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Abstract

Let G be a Lie group and Γ be a discrete subgroup. We show that if
{µn} is a convergent sequence of probability measures on G/Γ which
are invariant and ergodic under actions of unipotent one-parameter
subgroups, then the limit µ of such a sequence is supported on a closed
orbit of the subgroup preserving it, and is invariant and ergodic for
the action of a unipotent one-parameter subgroup of G.

1 Introduction

Let G be a connected Lie group, Γ be a discrete subgroup of G, and let
π : G → G/Γ be the natural quotient map. Let X denote the homogeneous
space G/Γ on which G acts by left translations.

Let P(X) denote the set of borel probability measures on X equipped
with the weak∗ topology. The group G acts on P(X) such that for every
g ∈ G and µ ∈ P(X), we have gµ(A) = µ(g−1A) for all borel measurable
subsets A ⊂ X. The action (g, µ) 7→ gµ is continuous.

For µ ∈ P(X), define

supp(µ) = {x ∈ X : µ(Ω) > 0 for every neighbourhood Ω of x in X}
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Then supp(µ) is a closed subset of X. Also define the invariance group

Λ(µ) = {g ∈ G : gµ = µ}.

Then Λ(µ) is a closed (and hence a Lie) subgroup of G.
A curve c : [0,∞) → X is said to be uniformly distributed with respect

to a measure µ ∈ P(X) if for every bounded continuous function f on X,

lim
T→∞

∫ T

0
f(c(t)) dt =

∫
X

f dµ.

We recall that a subgroup U of G is said to be unipotent , if the linear
automorphism Ad u of the Lie algebra of G is unipotent for all u ∈ U .

Now we state the main result of this paper.

Theorem 1.1 Let {{ui(t)}t∈R} be a sequence of unipotent one-parameter
subgroups of G, and let {µi} be a sequence in P(X) such that for each i ∈ N,
µi is an ergodic {ui(t)}t∈R-invariant measure. Suppose that µi → µ in P(X),
and let x ∈ supp(µ). Then the following holds:

1. supp(µ) = Λ(µ)x.

2. Let gi → e be a sequence in G such that for every i ∈ N, gix ∈ supp(µi)
and the trajectory {ui(t)gix : t > 0} is uniformly distributed with respect
to µi. Then there exists i0 ∈ N such that for all i ≥ i0,

supp(µi) ⊂ gi · supp(µ).

3. Let L be the subgroup generated by all the (unipotent one-parameter)
subgroups g−1

i {ui(t)}gi, i ≥ i0. Then µ is invariant and ergodic for the
action of L on X.

A measure µ ∈ P(X) is said to be algebraic if supp µ is a (closed) orbit
of the invariance group Λ(µ).

Let Q(X) = {µ ∈ P(X) : the group generated by all unipotent one-
parameter subgroups of G contained in Λ(µ) acts ergodically on X with
respect to µ}. In fact, every µ ∈ Q(X) is ergodic for the action of a single
unipotent one-parameter subgroup of G contained in Λ(µ) (see Lemma 2.3).

The following fundamental result concerning the rigidity of unipotent ac-
tions on homogeneous spaces is one of the essential ingredients in our proof.
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The reader is referred to the survey article [Ra93] for some related develop-
ments.

Theorem (Ratner [Ra91a]). Every measure in Q(X) is algebraic. ut

In addition to this basic result, our proof of Theorem 1.1 involves the
study of unipotent trajectories in ‘thin’ neighbourhoods of certain ‘singular’
subsets of X. We use the ideas and methods developed in [DS84], [DM90],
[Sh91], and [DM93] for studying such trajectories via suitable linear represen-
tations of G. The method allows one to ‘linearize’ the thin neighbourhoods
and study unipotent trajectories in the representation space rather than in
G/Γ. This facilitates the use of the polynomial behaviour of unipotent trajec-
tories in the representation space for studying the corresponding trajectories
in X.

In the above terminology Theorem 1.1 implies the following.

Corollary 1.1 Q(X) is a closed subset of P(X).

For x ∈ X, define Q(x) = {µ ∈ Q(X) : x ∈ supp(µ)}.

Corollary 1.2 For every x ∈ X, Q(x) is a closed subset of P(X).

For the rest of the results stated in the introduction, we assume that X
admits a finite G-invariant measure or, in other words, Γ is a lattice in G.

The following result is crucial in studying the action of a unipotent one-
parameter subgroup on a noncompact homogeneous space of finite volume.

Theorem (Dani and Margulis [DM93, Theorem 6.1]). Given a com-
pact set C ⊂ X and an ε > 0, there exists a compact set K ⊂ X such that
the following holds: For any x ∈ C, any unipotent one-parameter subgroup
{u(t) : t ∈ R} of G, and any T > 0,

1

T
` ({t ∈ [0, T ] : u(t)x ∈ K}) > 1− ε,

where ` denotes the Lebesgue measure on R. ut

This fact enables us to strengthen our main result to get the following
corollaries.

Let X ∪ {∞} denote the one-point compactification of X. Then P(X ∪
{∞}) is compact with respect to the weak∗ topology.
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Corollary 1.3 Let {µi} ⊂ Q(X) be a sequence of measures converging weakly
to a measure µ ∈ P(X ∪ {∞}). Then either µ ∈ Q(X) or µ({∞}) = 1.

Corollary 1.4 For every x ∈ X, the set Q(x) is compact with respect to the
weak ∗ topology.

Let W = {Ui = {ui(t)}} be a sequence of unipotent one-parameter sub-
groups of G. We say that a point x ∈ X is regular for W if there does not
exist any proper closed subgroup F of G such that the orbit Fx is closed and
F ⊃ Ui for infinitely many i ∈ N.

We say that a point x ∈ X is generic for W if for every bounded contin-
uous function f of X the following holds: There exists a sequence Si → ∞
in R such that for any sequence {Ti} with each Ti ≥ Si, we have

lim
i→∞

1

Ti

∫ Ti

0
f(ui(t)x) dt =

∫
X

f dµG,

where µG is the G-invariant probability measure on X.

Corollary 1.5 A point x ∈ X is generic for W if and only if it is regular
for W.

2 Description of finite invariant measures of

a unipotent flow

We first note the following.

Lemma 2.1 Let F be a closed subgroup of G and let x ∈ X be such that the
orbit Fx is closed. Let ∆ = {δ ∈ F : δx = x}. Then the map φ : F/∆ → X,
defined by φ(g∆) = gx for all g ∈ F , is injective and proper. ut

The following simple observation enables us to apply Ratner’s theorem
in our proof of the main theorem.

Lemma 2.2 Let the notations be as in the statement of Theorem 1.1. Sup-
pose that {ui(t)} 6= {e} for all large i ∈ N. Then Λ(µ) contains a non-trivial
unipotent one-parameter subgroup of G.
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Proof. For each i ∈ N there exists wi ∈ g such that ‖wi‖ = 1 and {ui(t) :
t ∈ R} = {exp(twi) : t ∈ R}, where g is the Lie algebra of G and ‖ · ‖
denotes a Euclidean norm on it. By passing to a subsequence, we may
assume that wi → w for some w ∈ g, ‖w‖ = 1. For any t ∈ R, we have
Ad(exp(twi)) → Ad(exp(tw)) as i → ∞. Therefore U = {exp(tw) : t ∈ R}
is a (nontrivial) unipotent subgroup of G. Since exp twi → exp tw for all t
and µi → µ, it follows that µ is invariant under the action of U on X. ut

The next result says that every measure in Q(X) is ergodic with respect
to a unipotent one-parameter subgroup of G.

Lemma 2.3 Let W be a closed subgroup of G generated by unipotent one-
parameter subgroups of G contained in W . Suppose that W acts ergodically
with respect to a measure µ ∈ P(X). Then there exists a unipotent one-
parameter subgroup of G contained in W which acts ergodically with respect
to µ.

Proof. Let N be a maximal connected unipotent subgroup of G contained in
W . Then no proper normal subgroup of W contains N (see [Sh91, Lemma
2.9]). Therefore by Mautner phenomenon, N acts ergodically with respect to
µ (see [Mo80, Theorem 1.1] and [Ma91]). Since N is a nilpotent group, there
exists a one-parameter subgroup of N which acts ergodically with respect to
µ (see [Da89, Proposition 2.2] or [Ra91a, Proposition 5.1]). ut

The following result is useful in applying the theorem of Ratner to de-
scribe all finite invariant (possibly non-ergodic) measures for unipotent ac-
tions.

Proposition 2.1 Let F be a connected Lie group, ∆ be a lattice in F , and
W be a subgroup which is generated by unipotent one-parameter subgroups of
F contained in W . Let L be the smallest closed subgroup of F containing W
such that the orbit L∆/∆ is closed in F/∆. Then the following holds:

1. L ∩∆ is a lattice in L.

2. W acts ergodically on L∆/∆ ∼= L/L∩∆ with respect to the L-invariant
probability measure.

3. Let ρ : F → GL(V ) be a finite dimensional representation such that for
every unipotent one-parameter subgroup U of F contained in W , ρ(U)
consists of unipotent transformations on V . Then ρ(L ∩∆) is Zariski
dense in ρ(L).
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Proof. Statements 1) and 2) follow from [Sh91, Theorem 2.3]. Statement 3)
follows from [Sh91, Proposition 2.11 and Corollary 2.13]. ut

Let H be the collection of all closed connected subgroups H of G such
that H ∩Γ is a lattice in H and the subgroup generated by all the unipotent
one-parameter subgroups of G contained in H acts ergodically on HΓ/Γ with
respect to the H-invariant probability measure.

In particular, by Proposition 2.1, Ad(H ∩ Γ) is Zariski dense in Ad(H)
for every H ∈ H, where Ad denotes the Adjoint representation of G.

Theorem 2.1 ([Ra91a, Theorem 1.1]) H is a countable collection. ut

See [DM93, Proposition 2.1] for an alternative proof of this fact. Also
compare [Sh91, Lemma 5.2].

Let W be a subgroup of G which is generated by unipotent one-parameter
subgroups of G contained in W . For H ∈ H, define

N(H, W ) = {g ∈ G : W ⊂ gHg−1},

S(H, W ) =
⋃

H′∈H, H′⊂H, H′ 6=H

N(H ′, W ),

and
TH(W ) = π(N(H, W ) \ S(H, W )).

Lemma 2.4 For any g ∈ N(H, W )\S(H, W ), the group gHg−1 is the small-
est closed subgroup of G which contains W and whose orbit through π(g) is
closed in X.

In particular, TH(W ) = π(N(H, W )) \ π(S(H, W )).

Proof. Let L be the smallest closed subgroup of G such that W ⊂ L and
Lπ(g) is closed. Since W ⊂ gHg−1 and the orbit gHg−1 · π(g) = g(HΓ/Γ) is
closed, we have L ⊂ gHg−1. Put H ′ = g−1Lg ⊂ H. Then due to Lemma 2.1
and Proposition 2.1, H ′ ∈ H. Since g ∈ N(H ′, W ) and g 6∈ S(H, W ), we
have H ′ = H. Hence gHg−1 = L. ut

Corollary 2.1 For any H1 H2 ∈ H, we have that

TH1(W ) ∩ TH2(W ) 6= ∅ ⇔ H2 = γH1γ
−1 for some γ ∈ Γ

⇔ TH1(W ) = TH2(W ).
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Proof. Use Lemma 2.4. ut
In the next result we give a description of a finite invariant measure of

a unipotent flow, using the Ratner’s classification of finite ergodic invariant
measures of this flow.

Theorem 2.2 Let µ ∈ P(X) be a W -invariant measure. For every H ∈ H,
let µH denote the restriction of µ on TH(W ). Then the following holds.

1. For all borel measurable subsets A ⊂ X,

µ(A) =
∑

H∈H∗
µH(A),

where H∗ ⊂ H is a countable set consisting of one representative from
each Γ-conjugacy class of elements in H.

2. Each µH is W -invariant. For any W -ergodic component ν ∈ P(X) of
µH , there exists a g ∈ N(H, W ) such that ν is the (unique) gHg−1-
invariant probability measure on the closed orbit gHΓ/Γ.

Proof. Disintegrate µ into W -ergodic components. Due to Ratner’s theo-
rem [Ra91a], each one of them is an algebraic measure. Using Proposition 2.1,
we can conclude that each one of them is of the form gνH for some H ∈ H
and g ∈ N(H, W ). Now 1) and 2) can be obtained by using Theorem 2.1,
Lemma 2.4, and Corollary 2.1. ut

3 Dynamics of unipotent trajectories in thin

neighbourhoods of TH(W )

Let W be as in Section 2, and H ∈ H. Let g denote the Lie algebra of G
and let h denote its Lie subalgebra associated to H. For d = dimh, put
VH = ∧dg, the d-th exterior power, and consider the linear G-action on VH

via the representation ∧d Ad, the d-th exterior of the Adjoint representation
of G on g. Fix pH ∈ ∧dh \ {0}, and let ηH : G → VH be the map defined by
ηH(g) = g · pH = (∧d Ad g)pH for all g ∈ G. Note that

η−1
H (pH) = {g ∈ N(H) : det(Ad g|h) = 1},
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where N(H) denotes the normalizer of H in G.
Put ΓH = N(H) ∩ Γ. Then for any γ ∈ ΓH , we have γ(HΓ/Γ) = HΓ/Γ,

and hence γ preserves the volume of HΓ/Γ. Therefore | det(Ad γ|h)| = 1,
and hence γ · pH = ±pH .

In view of this we define V̄H = VH/{1,−1} if ΓH · pH = {pH ,−pH},
and define V̄H = VH if ΓH · pH = pH . The action of G factors through the
quotient map of VH onto V̄H . Let p̄H denote that image of pH in V̄H , and
define η̄H : G → V̄H as η̄H(g) = g · p̄H for all g ∈ G. Then ΓH = η̄−1

H (p̄H)∩Γ.

Theorem 3.1 ([DM93, Theorem 3.4]) The orbit Γ · p̄H is discrete in V̄H .
In particular, the map G/ΓH → G/Γ× V̄H , given by gΓH 7→ (π(g), η̄H(g))

for all g ∈ G, is proper. ut

Proposition 3.1 ([DM93, Proposition 3.2]) Let AH denote the Zariski
closure of η̄H(N(H, W )) in V̄H . Then

η̄−1
H (AH) = N(H, W ).

ut

Proposition 3.2 Let D be a compact subset of AH . Define

S(D) = {g ∈ η̄−1
H (D) : gγ ∈ η̄−1

H (D) for some γ ∈ Γ \ ΓH}.

Then the following holds:

1. S(D) ⊂ S(H, W ).

2. π(S(D)) is closed in X.

3. For any compact set K ⊂ X \ π(S(D)), there exists a neighbourhood
Φ of D in V̄H such that every y ∈ π(η̄−1

H (Φ)) ∩ K has a unique rep-
resentative in Φ; that is, the set η̄H(π−1(y)) ∩ Φ consists of a single
element.

Proof. The proof is essentially contained in [DM93, Sect. 3]. (Also compare
[Sh91, Sec. 6]).

Let g, gγ ∈ η̄−1
H (D) be such that γ ∈ Γ \ ΓH . Then by Proposition 3.1,

g, gγ ∈ N(H, W ). Hence by Lemma 2.4, either g ∈ S(H, W ) or gHg−1 ⊂
(gγ)H(gγ)−1; but the latter is not possible since γ 6∈ ΓH . This proves 1).

8



For proving 2) and 3), first let K be any compact subset of X. Suppose
that there exist sequences {gi} ⊂ π−1(K) and {γi} ⊂ Γ \ ΓH such that
η̄H(gi) → q and η̄H(giγi) → q′ in V̄H for some q, q′ ∈ D. Due to Theorem 3.1,
by passing to subsequences we may assume that, the sequences {giΓH} and
{giγiΓH} are convergent in G/ΓH . Therefore there exist g ∈ G and γ ∈ Γ
such that giΓH → gΓH and giγiΓH → gγΓH as i →∞. Since {γi} ⊂ Γ \ ΓH ,
we have γ ∈ Γ \ ΓH . Clearly π(g) ∈ K, η̄H(g) = q, and η̄H(gγ) = q′.
Therefore g ∈ S(D) ∩ π−1(K).

From the above discussion, we can conclude that the set π(S(D)) ∩K is
compact. This implies 2).

The same discussion also shows that if K∩π(S(D)) = ∅, then there exists
a neighbourhood Φ of D in V̄H such that for any g ∈ π−1(K), if η̄H(g) ∈ Φ
then η̄H(gγ) 6∈ Φ for any γ ∈ Γ \ ΓH . This proves 3). ut

The above result allows us to relate a trajectory of a unipotent one-
parameter subgroup of G in the set K ∩ π(η̄−1

H (Φ)) with a trajectory of it
in Φ. Since the orbits of unipotent one-parameter subgroups on a finite
dimensional vector space are polynomial curves of bounded degree, we can
use properties of polynomial functions to obtain information about dynamical
behaviour of unipotent trajectories in neighbourhoods of compact subsets of
TH(W ), which are of the form K ∩ π(η̄−1

H (Φ)). In view of Theorem 2.2, this
will help us in describing the measure µH , and hence the measure µ.

The next result is very useful in understanding the behaviour of unipotent
trajectories near the algebraic variety AH .

Proposition 3.3 ([DM93, Proposition 4.2]) Let a compact set C ⊂ AH

and an ε > 0 be given. Then there exists a compact set D ⊂ AH with C ⊂ D
such that for any neighbourhood Φ of D in V̄H , there exists a neighbourhood
Ψ of C in V̄H with Ψ ⊂ Φ such that the following holds: For a unipotent
one-parameter subgroup {u(t)} of G, an element w ∈ V̄H , and a bounded
interval I ⊂ R, if u(t0)w 6∈ Φ for some t0 ∈ I, then

` ({t ∈ I : u(t)w ∈ Ψ}) ≤ ε · ` ({t ∈ I : u(t)w ∈ Φ}) . (1)

ut

The next result is the main technical tool needed for our proof of Theo-
rem 1.1.
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Proposition 3.4 Let a compact set C ⊂ AH and a 0 < ε < 1 be given. Then
there exists a closed subset S of X contained in π(S(H, W )) such that the
following holds: For a given compact set K ⊂ X \S, there exists a neighbour-
hood Ψ of C in V̄H such that for any unipotent one-parameter subgroup {u(t)}
of G and any x ∈ X, at least one of the following conditions is satisfied:

1. There exists w ∈ η̄H(π−1(x)) ∩Ψ, such that

{u(t)} ⊂ Gw := {g ∈ G : gw = w}.

2. For all large T > 0,

`
(
{t ∈ [0, T ] : u(t)x ∈ K ∩ π(η̄−1

H (Ψ))}
)

< εT.

Proof. It is possible to deduce this result from [DM93, Theorem 7.3]; the
latter is stronger but its proof is technically more involved. Here we shall
give a simpler proof along the line of proof of Theorem 1 in [DM93].

For the given C and ε, obtain a compact set D ⊂ AH as in Proposition 3.3.
For this D, apply Proposition 3.2 to obtain a closed subset S = π(S(D)) of
X contained in π(S(H, W )). Now let K be any compact subset of X \ S
and let Φ be an open neighbourhood of D in V̄H as in 3) of Proposition 3.2.
Finally let Ψ be a neighbourhood of C in V̄H such that the Eq. 1 is satisfied.

Put Ω = π(η̄−1
H (Ψ)) ∩K, and define

J = {t ≥ 0 : u(t)x ∈ Ω}. (2)

Then for every t ∈ J , there exists a unique w ∈ η̄H(π−1(x)) such that u(t)w ∈
Φ; in which case u(t)w ∈ Ψ.

Since s 7→ u(s)w is a polynomial function, either it is constant or it is
unbounded as s → ±∞. In the first case the condition 1) is satisfied and
we are through. Therefore now we can assume that for every t ∈ J , there
exists the largest closed interval I(t) =: [t−, t+] in R containing t such that
the following three conditions are satisfied:

1. u(s)w ∈ Φ for all s ∈ I(t).

2. u(t−)w ∈ Φ \ Φ.

3. t+ ∈ J .
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Note that I(s) = I(t) for every s ∈ I(t)∩J , in particular for s = t+. Due
to this property, for any t1, t2 ∈ J ,

either I(t1) = I(t2) or I(t1) ∩ I(t2) = ∅. (3)

Since u(t−)w 6∈ Φ, due to Eq. 1, for any T ∈ I(t),

`
(
{s ∈ [t−, T ] : u(s)w ∈ Ψ}

)
≤ ε(T − t−).

Therefore,
`

(
{s ∈ [t−, T ] : u(s)x ∈ Ω}

)
≤ ε(T − t−). (4)

Let T0 = inft∈J t+. Then by Eqs. 2, 3, and 4, for any T > T0,

` ({s ∈ [T0, T ] : u(s)x ∈ Ω}) < εT.

Now for all T > T0/ε, the condition 2 is satisfied for 2ε in place of ε. ut

4 Proof of Theorem 1.1

Let W be the subgroup of G generated by all unipotent one-parameter
subgroups of G contained in Λ(µ). If dim W = 0, due to Lemma 2.2,
{ui(t)} = {e} for all large i ∈ N; in which case µ is also a point mea-
sure and the conclusion of the theorem is obvious. Therefore we may assume
that dim W > 0.

By Theorem 2.2 (1), there exists a H ∈ H such that µ(π(S(H, W ))) = 0
and µ(π(N(H, W ))) > 0. Hence there exists a compact set C1 ⊂ N(H, W ) \
S(H, W ) such that

µ(π(C1)) = α > 0. (5)

Let gi → e be a sequence in G such that for every i ∈ N, gix ∈ supp(µi)
and the trajectory {ui(t)gix}t>0 is uniformly distributed with respect to µi;
note that, due to Birkhoff ergodic theorem, such a sequence always exists.
Take any y ∈ supp(µ) ∩ π(C1). Then for each i ∈ N there exists yi ∈
{ui(t)gix}t≥0 such that as i → ∞, yi → y. Let hi → e be a sequence in G
such that hiyi = y for all i ∈ N. Put µ′i = hiµi and u′i(t) = hiui(t)h

−1
i for

all t ∈ R and all i ∈ N. Then µ′i → µ as i → ∞. Also y ∈ supp(µ′i) and
the trajectory {u′i(t)y : t > 0} is uniformly distributed with respect to µ′i for
each i ∈ N.
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Apply Proposition 3.4 for C = η̄H(C1) and ε = α/2. Let the notation be
as in the statement of the proposition. Since π(C1) ∩ π(S(H, W )) = ∅, we
can choose a compact neighbourhood K of π(C1) in X such that K ∩S = ∅.
Put Ω = π(η̄−1

H (Ψ)) ∩ K. Since µ′i → µ, due to Eq. 5, there exists k0 ∈ N
such that µ′i(Ω) > ε for all i ≥ k0. Therefore for any i ≥ k0 and all large
T > 0,

1

T
` ({t ∈ [0, T ] : u′i(t)y ∈ Ω}) > ε.

This shows that for each i ≥ k0, the condition 2) of Proposition 3.4 is violated
for {u′i(t)} and y. Since y ∈ π(C1) ⊂ K, there exists a unique representative
w of y in Ψ. Therefore according to the condition 1) of Proposition 3.4, for
each i ≥ k0,

{u′i(t)y}t∈R ⊂ (Gwy)0 = G0
wy,

where (Gwy)0 denotes the connected component of Gwy containing y and
G0

w denotes the connected component of Gw containing the identity. Due to
Theorem 3.1, the orbit Gwy is closed in X.

We intend to prove the parts 1) and 2) of Theorem 1.1 by induction on
dim G.

First suppose that dim G0
w < dim G. Due to Lemma 2.1, we can treat G0

wy
as a homogeneous space of G0

w. Also each {u′i(t)} is a unipotent subgroup
of G0

w and each µ′i is supported on G0
wy. Therefore by induction hypothesis

applied to G0
w, we obtain the following: supp(µ) = (Λ(µ) ∩ G0

w)y and there
exists j0 ∈ N such that for all i ≥ j0, supp(µ′i) ⊂ supp(µ).

Next suppose that dim G0
w = dim G. In this case Gw = G, and hence

H is a normal subgroup of G. Let Ḡ = G/H be the quotient group. Since
dim H ≥ dim W > 0, we have dim Ḡ < dim G. We will project the measures
on the homogeneous space G/(HΓ) of Ḡ and apply induction.

We need some notation. Let ρ : G → Ḡ be the quotient homomorphism.
Since HΓ is closed in G, the subgroup Γ̄ = ρ(Γ) is closed (and hence discrete)
in Ḡ. Put X̄ = Ḡ/Γ̄, and let ρ̄ : X → X̄ be the natural quotient map.
Define a map ρ̄∗ : P(X) → P(X̄) such that for any ν ∈ P(X) and any borel
measurable subset A ⊂ X̄, ρ̄∗(ν)(A) = ν(ρ̄−1(A)). Then ρ̄∗ is continuous.

Put ȳ = ρ̄(y). Observe the following: for each i ≥ k0, 1) {ρ(u′i(t))} is
a unipotent one-parameter subgroup of Ḡ, 2) ρ̄∗(µi) is ergodic {ρ(u′i(t))}-
invariant, 3) ȳ ∈ supp(ρ̄∗(µ

′
i)), and 4) the trajectory {ρ(u′i(t))ȳ}t>0 is uni-

formly distributed with respect to ρ̄∗(µ
′
i). Also ρ̄∗(µi) → ρ̄∗(µ) as i → ∞.
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Therefore by induction hypothesis applied to Ḡ, we obtain the following:

1. supp(ρ̄∗(µ)) = Λ(ρ̄∗(µ))ȳ.

2. There exists j0 ≥ k0 such that for all i ≥ j0,

supp(ρ̄∗(µ
′
i)) ⊂ supp(ρ̄∗(µ)).

We claim that
ρ−1(Λ(ρ̄∗(µ))) = Λ(µ).

Since H is normal in G, by Theorem 2.2 (2), each ergodic component of µH is
H-invariant. Since N(H, W ) = G and µ(π(S(H, W ))) = 0, we have µ = µH .
Therefore µ is H-invariant. Now the claim follows from Proposition 1.6 of
[Da78] applied to the quotient space G/HΓ.

Hence for all i ≥ j0,

supp(µ′i) ⊂ ρ̄−1(supp(ρ̄∗(µ))) = ρ−1(Λ(ρ̄∗(µ)))y = Λ(µ)y.

Thus if either dim G0
w < dim G or dim G0

w = dim G, we have obtained the
following conclusions: supp(µ) = Λ(µ)y, and there exists j0 ∈ N such that
for all i ≥ j0, supp(µ′i) ⊂ supp(µ). Thus x ∈ Λ(µ)y, and hence

supp(µ) = Λ(µ)x.

Since hi(gix) ∈ hi·supp(µi) = supp(µ′i) for all i ∈ N, we have (higi)x ∈ Λ(µ)x
for all i ≥ j0. Therefore since hi → e and gi → e, there exists i0 ≥ j0 such
that for all i ≥ i0, higi ∈ Λ(µ). Hence for all i ≥ i0,

supp(µi) = h−1
i · supp(µ′i) ⊂ h−1

i · Λ(µ)x = gi · supp(µ).

This proves parts 1) and 2) of Theorem 1.1 for G.
Now let L be defined as in part 3) of the theorem. Then Λ(µ)0 is the

smallest closed subgroup of G which contains L and whose orbit through y
is closed. Therefore by Proposition 2.1, L acts ergodically on Λ(µ)x with
respect to µ. This completes the proof of the theorem. ut

Proofs of Corollary 1.1 and Corollary 1.2. Use Lemma 2.3 and Theorem 1.1.
ut
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Proofs of Corollary 1.3 and Corollary 1.4. First observe that due to Lemma 2.3,
the Birkhoff ergodic theorem, and the theorem of Dani and Margulis men-
tioned in the introduction, for any ν ∈ Q(X), if ν(C) > 0 then ν(K) > 1− ε
(notation as in the statement of the theorem of Dani and Margulis). Now
use Corollary 1.1 and Corollary 1.2 to complete the proofs. ut

We need the following result for the proof of Corollary 1.5.

Theorem. (Ratner [Ra91b]) Suppose that X admits a finite G-invariant
measure. Let U = {u(t)} be a unipotent one-parameter subgroup of G and
x ∈ X. Then there exists a closed subgroup F of G containing U such that
the orbit Fx is closed, it admits a finite F -invariant probability measure, say
µ, and the trajectory {u(t)x : t > 0} is uniformly distributed with respect to
µ. ut

(We remark that this theorem may now be deduced also using the theo-
rem of Dani and Margulis stated in the introduction, Theorem 2.2, Proposi-
tion 3.4, as well as arguments similar to those in [Sh91, Corollary 7.1].)

Proof of Corollary 1.5. First suppose that x is regular for W . In view of
the above result, for each i ∈ N, the trajectory {ui(t)x : t > 0} is uniformly
distributed with respect to some µi ∈ Q(x). By Corollary 1.4, there exists
a sequence ik → ∞ such that µik → µ for some µ ∈ Q(x). Then by Theo-
rem 1.1, Uik ⊂ Λ(µ) for all large k ∈ N. Since x is regular for W , we have
that Λ(µ) = G. In particular, µi → µ = µG as i →∞.

Let f be a given bounded continuous function on X. Then for each i ∈ N,
there exists Si > 0 such that for every Ti > Si,∣∣∣∣∣

∫
X

f dµi −
1

Ti

∫ Ti

0
f(ui(t)x) dt

∣∣∣∣∣ < ε/i.

Now since µi → µG, we have

lim
i→∞

1

Ti

∫ Ti

0
f(ui(t)x)dt =

∫
fdµG.

Thus x is generic for W . The converse implication is obvious. ut
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