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Abstract — AC Motors have proliferated as the most im- sis of synchronous machines was contributedPhyk [1].
portant machine type used in speed variable drive systems. The method was extended Byon [2] to be applicable to
The dynamic analysis and description of revolving field ma- any type of ac machine. The approach eliminates the redun-
chines_is supported by well-established theories: Park’s trans- dancy of polyphase windings, substituting these by their
formation (1929), and the space vector theory by Kovacs two-axes equivalent. This reduces a polyphase winding to a
and Racz (1959). Yet some inconsistencies with the theory ofset of two phase-windings having their magnetic axes arran-
dynamic systems exist: The machine eigenvalues suggest thgeq in quadrature as shown in Fig. 1. The two-axes repre-
existence of two damped oscillators; It appears unsatisfacto- gantation eliminates the mutual magnetic coupling of the

ry that the respective eigenfrequencies change with the ve-pp o5 \vindings, rendering the magnetic flux linkage of one
locity of the reference frame. This contradicts the common winding independent of the current in the other winding. In

understanding according to which the eigenfrequency is an a second step, both polyphase windings in the stator and the
inherent system property. ,
rotor of an ac machine

A clarification is reached using a novel approach for the :
dynamic analysis. The approach is based on complex state?'® Viewed from a
variables. It permits relating a transient condition to the common frame of ref-
propagation processes in space of distributed magnetic fields.€rence which is either
The formal analysis constitutes an extension to the spacefixed to the stator, or

vector theory and to the theory of dynamic systems. to the rotor. More gen-
erally, the reference
1. INTRODUCTION frame can be consid-

A clear and comprehensive description of the dynam@€d rotating atany ar-
behaviour of ac machines is a fundamental requirement fjfrary angular veloc-
their application in speed or torque controlled drive sy&Y @k-
tems. The pertaining methods of dynamic analysis havel"® common coor-
been developed decades ago. They form part of the fungiate system is fur-
mentals in electrical engineering, being documented in niker interpreted as therig, 2: Two-axes representation of an ac
merous publications and books of reputed authors, [1] througfnP!ex plane, its real machine S, R, Kdenote the real axes of

[7] axis being denoted asthe stationary, the rotor-fixed, and the
’ the direct axisd-axis), general coordinate system, respectively.
2. MACHINE EQUATIONS and the imaginary axis
The dynamic analysis of ac machines is usually based asthe quadrature axig-axis).
the following assumptions: According toKron, a general ac machine is symbolically
« Space harmonics of the flux linkage distribution are néepresented by the equivalent circuit Fig. 2. The gerleral
glected coordinate system rotates at the angular velogitywith
. linear magnetics are assumed and iron losses are neglER$Pect to the stator windings. The stator voltage equations,
ed. and referred to the&k-coordinate system, are expressed in terms
« slot harmonics and deep bar effects are not consideredf normalized quantities:
.dvy
2.1 Park’s transformation Ugg = It +—5o - o Vg (1a)
The first comprehensive approach to the dynamic analy- v
d
Ugg =Teisg + djq + o Ve (1b)

The angular mechanical velocity of the rotorisAs seen
from the rotor, thek-coordinate system rotates af — w,
and hence the rotor voltage equations are

J'Tﬁ \\ isb

isc, 0 . . dy
Y i 0=ryig + g~ (0K ~0)¥rq (1c)
o
o d¥
O0=rripg + qu +(og —0)¥q (1d)
Fig.1: Polyphase winding and two-axes equivalent The flux linkages are proportional to the currents:
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Yoy =lsigg *hirg (2a) Vg =ldisg +lhirg (2b) of an ac machine in terms of space vectors:
Wrd =lhigg +lyirg (2c) qu :lhisq +|rirq (2d) Ug =TIgig +%+jwk|ﬂs (6a)
Note that all variables, like currents, voltages and flux qv
linkages, have the property of scalars. Time is normalized 0=ri, +d—;+j(wk -0)Y, (6b)
throughout this paperr= wggt, where wgg is the rated
stator frequency. Given the proportionality between current and flux, the

It is particularly expedient to represent the foregoing sy#ux linkage space vectors are formally defined through the
tem equations in a matrix notation, a technique which w&sglrrent vectors:

decidedly promoted bi{ron [3]. It leads to the general state  y__| +lpi (7a)
equation STSS T
x = Ax +Bu, (3) Yr =lnis +lyip (7b)

To sum up, the space vector notation as introduced by
KovacsandRAcsrepresents the sinusoidal field by a com-
duex vector. Itis postulated that the causes and the effects of
such field, namely the currents and voltages, also have the
property of space vectors owing to existing formal propor-

tionalities.

whereA is then x n system matrixB is then x m input
matrix, u contains then x 1 forcing functions, and is the
system order. The state of the system is completely
scribed by a set of state variables, contained inntlel
state vectox.

2.2 The space vector notation

i it Signal flow diagram
The absence of space harmom;?,e\z/aiOpurgcoanpdrlJtrlggc?]f’ tgegEQUations (6) and (7) can be decomposed into their real

. signifies a rotating si- and imaginary parts and rearranged as

jim Y nusoidal flux density  d¥g , ,
distribution along the  7s'—g; *Ysd = Ok7s Vg *ki¥rg + 75" Uy (8a)
airgap. According to "
KovacsandRacs[4], P I T v VR 8b
a revolving field of S dr kis Ped TP TS T (8b)
such nature can be rep- L d¥y ,
resented by a space r'—g; *t¥rid= (0 ~0)7r ' Vig +ksVe (8¢)

vector. The space vec- v
tor points to the max- . Wrq
imum of the flux den- dz

sity wave as shown in \herer = o1 andr,' = ot are the transient time constants
Fig. 3; it expresses the of the stator winding and the rotor winding, respectivily,
maximum flux densi- =/I  andk, =1,/I, are the magnetic coupling factors, and
Fig. 3: Definition of a space vector 1Y Value by its magni- = 1 _},2/1 is the total leakage coefficient. Equations (8)
(the rotor currents are assumed zerofude. Assuming that can be also derived from (1) and (2). Their representation in
o ~ the rotor currents are graphic form is the signal flow diagram of the real state
zero, the flux denS|ty IS proportlonal to the exciting CUrrentﬁariab|eS’ F|g 4. The graph demonstrates the Strong inter-
in the stator winding. Consequently, these currents can Bgupling between the four electromagnetic state variables
formally represented by a space vector. Considering athr@ga, Vsq %d» Y%q. The complexity of this graph makes its

+Viq = —(0x —0)7 Vig + k¥ (8d)

flux density distribution

phase winding we have interpretation almost impossible [5], [6].
.9 ..
's'g('a*"""b"’a 'c), (4)

where the respective coefficieritsa = exp(j2773), anda? of
the three winding currents, i, andi. are unity vectors
indicating the spatial orientation of the respective winding
axes.

According toKovacsand Racs it is the proportionality @k
between voltages and currents which justifies the definition |
of a voltage space vector in a similar way,

Usd

u
Us:%(ua+aub+azuc), 5 —+
whereu,, up andu, are the respective phase voltages. Equa-
tions (4) and (5) effectively express the two-axes transfor-
mation of the respective three-phase quantities. The trans-
formed variables are used to establish the voltage equations @)

Fig. 4: Induction motor signal flow diagram (real state variables)

- @
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3. DiscussioNoF AC MACHINE DYNAMICS tion is supported by the particular structures in Fig. 4 that
3.1 General interconnect the stator state variableg andl;sbﬁ, and, as a

The behavior of a dynamic system during a general staEI%parate arrangement, the rotor state varidlgand¥iq.
9

of dynamic transition depends on the forcing function, an e respective structures are formed by series connections

on its eigenbehavior. Supposing that the system is stable fstWO first-order delay systems in a negative feedback
IQop, which can indeed exhibit an oscillatory response.

eigenbehavior in a given steady-state operating point . ; ;
expressed by the particular way in which the state variableg" the rootlocus plot Fig. 5(a), the imaginary part of each
r of eigenvalues represents the eigenfrequency, and the

return to their respective steady-state values after a sudd&

displacement. The forcing functions must be left unchang%‘f‘I part controls the damping of the associated oscillator.

S0 as to maintain the steady-state condition. A displacem rprisingly, these eigenva}ues are getti_ng displaced to.dif-
éent locations when viewing the machine from a rotating

can be effected by adding a unit pulse to the steady-st \q ; . ) ;
forcing function; the deviation from the steady-state operats'€"€Nc€ fra:jme, F'%‘. 5(b). Th|Z.observatrll(_)nhco#tra¢ctsfthe
ing point it then described by the pulse response of tg@mmon understanding according to which the eigenire-
system in that very operating point. guency is an inherent property of a system. Such inconsist-

The unit pulse transfers a determined amount of additioff 1Y can be exp[alned to some extent: The .change of refer-
al energy to the system. This energy is temporarily depos nce frame entails a frequency transformation, not only 'of
ed in the storage elements of the system, for example th feeding voltages and currents, but also of the machine

shown in Fig. 4; the energy then decays in the course ofgherated transients. However, a better way of treating this

subsequent transient, being partly dissipated as system [B§2PIém is to avoid such ambiguities. This requires a dis-

ses, and partly absorbed by the load. This energy can fpetive approach which will be presented next.
termed as transient energy, to be distinguished from the
flow of steady-state energy which remains constant throughout 4. THE COMPLEX STATE VARIABLE APPROACH
the transient process. 4.1 Basic observations _ . .
Transient energy may either decay asymptotically, or, if a Each pole of the root locus plot is uniquely associated
mutual coupling exists between two storage elements Wjth one energy storage element of the system under con-
different physical nature, oscillate between them. Such odideration. The storage element can be an inductor which
cillation eventually fades away as the transient energy dis§tores the energy in its magnetic field; it can be the rotor of
pates. In the root locus plane, the asymptotic decay is ch@rmachine and its kinetic energy at nonzero speed.
acterized by one negative real eigenvalue, whereas the osA pair of conjugate complex poles represents two inde-
cillatory decay corresponds to a conjugate complex pair pendent storage elements of different physical nature which,

eigenvalues having negative real parts. in a state of dynamic excitation, exchange their energy
periodically in the form of an oscillation. The frequency
3.2 Root locus plot depends on the storage capacities of the two elements; it is

Apart from the signal flow diagram, another way of visuan inherent_system property.
alizing the properties of a dynamic system is the root locusSuch oscillator can be formed, for example, by parallel-
plot. It is obtained with reference to (3) from the solution ding a capacitor to an inductor. The magnetic energy of the

A(A-1)=0, 9) inductor transfers to the capacitor, being temporarily stored
wherel is then x n identity ma- 08n 08 ? 0‘ Orr 08
trix. The result is the x 1 eigen- ' ‘ 02 8.2 £
vector A, the elements of which 071 06 /A %03 e — 2 43106
are the roots of the characteristic T 04 04
equation. S ) 05

The following analysis concen- 04 04
trates on the electromagnetic sub- 04 J 05 o4 - 061 .
system of an induction motor, not |- g3_j =< 03102 o7t 02
considering the influence of the 02 06 0 02 e i
mechanical system. The mechani- 08 0 08l | 0
cal time constant is therefore — 05 08 ——
sumed very large, which render o8 » o Rel4} L Re{A}
the angular mechanical velocity | o3 N 03-1-02 07 -02
= const. 04 -

The root locus plot of the elec- 03 061 2,
tromagnetic subsystem as viewe ® -04 -04
from the stationary reference frame ‘05' | o4 05 -
is shown in Fig. 5(a) with the an- -06 | 034 r—3 sl 06

07 ~—
gular mechanical velocitw as a | I a) 02 g-g o 02 b)
parameter. The plot exhibits two 08 08 o : X _og

pairs of conjugate complex eigen-

values which suggest the existence Fig.5: Root locus plot of the electromagnetic subsystem, (a) stator coordinates,
of two oscillators [5]. The sugges- (b) rotating coordinates
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as electrical energy, and then retransfers in the course ofiga space vectofsu,, au,, anda2u;. They sum up geomet-
oscillation. Similarly, a torsional spring can temporarilyically to the voltage space vector of the polyphase winding
absorb the transient kinetic energy of a rotating mass, tlagesording to (5).
assisting to sustain a damped mechanical oscillation.

Different from these examples, revolving field machines4 Winding representation
define a class of dynamic systems for which the foregoingApart from an arrangement of distributed conductors, a
interpretation does not unconditionally apply. A polyphagase winding can be made up from concentrated coils on
winding in its two-axes representation is characterized &glient magnetic poles. The field winding in the rotor of a
two energy storage elements. Both are inductances, an@yghronous machine is an example. It generates a spatial
such cannot interact to sustain independent oscillations. Tihig density distribution which is sinusoidal by virtue of an
legitimates representing the magnetic energy of a polyphaggropriately shaped airgap, and hence it can be represented
winding as one entity, not to be devided into portions attriby @ flux linkage space vect®;, Fig. 6(a). Assuming that
uted to the respective axes. The approach requires a se@h@ther machine windings have zero currents, the voltage
degree of freedom which is the spatial orientation of tigguation in rotor coordinates,
magnetic field that represents the total energy. Reasoning .
from that, the traditional space vector is well suited to serve 7t 5+ ¥t =7fur, (10)

as the single state variable to represent an entire winding. ) o ) )
characterizes the winding dynamically as a first order sys-

4.2 Current space vectors tem having the complex state varialg and the time con-

The use of complex state variables for the dynamic anasfantzs = l¢/r¢. The phase angle of the flux linkage wave is
sis requires a more rigid definition of a space vector thiglentical to the rotor position angie In rotor coordinates,
that originally given byKovacsandRacs[4]; their defini- the flux linkage vector is invariably aligned with the real
tion is discussed in Section 2.2. It is not only the revolvirgxis. d¥/dz is a distributed voltage which transforms to a
flux density wave that is sinusoidally distributed around ttsgalar dc voltage at the machine terminals, with the relative
airgap. Also the mmf of each phase winding has the sap®sition of the slip ring brushes contributing the phase trans-
distribution, which follows from the initial assumptions iformation angle. The signal flow graph in the center of Fig.
Section 2. This means that the conductors pertaining to &) is the dynamic representation of (10). It refers to the
phase must have a sinusoidal density distribution along wi@ding-fixed, i. e. the rotor coordinate system. Shown in
airgap, producing a sinusoidal mmf distribution. Such di#he bottom of Fig. 6(a) is the eigenvalue of (10).
tribution can be represented by a space vector. The definAn identical airgap flux density wave can be generated by
tion of an mmf space vector, being directed in space foolyphase winding in the stator, Fig. 6(b). The spatial
wards the maximum mmf density of the phase winding, @sientation of the stator flux linkage can assume any angular
not very practical. An equivalent current vector is therefoegientation, depending on the magnitudes of the respective
preferred which lags the mmf space vector by i@0space. phase currents. As before, the currents in other machine
It points in the direction of the winding axis, thus being )
aligned with the flux linkage component that is produced bya) jimA
the winding current. The magnitude of the current space
vector is directly related to the respective phase current at
the winding terminals.

In a polyphase winding, each phase winding generates
sinusoidal mmf distribution, to which a phase-current spacef]
vector is attributed (which is different from the current
space vector of the polyphase winding). In a three-phas
winding, the phase-current space vectors Jaig aip, and
a?i., respectively, wherg = exf(j0). The total mmf distri-
bution of all phase currents is the superposition of the re-
spective sinusoidal mmf profiles; the distribution is repre-
sented by a current space vector, expressed in (4) as the sum
of the contributing phase-current space vectors. Us

4.3 Voltage space vectors

With the conductors of a phase winding being arranged in
a sinusoidal density distribution around the airgap, the local
resistive voltage drop created by the winding current varies I 2} T
in proportion to the winding density. This voltage assumes a J
sinusoidal distribution in space to which a voltage space /
vector is assigned. The same applies to the induced voltage 17 1
that originates from changes of the flux linkage. The total A="7+I0 Re{ M=75+10 Re{ 4}
phase voltage builds up as the sum of its distributed incre- ) _ o _
ments and equals the magnitude of the phase-voltage Srfé& 6: Complex notation of machine windings. (a) salient rotor

nding, (b) polyphase stator winding. From top to bottom: winding

vector. A three-phase winding contributes the phase'vag%ometry and flux linkage vectors; signal flow graphs; root loci

— / —
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windings are assumed zero. Referring again to a coordinaftehe transient energy that is associated to that state varia-
system that is stationary with respect to the winding leadsbie.

qv It is important to observe that the stored energy of the
TsTTS“/'s =7gUg (11a) system is continuously spread out in space. Subdividing the
energy into two portions that are formally described by the

which is a first order delay having the complex state varigcalar real and imaginary parts of the corresponding space
ble ¥5, and the time constant = —1/R¢{A1}. The equation vector is an arbitrary manipulation. Such partition of energy

underlines the inductive nature of the distributed windingepends on the phase angle of the reference frame which is
The dynamic structure is shown in the center of Fig. 6(lot a system property and can be freely chosen. Introducing

The root locus is obtained from (9), wheXés derived from the real part and the imaginary part as system state variables
the state space form of (11a). Fig. 6(b) shows that a singltaches information to them that is alien to the system

complex polel; = —1/rg + jO exists. properties.
A transformation of (11a) to the genekatoordinate sys-
tem is formally effected by multiplying this equation by the 5. TRANSIENT ANALYSIS

rotation termexg(jwy): 5.1 The electromagnetic subsystem

An induction motor comprises two polyphase windings,
one located in the stator and one in the rotor. The system
guations are derived from (6) and (7):

Ts%“””s = —joyrs¥s +TsUs (11b)

. Lo . e
The representation of the winding in a rotating referenc
frame adds the dynamically induced voltage 15 ¥s to Vs oy . . 12
the system equation (11b). This term maps in the signal flow " dr HWs = —lokrs Vs kY 475U (122)
diagram Fig. 7(a) as an additional feedback loop around the , dv,

complex delay element. The root locus plot Fig. 7(b) shows gt

that the complex eigenvalue is now displaced hyy-as The equations are visualized in the signal flow graph Fig. 8
compared with Fig. 6(b). The displacement indicates thb?st a cqomplex second-order system. ?he two b%sig winging

':hetr\]/vmdlngd_rot?tes a‘E[the r_;\rr;]gular vello?mynk ‘?."th respect o1 ctures demonstrate that the stator winding rotates at the
0 the coordinate system. 1h€ same information IS CO”V%‘?Fgmar velocity wy, and the rotor winding rotates ab——=

in the swignal flow diagram by the complex feedback term 7., _ .y ‘with respect to the general, coordinate system.
Jokts Vs

The root locus plot Fig. 9 shows that there are two single
, complex eigenvalues that get displaced as the mechanical
4.5 Comparison . - ular velocityw changes. It could be concluded that the
The complex state variable analysis produces results tﬂtgrgtched eigenvalue curvé on the left represents the rotor
differ from those of the real state variable notation. A com- ~ cigenvail ; ; P .
winding, since its imaginary part increases almost in pro-

parison can be summarized as follows: ; ; i .
The analysis of a polyphase winding as represented in pytion to the rotor spe_ed. This Ieaves_ th_e right hangl S'.de
litve for the stator winding, a less convincing conclusion in
€

Y = —i(ok —o)7 "V +ksVs (12b)

by real state variables leads to a second-order system, w " of the strona rotational component that governs the
corresponds to an oscillator in the signal flow structure ant 9 P 9

correspondingly, a pair of conjugate complex eigenvalué@.agmary part of the associated root in the medium speed
Hence the transient response is characterized thyeade- L . : .
pendent oscillationthe frequency of which depends on the Closer_|n3|ght into the problem is 9?"”6‘1 by Iooklng.at the
coordinate system. propagation in space of the magnetic energy associated to
Against this, the complex state variable approach reng-e Wan|ngs. The spatial distributions are described by the
sents the winding as a first-order delay, the time constan{%ftpecnve ﬂuxcljmkage vectoﬂ%lalr;.dllllr. dition that th
which is thel/r-ratio of the winding. The root locus shows a, . IS assumed as a general initial condition that the ma-
single complex eigenvalue without a conjugate complex Cglt]me operates in the steady-state at arbitrary values of sta-
respondent. The imaginary part of the single complex eig ﬂtegglta?ﬁeﬁnfd-itsattgrag%%lfgﬂﬁ?ﬁeghg aﬂ[rr‘]geullg;dmt%?hsg'czl
value represents the magnitude and the direction of the aApcedo ! y que.

gular velocity at which the winding rotates against the coor-
dinate system. Being based on one single complex eigenval-
ue, the transient response describespatial displacement

stator winding rotor winding

stator winding
it 24 us |
s BEy 0 ]
17 —
" Ts Re{ 4}
a) b)

Fig. 7: Polyphase stator winding in rotating coordinates, (a) signglg. 8: Induction motor signal flow graph in terms of complex state
flow graph, (b) root locus variables
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\ 1 and¥;. Hence the total flux linkages during a transient are
‘ 11 jIm{ A} ? Ys total= Ys + Vs and¥ o1q = ¥ + ¥. The superposition is
09 08 permitted since the system is considered linear ¢, =
| const.).
08 The transient deviation®; and ¥, will be now discussed
‘07_ @ 06 for different values of the angular mechanical veloaity
B Fig. 10 shows on its left-hand side how the trajectories of
06 4 the transient flux linkage vectol and¥, develop in a time
pP i 1 04 sequence. Their locations are displayed immediately after
\ 05 / the exugng pglsefocu;]rsl;c and theln 'afterfa ﬂuarter re)I/_?]Iu-
04 05 04 _ tion, and again after half a revolution of the rotor. The
Ax(w=0.1) 520'3 "/06 ’,—\\‘ 0-30? M(@=01) pertaining schematic field patterns on the right-hand side
/ 1J @ - | Btr illustrate how the transient magnetic energy distributes in
ffffffffffffffffffffffffffffffffff space.
_05 05 - olo 1 The field patterns extend over one pole pair of the ma-

Fig. 9: Root locus plot, complex state variables, stator coordinat%g'me The circumferential airgap had been opened out to
the circles mark the eigenvalue locationsuat 0.1. ecome linear and given an extended width for a better
demonstration of the important field distribution details in
the airgap space. The conductors of the polyphase windings
transient process is subsequently stimulated by superimpo-the stator and the rotor can be imagined as layers of
sing a unit pulsé (7 = 0) = 0 + j to the stator voltage vectorinfinite thickness being located along the boundaries be-
The response is obtained as the solution of the system eguaen the active iron and the airgap.
tions (12) as It is particularly important to note that the spatial flux
distributions in Fig. 10(b), as well as those in the following
figures, have been simply drawn by hand using a computer
mouse. There was no numerical field computation program
used for this purpose. The information contained in the
respective field patterns is only that conveyed by the solu-
tion (13) of the system equations. The solution provides the
sinusoidal distributions along the boundaries to the active
exp(——&)snh(ér) (13b) iron on both sides of the airgap. These distributions are
Er," : . !
completely described by the respective magnitudes and phase
(1-jor, ) angles of the transient components of the stator flux linkage
g="—F 7 (13c)  vector and the rotor flux linkage vector.
' S The spatial distributions in the airgap volume have been
subsequently completed by applying the fundamental rules
i . P that hold for the behavior of magnetic fields in the neighbor-
5—\/Drs (A-jor)+r' F _1-jorr kel (13d) hood of boundaries between different magnetic materials.
The validity of the obtained results, though, was confirmed
by numerical field computation.

(=Y

o észr-(zl exp( A7) - Ag oxp(Ay7))
Vg =
0 Bt-jor ol - 1¢r)sm(en)

0
E (13a)
g

g, =S

where

and

O 2rg'r,! O 75’7

The space vector¥g and ¥, describe the transient devia-
tion from a steady-state operating point characterize¥sby

t,=+0 stator t1=+0 stator
h h ——— i 7Z——— S\
Vr:0 5 \w/\w/ '/7r=0 NS——— NS——F"*>S*"
/ Ys / s
rotor -/ ReA - t -
t,=50ms w?@LF} I~ tr=10ms o lm‘
ozt | ) >
. \J NS L D — \J
=—1/4 rev. - e
t3 =100 ms tg=20ms 1/4 rev.
[ 5 ﬁﬁ
e R T —
T T Y~ ‘
R — 0 \o—F— \— T .o_‘_%t . =T T —
a) b) ~— 1/2revolution — a) b) ~<— 1/2 revolution —‘
Fig. 10: Time sequence of transient magnetic fields at0.1, Fig. 11: Time sequence of transient magnetic fields at0.5,

(a) locations of the flux linkage vectors, (b) field distributions (@) locations of the flux linkage vectors, (b) field distributions
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5.2 Transient response at low speed higher speed. The particular machine investigated here (the

Low speed operation is defined @s<|L/Re{Ax(w = 0)}|. data are given in the Appendix) obviously exhibits unique
As an examplep = 0.1 is selected in Fig. 10. Af = +0, a operating conditions around= 0.5, a region where the two
defined amount of transient energy is injected through theanches of the root locus plot in Fig. 9 have their minimum
stator terminals by a complex unit pulse that is superigistance and maximum curvature. As a general rule for any
posed to the steady-state stator voltage vector. The transieachine, this condition prevails at~ 1/Re{ 25(w = 0)}.
energy is stored in a magnetic field that links exclusively The particular situation ab = 0.5 is assessed from the
with the stator winding, and hence is categorized as a leditails in Fig. 11(b). Following the injection of transient
age field. This field does not link with the rotor windingenergy, the transient field again penetrates from the stator
since the initial transient rotor flux linkage is zero. Rotdnto the rotor, but slower than in the previous case. This can
currents are instantaneously induced by the sudden appbardemonstrated by the evaluation of (13). The fact is con-
ance of the transient stator flux linkage. They repel the flfixned by the valueRe{ A5}, the negative inverse of which is
linkage from the rotor. Owing to the presence of such rotitve time constant of the transient leakage fields )'(w =
currents, the rotor resistance gets transformed to the equi¥&®) = -w/Re{Ax(w = 0.5)}. A visual inspection confirms
lent stator circuit and influences the effective transient tirtieat the rotor flux linkage trajectory has a different shape
constant. than the corresponding one in Fig. 10. The field pattern in

The leakage field closes through the airgap, pervading the center portion of Fig. 11 shows that, contrasting to the
large distance of about a pole pitch in the circumferentgituation in Fig. 10, a leakage flux still exists after a quarter
direction. The high magnetic resistance of this particulegvolution. This is necessarily so, since the rotor has not yet
path makes the transient inductance of the stator windighgplaced to the angular positian-z 5'(w = 0.5), which it
very low. Hence the transient time constant{w= 0.1) = — will only reach when the transient time constant(o =
1/Re{Ap(w = 0.1)} is small. 0.5) has elapsed.

As time elapses, the initial situation changes very rapidly.A mutual flux linkage has meanwhile established. Since
This is illustrated in the center portion of Fig. 10(bY.at the rotor moves faster than in the previous case, the mutual
50 ms. The rotor has just executed a quarter revolutionaiigap field develops a strong circumferential component.
this instant of time. The displacement angler ,'(w = 0.1) At this higher speed the respective transient flux linkages
= —w/Re{ Ax(w = 0.1)} marked on the right indicates that thdevelop a tendency to adhere to their respective windings.
transient time constant,' has elapsed long before compleAs a consequence, the mechanical displacement between the
tion of the first quarter revolution. Hence the leakage fiefdator and the rotor does not entail proportionate displace-
through the airgap has faded away almost completely. Thents of the stator flux linkage relative to the stator, and of
resistive rotor voltage drop has assisted to build up a rote rotor flux linkage relative to the rotor. Hence the phase
flux linkage. That flux component has reached by now &ngle between the pertinent space vectors must increase.
most the same magnitude as the transient flux linkage in th&lthough most of the mechanical displacement between
stator. This is demonstrated by the space vector diagranthum stator and the rotor is compensated by respective dis-
the left of Fig. 10(b). The corresponding field pattern on tiacements of the stator flux linkage and the rotor flux
right shows a strong mutual flux linkage. The airgap lgkage, the phase angle between the pertinent space vectors
intersected almost at shortest distance, from which a highreases. The resulting elongation of the airgap flux lines
winding inductance, and consequently a large time constiitreases the magnetic resistance encountered by the mutual
results. The mutual field will therefore persist over a long#ux. Hence the time constant of the mutual flux linkage
period of time; it has not very much reduced after anothdgcreases. The flux patterns further reveal that the magnetic
quarter revolution as illustrated in the lower portion of Figesistances of the leakage flux linkage and the mutual flux
10(b). linkage are almost the same, a fact which is confirmed by

The propagation velocityy, of the transient fields can bethe real parts of their respective root loctat 0.5, Fig. 12.
numerically extracted from (13), which represent the dottedThe velocity at which the transient magnetic fields dis-
trajectories of the flux linkage vectors in Fig. 10(a). Shortglace along the airgap is expressed by the angular velocity
after their initialization, both flux linkage vectors displacef the flux linkage vectors. The respective values are ob-
at the constant velocity = @/2. This is confirmed by the
imaginary parts of the respective eigenvalues in Fig. 9. Both

equal the time-averaged valag, = Im{ 11(®)} = Im{ Ao(w)} S 2 61, 1 05
= 0.50 = 0.05 as indicated by the dashed horizontal line [n | transientiotor field ﬂm{}f}T
Fig. 9. The real parts of the two eigenvalues equal thg O <0
inverse time constants which control the decay of the leak- { vy 9
age flux linkage, and the mutual flux linkage, respectivelyp.25 += - — - —- - 05w 10.25
The field distributions show that the stator field displaces in [\’T """"""""""" 03/ 1
a positive direction with respect to the stator, and the rotor transient stator field: '
field in a negative direction with respect to the rotor. As | @S >0 stator !

. . eigenvalue
seen from the common stationary reference frame, both fields \
displace in the time average @&, as expressed by the 200 ms 05 -0z o
imaginary components of their eigenvalues. 2 t—» ' b ' Re{ A} —»
5.3 Transient response at medium speed Fig. 12: Velocity of transient fields and eigenvalue location at medi-

The conditions of transient field propagation change at speedw= 0.5; (a) velocity versus time, (b) location of root loci
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tained from a numerical simulation and plotted as time fung=+g stator

tions in Fig. 12(a). The stator flux linkage velocity startsﬁﬁﬁ
from zero and increases in proportion as the rotor field\gnfyz

builds up in magnitude. Interestingly, the initial rotor field
velocity equalsw/2 although the rotor flux linkage is still
zero att = 0, a fact that is difficult to confirm just from the,=1oms ~—— -0/RfA)}

shape of the trajectories of the flux linkage vectors in Fig. :
11. The velocities of these vectors settle after a short oscil

lation to reach their respective steady-state values, Fig. 12(a: :
The comparison with the root loci in Fig. 12(b) shows that !

the steady-state velocity of the transient fields equals t@gzo ms
imaginary parts of the respective system eigenvalues: N

ERERECEEE
D1 = Im{ A5} (14) /<//

\—«/
It can be again observed that the velocity of the transient A
stator field with respect to the stator equals the velocity &ff30ms

rotor

the transient rotor field with respect to the rotor. Othertham _——~ ~— ———— ™~ ~

at lower speed (Section 5.2), the velocities of the transie ~— N

fields relative to their windings do not sum up to the me- [

chanical speed of the rotor: there remains a gap between the

two curves in Fig. 12(a). Hence the airgap flux lines in Figg=40ms

11(b) continue to elongate throughout the transient process ———_~ ,_——— ~ ~
Note that the particular shape of the initial oscillation in ———

the velocity curves in Fig. 12(a) is not related to a systent E D

eigenvalue, a quite peculiar obervation.

The speed range aroung = 1/Re{Ax(w = 0)} marks & gig 14: Time sequence of transient mag
particular situation in which the mutual flux linkage hasetic fields atw = 0.8; for A and B see text

effectively decayed before the displacement angle between
the stator and the rotor field has reached the extensio
one pole pitch. This situation will not be encountered
higher speed.

i a given area of the rotor surface,

netization.

induced. While the
magnetic field con-
tinues to penetrate
from the stator, it
gets displaced and
becomes eventual-
ly opposed in direc-
tion to the existing
rotor flux linkage.

The magnitude of
the rotor field there-
fore recedes, com-
ing down to zero at
t, = 18 ms in the
example Fig. 4. The
existing field distri-

bution is then

equivalent to the
starting condition at
tq +0. Conse-

quently, the pene-
tration of the stator
flux linkage into the

rotor starts again,
although at reduced
magnitude since
Some of the tran-
sient energy has

nwhile been dissipated. Note that the rotor field, as seen
has now established in a
reversed direction as referred to its original polarity of mag-

5.4 Transient response at higher speed The disappearance and reappearance of the rotor field is a

A third case of interest i@ > |1/£7{e{)»2(w = 0)}|_ In this cyp_hc process which is |Ilqstrated by the dlagra_m Fig. 15.
upper speed range, the rotor completes more than a revilifially, the angular velocity of the stator flux linkage in
tion before the leakage transients have died out. ThisFi§- 15(2) increases as the rotor flux magnitude increases; it
reflected in the trajectory of the rotor flux linkage vector iflecreases again as soon as the rotor has displaced its flux
Fig. 13, which completes several circles in the compldkage to oppose the stator flux linkage in polarity. The
plane before its transient energy has dissipated. It isrg}orfleld then reduces to a minimum valqe. The interaction
particular interest that the trajectory passes repeatedly throligih the stator almost discontinues, leaving the stator flux
the origin. This happens approximately every two revollitkage nearly stationary. Effectively, the rotor field moves
tions of the rotor. The mechanism behind is explained wiRgriodically much faster than the rotor winding. This hap-
reference to Fig. 14, which illustrates the spatial propadns Whenever the large peaks in the rotor velocity curve
tion of the transient fields at = 0.8 in a time sequence. 35

At that speed, the induced rotor flux linkage is quickl
carried away by the moving rotor winding, while the tran{
sient stator flux linkage remains almost stationary. Befove
the transient time constan'(w = 0.8) elapses, the rotor , |
field has reached a position that is closer to the adjacent

stator pole than to the original pole from which it had been
™ E)tr(R) <0
/ 10 \WYr N
02— t)20 7 A | W I 5 0 B R R E N
30 - ~No 10 ms = ?
20% o4 / o\\\ t 0 instantaneous velocity or®>0
o Nirg4 Bk LY oo DY
O T T
0 2 100 200 ms t
-0.2 0 0.2 04 0.6 0.8 1

Fig. 13:Trajectories of the transient flux linkage vectors at mediufig.15:Velocity of transient fields and eigenvalue location at higher
speed;w= 0.8 speedw= 0.8; (@) time functions, (b) root loci
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occur, during whichw >> . The field pattern Fig. 14 art dynamic analysis of revolving field machines fails to
shows indeed that the rotor field distributiort att3 (marked provide such comprehensive insight.
A) reappears in a much more advanced location B=dl
when the field has build up again from zero. 6. GONCLUSION

During the following cycles, the velocity peaks reduce in The dynamic analysis of ac machines is commonly based
magnitude. The average velocity,, however, remains con-on real state variables. Conjugate complex pairs of eigenval-
stant; it equals the imaginary part of the rotor eigenvalues describe the dynamic response as time-dependent oscil-
(14), which is is indicated by the appropriately scaled roations. These determine the transient phase currents at the
locus plot in Fig. 15(b). Also the average stator field veloahachine terminals and the related scalar flux linkages.
ty is constant; it equals the imaginary part of the otherDifferent from that, the dynamic process inside the ma-
eigenvalue. chine is characterized by continuous distributions in space

Surprisingly, the frequency and the rate of decay of theévoltages, currents, and flux linkages. Their stringent rep-
velocity oscillations are not correlated to a system eigenvedsentation by complex state variables discloses a more com-
ue; their oscillations persist for a much longer duration thprehensive description of the transient phenomena. It char-
any of the machine eigenvalues would indicate. acterizes the electromagnetic subsystem of an ac machine

The field patterns in Fig. 14 demonstrate that the magniey- two single complex eigenvalues excluding their conju-
ic path of the transient leakage field is shortewat 0.8 gate correspondents. The eigenvalues provide information
than that at very low speed, Fig. 10(b). Hence the transientthe velocities of the transient magnetic fields, and they
time constant,'(ew = 0.8) can be expected to be larger. Thelso reveal the velocity of the reference frame.
opposite is true for the mutual field component: this field The solution of the complex system equations are simple
develops a strong circumferential componentwat 0.8, arithmentic expressions. Nevertheless, they provide every
Fig. 14, which increases the magnetic resistance as c@®tail of the spatial distributions of transient magnetic fields
pared with the low speed case. Accordingly, the correspomglthe active iron and in the airgap volume, equivalent to
ing transient time constanmy'(w = 0.8) must be smaller thanwhat can be obtained by numerical field analysis.
at lower speed. The root locus plot Fig. 9 confirms that theit is a particular appeal of the approach that it explains
two transient time constants, expressed as the inverse vgel unprecedented insight the physical significance of the
parts of the corresponding eigenvalues, approach each otbet loci and the relationship of their locations to the time-
as the speed increases, finally assuming almost the sa@ging spatial propagation of transient magnetic fields.
maghnitudes at high speed.
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It was demonstrated that the average velocity of the trgfls nymerical field computations that are referred to in this
sient stator field relative to the stator equals the aver er

velocity of the transient rotor field relative to the rotor. The '

fact suggests representing the two system eigenvalues in 7. APPENDIX

their respective reference frames. For this purpose, the rdtbe investigated machine has the following data:

eigenvalue is transformed to rotor coordinatefA,(S(w)} Is=3.005, rq=0.0446, 1;,=2.89, |,=3.13, r, = 0.054.

= Im{2,(R(w)} — w. Fig. 16 shows that the loci of these

eigenvalues assume symmetric positions around a center 8. REFERENCES
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