Osaka University Knowledg

On the spaces of generalized curvature tensor

Uiile fields and second fundamental forms
Author(s) |Nomizu, Katsumi
Citation |Osaka Journal of Mathematics. 8(1) P.21-P.28
Issue Date | 1971
Text Version|publisher
URL https://doi.org/10.18910/3544
DOI 10.18910/3544
rights
Note

Osaka University Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

Osaka University




Nomizu, K
Osaka, J. Math.
8 (1971), 21-28

ON THE SPACES OF GENERALIZED CURVATURE
TENSOR FIELDS AND SECOND FUNDAMENTAL
FORMS

Karsumi NOMIZU

(Received October 12, 1970)

For a Riemannian manifold M let (M) be the vector space of all tensor
fields 4 of type (1,1) that satisfy the following three conditions: (1) 4 is symme-
tric as an endomorphism of each tangent space T,(M), x & M; (2) Codazzi’s
equation holds, that is, (VxA4)Y = (VyA) (X) for all vector fields X and Y; (3)
trace A is constant on M. It is hardly necessary to note that an isometric im-
mersion of M into a space of constant sectional curvature as a hypersurface with
constant mean curvature gives rise to such a tensor field 4 (namely, the second
fundamental form), which furthermore satisfies the equation of Gauss. Now Y.
Matsushima has shown (unpublished) that if M is a compact Riemannian mani-
fold, then (M) is finite-dimensional. This is obtained as an application of the
theory of vector bundle-valued harmonic forms (see [2] for other applications to
the study of isometric immersions).

The purpose of the present paper is to prove two results (Theorems 1 and
2) of a similar nature. Theorem 1 generalizes the above result of Matsushima to
the space of generalized second fundamental forms, which, geometrically, arise
from isometric immersions of higher codimension. Theorem 2 shows finite-di-
mensionality of the space of generalized curvature tensor fields, which, as a
matter of fact, implies the above result of Matsushima as we show in [3].

1. Forms with values in a Riemannian vector bundle

By a Riemannian vector bundle we shall mean a (real) vector bundle E over
a Riemannian manifold M which has a fiber metric and a mtric connection
([1], Vol. I. pp. 116-7). The Riemannian metric on M and the fiber metric in E
are denoted by { , >, whereas the Riemannian connection on M is denoted by
V and the metric connection in E by V’. If @ and +r are sections of E and X is a
vector field on M, then

XLp, V> = Vi@, ¥)+<p, Vi)
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We denote by C?(E) the real vector space of all E-valued p-forms on M. If
o€ C?(M), then, for each x& M, w, is a skew-symmetric p-linear mapping of
T (M)x -+ xXT, (M) (p times) into the fiber F, over x. For Xe& T, (M), the

covariant derivative Vyo is defined as follows: if X, -, X »& T, (M), then
extending them to vector fields X, -+ X, on M we set

(exa)) (X oy Xp) = V‘IX""(XU T Xﬂ)
- i w (Xu Tty VXXi’ ) Xp)y
the right hand side being independent of the extensions of X, -+, X,. We define
the covariant differential Vo of © at x as a (p-+1)-linear mapping

(Xys oo Xpiy) €TH(M) X oo X T (M) — (6X1“’) (Xp s Xpr1) EF e

A differential operator 3: C?(E) — C?*'(E) is defined essentially as an
alternation of V. More precisely, we define

0w = (p+1) 4 (Vo), o= C? (E),

where A4 is the alternation operator (see [1], Vol. I, p. 28; the present definition of

Vo differs from that in [1], Vol. I, p. 124, only in the order of X, -+, X ,.,).
For our applications we note the special cases:

If we C'(E), then
(B0) (X, V) = (Vxo) Y—(Vyo)X.
If o C*E), then
(B0) (X, Y, Z) = (Vx0) (Y, Z)+(Vyo) (Z, X)+(Vz0) (X, Y).

On the other hand, we define a differential operator 8*: C?(E)—C? '(E)
as follows. If weC%E), then 0*w=0. If w=C?E), p=1, and x&M, let
{e,, +--, e,} be an orthonormal basis in T',(M) and set

(6*m)x(X1’ ) Xp—l) = - __21 (%ei“’) (ei, D, CPRIIN Xp—l)’

the right hand side being independent of the choice of {e;}.
The Laplacian [] of E-valued forms is defined by

[] = 00*4-0%*0.

The following two basic facts are classical in the case where E is a trivial
line bundle.

Proposition 1. If M is compact, then [ ] w =20 if and only if 0w =0 and
0*w=0.
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Proposition 2. If M is compact, then [] is elliptic so that the vector space
{we C?(E); [Jo=0} is finite-dimensional.
For the proof of Proposition 1, we introduce (assuming that M is orientable)

an inner product in C?(E) by
(6, 0) = <6, w>ar,

where dv is the volume element of M and <@, w), is the natural inner product
in the space of p-forms at x, that is,

<0, ‘0>x :,_ <Z:<i <0(€,~1, ) eip)y w(eip ttty eiP)>,

where {e,, ++-, e,} is an orthonormal basis in T',(M). Using this inner product we
can show that 0 and 0* are adjoint to each other:

(80, ) = (0, 0%w) for @ C? Y(E), o= C*(E).

This fact readily implies Proposition 1.
In order to prove Proposition 2 it is sufficient to check the principal part of
[Jw. We shall here give the detail in the case of o= C'(E); the general case is

essential by similar.

At x& M, let {e, -, ¢,} be an orthonormal basis in T,(M) and extend to
them to vector fields E,, -+, E, such that V, E ;=0 for all 7.5 Also let X&
T.(M) be extended to a vector field X such that V,, X=0foralli. Atx we find

(0%90) (X) = — 33 (V., Vo)X + 2 (V,, Vo) &

and
(80*) (X) = — 33 (VxVie) &
so that
(Co) (X) = — 2 (VoV5,0) (D)+ 2 (V. Vx0) &
— 3} (VxVi,0) €.
We have .

Lemma. For o C*(E) and for any vector fields X, Y and Z on M, we have

([Vx Vy]—Vixy1)o) Z
= R (X, V) 0(Z)—w(R(X, Y)Z),

where R’ (X, Y) is the curvature transformation for the connection V' in E defined by
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R (X,Y)p=[Vk Vilo— Vixvip, @< CYE).

Using this lemma, whose proof is straightforward, and noting that [E;, X] =0 at
x, we obtain at x

(o)X = — 2} (V.,Ve0) X+ 3 R(e;, X)-ale)

— o ; R(e;, X) ¢;).

(We note that }!_“ R(e;, X)e; is equal to — S(X), where S is the Ricci tensor of type
(1,1) of M).
Now if @,, **, @, are linearly independent sections of E such that V% ¢,,=0

XeT, (M), for all then writing o= é o™p, Wwe get
m=1

~ ? »
Vg0 =21 (V") Pmt 23 0"(VE P)

=1 =1

and

no~ o~ »
gl Ve,-vE,-(‘o = m2:1 Z:j{ {(VeiVE,- wm)¢m+wm(V:;V,E,- ¢m)}'

Thus the @,,-component of the principal part of []w is given by i} V., Vg, o™

This proves that [] is an elliptic operator.

2. Generalized second fundamental forms

Let N be a Riemannian vector bundle (whose connection is denoted by V')
over a Riemannian manifold M. For the tangent bundle 7(M) and its dual
bundle T'*, the vector bundle Hom (N, T*® T') is a Riemannian vector bundle
over M in the natural way. For a section 4 of Hom (N, T*®T'), which is ex-
pressed by EeN, - A;=T*QR T, at each x= M, and for any vector field X on
M, the covariant derivative Vx 4 is a section such that

(Vxd): = V(A — Aoy

where £ is any section of N. We shall call 4 a generalized second fundamental
form if Ag is a symmetric endomorphism of T (M) for every € N, x& M,
and if A satisfies Codazzi’s equation, that is,

(%XA)E Y= (61"4)8 X

for every section & of IV and for all vector fields X and ¥ on M. Actually, each
side of the equation makes sense for ¢ eN,and X, Y €T, (M). Geometrically,
an isometric immersion of M into a space of constant sectional curvature gives
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rise to the normal bundle N and the seond fundamental form 4 which satisfies
the equations of Gauss and Codazzi (for example, see [1], Vol. 11, p. 14, p. 23—
25).

For a section A of Hom (NN, T* ® T') we define the mean curvature section
7 of 4 as follows. If {£ ---,&,} is an orthonormal basis of N,, x&M, then

»
7, = —’11- 2. (trace Ag)E;, n = dim M,

We say that A has constant mean curvature if the mean curvature section 7 of A
is parallel with respect to the connection V’ in V.

For a Riemannian vector bundle NV over M, let A(M, N) be the set of gen-
eralized second fundamental forms 4 with constant mean curvature. Itis a real
vector space in the natural fashion. We have

Theorem 1. If M is compact, then (M, N ) is finite-dimensional.

Proof. We consider one more vector bundle £ = Hom (N, T'), which is a
Riemannian vector bundle over M in the natural way, For a section ¢ of E and
a vector field X on M, the covariant derivative V¥ is defined by

(VE@)E = Vx(@(£))—p(VXE),

where £ is any section of V.

We consider A= U(M, N), which is a section of Hom (N, T*®7T), as an E-
valued 1-form w as follows: for any X & T,(M), x& M, »(X) is the element of
Hom (N,, T,) such that

o(X) & = AgX).

The covariant derivative Vyo of  is the E-valued 1-form such that
(Vxo)(V)-£ = (VE(o(V)E—a(Vx Y )E
= Vx(o(Y)-§)—a(Y)(VxE)—o(Vx Y)E
= Vx(A4:Y)— Ayt Y —A(VxY)
= (Vxd)) Y—Ay Y
= (Vx4)Y,

where Y is a vector field on M and £ is a section of N. Thus Codazzi’s equation
for A is equivalent to
(6xw) Y= ({71"0)X ’
that is,
0w =0.

On the other hand, 0*w is an E-valued 0-form (i.e. a section of E) defined by
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(0%w), = —; V.0, xeM,

where {e,, ++-, ¢,} is an orthonormal basis in T,(M). For any £ N,, we extend
it to a section of N such that V4£=0 for every X € T,(M). Then (VA=
V.(A) at x. Also, Codazzi’s equation in this case gives (V,,4s) Y =(Vy dp)e;

for any Y e T,(M). Also noting that V, A, is symmetric together with A, we
have

—{(B*w)-E, V> = g (V.,0)e)E Y
= ST At Yo = 2LV A)er, V>

= $1<er, (V. A)Y> = 35 e, (Vy A
= trace (Vy 4e) = Y -trace 4; .
As in the following lemma, this is 0 if and only if 4 has constant mean curvature.

Lemma. If A has constant mean curvature, then, for a section & of N of
unit length such that ViE=0 for every X € T, (M), we have X -trace A¢=0 for
every X € T (M). The converse also holds.

To prove the lemma, let £, =& and choose sections &,, -+, £, such that they
are orthonormal at each point and V4&,=0 for every X € T,(M). Then

Vin = % il X - (trace 4 )E; at x.
Thus Vi7=0 at x if and only if X - trace 4;=0, 1<i<p.

We have thus shown that, for the E-valued 1-form  corresponding to a
generalized second fundamental form 4, 3*»=0 if and only if 4 has constant
mean curvature.

The mapping o — A is clearly a linear isomorphism of (M, N) into the
vector space {0 CY(E); [Jo=0}. By Proposition 2 we see that A(M, N) is
finite-dimensional. This completes the proof of Theorem 1.

3. Generalized curvature tensor fields

Let M be a Riemannian manifold. A tensor field L of type (1,3) defines at
each x& M a bilinear mapping

(X, Y)e T(M)x T (M) — L(X, Y)eHom (T(M), T,(M)).

We say that L is a generalized curvature tensor field if it has the following proper-
ties for all vector fields X, Y and Z:
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(1) L(Y, X)=—L(X, Y);

(2) L(X,Y)is a skew-symmetric endomorphism of 7,(M);

(3) SL(X, Y)Z=0, where & denotes the cyclic sum over X, Y, and Z (first
Bianchi identity).

We shall say that L is proper if it satisfies the second Bianchi identity:
S(VxL)(Y, Z)=0.

For a generalized curvature tensor field L, we define its Ricci tensor field

K=KL by
K(X)=3L(X, e)e;  for X T, (M),

where {e, :--, e,} is an orthonormal basis in 7T(M). It follows from the first
Bianchi identity that K is then a symmetric endomorphism of 7',(M).

We shall denote by £(M) the vector space of all proper generalized
curvature tensor fields L whose Ricci tensor fields K satisfy Codazzi’s equation:
(VxK)Y=(Vy¢K)X for all vector fields X and Y.

We shall prove

Theorem 2. If M is a compact Riemannian manifold, then ¥(M) is finite-
dimensional.

Proof. Let O(M) be the bundle of orthonormal frames of M. The struc-
ture group O(n) acts on its Lie algebra o(z) of all skew-symmetric matrices of
degree n through its adjoint representation. Let E be the vector bundle
associated to O(M) with the standard fiber o(z). The Riemannian connection in
O(M) and the ad(O(n))-invariant inner product in o(n) make E a Riemannian
vector bundle over M. For each x= M, the fiber over x can be considered as
the vector space of all skew-symmetric endomorphisms of 7 ,(M).

This being said, we consider a generalized curvature tensor field L as an
E-valued 2-form: for X, Y& T (M), L(X, Y) is an element of the fiber of E
over x. In order to prove Theorem 2 we shall show that dL=0 and 0*L=0 for
Le®(M). We note that for the natural connection in E the covariant derivative
of a section @ of E is nothing but the covariant derivative with respect to the
Riemannian connection V on M of the corresponding tensor field of type (1,1).
With this remark, we have

(BL)(X, Y, Z) = S(VL)Y, Z).

Hence 0L=0 if an only if L is proper.
As for 0*L, we have at x&M

@*L)(X) = —2 (V. L)en X),  XeT M),



28 K. Nomizu

where {e,, -+, ¢,} is an orthonormal basis in T,(M). For the Ricci tensor field
K of L we have

(VxK)Y = 3 (VxLXY, ee;

If L is proper, this is equal to

— 3 (VyL)(ew X)ei— 3 (Vo LYX, Ve
The first term is equal to (VyK)X. Since V, L satisfies the first Bianchi identity,
the second term is equal to

SV, LYY, e)X+3Y (V. L)es, X)Y

= '(8*L)( ) X— (B*L)()'( VY.

Thus we obtain
O*L)Y(X)Y—(0*L)(Y)X = (VxK) Y- (VyK)X .

If K satisfies Codazzi’s equation, the E-valued 1-form [=0*L satisfies
(*) I(X)Y =1(YV)X.

We shall show that /=0. (Conversely, if /=0, then K obviously satisfies
Codazzi’s equation.) Using skew-symmetry of /(X) and /(Y) and the property
(x), we get

(Y)Y, X> = —<Y, (V)X> = —Y, [(X)Y>=0.

Thus /(Y)Y =0 for all Y eT,(M). By polarization we get [(X)Y+I(Y)X=0.
This together with (*) implies /(X) Y=0 for all X and Y, thatis, /=0. Hence
0*L=0 for Le®(M). We have thus proved Theorem 2.

The significance of Codazzi’s equation for the Ricci tensor field K as well
as the relationship of Theorem 2 to the result of Matsushima (Theorem 1 for the
case where N is a trivial line bundle) are discussed in [3].
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