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For a Riemannian manifold M let %(M) be the vector space of all tensor
fields A of type (1,1) that satisfy the following three conditions: (1) A is symme-
tric as an endomorphism of each tangent space TX(M)> x e M; (2) Codazzi's
equation holds, that is, (VXA)Y = {VYA) (X) for all vector fields Xand Y; (3)
trace A is constant on M. It is hardly necessary to note that an isometric im-
mersion of M into a space of constant sectional curvature as a hypersurface with
constant mean curvature gives rise to such a tensor field A (namely, the second
fundamental form), which furthermore satisfies the equation of Gauss. Now Y.
Matsushima has shown (unpublished) that if M is a compact Riemannian mani-
fold, then §t(M) is finite-dimensional. This is obtained as an application of the
theory of vector bundle-valued harmonic forms (see [2] for other applications to
the study of isometric immersions).

The purpose of the present paper is to prove two results (Theorems 1 and
2) of a similar nature. Theorem 1 generalizes the above result of Matsushima to
the space of generalized second fundamental forms, which, geometrically, arise
from isometric immersions of higher codimension. Theorem 2 shows finite-di-
mensionality of the space of generalized curvature tensor fields, which, as a
matter of fact, implies the above result of Matsushima as we show in [3].

1. Forms with values in a Riemannian vector bundle

By a Riemannian vector bundle we shall mean a (real) vector bundle E over
a Riemannian manifold M which has a fiber metric and a mtric connection
([1], Vol. I. pp. 116-7). The Riemannian metric on M and the fiber metric in E
are denoted by < , >, whereas the Riemannian connection on M is denoted by
V and the metric connection in E by V'. If φ and ψ are sections of E and X is a
vector field on M, then
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22 K. NOMIZU

We denote by CP(E) the real vector space of all ^-valued p-ίorms on M. If
ωGC^M), then, for each x e M , ωx is a skew-symmetric />-linear mapping of
TX(M)X ••• xTΛ(M) (/> times) into the fiber F* over x. For I E Γ^M), the
covariant derivative Vĵ ω is defined as follows: if Xly ••• , X P^TX(M), then
extending them to vector fields ί ^ l ^ o n M w e set

the right hand side being independent of the extensions of Xly •••, Xp. We define

the covariant differential Vω of ω at x as a (p+l)-linear mapping

(X19 - , * , + 1 ) e Γ,(M) x - x TX(M) - (v^ω) (X2, - , Xp+1)

A differential operator 3: CP(E) -> CP^\E) is defined essentially as an

alternation of Vω. More precisely, we define

9ω = (p+1) A (Vω), ω G ^ (£),

where A is the alternation operator (see [1], Vol. I, p. 28; the present definition of

Vω differs from that in [1], Vol. I, p. 124, only in the order of Xly •••, Xp+1).

For our applications we note the special cases:

If ω£ΞC\E), then

(8ω) (X, Y) = (Vxω) Y-(Vγω)X.

If o)GC2(£), then

(9ω) (x, y, z) - (vxω) (y, z)+(vyω) (z, x)+(vzω) (x, y).

On the other hand, we define a differential operator 9*: CP(E)^CP~\E)
as follows. I fωeC°(£), then θ*ω=0. If O ) G C * ( £ ) , ^ 1 , and Λ ̂ M , let
{ely -", en} be an orthonormal basis in TX(M) and set

(β*ω)x(X19 -., X^_0 = - Σ (V,,ω)(e,, X,, - , ^ _ x ) ,

the right hand side being independent of the choice of {ej.
The Laplacian • of ^-valued forms is defined by

• = 89*+9*θ.

The following two basic facts are classical in the case where £ is a trivial
line bundle.

Proposition 1. If M is compact, then • ω = 0 if and only if dω = 0 and
9*ω=0.
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Proposition 2. If M is compact, then Π is elliptic so that the vector space
{ω^Cp(E); []ω=0} is finite-dimensional.

For the proof of Proposition 1, we introduce (assuming that M is orientable)
an inner product in CP(E) by

(θ, ω) = ( <0, ω>fo,

where <fo is the volume element of M and <0, ω>Λ is the natural inner product
in the space of ^>-forms at x, that is,

<<9, ω>x= Σ <<9(eίV —, % ) , ω(^, •••, eip)>9

where {ely •••, en} is an orthonormal basis in TX(M). Using this inner product we
can show that 3 and 3* are adjoint to each other:

(dθ,ω) = (θ,d*ω) for fleC^1^, ω(Ξ

This fact readily implies Proposition 1.
In order to prove Proposition 2 it is sufficient to check the principal part of

Πω. We shall here give the detail in the case of ω e C\E); the general case is
essential by similar.

At x^M, let {ely •••, en} be an orthonormal basis in TX(M) and extend to
them to vector fields Ely •••, En such that V*. /? y=0 for all ί.y. Also let Z G
TX(M) be extended to a vector field X such that V,. ^ = 0 for all t. At x we find

(8*9ω) (Z) = - g (V., V£,.ω)Z+ Σ (V.,

and

Σ
so that

(Dω) (X)=-
ί = l

- Σ3 (VxVβ.ω) ^ .

We have

Lemma. For ω e C1 (E1) and for any vector fields X, Y and Z on M, we have

= Rf (X, Y)-ω(Z)-ω(R(X, Y)Z),

where R' (X, Y) is the curvature transformation for the connection Vr in E defined by
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R' {X, Y)φ= [V'x, V'y] φ- Vί

Using this lemma, whose proof is straightforward, and noting that [Ef, X] = 0 at
x, we obtain at x

(Πω)X = - g (Ve,.V£>.ω) X+ Σ #'(e,., X) ω(C, )

-<o{±ιR{ei,X)ei).

n

(We note that Σ i?(et , X)e{ is equal to — S(X), where S is the Ricci tensor of type

(1,1) of M).
Now if φly -%,φp are linearly independent sections of E such that Vx φm=0

P

X G T X ( M ) , for all then writing ω= Σ ωmφrn we get

VEiω = Σ (V£i.α,"-) φm+ ± ωm(ψB φm)

and

Σ V.,VB(ω = Σ Σ {(V.,VB< ω - ^ + ω ^ V .Vέ,.^)}.

n

Thus the <7>m-component of the principal part of • ω is given by 2 Vβ. V£. ωw.

This proves that • is an elliptic operator.

2. Generalized second fundamental forms

Let iV be a Riemannian vector bundle (whose connection is denoted by V7)
over a Riemannian manifold M. For the tangent bundle T(M) and its dual
bundle T1*, the vector bundle Horn (N, 71*® Γ) is a Riemannian vector bundle
over M in the natural way. For a section A of Horn (iV, T*® T), which is ex-
pressed by ξ^Nx -> A^T*®TX at each x e M , and for any vector field X on
M, the covariant derivative Vj 4̂ is a section such that

where ξ is any section of N. We shall call A a generalized second fundamental
form if 4̂§ is a symmetric endomorphism of TX(M) for every £ eiVΛ, x^ My

and if 4̂ satisfies Codazzi's equation, that is,

for every section ξ oί N and for all vector fields X and Y on M. Actually, each
side of the equation makes sense for ξ ^Nx and I , 7 G TX(M). Geometrically,
an isometric immersion of M into a space of constant sectional curvature gives
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rise to the normal bundle N and the seond fundamental form A which satisfies
the equations of Gauss and Codazzi (for example, see [1], Vol. II, p. 14, p. 23-
25).

For a section A of Horn (N, T* ® T) we define the mean curvature section
V of A as follows. If {ξτ ~-yξp} is an orthonormal basis of Nx, x e M , then

1 *
yx = — Σ (trace A^)ξi9 n = dim M,

We say that A has constant mean curvature if the mean curvature section η of A
is parallel with respect to the connection V' in N.

For a Riemannian vector bundle N over M, let Sl(Λf, iV) be the set of gen-
eralized second fundamental forms A with constant mean curvature. It is a real
vector space in the natural fashion. We have

Theorem 1. If M is compact, then %(M> N) is finite-dimensional.

Proof. We consider one more vector bundle E = Horn (N, T), which is a
Riemannian vector bundle over M in the natural way, For a section φ of E and
a vector field X on M, the covariant derivative V*φ is defined by

(V*φ)ξ = Vx(φ(ξ))-φ(S7'xξ),

where ξ is any section of N.
We consider ^4<ΞSI(M, iV), which is a section of Horn (N, Γ*(g)Γ), as an £-

valued 1-form ω as follows: for any X^ Tx(M)y x^M, ω(X) is the element of
Horn (NX9 Tx) such that

The covariant derivative Vxω of ω is the E-valued 1-form such that

= (V%(ω(Y)))ξ-ω(VxY)ξ

= Vx(ω(Y) ξ)-ω(Y)(ψxξ)-ω(VxY)ξ

where Y is a vector field on M and ξ is a section of iV. Thus Codazzi's equation
for A is equivalent to

that is,

On the other hand, 3*ω is an 5-valued 0-form (i.e. a section of £) defined by
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(d*ω)x = -± (V»(«),

where {eiy •••, £w} is an orthonormal basis in TX(M). For any ξ^Nx, we extend

it to a section of N such that V^£=0 for every X(=TX(M). Then (V,.-A)$=

Ve.(A%) at x. Also, Codazzi's equation in this case gives (Ve.Aξ)Y = (VγA^)ei

for any F G Γ ^ M ) . Also noting that Ve.Aξ is symmetric together with ^4ξ, we

have

-<(9*ω) | , y> =

Σ
l

= trace (SγAξ) = Y trace A%.

As in the following lemma, this is 0 if and only if A has constant mean curvature.

Lemma. If A has constant mean curvature, then, for a section ξ of N of
unit length such that Vχξ=0/or every I G Γ Λ ( M ) , we have X trace ^4ξ=0 for
every X e TX(M). The converse also holds.

To prove the lemma, let ξ1=ξ and choose sections ξ2, ---,ξp such that they

are orthonormal at each point and V^£, = 0 for every X^TX(M). Then

V'xV = — Σ X' (trace A*)h at x.
n «-i

Thus Vχ^7=0 at x if and only if X trace ^4ξt.=0, 1 <t<p.
We have thus shown that, for the E-valued 1-form ω corresponding to a

generalized second fundamental form A> 3*ω=0 if and only if A has constant
mean curvature.

The mapping ω-^A is clearly a linear isomorphism of Sl(M, N) into the
vector space ( C D E C 1 ^ ) ; Πω=0}. By Proposition 2 we see that 9ί(M, N) is
finite-dimensional. This completes the proof of Theorem 1.

3. Generalized curvature tensor fields

Let M be a Riemannian manifold. A tensor field L of type (1,3) defines at
each x^M a bilinear mapping

(Xy Y)G Γ,(Λf) x r,(M) - L(X, Y)GHorn (Γ,(M), Γ,(M)).

We say that L is a generalized curvature tensor field if it has the following proper-
ties for all vector fields X, Y and Z:
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(1) L(Y,X)=-L(X,Y);

(2) L(X, Y) is a skew-symmetric endomorphism of TX(M);

(3) <£>L(X, F)Z=0, where @ denotes the cyclic sum over X, Y, and Z (first

Bianchi identity).

We shall say that L is proper if it satisfies the second Bianchi identity:

®(VXL)(Y,Z)=O.

For a generalized curvature tensor field L, we define its Ricci tensor field

K=KL by

K(X) = ± L(X, e,)e, for X e Γ,(M),

where {̂ , ••-,£„} is an orthonormal basis in TX(M). It follows from the first
Bianchi identity that K is then a symmetric endomorphism of TX{M).

We shall denote by 2(M) the vector space of all proper generalized
curvature tensor fields L whose Ricci tensor fields K satisfy Codazzi's equation:
(VxK)Y=(yγK)X for all vector fields X and F.

We shall prove

Theorem 2. If M is a compact Riemannian manifold, then 2(M) is finite-
dimensional.

Proof. Let O(M) be the bundle of orthonormal frames of M. The struc-
ture group O(n) acts on its Lie algebra o(n) of all skew-symmetric matrices of
degree n through its adjoint representation. Let E be the vector bundle
associated to O(M) with the standard fiber o(n). The Riemannian connection in
O(M) and the tfd(O(/z))-invariant inner product in o(n) make E a Riemannian
vector bundle over M. For each X G M , the fiber over x can be considered as
the vector space of all skew-symmetric endomorphisms of TX(M).

This being said, we consider a generalized curvature tensor field L as an
^-valued 2-form: for X, Y<=TX(M), L(X, Y) is an element of the fiber of E
over x. In order to prove Theorem 2 we shall show that dL=0 and 8*L=0 for
L^2(M). We note that for the natural connection in E the covariant derivative
of a section φ of E is nothing but the covariant derivative with respect to the
Riemannian connection V onMof the corresponding tensor field of type (1,1).
With this remark, we have

Hence 3L=0 if an only if L is proper.
As for 8*L, we have

(d*L)(X) = - Σ (V,Z)(e( , X), I e TX(M),
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where {e1} •••_, en] is an orthonormal basis in TX(M). For the Ricci tensor field

K of L we have

If L is proper, this is equal to

The first term is equal to {VYK)X. Since Ve.L satisfies the first Bianchi identity,

the second term is equal to

= (d*L)(Y)X-(d*L)(X)Y.

Thus we obtain

φ*L)(X)Y-(d*L)(Y)x = (v

If i£ satisfies Codazzi's equation, the E-valued 1-form l=d*L satisfies

(*) l(X)Y=l(Y)X.

We shall show that / = 0 . (Conversely, if / = 0 , then K obviously satisfies

Codazzi's equation.) Using skew-symmetry of l(X) and l(Y) and the property

(*), we get

, xy = -<Y, i(Y)xy = -<Y, I(X)Y> = o.

Thus l(Y)Y=0 for all Y G Γ ^ M ) . By polarization we get l(X)Y+I(Y)X=0.

This together with (*) implies l(X) Y=0 for all X and Y, that is, / = 0. Hence

9*L=0 for LeS(M). We have thus proved Theorem 2.

The significance of Codazzi's equation for the Ricci tensor field K as well

as the relationship of Theorem 2 to the result of Matsushima (Theorem 1 for the

case where Aτ is a trivial line bundle) are discussed in [3],
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