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For the case of the quantization of the usual non-relativistic classical Lagrangian 

function quadratic in the velocity the validity is demonstrated of the non-canonical space

time formulation of quantum mechanics proposed recently by the author, which aims to 

evaluate, without appealing to the Schrodinger equation, the transformation function 

K(x, til; y, tl) in the space representation on the basis of the composition rule 

K(x, til; y, tl) = ~ K(x, til; z, t)dzK(z, t; y, tl) (1) 

coupled with the supposition that it is approximated to zeroth order In the quantum of 

action h by the so-called semi-classical kernel 

K" (x, til; y, t l ) = [(i/ h) 82S/8x8y] 1/2 exp [(i/h) S (x, til; y, tl )] (2) 

written in terms of the classical action S ex, til; y, t l
) alone. 

In the first place the action function corresponding to the above Lagrangian is expanded 

in power of the interval of time T=tll-tl. Then the deviation of the semi-classical kernel 

(2) from the unitary transformation function is shown to be of the third order in T, and 

the corresponding correction term is evaluated by solving the integral equation (1). It is 

also shown that the semi-classical kernel is unitary for a free motion of a particle with its 

mass being a function in the space coordinate. 

~ 1. Introduction and summary 

In quantum mechanics the temporal development of a physi.cal system is de

scribed essentially by the transformation function or the kernel Ak( (x, t; y, t'), 

such that for t = t' 

K(x, t; y, t) =6(x-y), (I-I) 

In the traditional formulation this is a solution of the Schrodinger equation 

in (a/at) K (x, t; y, tl) =I-I(x, p, t) K (x, t; y, tl), (1- 2) 

where p denotes the differential operator -inca/ax). If aH/at=O, the solution 

reads simply with T=t-tl 

K(x, y, T) =exp[ - (iT/n)H(x, p) Jr;(x- y). (1· 3) 

In this canonical formalism the Hamiltonian operator plays an essential part, which 

is constructed on the basis of a kind of formal correspondence with the Hamiltonian 

function I-I(q, p, t) in classical mechanics, where q and p denote the space coordinate 

of a particle and its canonically conjugate momentum, respectively. 
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On the Space-Time Formulation of Non-Relativistic Ouantwn Mechanics 903 

In contrast with this, Feynman's space-time version of quantum mechanics l
) 

aimed to establish, without the use of canonical variables, an equivalent and self

contained theoretical scheme in the usual space-time framework. The superiority 

of this approach starting from the classical action function to the usual one con

sists in securing a direct correspondence of quantum mechanical description with 

the classical mechanical one formulated originally in the form of Hamilton's principle 

of stationary action in the usual space-time. 

Feynman's formulation suffered, however, from the drawback, as was pointed 

out by himself, that it required an unnatural and cumbersome infinite subdivision 

of the time interval T. This is not only true from the side of mathematical con

ceptions needed therein, but also from the practical point of view of the actual 

integration of the transformation function. The exact realization of Feynman's recipe 

has so far been limited to the simple and trivial cases of the free particle and the 

harmonic oscillator alone and no practical method of integration has been devised 

applicable to wider class of action functionals. 2
) 

In the present paper the following two things are shown in the non-relativistic 

quantum mechanics of a particle of mass m moving in one space dimension, whose 

classical Lagrangian and Hamiltonian functions are given respectively by 

and by 

L(q, v) = (m/2)v 2
- V(q) 

I-1(q,p) = (1/2m)p2+ V(q), 

(1·4) 

(1· 5) 

where v denotes the velocity dq(t) / dt. In the first place it is possible to construct 

a space-time formulation of quantum mechanics without appealing to an infinite 

subdivision of the interval of time. In the second place it becomes thus possible 

to evaluate the transformation function, when the potential V(q) is given arbitrarily. 

In order to make clear the differences between the fundamental postulates under

lying the present formulation and those in Feynman's, it is needed first to analyse 

the essentials of the so-called F eynman principle. 

Let q(t) represent a classical path of a particle connecting a pair of space-time 

points (x, til) and (y, tl), then X=q(t") and y=q(tl). This function q(t) is 

determined by the variation principle 

('t" 

(J \ dt L[q(t) , 'v(t) , t]=O, 
J t' 

or equivalently by the Lagrangian equation of motion 

(d/ dt) oL/ov= oL/oq, 

and the time integral of the Lagrangian function 

rt" sex, til; y, tl) = Jt' dt Llq(t), 'u(t) , t] 

along the actual classical path is called the classical action function. 

(1· 6) 

(1· 7) 

(1· 8) 

From the very 
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904 I. Fujiwara 

beginning of quantum mechanics the relation of this function to quantum mechanics 

has repeatedly been emphasized by various authors. 3) Especially Van Vleck showed 

that the transformation function could be approximated to zeroth order in the 

quantum of action h by the semi-classical kernel 

Kc(x, t; y, t') =[(i/h)o2S/oxoyT/2exp[(z/n)S(x, t; y, t')J (1· 9) 

constructed from the classical action alone. 4
) Of course this can not in general re

present a unitary transformation. But in some favourable cases it happens that 

this is correct to the first order In the time interval T=t-t', or more precisely 

that, supposing oJI/ot=O, 

KcCx, y, T) =[)- (iT/n)H(x, jy)]o(x-y) +0(T2). (1·10) 

Now it is well known that any finite unitary transformation IS a result of an 

infinite unfolding of successive infinitesimal unitary transformations. It was thus 

asserted by Feynman that, when and only when the semi-classical kernel is correct 

to the first order in T, the infinite unfolding of infinitesimal unitary transformations 

goes over to the functional integration method 

K(x, t; y, tl) = J d(paths) exp[(i/ll) S(path)] (1·11) 

over all possible imaginary paths in space-time with the common end points (x, t) 

and (y, t'), of which the result will be the same with that of the Schrodinger 

equation. The reason for this was stated as follows. If a given finite interval of 

time, T*, is subdivided into equal steps T, the number of the factors of the form 

(1·10) is T* /T. If an error of order T2 is made in each, the resulting error 

will not accumulate beyond the order T2 (T* IT) or T*T, which vanishes in the 

limit T~)O. 

This is actually the case for the non-relativistic quantum mechanics correspond

ing to the classical system characterized by (1·4) and (1· 5). Feynman showed 

this by establishing, with the aid of the approximation formula 

Sex, y, T) = (m/2T) (x-y)2-TV(x) (1·12) 

to the classical action function (1· 8), the relationship 

\ dy 1(c(x, y, T)S&(Y) =[1- (iT/ll)l-I(x, jY)]¢(x) +0(T2), (1 0 13) 
J 

which is equivalent to the above (1·10). In this connection the question arises 

to what extent the semi-classical kernel is a correct one in the non-relativistic case 

now under consideration. The following three sections will thus be devoted to the 

improvement of the approximation formula (1·12) yielding the result 

Sex, y, T) = (m/2T) (x-y)2-TF1 (x, y) - (T3/2nl) F3 (x, y) 0(T 5
), 

(1 0 14) 
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On the Space-Time Formulation of Non-Relativistic Quantum Mechanics 905 

wherein 
('1 

Fl(x, y) = Jodu V[y+u(x-y)] (1·15) 

and the expression for F3 (x, y) will be found in (3·22). It will then be shown 

In ~ 5 that (1·10) will accordingly be changed to the form 

Kc(x, y, T) =K(x, y, T) - (inT:/240m2)[(d/dx)4V(x)](~(x-y) +0(T4) 

(1·16) 

with the K (x, y, T) gi ven by (1· 3) . The semi -classical kernel is, therefore, 

correct to the second order in T and the transfornlation function should be written 

in the form 

K(x, y, T) =Kc(x, y, T)[1 + (ihT 3/8nl2)lJ(x, y) 0(T4) J 

=Kc(x, y, T) + (inT 3/SJn2)D(x, x) (J(x--y) +0(T4). (1·17) 

Comparing this with the above (1·16), we get at once the condition 

D(x, x) = (1/30) (d/dx)4V(.X). (1·18) 

The task of the space-time formulation of quantum mechanics will thus be to de

termine the unknown function D(x, y) subjected to the condition (1·18) without 

relying upon the Schrodinger equation. 

It is evident from the above that the Feynman principle is correct at least in 

principle so far as we are concerned with the non-relativistic Lagrangian (1· 4). 

But being hindered by mathematical difficulties, no attempt has so far been made 

to obtain by this method the function 1) (x, y) in the general case of an arbitrary 

potential V (q). Apart from this difficulty the limitation is inherent in Feynman's 

method that it is valid only for the restricted class of action functionals, for which 

the corresponding semi-classical kernels are correct to the first order in the time 

interval. Therefore, as far as the correspondence with the classical mechanical 

picture is made via the semi-classical kernel written in terms of the classical action 

functional, the most general form of the space-time formulation of quantum mechanics 

applicable also to wider class of action functionals will essentially be at variance 

with an· infinite subdivision of the interval of time. 

Now in so far as the parameter 11 is concerned alone, the semi-classical kernel 

is correct to the zeroth order in it for any finite interval of time. The unitarity 

of the transformation function will thus be secured by putting 

K(x, t; y, t') =l<:cCx, t; y, t') U(x, t; y, t') 

with the correction factor U (x, t; y, t') such that 

lim U(x, t; y, t') =1. 
r,-~O 

Then In our non-relativistic case we have from (1·17) 

(1·19) 

(1· 20) 

(1· 21) 
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906 L Fujiwara 

But for the purpose of determining the unknown factor U(x, t; y, tf) the use of 

the unitarity condition 

J' dz K(x, t; z, t')K(y, t; z, t')*=(~(x-y), 

where the asterisk denotes the complex conjugate, is inconvenient, because the delta

function in the right-hand side is mathematically hard to manipulate. Therefore? 

the author has recently proposed5) to base the space-time formulation of quantum 

mechanics on the use of the recursive condition 

K (x, t lf 
; y, t') = \ K (x, t lf 

; z, t) dz K (z, t; y, t!), (1· 23) 
,J 

which yields the above (1·22) for til = t' according to (1·1). The final object of 

the present paper is thus to show that this recipe for the construction of the trans

formation function works well at least in the non-relativistic case wherein the action 

function is approximately given by (1·14). In ~ 6 the integral equation (1· 23) 

is solved to determine the function D(x, y) in (1·21) as 

(1· 24) 

m terms of Fl (x, y) given in (1·15). This at once gIVes 

D(x, x) = \lduu2 (1-u)2(d/dx)4V(x), 
oJ 0 

(1·25) 

which is nothing but the condition (1·18). In addition to this it will be shown 

in § 7 that the semi-classical kernel corresponding to the classical Lagrangian func

tion 

L (q, v) = (m/2) [w (q) 'v J2 

will itself satisfy the recursive condition (1· 23), T'herefore the semi-classical kernel 

is unitary and we can put in this case the function U in (1·19) equal to unity. 

Now from the above one may safely expect that the space-time formulation of 

quantum mechanics based on the coupled use of the recursive condition (1· 23) 

and the factorization (1 ·19) of the transformation function in terms of the semi

classical kernel (1· 9) is valid in general for wider class of action functionals, In 

order to show that this is actually the case, it is needed first to devise some 

mathematical transformation of the condition (1· 23) into a more tractable one and 

then to utilize it in quantizing classical systems different essentially from those 

treated in this paper. Moreover, in order that the present formulation should be 

a complete and self-contained one, or more precisely that it should be completely 

free from the influence of the Schrodinger equation, one has to be able to explain, 

in the framework of the recursive condition alone, the reason why one is to start 

from the factorization (1·19). This means, as has already been pointed out by 

the author,5) that the principle of correspondence with the classical mechanical 

description is to be implied, in the limit of the quantum of action h tending to zero, 
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On the Space-Time Formulation of Non-Relativistic Quantum Mechanics 907 

in the recursive condition representing the group property of the transformation 

function. In addition to these it will be of interest to investigate what condition is 

imposed on the classical Lagrangian function in order that the semi-classical kernel 

its correct to the first order in the time interval or accordingly that the passage to 

Feynman's path integral method of quantization is really possible. These are the 

problems left to be solved and the solutions will be given in succeeding papers. 

§ 2. Evaluation of action function by the IIamilton-Jacobi equation 

Since the Lagrangian function (1·4) does not depend explicitly on the time t, 

the action function (1·8) involves t lf and t' in the form of the difference T=t"-t' 

and can accordingly be written as S (x, y, T). In the case of free motion with 

vanishing potential it reads simply 

Sj(x, y, T) = (m/2T) (x- y) 2. (2 ·1) 

'When the particle is acted on by force, the explicit construction of action function 

is difficult to perform and it has sc) far been successful only for the restricted cases, 

where the potential is linear or quadratic in the coordinate. For 

V(q) =kq and V(q) = (moi/2) q2 

with the constants k and tv, the results are respectively 

and 

Sex, y, T) =Sj(x, y, T) - (k/2)T(x+y) - (k2/24m)T 3 

S (x, y, T) = (mo)/2 sin (vT) [(x 2 + y2) cos wT - 2xyJ 

=Sf(X, y, T) - (mw2/6) T(x2 +xy+ y2) 

- (mo}/90) T3[X2 + (7/4) xy + y2] - .... 

(2·2) 

(2·3) 

(2 ·4) 

[t is common to these that the first term Sj(x, y, T) is followed by the terms of 

odd power in T, so that we put in the general case of an arbitrary potential V (q) 

Sex, y, T) =Sj(x, y, T) -TF(x, y, T) (2 ·5) 

with 
00 

F(x, y, T) = ~ (T 2/2m)kF2k +l (x, y). 
k=O 

(2 ·6) 

The Hamilton-Jacobi equation derived from the Hamiltonian function (1· 5) IS 

(a/aT)S(x, y, T) + (1/2m) [(a/ax) S(x, y, T)]2+ Vex) =0, (2 ·7) 

which is transcribed with a = T 2/2m as 

00 00 

~ an(x-y)-2n(a/ax)[(x-y)2n+lF2n+1(x, y)]= ~ anG2n (x, y), (2·8) 

where 

and 

n=O n=O 

GO(x, y) = Vex) 

n-l 

G2n (x, y) = 2J (a lax) F2k+l . (a lax) F 2n-(2k+l), (n> 0). 
k=O 

(2 ·9) 

(2 ·10) 
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908 I. Fujiwara 

The solutions are gIven at once by 

F 2n +I (X, y) = (X_y)-(2n+1)[ f"dz(z_y)2nG2n(Z, y) +C2n + l (y)J 
JY 

= fIdu u"nG2n[.q(u) , yJ+ (X_y)-C2n+l)C2ntl(Y), 
'" 0 

(2·11) 

where we have replaced z with g(u) =y+u(x-y) and C2n+1(y) are the integra

tion constants. 

According to the definition (1· 8) of the classical action, the term of the lowest 

order In T should be TL(q, 'V), when the substitutions y=q and x-y='VT are 

made in it. But from the above we get 

00 

S(q+euT, q, T) = - ~ (2m)-k'V-C2lc+1)C2k+l(q) +O(T), (2 ·12) 
k=O 

so we must put C2n +1 (y) =0 in (2 ·11). Then for n=O we get the solution (1·15) 

according to (2·9) and for n=1 we have from (2·10) and (2·11) respectively 

with the abbreviations Vic (x) = (d/ dx) k V (x) 

G2 (x, y) = [(d/dx) FI (x, y) J2=[ \1 dw w VI[g (w) J]2, (2 ·13) 
oj 0 

~I fl ~I 

(x, y) = \ elu ziG2[y(u), y l= \ du u 2[1 dw w V J [rJ(uwfr]2 
Jo ",0 Jo 
~l 

=,Ldu {(I/u) dw w VI[g(w) ]}2. (2 ·14) 

The results in this section were obtained by the author6l in 1950 and essentially 

the same results were also attained afterwards in 1955 by Choquard.7) Instead of 

adopting a roundabout method based on the partial differential equation (2·7) we 

had, however, better to construct the classical action directly according to its original 

definition (1·8). The next section will thus ce devoted to this purpose. 

§ 3. Evaluati(]ll 

The classical path q(t) of a particle, whose Lagrangian function is gIven by 

(1· 4), is determined by the Newtonian equation of motion 

(3 ·1) 

derived from (1· 7) and in addition to this by the initial conditions X=q(t") ani 

y = q (t') . Then in terms of a real parameter u defined by t = t' + U (tIl - t') the 

dassical path is represented by a function q(u), such that x=q(l) and y=q(O), 

.and at the same time the above equation is rewritten as 

q" (u) = -2a VI[q(u)], (3·2) 

where a= T2/2m~ and the prime denotes the differentiation with respect to the 

parameter u. 
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On the Space-Time Formulation of Non-Relativistic Quantum Mechanics 909 

In the case of a free motion the solution q(u) is at once given by g (u) = y +u~ 

with g'(u) =~=x-y and g"(u) =0. Then putting in the general case of an 

arbitrary potential V (q) 

q(u) =g (u) + f(u), (3·3) 

we get f(l) f(O) = 0 and from (3·2) the equation 

(-1/2a)fl' (u) = V 1[g(u) + feu) J 

= V 1[g(u)J+ V 2[g(u) Jf(u) + (1/2) V 3[g(u)Jf(u)2+ .... (3·4) 

The expansion of feu) in powers of a 

gives f2k(1) f2k(0) =0 and transforms the above (3·4) into 

fl/(U) = V 1[g(u)J= (1/~) (d/du) V[g(u)], 

fl' (u) = V 2[g (u) Jf2 (u) , 

f6" (u) = V2[g (u) Jf4 (u) + (1/2) V3[g (u) It; (u) 2, 

and so on. After repeated differentiations (3·6) gIves 

f2(n+1) (u) =~n-l Vn[g(u) J 

and accordingly (3·7) and (3·8) are transformed respectively into 

~fl' (u) =~ V2[g (u) 11; (u) =fz (3) (u)fz (u) 

(3 ·5) 

(3·6) 

(3 ·7) 

(3 ·8) 

(3 ·9) 

= [fl (U)f2 (u) J" - (3/2) [j;' (u) 2]" (3 ·10) 

2~fn" (U) = 2f2 (3) (U)f4 (u) + (1/~) j; (4) (U)f2 (u) 2 

=[j;(u)fl (U) - 3f/ (U)f4(U) JIf +5 [fl' (U)f4 (u) ]'. (3 ·11) 

Now (3·6) is at once integrated to give 

(3·12) 

('1 

= (l/¢)utdw {V[g(uw)J- V[g(w)J} (3·13) 

and in the same way we get from (3 ·10) and (3 ·11) 

~f4 (u) fl (u) f2 (u) - (3/2) [ J~ -u t J d w fl (w) 2, (3 ·14) 

According to the above results the Lagrangian function (1· 4) is transcribed as 

L (q, v) = (m/2T 2) [g' (u) + f' (u) J2- V[q(u)] 

= (l/T)Sj(x, y, T) -D(u) + (dldu)C(u) (3 ·16) 
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910 

with 

and 

1. Fujiwara 

D(u) = V[q(u) J + (rn/2T 2)f(u)fl! (u) 

= -V[g(u) + feu) J- (1/2)f(u) V 1[g(u) +f(u) J 

c (u) = (m/2T 2)f(u) [2 (x- y) + f' (u) J, 

which gives C(l) =C(O) =0. Then we get from (3·17) 

ro 

D(u) - V[y(u)J= (1/2) 2J (l/n!) (2--n) Vn[g(U) Jf(u)n 

and accordingly 

n=l 

00 

= (1/2) :;s (l/n! ~n-l) (2_n)j;(n+1) (u)f(ur~ 
n=l 

= (1/2)f2" (u)f(u) - (1/12~2)f2(4) (u)f(u) 3+ ... 

= - aji' (u) j; (u) + 2a"i2" (U)j~ (u) + 0 (a3
) 

D(u) = V[g (u):1 +a[f2' (u) 2_ (f;f2') 'J 

(3 ·17) 

(3 ·18) 

(3 ·19) 

(3·20) 

+a
2 
(2/f) [f/ (u) 3 + (j;J2"-fd;/2) , +f (j;'h- j;f/) '] + O(a3). 

Since (1· 8) gives, with the aid of (3, 16) and (3·18), 

Sex, y, T)=T \1 duL[q(u), 'v(u)]=Sj(X, y, T)-T \1 duD(u), (3.21) 
JO JO 

one has, according to (2·5), (2·6), (3·20) and (3 ·12), in the first place the 

result (1·15) and then 

F 3 (x, y) = J~ duj;' (U)2 

(3·22) 

1'1 

11'5 (x, y) = (2/~) t du j;' (u) 3. (3·23) 

Finally according to (3·6) one has 

[(l/u) [Udw w V 1[g(w)JJ2=[(1/u) \udw w j;!I(W)J2 
J 0 J 0 

=[j;!(u) - (1/u)j;(u)J2 j;'(U)2_ (d/du)[(1/u)j;(u)2J, (3·24) 

and since (1/u)f2(u)2 vanishes both for u=o and for u=l owing to (3·13), we 

see that (3·22) is identical with (2 ·14). 

§ 4. SOUle properties of action function 

Let a function q(t) with q(t") =X and q(t') =y represent a classical path 

P(x, t" ; y, t') of a particle and let an imaginary path, which is composed of two 

classical paths P(x, t" ; q*, t*) and P(q*, t* ; y, t') jointed together at (q*, t*), be 
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On the Sjyace-Titne Fonnulation of Non-Relati'uistic Quantum Mechanics 911 

represented by a varied function q(t) +aq(t), then we have aq(t") =oqU') =0 and 

6q(t*) =q* - q(t*). The definition (1· 8) of the classical action gives now 

Sex, til; g*, t*) +S(q*, t* ; y, t') -sex, til; y, t') 

r til rt" 
= I' dt L(q+rJg, v (~V, t) -- \ dt L(g, v, t) 
~~ ~~ 

(4 ·1) 

and taking up to the first order variation the right-hand side vanishes owing to 

(1·6), so that from the expansion of the left-hand side in ug(t*) , we get, by 

putting z = g (t), the following two conditions, 

and 

sex, til; y, tl) =S(x, til; Z, t) +S(z, t; y, t!) 

(%z) [S(x, t"; z, t) S(z, t; y, t') J=O. 

(4·2) 

(4·3) 

In the case of a free motion the classical path get) is given by g(u) =ux+wy 

with w = 1- u, and for the dassical action (2· 1) we have the relationship 

Sj(x, z, wT) +Sj(z, y, uT) -Sj(x, y, T) 

= (m/2u'wT)lz-y(u) ]2=SA:z, y(u), uwT], (4 ·4) 

where z is taken arbitrariIy. Then for z = y (u) the above conditions (4·2) and 

(4· ~~) are easily seen to be fulfilled. In the general case of an arbitrary potential 

V (g) they are rewritten with the aid of (2·5) and (4·4) respectively as 

wF(x, z, wT) +uF(z, y, uT) -F(x, y, T) = (1/4uwa)[z-g(u)]2 (4·5) 

and (%z) [wF(x, z, wT) uF(z, y, uT)]= (1/2uwa)[z-g(u)], (4·6) 

where z is given according to (3·3) and (3·5) by zc=y(u) -2af2(u) +O(a2
). 

Then in view of the expansion F(x, y, T) =F1(x, y) +aF3 (x, y) O(a2) given in 

(2·6) the condition (4·5) gives with the abbreviation ('P (x, y, z» =cp[x, y, g (u) ] 

(wF1 (x, z) + uFl (.-::, y»-Fl(X, y) =0 

and (w3F3(X, ,z) + u3F3(z, y) )-F3(X, y) 

=2;; (u) «0 /OZ)[WFI (x, z) +uFl C.z, y)]) + (l/u'w)j; (u) 2, 

In the same way the condition (4·6) yields 

(4·7) 

(4·8) 

«%z) [wF1(x, z) +uF1(z, y) ])= - (1/u'w)f2(u) , (4·9) 

which transforms (4·8) into 

Fs(x, y) -(w3F3(X, z) +u
3
F 3(z, y»=uw«(%z)[wF1(x, z) +uF1(z, y)])2. 

(4 ·10) 

Finally (4·7) gives by repeated differentiations 

(%x)m(%y)nF1(x, y) =w([(%x) u(%z)]m[w(%z)]nF1 (x, z» 

+u([u(%z)]m[w(%z) + (%y) J'FI (z, y», (4·11) 
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912 I. Fujiwara 

which reads more specifically 

D 2 (x, y) = (02/oxoy)Fl(x, y) 

= (w
2
D2(X, Z) +u

2
D 2 (z, y»+zn:v«(0/oz)2[wF1(x, Z) +uF1(z, y)J) 

(4·12) 

and D 3 (x, y) = (02/oxoy ) 2Fl (x, y) = (w3Dg(x, z) +u3DS(Z, y» (4·13) 

+2uw( (%z) 2[w
2
D2(X, z) +u2D2 (z, y) J) + (UW)2«(0/OZ)4[wF1(x, z) +uF1(z, y)J). 

§ 5. Unitarity of the se:mi-dassical kernel 

Before entering into the main subject of the present section to show (1·16), 

we shall first evaluate the free kernel or the transformation function corresponding 

to the classical free motion, for which the action function is S;(x, y, T) = (m/2T) 

X (x-y) 2. According to the definition (1·9) the semi-classical kernel reads 

K;(x, y, T) = (m/2rrinT)1/2exp[(im/2nT) (X-y)2J 

('+00 

= (1/2 rr ) J _~u exp[- (inT/2m)u
2
+iu(x-y) J 

=exp [(inT/27n) (%x) 2J (J (x- y) 

=exp [- (iT In) I-I(jy) J (J (x- y) (5 ·1) 

with lI(p) = (1/2m)p2 and p=--in(%x), which is evidently a unitary one. 

Then we have two equivalent expressions 

and 

where we have put 

K;(x, y, T) =exp[Ap(0/ox)2J(J(x-y) 

](;(x, y, T) =exp [1.11. (0 /oy) 2J a (x- y), 

and accordingly a=T2/2m=).2p . 

(5· 2) 

(5·3) 

(5·4) 

Proceeding to the general case of an arbitrary potential V(q), the action 

function is given by 

S(x, y, T) =S;(x, y, T) -TF(x, y, T), 

and we have according to (2·6) 

F(x, y, T) =F1 (x, y) +).2/1Fs(x, y) +0(1.4). 

Then since the above (2· 5) gives 

(2 ·5) 

02S(X, y, T)/oxoy=- (m/T)[l+ (T 2/m)02F(x, y, T)/oxoyJ, (5·6) 

the semi-classical kernel (1· 9) is rewritten according to (5·3) as 

Kc(x, y, T) =K;(x, y, T) W(x, y, T) 

=W(x, y, T) exp[).p(0/oy)2J(J(x-y), (5·7) 
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On the Sj/ace-Tinze Formulation of Non-Relativistic Ouantum Mechanics 913', 

wherein W(x, y, T) is defined according to (S, S) by 

log[W(x, y, T)J=AF(x, y, T) + (1/2)log[1+2).2po2F/oxoyJ 

=AFI(x, y) +).21J.D2 (x, y) + XlpFS (x, y) +0().4). (S·S) 

We thus get the expansion 

co 

W(x, y, T) = )~~ (l1/ j!) Wj (x, y) (S·9) 
j=O 

with WO(x, y) =1, lVI(x, y) =F1(x, y), 

W 2(x, y) =F1(x, y)2+2pD2 (x, y), (S·10) 

W 3 (x, y) =F1(x, y)3+6/1[F3(X, y) +F1(x, y)D2(x, y)]. 

With the aid of the abbreviation «({J (x, y) ) = ({J (x, x) one accordingly gets by re·

peated partial integrations 

\ dy Kc(x, y, T)¢(y) = \ dy o(x-y) exp[Ap(%y)2] W(x, y, T)¢(y) 
v v 

co n 21~ 

:::s ().n/n!) ~ nC1cP'" :s 2kC,«(%y)jWn_l~(X, y»(d/dx)21c- j¢(X), 
n=O k=O j=O 

which at once yields 

00 

Kc(x, y, T) = 2~ (An/n!)Nln(x,%x)o(x-y) 
n=O 

with the differential operators 

Since (1· IS) , (2 ·14) and (4 ·12) furnish the relationships 

( (0/ (j y ) n Fl (x, y» = (n + 1) -1 Vn (x) , 

«((j/oy) Fl (x, y) 2) = VeX) VI (X), 

(S ·11) 

(S·12) 

(S·13) 

«(%y)2F1 (x, y)2)= (2/3) Vex) V 2(x) + (1/2) V I (X)2, (S·14) 

(Fs (x, y» = (1/12) VI (x) 2, 

«((j/oy)nD2 (x, y»=[(n 2) (n+3)1-IVn+2 (x), 

we have according to (S ·10) 

«(o/(jy)nlV1(x, y»= (n+l)- I Vn(x), 

(W2(x, y»= V(X)2+ (11/3) V 2 (X), 
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914 1. Fujiwara 

< (a/ay) -vV2(X, y»= VeX) VI (x) + (p/6) V 3(x), (5·15) 

< (a/ay) 2W~(X, y» = (2/3) Vex) V 2(x) + (1/2) VI (X)2+ Cu/10) V 4 (x) , 

(W3 (x, y»=V(x)3+ p [(1/2) V I (X)2+ Vex) V 2(x)]. 

One obtains, therefore, from (5 ·13) the results: Mo(x, a/ax) =1, 

MI(x, a/ax) =p(a/ax)2+<wI (x, y)')=p(a/ax)2+ Vex), (5·16) 

M 2(x, a/ax) =p2(a/ax)4+2p[< (a/ay) 2 WI) +2< (a/ay) WI) (a/ax) 

<WI) (a/ax)2J + (vV2) 

=f12(O/OX)4+ p [V2+2 VI (%x) +2 V(O/OX)2J + V 2 

=[p(o/ax)2+ V(X)J2, (5·17) 

}v1,,(x, a/ax) =p3(a/ax)6+ pl(9/10) V 4+4Vs (a/ax) +7V2 (a/ax)2 

+6 VI (a/ax)3+3 v(a/ax) 4J 

+/1[3VV2 +2V1
2 +6VV1 (a/ax) +3V2(a/ax)2J+ V 3 

=[p(a/ox)2+ V(x)T- (/12/10) V 4 (x). (5·18) 

Therefore, (5·4) and (1·5) tell us that the above (5 ·12) is identical with (1·16) 

up to the terms of the third order in T. 

Only when V 4 (x) vanishes, it is thus possible that the semi-classical kernel is 

a unitary one. It will then be shown for the classical potential V (q) given by 

(2·2) that the corresponding Kc (x, y, T) is identical with the transformation 

function (1· 3), or more precisely that 

(5 ·19) 

For the linear potential V(q) =/:zq we have according to (2·3), (5·2) and (5·4) 

KcCx, y, T) =exp[(Ak/2) (x+y) + (1/12)/Pf1k
2
J·Kj (x, y, T) 

=exp (i.3f1P/12) exp (i.kx/2) exp [1./1 (a/ax) 2J exp (l.kx/2) (J (x-Y). (5 ·20) 

This is transformed into (5·19) by putting u=).p and w=k/2/1 in Equation (A·I) 

in the Appendix. Then for the quadratic potential V (q) = (m(i/2) q2 the classical 

action (2· 4) is rewritten with (V T * = sin (I) T as 

S (x, y, T) =Sj(x, y, T*) - (mw/2) (x2+ y2) tan(wT /2), 

so that one has by putting u=wT/2 and w=ift/mw 

(5·21) 

KcCx, y, T) =exp[(mw/2ift) (x2+y2)tan(lOT/2)J.Kj (x, y, T*) (5·22) 

=exp[ (1/2w) x 2 tan uJ exp[ (w/2) sin 2u (a/ax) 2J exp [(1/2w)x
2
tan uJ t3(x- y). 

Then since uw=l./1 and u/w=}.(nuv2/2), the identity (A·2) again yields the 

above (5 ·19). This furnishes an improvement of the operator calculus that was 

given in 1952 by the author. 8
) 
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On the Space-Time Formulation of Non-Relativistic Quantum Mechanics 915 

§ 6. Solution of the integral equation 

The function U (x, y, T) in (1· 21) is rewritten according to (5·4) as 

U(x, y, T) =1+ (1/2»).3p2J)(X, y) O(A4) (6·1) 

and we have from (1·19) and (5·8) 

K(x, y, T) =Kc(x, y, T) U(x, y, T) =K.f(X, y, T) Y(x, y, T) (6·2) 

with Y(x, y, T) = W(x, y, T) U(x, y, T). (6 ·3) 

Then since (4·4) gives with w=l-u and [j(u) =ux+wy 

Kj(x, z, wT)Kj(z, y, uT) =J(j(x, y, T)Kj[z, g(u), uwT], (6·4) 

the integral equation (1· 23) is transformed into 

K(x, y, T) = f K(x, z, wT)dz K(z, y, uT) 

=Kj(x, y, T) J dz Kj[z, y(u), uwT] Y(x, z, wT) Y(z, y, uT) 

=!«x, y, T) J dz ~[z-y(u)J exp[A/1 uw(O/OZ)2] 

X Y (x, z, wT) Y (z, y, uT) Y (x, y, T) -1. (6·5) 

In terms of the symbol (SO (x, y, z» = SO I:x, y, g (u)] we thus get the equation 

1 = (exp[}.p uw (%z) 2] Y(x, z, wT)Y(z, y, uT)Y(x, y, T)-l). (6·6) 

By putting 

YI(x, y, z) =wFI(x, z) +uFI(z, y) -FI(.x, y) 

we get from (5·8) 

log[W(x, z, wT) W(z, y, uT)W(x, y, T)-I]=AY1 (x, y, z) 

+A2p[w2D2(X, z) +u2D 2(z, y) -I)2(X, y)J 

+A
3
p[uiF3 (x, z) +u3F 3 (z, y) -F3(X, y)]+O(A4

), 

which yields together with the above (6 ·1) 

co 

(6 ·7) 

(6·8) 

Y(x, z, wT) Y(z, y, uT) Y(x, y, T)-l= ~ (Aj/j!) Yj(x, y, z) (6.9) 
,1~~O 

with Yo(x, y, z) =1 and 

Y 2 (x, y, z)=Y1 (x, y, z)2+2p[w2D2(X, z)+u2D 2 (z, y)-D2 (x, y)], (6.10) 

Y3(X, y, z) = Y 1 (x, y, z)3+6l![w3F g (x, z) + u3F3(z, y) -·F~(x, y)] 

+6pY1 (x, y, z) . [w2D2(X, z) +u2D 2 (z, y) -D2 (x, y)] 

+3p2[w3D(x, z) +u3D(:z, y) -D(x, y)]. (6.11) 

Then we have according to (4·7), (4 ·12) and (4 ·10) the relationships 
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916 I. Fujiwara 

(Y1 (x, y, z» =0, 

(Y2(X, y, Z»=-2pUW«(0/OZ)2Y1 (X, y, Z», 

(Y3 (X, y, Z»-3p2[(w3D(x, Z) +u3D(z, y»-D(x, y)] 

=-6puw«(0/OZ)Y1 (X, y, z»2=-3puw«(0/OZ)2Y1(X, y, Z)2), 

so that the above (6·6) and (6·9) give 

co (X) 

O=)~ )~ (l/l~l j!»).k+.1(pUW)k«(ojoZ) 2k Y j (X, y, z»-l 
k=O .1=0 

(X) n-1 
= ~ ()n/n!) ~ nCk(puw)k«(0/oZ)2kYn_k(X, y, z» 

n=1 k=O 

=)(Y1 ) + (i.2/2) l( Y 2 ) 2puw( (0/OZ)2Y1 )] 

+ (A3/6) l(Y3) + 3/1uw( (%z) 2Y2 ) + 3 (puw) 2( (%z) 4Yl)] O()4) 

= ().3p2/2) [(w3D(x, z) +u3D(z, y»-D(x, y) 

+ (uw/p) «(0 /OZ) 2 (Y2 - Y12» + (UW) 2( (O/OZ) 4Y1)] + O()4). 

Therefore the equation for determining the function D (x, y) IS 

D(x, y) = (zeiD(x, z) +u3D(z, y» 

+2uw«(0/OZ)2[w2D2(X, z) +u2D 2(z, y)]) 

+ (UW)2«(O/OZ)4[wF1(x, z) uF1(z, y)]), 

(6 ·12) 

(6 ·13) 

which is identical in structure with (4 ·13). \Ve thus get the solution (1· 24). 

§ 7. Quantization of the Lagrangian L= (m/2) [W(q)V]2 

If the classical Lagrangian is of the fornI 

L(q, v) =L(R) \vith R=w(q)dq/dt 

and d 2L/ dR2 does not vanish, the Lagrangian equation of motion (1· 7) gives 

dR/ dt=O, which is integrated at once to give 

R= (l/T) jf'X dq w (q) . 
v 

(7·2) 

\iVhen the Lagrangian is quadratic in R, as is given in (1· 26), we get the classical 

action 

S(x, y, T) =T(m/2)R2 = (m/2T)[\"; dqw(q)]2 
,;v 

= (In/2T) (X- Y)2=Sj(X, Y, T) (7·3) 

with X = J; dqw (q) and Y = J~ dqw (q). Then since 
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On the Space-Time Formulation of Non-Relativistic Quantum Mechanics 917 

02S(X,)" T)/oxoy=- (m/T)'w(x)w(y), 

the semi-classical kernel (1· 9) reads 

Kc(x, y, T) =[w(x)w(y)J!2Kj (X, Y, T), 

which gives for T=O 

(7 ·4) 

(7·5) 

Kc(x, y, 0) =[w(x)w(y)J /2a(X- Y) =a(x-y). (7 ·6) 

Now putting G(u) =uX+wY with w=l-u, we get according to (6·4) 

Kj(X, Z, wT)Kj(Z, Y, uT) = Kj(X, Y, T)Kj[Z, G(u), uwT] (7 ·7) 

.and then putting Z= f: dqw(q) with dZ=w(z)dz, (7 ·5) and the relationship 

fiZKAZ, G(u),uwT]=1 give at once 

\ Kc(x, z, wT)dzKc(z,)" uT)=Kc(x,)" T). (7·8) 
.J 

The semi-classical kernel Kc(x, y, T) can thus be identified with the unitary trans

formation function K (x, y, T). 

According to (5 ·1) we get the jntegral representation 

K(x, y, T) = (1/2 7r)[w(x) W(y)J /2\ elk exp[- (iT/ii) (fl 2P/2m) +ik(X- Y)], 
.J 

(7 ·9) 

which is nothing but the eigenfunction expansion of the transformation function 

.and accordingly the normalized orthogonal eigenfunction ¢ k (x) corresponding to 

the energy eigenvalue E=fl 2k2/2m is 

fta; 

¢k(X) =[w(x)/21l-JI/2exp[ik t dqw(q)]. 

Since this satisfies the equation 

w (x) -1/2. p. W (x) -1 /2¢,c (x) = flk¢Jc (x) 

with l) = - itl (d / dx), the Hamiltonian operator for this system is 

I-I(x, p) = Cl/2m)[w(x)-1/2· p .w (x)-1 /2]2. 

Appendix 

In this appendix we shall establish the identities 

(7 ·10) 

(7·11) 

(7·12) 

exp[u (d/ dX)2+2uwx] =exp (uwx) exp [u (d/ dx) 2] exp (uwx) exp [ (1/3) U 3W2] 

(A·l) 

:and exp[uw(d/ dX)2+ (u/w) x 2]=exp[ (1/2w) x 2tan u] 

Xexp[ (w/2) sin 2u(d/ dX)2] ·exp[ (1/2w)x2tan u]. (A·2) 
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918 I. Fujiwara 

In order to prove (A ·1) we first put its right-hand side in the form 

=exp[f(u)wx] exp[g(u) (d/dx) 2] exp[f(u)wx] exp[w2h(u)J 

with the unknown functions f( u), 9 (u) and h (u) in the parameter u, for which 

we must put 1'(0) =g(O) =h(O) =0. Then the differentiation of both sides with 

respect to u gives 

(d/ dX)2+2wx f' (u)wx+g' (u)ef(u)t!)"(d/ dX)2e- f(u)w.t 

f' (u) wx+ 9' (u) [(d/ dx) -feu) w J2 

+ f' (u) w [x+2g(u) r: (d/ dx) -f(u)wJJ +w2h' (u), 

which at once yieldsf'(u) =g'(u) =1. So we have feu) =g(u) =u and h'(u) =u
2

• 

Then we get h (u) = (1/3) u3 and accordingly (A ·1) is proved. The (A· 2) can 

be established in quite the same way, so the proof is omitted here. 
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