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Abstract. We utilize a condition for algebraic curvature operators called
surgery stability as suggested by the work of S. Hoelzel to investigate the
space of riemannian metrics over closed manifolds satisfying these conditions.
Our main result is a parametrized Gromov-Lawson construction with not nec-
essarily trivial normal bundles and shows that the homotopy type of this space
of metrics is invariant under surgeries of a suitable codimension. This is a gen-
eralization of a well-known theorem by V. Chernysh and M. Walsh for metrics
of positive scalar curvature.

As an application of our method, we show that the space of metrics of posi-
tive scalar curvature on quaternionic projective spaces are homotopy equivalent
to that on spheres.

§1. Introduction

In this work we aim to give a sufficient criterion for a curvature condition such that
the space of such metrics is weakly homotopy equivalent to a subspace of prescribed
form around a fixed submanifold and derive various conclusions.
A curvature condition is an open subset of the space of O(n)-invariant operators∧2 En →

∧2 En satisfying the Bianchi identity, where En denotes the euclidean
space. We will define two notions that we call deformable and codimension c surgery
stable, which allow to extend the Gromov-Lawson construction for curvature con-
ditions developed by S. Hoelzel in [Hoe16] and will be explained in greater detail
in §§ 2.2 and 2.3.
Let Mn be a closed, smooth manifold of dimension n and let Nk be a compact,
k-dimensional submanifold in M . We denote by RC(M) the space of riemannian
metrics that satisfy the condition C, i.e. for any p ∈ M and any linear isometry
i : En → (TpM, gp) we have i∗Rp ∈ C, where Rp is the riemannian curvature
operator of the riemannian metric g at p. Given a tubular map φ : νN → M and
a distinct metric on νN , we will define a space of metrics Rtorp

C (M), which are
standard near N .

Theorem A (parametrized Gromov-Lawson construction). Let C ⊂ CB(En) be a
deformable, codimension c surgery stable curvature condition with n− k ≥ c. Then
the inclusion of metrics, which are standard near N

Rtorp
C (M) ↪→ RC(M)

is a weak homotopy equivalence.
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2 J.-B. KORDAß

The condition positive scalar curvature, i.e. C = (psc), is deformable, codimension 3
surgery stable and thus Theorem A generalizes a result of V. Chernysh [Che04] and
M. Walsh [Wal13] for submanifolds with trivial normal bundle, which has recently
been revisited by J. Ebert and G. Frenck [EF18]. Note that the normal bundle
of N does not necessarily have to be trivial in Theorem A. We remark that the
Gromov-Lawson constructions given in [SY79] and [Hoe16] also do not require a
trivial normal bundle.
In the case of surgeries along embedded spheres with trivial normal bundles we
immediately obtain from Theorem A:

Theorem B. Let M0 be a closed n-manifold and let M1 be obtained from M0 by
surgery of codimension n − k ≥ c with k ≥ c − 1. Then RC(M0) is homotopy
equivalent to RC(M1).

Theorem A can be used to consider more general gluing constructions, namely
surgeries along embedded spheres with nontrivial normal bundles. In particular,
we can cut along the sphere bundle of the Hopf fibration S4k+3 → HP k within
HP k+1 to obtain S4(k+1) from a generalized surgery of codimension 4.

Theorem C. Let k ≥ 1. Then

Rpsc(HP k) ' Rpsc(S4k) and R1-curv>0(HP k) ' R1-curv>0(S4k).

By an application of the original Gromov-Lawson construction ([GL80] and inde-
pendently [SY79]) we know that a closed, simply-connected manifold of dimension
n ≥ 5, which is oriented bordant (resp. spin bordant, if M is spin) to a manifold
with positive scalar curvature admits a metric of positive scalar curvature itself.
The proof of this result relies on the fact that one can arrange the bordism to be
composed from traces of codimension ≥ 3 surgeries, which allow to push through
positive scalar curvature. It is well-known that this procedure can be generalized
to other tangential structures. Denoting by B O 〈l〉 the l th stage in the Whitehead
tower of B O, a closed manifold Mn is called B O 〈l〉-manifold, if the stable normal
bundle M → B O lifts to M → B O 〈l〉 through the tower. The corresponding
bordism group will be denoted by Ω〈l〉n .

Proposition. ∗ Let M0,M1 be closed B O 〈l〉-bordant n-manifolds and let r ≥ 1 be
such that n ≥ 2r + 3 and l ≥ r + 2. If M1 is r-connected, then M1 can be obtained
from M0 by surgeries of codimension at least r + 2.

Combined with the Gromov-Lawson construction for curvature conditions [Hoe16,
Theorem A] we obtain:

Theorem D. Let (M0, g) be a closed riemannian manifold satisfying a codimension
c surgery stable curvature condition, which is B O 〈l〉-bordant to an r-connected,
closed manifold M1. If n ≥ 2r + 3, l ≥ r + 2 and r + 2 ≥ c, then M1 admits a
riemannian metric satisfying the same curvature condition as M0.

Moreover, using Theorem A, we can strengthen this statement for highly-connected
manifolds.

Theorem E. Let C be a deformable, codimension c surgery stable curvature condi-
tion. Let M0,M1 be B O 〈l〉-bordant, r-connected, closed manifolds with n ≥ 2r+ 3,
l ≥ r + 2 and r + 2 ≥ c. Then RC(M0) is homotopy equivalent to RC(M1).

∗e.g. [BL14, Proposition 3.4]
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Let us state the result for the following examplary case. A riemannian manifold
(M, g) is is said to have positive 1-curvature†, if scalg −2 Ricg(v) > 0 for all points
p ∈ M and unit vectors v ∈ TpM . It is not hard to see that every metric of
positive 1-curvature has positive scalar curvature. We will see later that positive 1-
curvature defines a codimension 4 surgery stable curvature condition C := (1-curv >
0). In particular, we can consider the space of metrics with positive 1-curvature
R1-curv>0(M) over a fixed manifold M . Noting that B O 〈4〉 = B Spin and the spin
bordism group in dimension 7 is trivial, we conclude the following.

Corollary F. For every 2-connected, 7-dimensional, closed spin manifold M the
space of riemannian metrics with positive 1-curvature R1-curv>0(M) has the homo-
topy type of R1-curv>0(S7).

This is quite a large class of manifolds (cf. the classification by topological invariants
[CN18]), but in particular it holds for all exotic seven spheres. Typical interesting
examples also include S3-bundles over S4, which contain a family of infinitely many
mutually distinct homotopy types admitting metrics of non-negative sectional and
positive Ricci curvature (cf. [GZ00, Proposition 3.3]).
It is a well-known consequence of the Atiyah-Singer index theorem that a homotopy
sphere is spin-nullbordant if its α-invariant vanishes (cf. [LM89, p.144]).

Corollary G. Let Σn be a homotopy sphere with α(Σn) = 0 (e.g. in the case
n 6≡ 1, 2 mod 8) and with n ≥ 7. Then the space of riemannian metrics with
positive 1-curvature R1-curv>0(Σ) has the homotopy type of R1-curv>0(Sn).

The existence question for metrics of positive 1-curvature on 2-connected manifolds
was already addressed in [Lab97b, Theorem I] and the homotopy equivalence of
Rpsc(Σn) ' Rpsc(Sn) is a corollary to the version of Theorem D for positive scalar
curvature (psc) by Chernysh and Walsh (cf. [Wal13, Corollary 4.2]). Note however
that the inclusion R1-curv>0(M) ↪→ Rpsc(M) is not understood.
The above corollaries hold in analogy for arbitrary curvature conditions, which are
stable under surgery of codimension at least 4.
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§2. Preliminaries

§2.1 Curvature conditions and spaces of riemannian metrics. We will briefly
recall the definition of algebraic curvature operators and notions of curvature. These
let us define what we understand under a curvature condition satisfied by a riemann-
ian metric.

Definition 2.1. Let (M, g) be a riemannian manifold with riemann curvature
tensor R : V(M)×V(M)→ End(V(M)), where V(M) denotes the space of smooth
vector fields on M . One obtains what is called curvature operator R :

∧2 V(M)→∧2 V(M) of M via the relation

g(R(X ∧ Y ), Z ∧W ) = g(R(X,Y )W,Z),

where g on the left hand side is the extension of g to Γ(M,
∧2 TM).

At every point p ∈M the curvature operator R defines a self-adjoint endomorphism

Rp :
∧2 TpM →

∧2 TpM.

We denote by En the euclidean space Rn endowed with the standard inner prod-
uct 〈 · , · 〉. A self-adjoint endomorphism R :

∧2 En →
∧2 En is called algebraic

curvature operator. From the inner product, we obtain the isomorphism

η :
∧2 En → so(n) ⊂ End(Rn), x ∧ y 7→ − 〈x, · 〉 y + 〈y, · 〉x

and thus for every x, y ∈ Rn, an algebraic curvature operator gives rise to a skew-
symmetric endomorphism

R(x, y) : Rn → Rn, z 7→ (η ◦R(x ∧ y))(z).

An algebraic curvature operator R is said to satisfy the Bianchi indentity, if

R(x, y)z +R(y, z)x+R(z, x)y = 0

for all x, y, z ∈ Rn.
Exactly in the same manner as we define sectional, Ricci and scalar curvature in a
tangent space, we let

(1) sec(R,E) := 〈R(x, y)y, x〉 for an orthonormal basis {x, y} of a 2-plane E ≤
En,

(2) Ric(R, z) :=
∑n
i=1 〈R(ei, z)z, ei〉 for z ∈ En with ‖z‖ = 1,

(3) scal(R) :=
∑n
i,j=1 〈R(ei, ej)ej , ei〉 = 2 trR,

where {ei} is the standard basis of En.‡

‡As common notation suggests, we will write relations such as sec(R) < α to mean
“sec(R,E) < α for every plane E < En”.
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Let (M, g) be a riemannian manifold and let i : En → (TpM, gp) be a linear isome-
try into the tangent space at some point p inM . This defines an algebraic curvature
operator

i∗Rp := (i∧2)−1 ◦Rp ◦ i∧2 :
∧2 En →

∧2 En

for i∧2 :
∧2 En →

∧2 TpM and (i∧2)−1 :
∧2 TpM →

∧2 En induced by i and its
inverse. Clearly, i∗Rp satisfies the Bianchi identity and we have sec(i∗Rp, E) =
secgp(i(E)), Ric(i∗Rp, z) = Ricgp(i(z)) and scal(i∗Rp) = scalg(p). Hence, we can use
an algebraic curvature operator, which satisfies the Bianchi identity, to describe
curvature properties of g at p up to the choice of an orthonormal basis in TpM .
Let CB(En) denote the vector space of algebraic curvature operators satisfying the
Bianchi identity. Then O(n) acts on CB(En) by change of the orthonormal basis in
En, that is via

(A,R) 7→ (A ∧A)−1 ◦R ◦ (A ∧A).

Definition 2.2. A curvature condition is an open subset C of CB(En), which is
invariant under the action of O(n) on CB(En). We say that a riemannian metric
g on M satisfies C, if i∗Rp ∈ C for all linear isometries i : En → (TpM, gp) and
p ∈M , where Rp denotes the curvature operator with respect to g in p.

Thus, any curvature condition is a global statement on the structure of a riemannian
manifold and obviously describes an isometry invariant property of a riemannian
metric satisfying it.

Example 2.3. (i) Lower curvature bounds can be expressed as a curvature
condition. For example, we can express (globally pointwise) positive sectional
curvature as condition

(sec > 0) := {R ∈ CB(En) | sec(R) > 0},
while positive scalar curvature is described by

psc := (scal > 0) := {R ∈ CB(En) | scal(R) > 0}.

We note that both sets are open cones in CB(En) with (sec > 0) ( psc for
n ≥ 3, while (sec > 0) = psc for n = 2.
We denote by Sn the n-sphere endowed with the round metric of radius 1.
For any isometry i : En → Tp Sn, we have i∗Rp = id∧2 En . In particular Sn

satisfies (sec > 0).
(ii) Upper curvature bounds, such as

(scal < α) := {R ∈ CB(En) | scal(R) < α}
for α ∈ R are of course curvature conditions, although they will not play an
important role in the following.

Definition 2.4. Let Mn be a smooth manifold and denote by R(M) the space of
complete riemannian metrics on M equipped with the compact-open C∞-topology.
Define, the space of riemannian metrics satisfying C as

RC(M) := {g ∈ R(M) | g satisfies C} ⊂ R(M).

As curvature conditions are preserved under isometries, Diff(M) acts on RC(M)
by pullback of riemannian metrics, i.e. via

Diff(M)×RC(M)→ RC(M), (ψ, g) 7→ ψ∗g.

The quotientMC(M) := RC(M)/Diff(M) under this action is called moduli space
of riemannian metrics satisfying C.
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Remark. These spaces are actually quite classical objects of interest in global rie-
mannian geometry (cf. [Gro91, § 73/4]). We refer to the survey [TW15] for further
details and references regarding spaces of riemannian metrics.

Recently, there has been much progress showing that RC(M) on certain closed
manifolds is topologically non-trivial for C = psc and C = (Ric > 0) (cf. [CS13],
[HSS14], [BERW17] and [Wra11]). For positive scalar curvature non-trivial homo-
topy elements can be exhibited factoring the Atiyah-Bott-Shapiro map of spectra
A : M Spin→ KO through the space of metrics with positive scalar curvature car-
ried out in [BERW17], which is a vast generalization of an idea by N. Hitchin.
Incidentally, already Hitchin’s original construction (cf. [Hit74, Section 4.4]) iden-
tifies non-trivial homotopy elements in RC(M) on any spin manifoldM of a certain
dimension for every C ⊂ psc with RC(M) 6= ∅ that are produced using the orbit
map of the above described Diff(M) action on RC(M).

Convention. By a (compact) family of metrics on a manifold M , we always un-
derstand the image of a continuous map g : S → R(M) from a compact topological
space S and denote it by {gξ}ξ∈S.

§2.2 Surgery stable curvature conditions.

Definition 2.5. Let M be a smooth manifold of dimension n and further let
φ ∈ Emb(Sk,M) be an embedding with trivial normal bundle. Thus φ extends to
a tubular embedding φ ∈ Emb(Sk ×Dn−k,M). Recall that a surgery on M along
φ is a procedure, which endows the push-out

Sk ×Dn−k( 1
2 , 1) Dk+1( 1

2 , 1)× Sn−k−1

M \ Im(Sk × D̊n−k( 1
2 )) χ(M,φ)

i

φ( 1
2 ,1)

where φ( 1
2 , 1) := φ|Sk×Dn−k( 1

2 ,1), i : (θ1, λθ2) 7→ ((1−λ)θ1, θ2) and where we denote
Dk(a, b) := {x ∈ Dk | a ≤ |x| ≤ b}, with a differentiable structure compatible with
the given differentiable structures on the individual parts. The number n − k is
called codimension of the surgery.

Clearly, one can also equip M with a riemannian metric and it is not hard to see
that there exists a metric on χ(M,φ), which coincides with the original metric
away from the embedding φ. But since cutting and gluing of riemannian metrics
along arbitrary submanifolds requires to smoothen the metric, it is not clear if this
process keeps the curvature controlled. It was only realized by Gromov and Lawson
[GL80] and independently by R. Schoen and S. T. Yau [SY79] that positive scalar
curvature can be preserved under surgeries of codimension greater or equal three.
This theorem has been generalized in several directions and in particular to curva-
ture conditions as defined above by Hoelzel.

Definition 2.6. A curvature condition C ⊂ CB(En) is said to satisfy an inner cone
condition with respect to S ∈ CB(En) \ {0}, if there exists a continuous function
ρ : C → (0,∞) and for every ρ = ρ(R) an open, convex O(n)-invariant cone Cρ
containing Bρ(S) such that

R+ Cρ = {R+ E | E ∈ Cρ} ⊂ C.

Remark 2.7. (i) If C ⊂ CB(En) is a curvature condition given by an open, convex
cone and S ∈ C, then C satisfies an inner cone condition with respect to S.
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(ii) If C 6= ∅ satisfies an inner cone condition with respect to S 6= 0, then there
exists a λ0 > 0 such that λS ∈ C for all λ > λ0.
The argument goes as follows. Let R ∈ C be arbitrary and conclude from the
inner cone condition that R+Cρ ∈ C for some open, convex O(n)-invariant
cone with Bρ(S) ⊂ Cρ. Clearly, this implies Bµρ(R+ µS) ⊂ C and the cone⋃
µ>0Bµρ(R+ µS) intersects the line λS for some µ and λ large enough.

Remark 2.8. Since the curvature operator of the standard sphere Sq(1) of radius
1, which we also denote by Sq, is given by the identity, the curvature operator
of En−q ×Sq with the canonical product metric is precisely the projection map
REn−q ×Sq := π∧2 Eq :

∧2 En →
∧2 En induced by the projection En = En−q ×Eq →

Eq on the last q coordinates.
Definition 2.9. Let C ⊂ CB(En) be a curvature condition satisfying an inner cone
condition with respect to REn−c+1×Sc−1 for some c ∈ {3, . . . , n}. Then C is said to
admit codimension c surgeries.
Proposition 2.10 ([Hoe16, Proposition 2.2]). If C ⊂ CB(En) is a curvature condi-
tion satisfying an inner cone condition with respect to REn−c+1×Sc−1 for 3 ≤ c ≤ n,
then C satisfies an inner cone condition with respect to REn−c×Sc .
Corollary 2.11. Let C ⊂ CB(En) be a curvature condition admitting codimension
c surgeries for some c ∈ {3, . . . , n−1}. Then C admits codimension c+1 surgeries.
Corollary 2.12. If C admits codimension c surgeries, then C satisfies an inner
cone condition with respect to REn−q×Sq for all c − 1 ≤ q ≤ n and by Remark 2.7
(ii) there exists a λ0 > 0 such that λREn−q×Sq ∈ C for all λ > λ0. In particular,
Sn( 1√

λ
) with the round metric satisfies C.

As the name suggests, admittance of surgery is precisely the assumption needed to
obtain a new metric again satisfying this curvature condition on a surgery result.
Theorem 2.13 ([Hoe16, Theorem A]). Let C be a curvature condition admitting
codimension c surgeries and let (M, g) be a riemannian manifold with g satisfying
C. If χ(M,φ) is obtained from M by surgery of codimension ≥ c, then χ(M,φ)
admits a metric satisfying C.

Thus we are only interested in the smallest value for which C admits surgeries of
such codimension leading us to the following definition.
Definition 2.14. A curvature condition C admitting codimension c̃ surgeries is
said to be codimension c surgery stable, if c is minimal among all c̃.
Example 2.15. (i) By Remark 2.7 (i), a curvature condition C given by an

open, convex cone containing REn−q+1×Sq−1 for all q ≥ c (i.e. En−q+1 × Sq−1

with the standard product metric satisfies C) admits codimension c surgeries.
(ii) Positive scalar curvature C = psc is codimension 3 surgery stable in this

sense. Clearly, c is minimal in the allowed range {3, . . . n} for c, but this
conceptually makes sense as the standard metric on S2−1 × En−2+1 = S1 ×
En−1 is flat, i.e. does not have positive scalar curvature.

Example 2.16. Another interesting curvature condition is positive p-curvature,
which interpolates between positive scalar (for p = 0) and positive sectional curva-
ture (for p = n− 2). It has been proposed by Gromov and was studied extensively
by M.-L. Labbi (cf. [Lab95, Lab97b, Lab97a, Lab06]).
It can be defined for 0 ≤ p ≤ n− 2 as an open convex cone

(p-curv > 0) := {R ∈ CB(En) | sp(R)(P ) > 0
∀P ≤ Rn with dimP = p},
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where sp(R) : Gp(Rn)→ R is the map P 7→
∑n−p
i,j=1 sec(R)(Ei, Ej) for an orthonor-

mal basis {Ei} of P⊥ and Gp(Rn) is the real p-Grassmannian.
By definition, positive p-curvature implies positive (p− 1)-curvature and for every
fixed dimension n there is a sequence of cones

(psc) = (0-curv) ⊃ (1-curv) ⊃ · · · ⊃ ((n− 3)-curv) ⊃ ((n− 2)-curv) = (sec > 0).

Labbi showed in [Lab97b] that positive p-curvature is preserved under codimen-
sion p + 3 surgeries. This is recovered by Hoelzel’s theorem, as the condition is
codimension p+ 3 surgery stable.
Riemannian metrics satisfying this condition for values of p, which are small relative
to n, exist in abundance. The product of every compact manifold with a (p + 3)-
sphere admits a metric of positive p-curvature. More specifically, every compact,
connected Lie group with a bi-invariant metric (which is not the torus), every
Einstein manifold with positive Einstein constant, as well as every Kähler manifold
with positive Ricci curvature has positive 1-curvature. On the other hand, there
exist examples, which have positive 1-curvature, while they do not admit any metric
of positive Ricci curvature. Botvinnik and Labbi in [BL14] investigate obstructions
to positive p-curvature for p = 2, 3. For example, they show that a 3-connected non-
string manifoldM of dimension at least 9 admit a metric with positive 2-curvature if
and only if Hitchin’s KO-theoretic α-invariant vanishes for M . Moreover, they find
dimensions in which every 3-connected string manifold admits a metric with positive
2-curvature. Note however, that the situation is less clear in lower connectivity.

Example 2.17. Similarly, one can consider a curvature condition, which interpo-
lates between positive scalar (for k = n) and positive Ricci curvature (for k = 1)
called k-positive Ricci curvature. It was introduced by J. Wolfson in [Wol09] and
can be defined for 1 ≤ k ≤ n as an open convex cone

(k-pos Ric) := {R ∈ CB(En) |
k∑
i=1

Ric(R; ei) > 0

∀{e1, · · · , ek} orthonormal}.

As in the previous examples, there are successive inclusions (k-pos Ric) ⊂ ((k +
1)-pos Ric) and in particular every metric with k-positive Ricci curvature for some
k has positive scalar curvature. Moreover, Wolfson showed that k-positive Ricci
curvature for 2 ≤ k ≤ n − 1 is preserved under codimension n − k + 2 surgeries.
Surprisingly, n-positive Ricci curvature (positive scalar curvature), as well as (n−1)-
positive Ricci curvature are both stable under surgeries of codimension 3. It is an
open question of Wolfson, if there exists a riemannian manifold of positive scalar
curvature, which does not admit a metric of (n− 1)-positive Ricci curvature.

Both of the curvature conditions decribed in the above examples can be regarded
as intermediate curvature notions, by which one might hope to understand the
differences between both extremes in greater detail.

§2.3 Torpedo metrics. It is well-known that one can use warped products to
describe rotationally symmetric metrics (cf. [Pet16, p.18ff]). To do so consider
a smooth function β : [0,∞) → [0,∞) and endow (0,∞) × Sq−1 with the metric
gβ := dr2 + β2(r)gSq−1 , where gSq−1 is the round metric on the q − 1 sphere. If we
assume that

(i) β(0) = 0, β′(0) = 1, β(2l)(0) = 0 for l ∈ N and
(ii) β|(0,∞) > 0,
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the metric gβ uniquely extends to a smooth rotationally symmetric metric on Rq.
The pull-back of the curvature operator of gβ is given by (cf. [Pet16, p.121])

Rβ,q(θ, r) = 1− β′(r)2

β(r)2 RE×Sq−1 − β′′(r)
β(r) Lq, (2.18)

where Lq(ei ∧ ej) =
{
ei ∧ ej if i = 1, j > 1
0 otherwise

.

If the dimension n is fixed, we will abuse notation denoting by Rβ,q and Lq the
curvature operators of Rn which are zero on combinations of the first n − q co-
ordinate directions.

Definition 2.19. Let C ⊂ CB(En) be a codimension c surgery stable curvature
condition. It is called deformable, if

(1) 0 /∈ C,
(2) it satisfies an inner ray condition with respect to Lq for all q ≥ c, i.e. R ∈ C

implies R+ λLq ∈ C for all λ ≥ 0,
(3) and µREn−q+1×Sq−1 ∈ C for all µ > 0 and q ≥ c.

Example 2.20. (i) By Remark 2.7 (i), a curvature condition C given by an
open convex cone with REn−c+1×Sc−1 ∈ C and Lq ∈ C for all n ≥ q ≥ c is
deformable. This is the case for positive scalar curvature.

(ii) Positive p-curvature for 0 ≤ p < n − 2 is deformable (even though it does
not satisfy an inner cone condition with respect to Lq for 1 ≤ p ≤ n− 2).

(iii) The condition k-positive Ricci curvature for 2 ≤ k ≤ n is deformable.

Remark 2.21. Let C ⊂ CB(En) be a deformable, codimension c surgery stable
curvature condition. Then C satisfies an inner cone condition with respect to every
REn−q+1×Sq−1 + λLq for all q ≥ c and λ ≥ 0.

Proposition 2.22. Suppose C is a deformable, codimension c surgery stable cur-
vature condition. Then Rβ,q ∈ C for all q ≥ c, if in (0,∞)

1− β′2 > 0, β′′ ≤ 0 and β′′′(0) < 0. (2.23)

Proof. From (2.18) we conclude that, if

µ := 1− β′2

β2 > 0 and λ := −β
′′

β
≥ 0

then by definition of deformability Rβ,q = µREn−q×Sn−1 + λLq ∈ C. By L’Hôpital,
we have limr→0 µ = limr→0 λ = −β′′′(0) > 0 and thus limr→0R

β,q ∈ C. �

Definition 2.24. One function of particular interest satisfying these assumptions
is given by a smoothing of

βδ : [0,∞)→ [0,∞), r 7→

{
δ sin(r/δ) for r ≤ δπ

2
δ otherwise

where δ > 0. The result, which we will also denote by βδ is called a torpedo function
of radius δ.

Remark 2.25. Observing that REn−q×Sq = REn−q×E×Sq−1 + Lq, we see that

Rβδ,q(θ, r) =
{
REn−q×Sq if r = 0
REn−q×E×Sq−1 if r ≥ δπ

2

i.e. the metric induced by this function agrees on the last q coordinates with a
round metric near zero and has a cylindrical shape for large radii.
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Definition 2.26. For every q ≥ 3, the torpedo function βδ gives rise to a metric
gβδ on Rq and consequently on Dq(r) (where we assume r ≥ δπ

2 ), which we will
refer to as a torpedo metric and denote by gδtorp.

Remark 2.27. If C ⊂ CB(En) is a codimension c surgery stable curvature condition,
and n ≥ q ≥ c, then (Rn−q ×Rq, geucl + gδtorp) satisfies C.

§2.4 Connection metrics and riemannian submersions. Using the associated
bundle construction, it is well-known that we can endow the total space of a vector
bundle with a metric rotationally symmetric around the zero section.

Proposition 2.28 (cf. [GW09, Proposition 2.7.1, p.97]). Let (N, gN ) be a closed
riemannian manifold and let π : E → N be a riemannian vector bundle of rank
q equipped with a metric connection ω. Let grot = dr2 + β2(r)gSq−1 be a complete
rotationally symmetric metric on Rq. Then there exists a unique complete riemann-
ian metric h∇ on E such that π : (E, h∇) → (N, gN ) is a riemannian submersion
with totally geodesic fibres isometric to (Rq, grot) and with horizontal distribution
determined by ω.

Definition 2.29. We refer to h∇ as a connection metric on E and write
h∇ = gN ⊕ω grot.

Recall that for a riemannian submersion π : (En, gE)→ (Nn−q, gN ) we can deform
the metric gE by shrinking the fibre. We obtain a continuous path of metrics
{gtE}t∈(0,1] ⊂ R(E) given by

gtE(X,Y ) := t2gF (π(p))(XV , Y V) + π∗gN (X,Y ) for X,Y ∈ TpE,

where XV , Y V ∈ Tπ(p) F (π(p)) are the orthogonal projections onto the tangent
space at the fibre. Clearly, we have g1

E = gE .
Because riemannian submersions from a complete riemannian manifold into any
other riemannian manifold are fibre bundles (cf. [Bes87, Theorem 9.42 p.245]), we
can talk about the fibre of a riemannian submersion. As a minor adaptation of
[Hoe16, Theorem 3.1], we obtain the following result.

Proposition 2.30. Let (En, gE) is a complete riemannian manifold and let C ⊂
CB(En) be a curvature condition. Further, let π : (En, gE) → (Nn−q, gN ) be a
riemannian submersion with fibres Rq into a closed manifold N . If C satisfies an
inner cone condition with respect to each curvature operator corresponding to

Rb,p := R(Rn−q ×F (b),gEk+gE |F (b))(p),

for all b ∈ N , p ∈ F (b) := π−1(b) ∼= Rq and Rb,p is constant on {p ∈ E |
dgE (p,N) > R} for some R > 0, then there exists a t∗ > 0 such that gtE ∈ RC(E)
for all t ∈ (0, t∗).

Now consider the case that gE is a connection metric obtained from a rotationally
symmetric metric grot = dr2 +β2(r)gSq−1 on Rq. Then shrinking the fibre amounts
to shrinking the warping function, since at b ∈ N

gtE |F (b) = dr2 + t2β2( rt )gSq−1 .

If β is a torpedo function, the new warping function r 7→ tβ( rt ) can easily seen to
be a torpedo function again.

Corollary 2.31. Let C ⊂ CB(En) be a deformable, codimension c surgery stable
curvature condition. Let (Nn−q, gN ) be a riemannian manifold, let π : E → N be
a riemannian vector bundle of rank q for q ≥ c equipped with a metric connection
ω and let grot = dr2 + β2gSq−1 be a rotationally symmetric metric on Rq, which
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satisfies the conditions eq. (2.23) and β|[R,∞) is constant for some R > 0. Then
there exists a t∗ > 0 such that (h∇)t = gN ⊕ω (dr2 + t2β2( rt )gSq−1) satisfies C for
all t ∈ (0, t∗).

Proof. Since grot satisfies the conditions eq. (2.23), we conclude that the curvature
operators Rβ,q are contained in C and by deformability, C satisfies an inner cone
condition with respect to them. These are precisely the curvature operators of
the metric gEn−q + gE |F (b), where F (b) denotes the fibre at b ∈ N . Applying
Proposition 2.30 finishes the proof, because shrinking the metric is a deformation
through connection metrics, as mentioned above. �

In particular, we can construct a connection metric on the total space of a vector
bundle of suitable rank, which satisfies C, e.g. by considering the connection metric
obtained from gδtorp for δ small enough.

§2.5 Rotational symmetry around a submanifold. Applying this to the nor-
mal bundle of a submanifold N in M we can produce a metric satisfying C in a
tubular neighbourhood of N from a rotationally symmetric one. If we start with
an arbitrary metric in M , however, clearly it will not necessarily be a connection
metric with respect to a rotationally symmetric metric on the normal bundle. Nev-
ertheless, it was observed by Gromov and Lawson that every metric does actually
look almost rotationally symmetric close to N .
Throughout this section, letMn be a smooth manifold of dimension n, i : Nk ↪→Mn

be a closed submanifold with normal bundle π : νN → N equipped with a bundle
metric hνN . Moreover, let φ : νN → N be a tubular map, i.e. φ is an embedding
with φ|0 ≡ i ◦ π and φ ◦ s0 ' i (where s0 : N → νN is the zero section).

Definition 2.32. A riemannian metric g on M is called adjusted to the tubular
map φ on the r-tube, if [0, r] → M, r 7→ φ(rνp) is a unit speed geodesic w.r.t.
g, where νp ∈ νM with ‖νp‖hνN = 1 and ‖ · ‖hνN denotes the norm given by the
riemannian vector bundle structure on νN .

From now on fix a metric connection ω on νN and we denote by ν≤rN the radius
r disc bundle w.r.t. hνN .
We can adjust an entire family of metrics to the tubular map φ.

Proposition 2.33 ([EF18, adapted from Proposition 3.4]). Let {gξ}ξ∈Dl be a con-
tinuous family of metrics such that gξ for ξ ∈ Sl−1 is adjusted to φ on the r-tube.
Then there exists an r0 ∈ (0, r] and a continuous map F : [0, 1] × Dl → Diff(M)
such that

(i) F |{0}×Dl∪[0,1]×Sl−1 ≡ idM ,
(ii) F (t, x)|N ≡ idN for all (t, x) ∈ [0, 1]×Dl,
(iii) (F (1, x))∗gξ is adjusted to φ on the r0-tube.

Let C ⊂ CB(En) be a deformable, codimension c surgery stable curvature condition
and fix an arbitrary riemannian metric gN on the submanifoldN . By Corollary 2.31,
we know that there exists a connection metric htorp := gN ⊕ω gδtorp, which satisfies
C and which we will also fix from now on.

Definition 2.34. Let R > 0 be a fixed radius. We call a riemannian metric
g ∈ RC(M) rotationally symmetric around N , if

(1) g is adjusted to φ on the R-tube,
(2) φ|∗

ν≤RN
g = (gN ⊕ω grot)|ν≤RN for some rotationally symmetric metric grot on

Rn−k for which (Rn, geucl + grot) satisfies C.
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Now define the space of rotationally symmetric metrics around N as
Rrot
C (M) := Rrot

C (M ;φ, gN , hνN , ω,R)
:= {g ∈ RC(M) is rotationally symmetric around N}.

Moreover, we denote by
Rtorp
C (M) := Rtorp

C (M ;φ, hνN , htorp, R)
:= {g ∈ RC(M) | φ|∗ν≤RNg = htorp|ν≤RN}.

the space of riemannian metrics satisfying C, which are standard near N .

Remark 2.35. (i) The adjustment in item (1) simply amounts to grot in item (2)
being of the form dr2 + βgSn−1 in terms of Fermi coordinates around N .

(ii) Note that metrics in Rtorp
C (M) are adjusted to φ on the R-tube by definition

and thus are rotationally symmetric. In particular, we have an inclusion
Rtorp
C (M) ↪→ Rrot

C (M).

§3. Main Results

§3.1 Main technical result. We will now state the main technical result of this
work, which shows that the space of all metrics satisfying curvature conditions
of a certain type is weakly homotopy equivalent to the space of metrics, which
take a particular prescribed form around an initially fixed submanifold. The proof
of this theorem is heavily built on the techniques and terminology developed in
[Che04, Wal11] and essentially follows Chernysh’s presentation implementing some
improvements introduced by [EF18].

Theorem 3.1. Let C ⊂ CB(En) be a deformable, codimension c surgery stable
curvature condition.
(1) Let Mn be a smooth manifold of dimension n and let Nk be a compact,

k-dimensional submanifold in M with n− k ≥ c.
(2) Let φ : νN → M be tubular map and let hνN be a bundle metric on the

normal bundle νN equipped with a metric connection ω.
(3) Further let gN be an arbitrary riemannian metric on N and let htorp =

gN ⊕ω gδtorp be a connection metric on νN , which satisfies C (as constructed
in § 2.4), obtained from gN , hνN , ω and a torpedo metric gδtorp on Rn−k.

Then the inclusion of metrics, which are standard near N
i : Rtorp

C (M) ↪→ RC(M)
is a weak homotopy equivalence.

The proof of Theorem 3.1 is based on the following two propositions whose proofs
will occupy the rest of this paper.

Proposition 3.2. Let g : S → RC(M), ξ 7→ gξ be a family of metrics. There
exists a continuous map

Π: [0, 1]× S → RC(M)
with the following properties:

(i) Π(0, · ) ≡ g,
(ii) Π({1} × S) ⊂ Rrot

C (M),
(iii) If gξ ∈ Rrot

C (M), then Π(t, ξ) ⊂ Rrot
C (M) for all t ∈ [0, 1].

The proof will be carried out in § 4.
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Proposition 3.3. The space Rtorp
C (M) is a weak deformation retract of Rrot

C (M).

The proof will be carried out in § 5.

Proof of Theorem 3.1. By Proposition 3.3, it is enough to show that the inclusion
i : Rrot

C (M) ↪→ RC(M) is a weak homotopy equivalence.
It is well-known that i is a weak homotopy equivalence, if for every n ∈ N0 and map
g : {0} × Dn → RC(M) with g({0} × Sn−1) ⊂ Rrot

C (M) there exists a homotopy
g : [0, 1]×Dn → RC(M) such that the following diagram commutes

{0} × Sn−1 Rrot
C (M)

[0, 1]× Sn−1 ∪ {1} ×Dn

[0, 1]×Dn

{0} ×Dn RC(M)

g

i

g

g

g

Applying Proposition 3.2 to g, we let g := Π. By item (ii), g({1}×Dn) ⊂ Rrot
C (M)

and since g({0} × Sn−1) ⊂ Rrot
C (M), we conclude with item (iii) that g([0, 1] ×

Sn−1) ⊂ Rrot
C (M). �

§3.2 Applications. The following is a theorem of Chernysh [Che04, Theorem 1.2]
and Walsh [Wal13, Theorem 4.1] for the case of C = psc. It is the technical version
of and clearly implies Theorem B.

Corollary 3.4. Let C ⊂ CB(En) be a deformable, codimension c surgery stable
curvature condition and let M be a closed smooth manifold of dimension n. If
χ(M,φ) is obtained from M by surgery along φ|Sk×{0} for φ ∈ Emb(Sk×Dn−k,M)
for k ≥ c− 1 and n− k ≥ c, then

RC(M) ' RC(χ(M,φ)).

It results easily from Theorem 3.1 applied to a surgery and its reversal, combined
with the observation that the spacesRC(M) are open subsets of a Fréchet manifold.
Thus, by work of Palais [Pal66, Theorem 14], they are dominated by CW-complexes
and we obtain the homotopy equivalence in Corollary 3.4 from Whitehead’s theo-
rem.

Remark 3.5. The conditions k ≥ c − 1 and n − k ≥ c are needed to reverse the
surgery and again have a sufficiently high codimension. Combined we see that
n − c ≥ k ≥ c − 1 and conclude that the surgery stability needs to be roughly
“below the middle dimension” if we want to apply Corollary 3.4.

We note that we can slightly generalize the definition of a surgery as follows. LetW1
and W2 be manifolds with boundary with diffeomorphic and connected boundaries
∂W1 ∼= ∂W2. If φ : W1 ↪→M is an embedding, we can consider

χ̃(M ;φ) := M \ Int(φ(W1)) ∪∂W1 W2.

We can apply this procedure to prove Theorem C, which follows from the fol-
lowing corollary since both positive scalar curvature and positive 1-curvature are
deformable and admit codimension 4 surgeries (cf. Examples 2.15, 2.16 and 2.20).
Denote by gδ for δ ∈ (0, 1] the metric on S4k+3 obtained via shrinking the fibres of
the riemannian submersion given by the Hopf fibration S3 ↪→ S4k+3 → HP k.
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Corollary 3.6. Let k ≥ 1, let C ⊂ CB(E4(k+1)) be a deformable curvature condi-
tion, which admits codimension 4 surgeries and such that gδ + dt2 satisfies C for
all δ ∈ (0, 1]. Then spaces of metrics satisfying C on S4(k+1) and HP k+1 have the
same homotopy type.

A key ingredient in the proof of this statement is Gajer’s Lemma, which was origi-
nally stated for positive scalar curvature, but holds in greater generality.

Lemma 3.7 ([Gaj87, p.184]). Let C ⊂ CB(En) be a curvature condition, let Nn−1

be a closed manifold and let {gt}t∈[0,1] ⊂ R(N) be a smooth path of riemannian
metrics. If for every t ∈ [0, 1] the riemannian product metrics (N, gt) × E satisfy
C, then there exists a 0 < Λ ≤ 1 such that for every smooth function f : R→ [0, 1]
with |f ′|, |f ′′| ≤ Λ the metric gf(t) + dt2 on N × R satisfies C.

Proof. The proof follows directly from calculations analogous to [Gaj87, p.185],
which yield

R(N×R,gf(t)+dt2) = R(N,gf(t0))×E +O(|f ′|)E1 +O(|f ′|2)E2 +O(|f ′′|)E3,

where E1, E2, E3 only depend on the family of metrics {gt} and we note that trE1 =
0. Since C is an open subset in CB(En), we find a suitable choice for Λ. �

Proof of Corollary 3.6. Consider the inclusion i : HP k ↪→ HP k+1. It is well-known
that the normal bundle νHP k can be written as an associated bundle S4k+3×S3 R4

to the Hopf fibration, i.e. to the S3-principal bundle S4k+3 → HP k.
Now choose a bundle metric hνHPk and r > 0 small enough such that the inclu-
sion of the disc bundle φ : ν≤rHP k ↪→ HP k+1 is an embedding. Then we have
∂(ν≤rHP k) = νrHP k ∼= S4k+3 and it is well-known that the complement of the
disc bundle is diffeomorphic to D4k. Thus we conclude that(

HP k+1 \ (ν≤rHP k)
)
∪S4k+3 D4(k+1) ∼= S4(k+1)

In the same vain, we obtain(
S4(k+1) \D4(k+1)) ∪S4k+3

(
S4k+3 ×S3 D4) ∼= HP k+1.

In both cases we remove a tubular neighbourhood of a codimension 4 submani-
fold and thus we are in a position to apply Theorem 3.1 to both situations. It
remains to check that the spaces of metrics which are standard near the subman-
ifolds Rtorp

C (HP k+1) and Rtorp
C (S4(k+1)) are weakly homotopy equivalent for suit-

able choice of torpedo- and connection metrics. We can strengthen the resulting
weak homotopy equivalence between RC(HP k+1) and RC(S4(k+1)) to a homotopy
equivalence using Palais and Whitehead, as mentioned after Corollary 3.4.
Let gδtorp be a torpedo metric. Then S3 acts isometrically on S4k+3 from the right
via the Hopf fibration and isometrically on (R4, gδtorp) from the left, by the torpedo
metric’s rotational symmetry. Now we obtain a riemannian metric on the quotient
S4k+3×S3R4, induced from the product metric gS4k+3 +gE4 , such that the projection
map to HP k is a riemannian submersion. Because the Hopf fibration has totally
geodesic fibres and the action of S3 is by isometries, the riemannian submersion
S4k+3 ×S3 R4 → HP k has totally geodesic fibres (cf. [GW09, p.98]). But such
metrics are already connection metrics [GW09, Theorem 2.7.2, p.98].
By Corollary 2.31, we can choose δ > 0 small enough such that the connection
metric on S4k+3 ×S3 R4 satisfies C. Moreover, (R4 \D4( δπ2 ), gδtorp) is isometric to a
riemannian product S3(δ)× ( δπ2 ,∞) and thus we obtain isometries(

S4k+3 ×S3 R4 ) \ (S4k+3 ×S3 D4(δπ/2)
)

= S4k+3 ×S3
(
S3(δ)× (δπ/2,∞)

)
=
(
S4k+3 ×S3 S3(δ)

)
× (δπ/2,∞).
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We denote the metric obtained from this on S4k+3 ∼= S4k+3 ×S3 S3(δ) by gδ.
For any 0 < δ ≤ 1 the metric gδ + dt2 on S4k+3 × R satisfies C by assumption.
Now choose a smooth function s : [0, 1] → R, which is constant near {0, 1} and
satisfies s(0) = 1, s(1) = δ and s′ ≤ 0. We obtain a smooth path of metrics
{gs(t)}t∈[0,1] on S4k+3, which satisfies the assumptions of Lemma 3.7.
If we choose the inclusion i : pt ↪→ S4(k+1) to a point in the sphere, the space
Rtorp
C (S4(k+1)) is the space of metrics, which are fixed and of torpedo shape on one

hemisphere, i.e. φ|∗
ν≤R ptg = htorp

ν≤R pt. In particular, there exist 0 < R′ ≤ R and
b > 0 such that for every g ∈ Rtorp

C (S4(k+1)) we have that φ|∗
νR′≤R ptg is isometric

to (S4k+3 × [0, 2b], gS4k+3 + dt2). Possibly by passing to another torpedo metric
htorp, we obtain b large enough such that g 1

b s(t) + dt2 is a metric satisfying C on
S4k+3 × [0, b], by Lemma 3.7. Denote by R̃ the space of metrics satisfying C with
φ|∗
ν≤R′ ptg = htorp

ν≤R′ pt and φ|∗
νR′≤R ptg is isometric to

(S4k+3 × [0, b], gS4k+3 + dt2) ∪ (S4k+3 × [0, b], g 1
b s(t) + dt2).

The spaces Rtorp
C (S4(k+1)) and R̃ are weakly homotopy equivalent, since we can use

the family {gs(t)}t∈[0,1] and Gajer’s lemma to interchange the cylindrical pieces on
S4k+3 × [0, 2b].
The spaces Rtorp

C (HP k+1) and R̃ are homeomorphic. �

§4. Proof of Proposition 3.2

Before starting the actual proof, we will recall the classical graph deformation
procedure introduced by Gromov and Lawson. The construction of Π then proceeds
in two steps. First, the graph deformation is applied to a family of riemannian
metrics to split a tubular neighbourhood around a submanifold N into three regions
with particular properties. Then one deforms the metric on these three regions to
obtain a metric, which is rotationally symmetric around N .
§4.1 Preliminaries and Chernysh’s trick. Here we will recall a construction for
a metric deformation and a few technical results of Hoelzel.
Before, let us recall elementary facts about curves in R2, which will be used to
control the metric deformations. We will deal with arc-length parametrized curves
γ : R→ R2, s 7→ (r(s), t(s)), which satisfy a number of properties.

Definition 4.1. Let r > 0. We denote by
Γb(r) := {γ : R→ R2 arc-length parametrized curve satisfying (i) – (iv) below }
(i) γ(0) = (r, 0) and t|(−∞,0] ≡ 0,
(ii) t(s) ≥ 0 for all s ∈ R,
(iii) γ intersects the t-axis {0} ×R precisely once following the arc of a circle (of

possibly infinite radius) at γ(b) and is symmetric about it,
(iv) r is non-increasing, while t is non-decreasing for s ∈ (−∞, b].

Γ̃b(r) := {γ ∈ Γb(r) | γ satisfies (v) below }
(v) There exists a partition 0 = s0 ≤ s1 ≤ · · · ≤ s6 = b such that

κ|[s0,s1]∪[s2,s3]∪[s4,s5] ≡ 0 and r′|[s3,s4] ≡ 0
where κ is the signed curvature function of γ.

We endow each of the above sets with the subspace topology from C∞(R,R2) and
denote Γ(r) :=

⋃
b>0 Γb(r) and Γ̃(r) :=

⋃
b>0 Γ̃b(r).
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Figure 1. Examples for curves in Γb(r) and Γ̃b(r).

Proposition 4.2. Any curve γ in Γb(r) is uniquely and continuously determined
on the interval [0, b] by each of the following:

(1) γ|[0,b],
(2) its angular function θ : R→ [0, π2 ],
(3) its signed curvature function κ : R→ R.

Proof. The claim (1) is immidiately clear. For the remaining note that the curve γ
is determined by its angular function θ : R→ [0, π2 ] as it gives rise to the following
initial value problem 

cos θ = 〈γ′,−∂r〉 = −r′, r(0) = r

(r′)2 + (t′)2 = 1 t(0) = 0
t ≥ 0

.

The angular velocity θ′ is precisely the signed curvature of γ and θ(0) = 0 (by
(i)). Moreover, we conclude that by the theory of ordinary differential equations γ
continuously depends on θ or κ, respectively. �

Note that from this proof we can extract a description for r(s) and t(s) for s ∈ [0, b]
in terms of θ as follows

r(s) = r −
∫ s

0
cos θ(u) du and t(s) =

∫ s

0
sin θ(u) du. (4.3)

If γ is determined by θ or κ, we will write γ(θ) or γ(κ).

Next, let us revisit a construction of a metric on M altered in a tubular neighbour-
hood around a submanifold using a curve that we call Chernysh’s trick.§ It differs
from the original construction by Gromov and Lawson in that is produces a metric
on M again.
We consider the setup as in Theorem 3.1. Let gM be a riemannian metric adjusted
to φ on the r-tube for an r > 0 small enough such that 2r < InjRad⊥N (gM ), where
InjRad⊥N (gM ) := minp∈N sup{r > 0 | expgM ,⊥p is injective on the r-ball} denotes
the normal injectivity radius of gM . Further, let γ ∈ Γb(r).
Note that gM being adjusted to φ on the r-tube implies that φ|ν≤rN coincides with
the normal exponential map exp⊥ of the metric gM .

§While there have been similar ideas prior to the work of Chernysh (e.g. [Gaj87, Car88]), the
formalism as seen in the following is essentially laid out in [Che04].
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From this we can construct the embedding ψγ = ψγ(φ, gM ) given by
ψγ : M →M × R,

p 7→


(p, 0) if dgM (p,N) ≥ r
(φ(r(s)ν), t(s)) for p = φ(r(1− s/b)ν) with s ∈ (0, b), ν ∈ ν1N

(p, t(b)) if p ∈ N.
whose image is denoted by

Dγ := Imψγ ⊂M × R,

and carries a metric gD induced from gM + dt2 on M × R. Its pull-back along ψγ
to M will be denoted by gγ .
In fact, we obtain a continuous map

Γ(r)→ Emb(M,M × R), γ 7→ ψγ .

The embeddings in the image all coincide outside the compact set φ(ν≤rN) with
the inclusion M ↪→M ×{0}. Moreover, the embeddings ψγ coincide for all metrics
adjusted to φ on the r-tube.
It is well-known that the pull-back of riemannian metrics along embeddings of a
compact manifold is continuous with respect to the C∞-topology on the space of
embeddings. From this we draw the following conclusion.
Let {gξ}ξ∈S ⊂ R(M) be a family of metrics on M , which are adjusted to φ on the
r-tube for r > 0 such that 2r < minξ∈S InjRad⊥N (gξ). Then we have a continuous
map

S × Γ(r)→ R(M), (ξ, γ) 7→ ψ∗γ(gξ + dt2) =: gξ,γ . (4.4)

Remark 4.5. Moreover, if gξ is the pull-back of a connection metric on φ(ν≤rN)
from νN , then gξ,γ is a connection metric, as well.

The curvature operator of the induced metric gγ can be connected to the curvature
operator of the product metric on M × R as demonstrated by Hoelzel.
By definition, a curve γ ∈ Γb(r) induces a parametrization of Imψγ(M \N) ⊂ Dγ

given by
γ : ν1N × [0, b]→M × R, (ν, s) 7→ (φ(r(s)ν), t(s)),

at whose image points the tangent space splits as
Tγ(ν,s)Dγ = Tφ(r(s)ν) T (r(s))⊕ 〈γ′(ν, s)〉 ,

where T (r) := φ(νrN) is the distance tube around N . For (νq, r) ∈ ν1N × (0, r],
denote by H(νq, r) the parallel translation of Tq N into φ(rνq). Further denote by
V(νq, r) the orthogonal complement to H(νq, r)⊕ 〈∂r〉, i.e.

H(νq, r)⊕ V(νq, r)⊕ 〈∂r〉 = Tφ(rνq) T (r)⊕ 〈∂r〉 = Tφ(rνq)M.

For every (ν, r) ∈ ν1N × (0, r] choose an orthonormal basis of H(ν, r)⊕V(ν, r), i.e.
an isometry iν,r : En−1 → H(ν, r)⊕ V(ν, r).¶

With respect to this choice we introduce the following notation
R̃D(ν, s) := (iν,r(s) ⊕ (−γ′(ν, s)))∗RD, (4.6)
R̃M (ν, r) := (iν,r ⊕ ∂r)∗RM ,
R̃T (ν, r) := (iν,r ⊕ ∂t)∗RT ,

¶Note that in general this cannot be done a continuous way, if νN is not assumed to be trivial.
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where RT is the curvature operator of T (r)× R endowed with the product metric
gM |T (r) + dt2.

Proposition 4.7 ([Hoe16, Proposition 2.5]). In the situation above, for every
(ν, s) ∈ ν1N × I, we have

R̃D(ν, s) = cos2 θ(s)R̃M (ν, r(s)) + sin2 θ(s)R̃T (ν, r(s)) + E(ν, s),

for E(ν, s) a curvature operator satisfying

‖E(ν, s)‖ ≤ cos θ(s)(1− cos θ(s))C1 + θ′(s) sin θ(s)
r(s) C2,

where C1, C2 are constants only depending on D(r) := φ(ν≤rN), gM |D(r) and N .

If {gξ}ξ∈S is a family of metrics on M , we will choose isometries iν,r for every
metric gξ. Moreover, we denote by R̃D,ξ, R̃M,ξ and R̃T,ξ the corresponding entities
defined in eq. (4.6).

§4.2 Constructing the deformation map Π. The first step will be to show
that the construction of a new metric using a graph described above is actually a
continuous deformation procedure within RC(M) that can be applied to compact
families of metrics simultaneously.
Throughout this section, we always consider the setup as in Theorem 3.1.

Proposition 4.8. Let {gξ}ξ∈S ⊂ RC(M) be a family of metrics on M satisfying
C, which are adjusted to φ on the r-tube for some r > 0. Then there exists an r ≤ r
and a curve γ ∈ Γ̃(r) such that (M, gξ,γ) satisfies C, where gξ,γ is obtained from gξ
via eq. (4.4).
Moreover γ can be chosen such that according to the partition r(s4) = r(s5) is
arbitrarily small.

This follows from the constructive proof of [Hoe16, Theorem 2.1], which can easily
be adapted to construct a curve γ as required for an entire family of metrics. We
only need to make sure that during the bend of γ towards the t-axis C remains
satisfied.

Lemma 4.9 (Initial bending, adapted from [Hoe16, Lemma 2.9]). There exist
s2 > 0, θ0 > 0 and a smooth non-decreasing function θ : [0, s2] → [0, θ0] with
θ′|[0,ε)∪(s2−ε,s2] ≡ 0 for all ε > 0 small enough such that R̃D,ξ(ν, s) ∈ C for s ∈
[0, s0] and all ξ ∈ S.

Proof. The proof from [Hoe16] directly carries over to this case as all choices in-
volved can be made in accordance with a compact family of metrics. �

Lemma 4.10 (Second bend, adapted from [Hoe16, Lemma 2.10]). There exists
an r∗ ∈ (0, r) such that for every r ∈ (0, r∗) there is an extension of θ obtained
from Lemma 4.9 to a smooth non-decreasing function θ : [0, s5] → [0, π2 ] such that
R̃D,ξ(ν, s) ∈ C for all ξ ∈ S, r(s) > 0 and θ|[s4,s5] ≡ π

2 and r|[s4,s5] ≡ r for some
s4, s5 large enough.

Proof. We will only cover a part of the proof that we want to utilize later. Hoelzel
shows in [Hoe16, p.29f] that to conclude that R̃D,ξ(ν, s) ∈ C, it is enough to ensure

θ′(s) ≤ ρ

2C2

sin θ(s)
r(s) ,
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for s ∈ [s2, s5], where ρ = ρ(R̃M,ξ) and C2 (as in Proposition 4.7) depend on the
family of metrics. We let C3 := min{ ρC2

| ξ ∈ S} and conclude that while

θ′(s) ≤ C3

2
sin θ(s)
r(s) , (4.11)

we have R̃D,ξ(θ, s) ∈ C for all ξ ∈ S.
This can be used to inductively define the extension of θ. Assume θ is defined on
[0, sl] with θ(sl) < π

2 and define sl+1 := sl + r(sl)
2 . Now choose a bump function

ηl with support in [sl + r(sl)
16 , sl+1 − r(sl)

16 ] which is constantly C3
4

sin θ(sl)
r(sl) on [sl +

r(sl)
8 , sl+1 − r(sl)

8 ]. Setting

θ(s) := θ(sl) +
∫ s

sl

ηl(u) du

for s ∈ (sl, sl+1] defines an extension of θ to [0, sl+1], which ensures that r(sl) ≥
r(s) ≥ r(sl)

2 > 0 (cf. (4.3)) and thus satisfies

θ′(s) ≤ C3

4
sin θ(sl)
r(sl)

<
C3

2
sin θ(s)
r(s) . (4.12)

Most importantly, θ increases at least by

θ(sl+1)− θ(sl) ≥
∫ sl+1−

r(sl)
8

sl+
r(sl)

8

ηl(u) du ≥ C3

16 sin θ0.

Now after finitely many steps we obtain a smooth non-increasing θ : [0, a]→ [0, π2 +
ε], which we can adjust by a cutoff function to yield a smooth non-increasing
θ : [0, a + 1] → [0, π2 ] with θ|[a,a+1] ≡ 1 keeping (4.11) satisfied. W.l.o.g. we can
assume that r(a) = r, since we can let θ follow a straight line after passing s2 to
arbitrarily increase the r-coordinate. We let s4 := a and s5 := a+ 1. �

Proof of Proposition 4.8. By Lemma 4.10 we obtain a curve γ = γ(θ) determined
by its angular function θ : [0, s5]→ [0, π2 ] such that R̃D,ξ(ν, s) ∈ C for all ξ ∈ S, ν ∈
ν1N and s ∈ [0, s5]. Now extend θ to [0, s6] by choosing a smooth, on [s5, s6]
non-increasing function with θ(s6) = 0 such that γ(θ) follows the arc of a circle
(of possibly infinite radius) centered on the t-axis (cf. fig. 2). Since θ′|[s5,s6) ≤ 0,
(4.11). Finally, we let s1 := inf{s ≥ 0 | κ(s) > 0} and s3 := inf{s ≥ s2 | κ(s) > 0}
to see that γ ∈ Γ̃(r). �

Figure 2. Bending γ to intersect the t-axis following the arc of a circle.

Proposition 4.13. If γ is obtained from Proposition 4.8, there exists an isotopy
α : [0, 1] → Γ(r) such that α(0) = γ and α(1) = γ0, where γ0 : R → R2, s 7→ (r −
s, 0) is the curve along the r-axis, such that gξ,α(t) ∈ RC(M) for all ξ ∈ S, t ∈ [0, 1].
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Remark. This proposition states that we can deform γ (cf. fig. 3) and thereby the
corresponding metrics to the originial metric keeping the curvature condition C
satisfied. Such an isotopy of curves (possibly satisfying additions assumptions) is
often referred to as a Gromov-Lawson curve (cf. [EF18, Wal13]).

Figure 3. Isotopy between γ and γ0.

Recall that during the so-called second bend (within [s3, s4]), γ satisfies (4.11) for all
s ∈ [s3, s4], where C3 is a constant, which depends on the curvature condition C and
the family of metrics. We will argue that we can modify γ via its curvature function.
This will depend on the following Lemma adapted from [Che04, Proposition 2.3].

Lemma 4.14. Let γ ∈ Γ̃b(r) and let κ : [0, b]→ R be its signed curvature function
such that

θ′(s) ≤ C3

3
sin θ(s)
r(s) (4.15)

is satisfied for s ∈ [s3, s4]. Then there exists a δ > 0 such that for every s• ∈
[s3, s4] the curve γ̃ determined by the curvature function δs•κ satisfies (4.11), where
δs• : [0, b]→ [0, 1] is a smooth δ-cutoff function in the sense that

δs•(s) =
{

1 s ≤ s•
0 s ≥ s• + δ

.

Proof. The proof is entirely analogous to that of [Che04, Proposition 2.3]. Note
that because of eq. (4.15), there exists a δ > 0 such that for all s ∈ [s3, s4] and
t ∈ [0, δ] we have

κ(s+ t) < C3

2
sin θ(s)
r(s) .

Hence, we conclude that for all t ∈ [0, δ] and s• ∈ [s3, s4]

κ̃(s• + t) = δs•(s• + t)κ(s• + t) ≤ κ(s• + t) < C3

2
sin θ(s•)
r(s•)

≤ C3

2
sin θ̃(s• + t)
r̃(s• + t) .

For s ∈ [s3, s•] both κ and κ̃ coincide, while for t > δ, we have κ̃(s•+ t) = 0. Thus,
(4.11) is satified. �

Proof of Proposition 4.13. We will argue in two steps. First we will show that we
can deform a curve γ that bends up to a straight line of small angle θ0 within [s2, s3]
and bends down to meet the t-axis in a right angle to γ0 maintaining C.
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Using Proposition 4.7 Hoelzel concludes that for all ν ∈ ν1N and s ∈ [0, b)
‖R̃D(ν, s)− R̃M (ν, r(s))‖ ≤ sin2 θ(s)(sup ‖RM‖+ sup ‖RT ‖)|φ(r(s)ν)

+ cos θ(s)(1− cos θ(s))C1 + θ′(s) sin θ(s)
r(s) C2,

where the suprema are taken over the points in the tubular neighbourhood D(r).
As this is true for all s ∈ [0, s2] (where θ(s) ≤ θ0), it is easy to see that it remains
satisfied, if we linearly decrease θ to 0.
Let p : [0, 1] → I, t 7→ s4 − t(s4 − s3) be the linear path from s4 to s3. Choose
δ > 0 from Lemma 4.14 (whose assumptions are satisfied, which can be seen from
(4.12)) and a δ-cutoff function δs4 : I → [0, 1]. Note that we obtain a continuous
family of δ-cutoff functions δ̃s•(s) := δs4(s + (s4 − s•)) depending on s• ∈ [s3, s4].
Now define for t ∈ [0, 1]

κt(s) :=


δp(t)(s)κ(s) if 0 ≤ s ≤ p(t) + δ

0 if p(t) + δ ≤ s ≤ st
δst(st + δ − s)εtκ(s+ (s5 − st)) if 0 ≤ st ≤ Lt

where st is the intersection of γ(δ̃p(t)κ(s)) with {r4} × R and εt, Lt are uniquely
determined such that∫

[st,Lt]
κt(s) ds = −

∫
[0,st]

κt(s) ds and (γ(κt))(Lt) ∈ {0} × R .

The resulting isotopy t 7→ γ(κt) deforms γ = γ(κ0) into a curve of the form discussed
in the beginnning. �

Corollary 4.16. There exists a curve γ ∈ Γ̃(r) and a continuous map
A : S × [0, 1]→ RC(M),

with A(ξ, 0) = gξ and A(ξ, 1) = gξ,γ .

Proof. By Proposition 4.13, we obtain an isotopy of curves and thus an isotopy
of embeddings M ↪→ M × R whose corresponding metrics obtained via eq. (4.4)
satisfy C. �

In the next step, we will show that we can deform metrics to become rotationally
symmetric in a small normal tube.

Proposition 4.17. There exists an r∗ > 0 and a continuous map
B : S × [0, 1]→ RC(M)

such that B(ξ, 0) = gξ and (φ|ν≤r∗N )∗B(ξ, 1) is the restriction of a connection
metric on νN .
Moreover, if gξ is contained in Rrot

C (M), then t 7→ B(ξ, t) is a path within Rrot
C (M).

During the proof we will utilize the following technical result by Hoelzel.

Theorem 4.18 ([Hoe16, Proposition 2.7]). Let C be be a codimension c surgery
stable curvature condition and let Nk ⊂ Mn be a compact submanifold of the rie-
mannian manifold (M, gM ) with codimension n − k ≥ c. There exists an r∗ > 0
such that for all r ∈ (0, r∗) the riemannian manifold (T (r)×R, gT (r) + gR) satisfies
C. Moreover, there exists an L > 0 such that

R̃T (ν, r) = BL/r(1/r2REk+1×Sn−k−1) ⊂ C.

We note that, since all the metrics gξ are adjusted to φ on the r-tube, we have
T (r) = φ(νrN) for every r ≤ r when we apply this theorem to gξ.
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Lemma 4.19. Let γ = (δ cos s, δ sin s) for a s ∈ [0, π/2) be the curve in the (r, t)-
plane following the arc of a circle. Let gM be a riemannian metric on M and let
Dγ ⊂ φ(ν≤δN)× R ⊂ M × R be obtained from γ. Then there exists a δ > 0, such
that R̃D(ν, s) satisfies C for all ν ∈ ν1N and s ∈ [0, π/2).

Proof. The angular function θ is given by cos θ(s) = δ sin(s). By Proposition 4.7,
we have that

R̃D(ν, s) = cos2 θR̃M (ν, r(s)) + sin2 θR̃T (ν, r(s)) + E(ν, s)
= δ2 sin2 sR̃M (ν, r(s)) + (1− δ2 sin2 s)R̃T (ν, r(s)) + E(ν, s),

where ‖E(ν, s)‖ ≤ δ sin s(1 − δ sin s)C1 − δ cos s√
1−δ2 sin2 s

C2. Moreover, we conclude
from Theorem 4.18 that for δ small enough there exists an L > 0 such that

R̃T (ν, r(s)) = 1
r(s)2REk+1×Sn−k−1 + Ẽ(ν, s)

= 1
δ2 cos2 s

REk+1×Sn−k−1 + Ẽ(ν, s)

where ‖Ẽ(ν, s)‖ ≤ L
r(s) = L

δ cos s . Combined, we have

R̃D(ν, s) = δ2 sin2 sR̃M (ν, r(s)) + 1− δ2 sin2 s

δ2 cos2 s
REk+1×Sn−k−1

+ (1− δ2 sin2 s)Ẽ(ν, s) + E(ν, s).

If we choose δ small enough we ensure that λ(δ) := 1−δ2 sin2 s
δ2 cos2 s is large enough such

that λ(δ)REk+1×Sn−k−1 is contained in C. Because ‖(1 − δ2 sin2 s)Ẽ(ν, s)‖ grows
slower than the cone opens, for a δ small enough R̃D(ν, s) is contained in C. �

Proof of Proposition 4.17. Note that γ ∈ Γ̃(r) as obtained by Proposition 4.8 comes
with a partition 0 = s0 ≤ s1 ≤ · · · ≤ s6 = b. We denote ti = t(si) and define
I1 := (−∞, t4], I2 = [t4, t5] and I3 = [t5,∞). As before, let D(r) := φ(ν≤rN) and
define Sj := D(r)× IJ . This partitions Dγ into Dj := Dγ ∩ Sj for j = 1, 2, 3 with
the following descriptions (cf. fig. 4)

D1 :={(φ(r(s)ν), t(s)) | 0 ≤ s ≤ s4, ν ∈ ν1N},
D2 :={(φ(r(s)ν), t(s)) | s4 ≤ s ≤ s5, ν ∈ ν1N},
D3 :={(φ(r(s)ν), t(s)) | s5 ≤ s < b, ν ∈ ν1N} ∪ {(p, t(b)) | p ∈ N}.

Let htorp denote a connection metric on νN obtained from a torpedo metric (as
constructed in § 2.4).
Let ξ ∈ S and let h be the pull-back of a connection metric on νN , which is adjusted
to φ on the r-tube, along (φ|ν≤rN )−1 to φ(ν≤rN).
Fix a small ε > 0 and define for l ∈ [0, 1] a riemannian metric

Gξ,l :=
{
gξ + dt2 on D(r)× (I1 ∪ [t4, t4 + ε))
((1− l)gξ + lh) + dt2 on D(r)× ((t5 − ε, t5] ∪ I3).

For every l ∈ [0, 1] continue this to a smooth metric on D(r) × R by choosing a
family of smooth paths of metrics Pl : [t4 + ε, t5 − ε]→ R(M), which are adjusted
to φ on some tube. By an application of Proposition 2.33, we can assume that the
paths are through metrics adjusted to φ on the r0-tube for some r0 < r. Moreover,
we choose a path through connection metrics, in case gξ is a connection metric to
begin with.
In total, we obtain a family of metrics {Gξ,l}(ξ,l)∈S×[0,1].
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Figure 4. Partition of Dγ into D1, D2 and D3.

Since the metrics Gξ,l restricted to M × {t} are adjusted to φ on the r0-tube, D2
is the distance tube around S2 ∩ (N × {0}) for every (ξ, l) ∈ S × [0, 1]. Thus,
by Theorem 4.18 the metric restricted to D2 satisfies C, if r(s4) = r(s5) =: δ is
small enough. This can be accomplished according to the construction of γ (cf.
Proposition 4.8).
In S3, the submanifold D3 is determined by γ following the arc of a circle. Hence,
we can apply Lemma 4.19 to see that for δ small enough C is satified for all (ξ, l) ∈
S× [0, 1]. Because h is a connection metric and modified by γ following an arc only
radially, the metric induced on D3 by Gξ,1 is a connection metric, as well.
Therefore, the metric induced on Dγ from gξ,l satisfies C and if we let r∗ := r(1−
t4/b), then

B : S × [0, 1]→ RC(M), (ξ, l) 7→
{
A(ξ, 2l) for l ∈ [0, 1/2],
φ∗γ(Gξ,2l−1|Dγ ) for l ∈ [1/2, 1]

has the properties claimed.
In particular, if gξ ∈ Rrot

C (M), then by Remark 4.5 the metrics A(ξ, · ) are contained
in Rrot

C (M). During the second part of the deformation the restriction of Gξ,l to
M × {t} is a connection metric and thus B(ξ, · ) is contained in Rrot

C (M). �

The final step amounts to an adjustment of the metric we produced to the tubular
map φ using a suitable radial diffeomorphism.

Proof of Proposition 3.2. Consider the deformation mapB as constructed in Propo-
sition 4.17. We can choose a family of radial diffeomorphisms Φ: [0, 1]→ Diff(M), t 7→
Φt, such that

(1) Φ0 ≡ idM ,
(2) Φt is the identity outside of φ(ν≤3/2rN),
(3) Φ1(φ(ν≤rN)) ⊂ φ(ν≤r∗N).
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Now define the final deformation map

Π: [0, 1]× S → RC(M), (l, ξ) 7→
{
B(2l, ξ) for l ∈ [0, 1/2]
Φ∗2l−1B(1, ξ) for l ∈ [1/2, 1]

.

This map has the desired properties and in particular Π(1, ξ) = Φ∗1B(1, ξ) is con-
tained in Rrot

C (M). �

§5. Rotationally symmetric metrics

The main goal of this section is the proof of Proposition 3.3, which will complete
our proof of the main theorem. It will follow from an analysis of rotationally
symmetric metrics on the disc. As before, we are generalizing the method laid out
in Chernysh’s [Che04] to the case of certain curvature conditions.
§5.1 Metrics on the disc. In the following fix a deformable, codimension c surgery
stable curvature condition C ⊂ CB(En), δ > 0 and q ≥ c.

Definition 5.1. Define
Rrot := {g ∈ R(Rq) | g = α2(t) dt2 + β2(t)gSq−1 and α(t) 6= 0 ∀t, β ≥ 0}

in spherical coordinates (0,∞]× Sq−1 ∼= Sq \ {0}, where α, β : (0, δ]→ R. Further,
we denote by

Rrot
C := {g ∈ Rrot | gEn−q + g ∈ RC(Rn−q ×Rq)}

the space of rotationally symmetric metrics satisfying C.

Definition 5.2. On Rrot the radius defines a continuous map

rad: Rrot → R>0, g 7→
∫ δ

0
g(γ′, γ′) 1

2 dt,

where γ is a radial path from the centre to a boundary point of Dq(δ). In the
spherical coordinates (0, rad(g)] × Sn−1 ∼= Dn(δ) \ {0} the metric g is of the form
dt2 +βgSn−1 for β : (0, rad g]→ R, which is the restriction of a smooth odd function
β : R → R with β′(0) = 1 and β(even)(0) = 0. The group of diffeomorphisms
Diff0(R) = {ψ ∈ Diff(R) | ψ(k)(0) = 0 ∀k ≥ 0, ψ′(0) = 1} acts continuously on
rotationally symmetric metrics as follows:

Diff0(R)×Rrot → Rrot,

(ψ, g = dt2 + β2gSq−1) 7→ ψ ? g := dt2 + (β ◦ ψ)2gSq−1 ,

where the expression for ψ?g is understood in spherical co-ordinates (0, ψ−1(rad(g))]×
Sq−1 ∼= Dn(δ) \ {0}.

Remark 5.3. (1) For the radius we have rad(ψ ? g) = ψ−1(rad g).
(2) If Rβ is the curvature operator corresponding to g = dt2+β2gSq−q (cf. (2.18)),

then Rβ◦ψ is the curvature operator corresponding to ψ ? g.

Proposition 5.4. In the situation of the above definition there exists a continuous
function σ : Rrot

C → (0, δ2 ] and a continuous deformation of the identity Ψ1 : Rrot
C ×

[0, 1]→ Rrot
C with

(1) Ψ1( · , 0) ≡ id,
(2) Ψ1( · , s) ≡ id near ∂Dq(δ) for all s ∈ [0, 1],
(3) Ψ1(g, 1) = dt2 + β(t)gSq−1 with

(i) β(l)|σ(g) = 0 for all l ≥ 1,
(ii) 0 ≤ β′ ≤ 1 and β′′ ≤ 0 on [0, σ(g)].
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The proof will be based on the observation that the warping function of a metric
g ∈ Rrot

C behaves in a certain way near 0 combined with explicit deformations of the
metric corresponding to this region. We will separate these steps in the following
lemmata.

Lemma 5.5. For every g = dt2 + β2gSq−1 ∈ Rrot
C there exists a t∗ such that

0 < β′ < 1 and β′′ < 0 on (0, t∗].

Proof. Assume this would not be the case, i.e. there exists a point t0 with β′ ≥ 1
or β′′ ≥ 0 on [0, t0]. Since we have β′(0) = 1 and β′′(0) = 0, both inequalities are
actually equivalent to convexity of β on the interval [0, t0]. The curvature operator
corresponding to β is

Rβ = 1− β′2

β2︸ ︷︷ ︸
=:λ(β)

RE×Sq−1 −β
′′

β︸ ︷︷ ︸
=:µ(β)

Lq (5.6)

and for t ∈ [0, t0] we thus have λ(β)(t) ≤ 0 and µ(β)(t) ≤ 0.
Since we know that C satisfies an inner ray condition with respect to s(RE×Sq−1 +
µL) for µ ≥ 0 and s > 0, we conclude that with λ ≤ 0, µ ≤ 0 the curvature
condition C would contain the flat curvature operator 0, which is a contradiction
to our assumption that C is deformable. �

Lemma 5.7 ([Che04, Lemma 3.5]). For 0 < C1 ≤ 1, 0 < t∗, 0 < t∗ < 1/2 t∗,
s ∈ [0, 1] let 0 < a = a(t∗, t∗) < b = b(t∗, t∗) < t∗ be continuous functions. There
exist continuous functions 0 < C2 = C2(C1, t

∗) ≤ 1, e = e(s) and an isotopy
through diffeomorphisms φs : R → R such that for b < c = φ−1

s (8/10 t∗) < d =
φ−1
s (9/10 t∗) < e

(i) φ0 ≡ id,
(ii) φs(0) = 0 and φs(e(s)) = t∗,
(iii) φ′s|[0,a]∪[d,∞) ≡ 1 and φ′s|[b,c] ≡ 1− sC2, φ(n)

s |[b,c] ≡ 0 for all n ≥ 2,
(iv) 0 ≤ 1− C2 ≤ φ′s ≤ 1,
(v) φ′′s ≤ C1,
(vi) φ′′s |[a,b] ≤ 0 and φ′′s |[c,d] ≥ 0.

Figure 5. First deformation family as described in Lemma 5.7

Lemma 5.8 ([Che04, Lemma 3.7]). Let 0 < D1 ≤ 1, 0 < t∗∗, s ∈ [0, 1]. There exist
continuous functions 0 < b = b(D1, t

∗∗) < t∗∗

2 , e = e(s) and an isotopy through
diffeomorphisms ψs : R→ R such that for 0 < a = 1/10 b < c = ψ−1

s (9/10 t∗∗) < e

(i) ψ0 ≡ id,
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(ii) ψs(0) = 0, ψs(d(s)) = t∗∗,
(iii) 0 ≤ ψ′s ≤ 1,
(iv) ψ′s|[0,a]∪[c,∞) ≡ 1,
(v) ψ′′s |(0,∞)(t) ≤ D1/t,
(vi) ψ(n)

1 (b(1)) = 0 for all n ≥ 1.

Figure 6. Second deformation family as described in Lemma 5.8

The proof of these two lemmata is a straight forward explicit construction by means
of ordinary differential equations.

Proof of Proposition 5.4. We consider g = dt2 + β2gSq−1 ∈ Rrot
C . By Lemma 5.5,

there exists a t∗ such that 0 < β′ < 1 and β′′ < 0 on (0, t∗]. Without loss of
generality, we can assume that t∗ ≤ δ/2.
Now we invoke Lemma 5.7 with the parameters C1, t∗ and the Lemma 5.8 with the
parameters D1, t

∗∗ to define

Ψ1 : (g, s) 7→
{
φ2s ? β for s ∈ [0, 1/2]
(φ1 ◦ ψ2s−1) ? β for s ∈ [1/2, 1]

.

We need to make sure that during both parts of the deformation the corresponding
metrics stay within the space Rrot

C .
(1) We need to make sure that the rotationally symmetric metric given by the

warping function β ◦ φ2s, which has the curvature operator

Rβ◦φ2s = 1− β′(φ2s)2φ′22s
β(φ2s)2 RE×Sq−1 − β′′(φ2s)φ′22s + β′(φ2s)φ′′2s

β(φ2s)
Lq, (5.9)

satisfies C, as well. On [0, a], we have φ2s ≡ id and there is nothing to check.
On [d, φ−1

2s (rad g)] we have φ′2s ≡ 1 and φ′′2s ≡ 0, thus, Rβ◦φ2s at t equals Rβ
at φ−1

2s (t), which of course satisfies C.
On [b, c] we have

Rβ◦φ2s = 1− β′(φ2s)2(1− sC2)2

β(φ2s)2 RE×Sq−1 − β′′(φ2s)(1− sC2)2

β(φ2s)
Lq

= (1− sC2)2Rβ |ψ2s ∈ C.

In the remaining part [a, b] ∪ [c, d] we will use the deformability (cf. Def-
inition 2.19) of the curvature condition C. We can conclude that the first
summand in (5.9) is contained in C because 1−β′2(φ2s)φ′22s

β2(φ2s) > 0. The whole sum

is clearly contained in C, if −β
′′(φ2s)φ′22s
β(φ2s) − β′(φ2s)φ′′2s

β(φ2s) ≥ 0, i.e. if −β
′′(φ2s)φ′22s
β′(φ2s) ≥
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φ′′2s. Since β′′ < 0, 1 − C2(C1, t
∗) ≤ φ′2s ≤ 1 and 0 < β′ < 1, we can choose

C1 in Lemma 5.7 such that this is satisfied.
(2) Now we need to conclude the same for β ◦ φ1 ◦ ψ2s−1, where this time we

denote β̃ := β ◦ φ1. We let b < t∗∗ < c from Lemma 5.7. The curvature
operator here is

Rβ◦φ1◦ψ2s−1 =
1− (β̃′)2(ψ2s−1)(ψ′2s−1)2

β̃2(ψ2s−1)
RE×Sq−1

−
β̃′′(ψ2s−1)ψ′22s−1 + β̃′(ψ2s−1)ψ′′2s−1

β̃(ψ2s−1)
Lq (5.10)

again, by the same reasoning, the first summand is contained in C. And again
on [0, a] ∪ [c, (φ1 ◦ ψ2s−1)−1(rad g)] there is nothing to check. Within [a, c]
by deformability, the sum in (5.10) would be contained in C, if − β̃

′′ψ′22s−1
β̃

≥
ψ′′2s−1. Unfortunately, the left-hand side of this inequality is not necessarily
strictly positive and hence can’t be used to saturate D1 in Lemma 5.8. Using
the fact that C satisfies an inner cone condition with respect to RE×Sq−1 , we
conclude that actually the factor in front of Lq has to be larger than a
negative constant depending on the cone opening.

Figure 7. Intersection of the cone condition with the λRE×Sq−1 +
µLq plane. Here λ(β) := 1−β′2

β2 .

On [a, c] we have β̃′′ = β′′(φ1)φ′21 +β′(φ1)φ′′1 < 0, because φ′′1 ≤ 0, β′′ < 0,
0 < φ′1 ≤ 1 and 0 < β′ < 1, as well as 0 < β̃′ = β′(φ1)φ′1 < 1. Now eq. (5.10)
is contained in C, if

−
β̃′′(ψ2s−1)ψ′22s−1 + β̃′(ψ2s−1)ψ′′2s−1

β̃
≥ −C∗∗,

where C∗∗ > 0 depends on the cone opening ρ(λ(β ◦ φ1)RE×Sq−1) > 0 (cf.
Definition 2.6 and fig. 7) and the difference λ(β ◦φ1 ◦ψ2s−1)−λ(β ◦φ1) > 0.
This is equivalent to

β̃(ψ2s−1)C∗∗ − β̃′′(ψ2s−1)ψ′22s−1

β̃′
≥ ψ′′2s−1,

where the left-hand side is strictly positive, which enables us to choose D1
such that Rβ◦φ1◦ψ2s−1 is contained in C.

Finally, let σ(g) := b from Lemma 5.8. �
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Definition 5.11. Let gtorp = dt2 + βtorp(t)2gSn−k−1 be the torpedo metric on
Dn−k(δ). We define

Rloc
C := {g ∈ Rrot

C | g =
(
δ
δ∗

)2 dt2 + βtorp
(
δ
δ∗ t
)2
gSq−1 with δ∗ ∈ (0, δ]}

and refer to it as the space of locally torpedo metrics. The radius δ∗ on which a
metric g ∈ Rloc

C is torpedo yields a continuous map δ∗ : Rloc
C → (0, δ].

Proposition 5.12. In the situation of Proposition 5.4 there exists a continuous
map

Ψ2 : Rrot
C × [0, 1]→ Rrot

C

such that
(1) Ψ2( · , 0) ≡ id,
(2) Ψ2( · , s) ≡ id near ∂Dq(δ) for all s ∈ [0, 1],
(3) Ψ2(g, 1) =

(
δ
σ

)2 dt2 + βtorp
(
δ
σ t
)2
gSq−1 on Dq(σ),

Proof. For the first part of the deformation we use Ψ1, i.e.
Ψ2 : (g, s) 7→ Ψ1(g, 2s) for s ∈ [0, 1/2].

Now let Ψ1(g, 1) = dt2 +β2gSq−1 . We will describe a deformation on Dq(σ(g)). For
u ∈ [0, 1] let βu := (1 − u)β + uβtorp we observe the following. If β(t) ≤ βu(t) ≤
βtorp(t), we have

1− β′2torp(t)
βtorp(t) ≤ 1− β′2u (t)

βu(t) ≤ 1− β′2(t)
β(t) ,

since 0 ≤ β′ ≤ 1 and 0 ≤ β′torp ≤ 1 (we obtain the opposite inequalities if β(t) ≥
βu(t) ≥ βtorp(t)). Moreover

β′′u
βu

= (1− u)β + uβtorp

(1− u)β + uβtorp
≤ 0,

because β′′ ≤ 0 and βtorp ≤ 0. Hence, by deformability βu is contained in C and
since we have created a collar at σ(g) (i.e. β(l)(σ(g)) = 0 for all l ≥ 1), we can
deform β on a small interval to connect βu(σ(g)) with β(σ(g)). Denote the result
by β̃u and define Ψ2 : (g, s) 7→ dt2 + β̃2

2s−1gSq−1 for s ∈ [1/2, 1]. �

§5.2 Rotationally symmetric metrics around a submanifold. Finally, we
return to the case of an embedded submanifold with the assumptions as listed in
Theorem 3.1.
Recall that we can use gN , hνN , ω and a rotationally symmetric metric grot on Rn−k
to define a connection metric h∇(grot) := gN ⊕ω grot on νN .
We note that every rotationally symmetric metric around N in the sense of Defini-
tion 2.34 is given by a rotationally symmetric on the disc, that is contained in Rrot

C ,
in particular. More precisely, for δ = R in Definition 5.1 we have for g ∈ Rrot

C (M)
that φ|∗

ν≤RN
g = h∇(grot)|ν≤RN , where grot|Dn−k(R) ∈ Rrot

C . As g is adjusted to φ
on the R-tube, we have that grot = dr2 + β(r)2gSn−k−1 .
We note that a continuous alteration of grot, which does not alter the metric near
Sn−k(R) ⊂ Rn−k results in a continuous alteration of the metric g near N .

Definition 5.13. Analogous to Definition 5.11 we define
Rloc
C (M) := {g ∈ RC(M) | φ|∗ν≤RNg = h∇(grot)|ν≤RN with grot|Dn−k(R) ∈ Rloc

C }.

Lemma 5.14. There exists a continuous deformation map Φ: Rloc
C (M)× [0, 1]→

Rloc
C (M) such that
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(i) Φ( · , 0) ≡ id,
(ii) Φ( · , 1) ∈ Rtorp

C (M).

Proof. For a small ε > 0 choose a family of radial diffeomorphisms on the disc
φ : Dn−k(R+ ε)× (0, R]× [0, 1]→ Dn−k(R+ ε) such that

(i) φ( · , r, 0) ≡ id,
(ii) φ(x, r, 1) = r

Rx on x ∈ Dn−k(R).
(iii) Denote by δ̃ = δ̃(r) the value where φ( · , r, 1)−1(Sn−k(R)) = Sn−k(δ̃). If

δ̃ ∈ [δ, δ + ε], then φ( · , r, 1) is a radial euclidean isometry in a tubular
neighbourhood of Sn−k(δ̃).

These give rise to a family of diffeomorphisms on the normal bundle φ : ν≤R+εN ×
(0, R] × [0, 1] → ν≤R+εN . Further, by Definition 5.11 we obtain a continuous
function δ∗ : Rloc

C (M)→ (0, δ] such that we can define

Φ(g, s) := φ( · , δ∗(g), s)∗g,

which is the deformation map we were seeking to construct. �

Now we are set up to give a proof of Proposition 3.3, i.e. to show that Rtorp
C (M) is

a weak deformation retract of Rrot
C (M).

Proof of Proposition 3.3. The idea is to construct a retraction map

r : Rrot
C (M) Ψ−→ Rloc

C (M) Φ−→ Rtorp
C (M),

where Ψ is a replacement of the rotationally symmetric metric by local torpedo
metric, while Φ is induced by a family of radial diffeomorphisms on the disc.
The map Ψ2 constructed in Proposition 5.12 gives rise to a continuous deforma-
tion map Ψ: Rrot

C (M) × [0, 1] → Rrot
C (M) with Ψ( · , 1) ⊂ Rloc

C (M) by replacing
the rotationally symmetric metric in the connection metric with the metrics ob-
tained during the deformation Ψ2. Now use this Ψ and the map Φ constructed
in Lemma 5.14 to define r := Φ( · , 1) ◦ Ψ2( · , 1). The homotopy i ◦ r ' idRrot

C
(M),

where i is the inclusion, is given by

(g, s) 7→
{

Ψ(g, 2s) for s ∈ [0, 1/2]
Φ(Ψ(g, 1), 2s− 1) for s ∈ [1/2, 1]

.

For the other homotopy r ◦ i ' idRtorp
C

(M), we note that Ψ2( · , 1) does not alter
the torpedo metric within the annulus Dn−k(R/2, R), since t∗ ≤ R/2 in the proof of
Proposition 5.4. Let g ∈ Rtorp

C (M). On Dn−k(R) the metric r(g) is torpedo, i.e.
agrees with τ∗g , while on the annulus Dn−k(R,R+ ε) the metric might not agree
with the original one. This can be resolved by straightening this to a collar region
and shrinking it down afterwards, which is possible because δ̃ ∈ [R,R + ε] in the
proof of Lemma 5.14. �
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