Mn¡(Di), each «¡= 1 or 2, each A is afield, and if some n{ = 2 then
Dl = F=GF(2).
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Proof. Suppose U(A) supersolvable. Then U(F)-¿ U(A) so Fis finite. Also U(A)
is solvable but GL(2, 3) is not supersolvable so the remaining conditions are
necessary.

Theorem 15. Let A be as in Theorem 14. Then U(A) is p-solvable if and only if A
is finite and U(A) is solvable.

Proof. Let p be a prime and ^4/rad A 3 2 ^¡(A)- Suppose U(A) is ^-solvable,
then A is finite and each A is a field F¡. Also U(A) is ̂ -solvable if and only if each
GL(«(, F¡)   is   since   U(A)/Op(U(A))^U GE('h, F).  If  GL(m, K)  is  /?-solvable,
K=GF(q),  and  m>\,  then  (l+q-\-y-q^q"1'1  divides   \PSL(m,q)\   and  so
PSL(m,q) is not simple, i.e., q = 2 or 3 and m = 2. Conversely, if m=\ or if m = 2
and 9 = 2 or 3, then GL(m, q) is/?-solvable. The result now follows from Theorem 5.

Remarks. The first paragraph of the above proof of Theorem 13 is from the
author's dissertation and provides a correction to [2]. Bhattacharya and Jain found
a counterexample to the lemma of [2] and announced a correction (see Notices of
the American Mathematical Society, April 1969). The finiteness part of Theorem
14 was obtained independently by Eldridge in the more general setting of Artinian
rings (see Notices of the American Mathematical Society, August 1968).
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