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Abstract  —  AC Motors have proliferated as the most im-
portant machine type used in speed variable drive systems.
The dynamic analysis and description of revolving field ma-
chines is supported by well-established theories: Park’s trans-
formation (1929), and the space vector theory by Kovács
and Rácz (1959). Yet some inconsistencies with the theory of
dynamic systems exist: The machine eigenvalues suggest the
existence of two damped oscillators; It appears unsatisfacto-
ry that the respective eigenfrequencies change with the ve-
locity of the reference frame. This contradicts the common
understanding according to which the eigenfrequency is an
inherent system property.

A clarification is reached using a novel approach for the
dynamic analysis. The approach is based on complex state
variables. It permits relating a transient condition to the
propagation processes in space of distributed magnetic fields.
The formal analysis constitutes an extension to the space
vector theory and to the theory of dynamic systems.

1.  INTRODUCTION

A clear and comprehensive description of the dynamic
behaviour of ac machines is a fundamental requirement for
their application in speed or torque controlled drive sys-
tems. The pertaining methods of dynamic analysis have
been developed decades ago. They form part of the funda-
mentals in electrical engineering, being documented in nu-
merous publications and books of reputed authors, [1] through
[7].

2.  MACHINE EQUATIONS

The dynamic analysis of ac machines is usually based on
the following assumptions:

• Space harmonics of the flux linkage distribution are ne-
glected,

• linear magnetics are assumed and iron losses are neglect-
ed, and

• slot harmonics and deep bar effects are not considered.

2.1 Park’s transformation
The first comprehensive approach to the dynamic analy-
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sis of synchronous machines was contributed by Park [1].
The method was extended by Kron [2] to be applicable to
any type of ac machine. The approach eliminates the redun-
dancy of polyphase windings, substituting these by their
two-axes equivalent. This reduces a polyphase winding to a
set of two phase-windings having their magnetic axes arran-
ged in quadrature as shown in Fig. 1. The two-axes repre-
sentation eliminates the mutual magnetic coupling of the
phase-windings, rendering the magnetic flux linkage of one
winding independent of the current in the other winding. In
a second step, both polyphase windings in the stator and the
rotor of an ac machine
are viewed from a
common frame of ref-
erence which is either
fixed to the stator, or
to the rotor. More gen-
erally, the reference
frame can be consid-
ered rotating at any ar-
bitrary angular veloc-
ity ω k.

The common coor-
dinate system is fur-
ther interpreted as the
complex plane, its real
axis being denoted as
the direct axis (d-axis),
and the imaginary axis
as the quadrature axis (q-axis).

According to Kron, a general ac machine is symbolically
represented by the equivalent circuit Fig. 2. The general k-
coordinate system rotates at the angular velocity ω k with
respect to the stator windings. The stator voltage equations,
referred to the k-coordinate system, are expressed in terms
of normalized quantities:

  
u r i

d
dsd s sd

sd
k sq= + −

y yt w (1a)

  
u r i

d

dsq s sq
sq

k sd= + +
y

yt w (1b)

The angular mechanical velocity of the rotor is ω. As seen
from the rotor, the k-coordinate system rotates at ω k – ω,
and hence the rotor voltage equations are

  
0 = + ( )− −r i

d
dr rd

rd
k rq

y yt w w (1c)

  
0 = + + ( )−r i

d

dr rq
rq

k rd
y

yt w w (1d)

The flux linkages are proportional to the currents:

Fig. 2: Two-axes representation of an ac
machine. S, R, K, denote the real axes of
the stationary, the rotor-fixed, and the
general coordinate system, respectively.

Fig. 1: Polyphase winding and two-axes equivalent
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  ysd s sd h rd= +l i l i (2a)   ysq s sq h rq= +l i l i (2b)

  y rd h sd r rd= +l i l i (2c)   y rq h sq r rq= +l i l i (2d)

Note that all variables, like currents, voltages and flux
linkages, have the property of scalars. Time is normalized
throughout this paper: t = wsRt, where wsR is the rated
stator frequency.

It is particularly expedient to represent the foregoing sys-
tem equations in a matrix notation, a technique which was
decidedly promoted by Kron [3]. It leads to the general state
equation

ẋ Ax B= + u , (3)

where A is the n x n system matrix, B is the n x m input
matrix, u contains the m x 1 forcing functions, and n is the
system order. The state of the system is completely de-
scribed by a set of state variables, contained in the n x 1
state vector x.

2.2 The space vector notation
The absence of space harmonics, a precondition of the

previous approach,
signifies a rotating si-
nusoidal flux density
distribution along the
airgap. According to
Kovács and Rács [4],
a revolving field of
such nature can be rep-
resented by a space
vector. The space vec-
tor points to the max-
imum of the flux den-
sity wave as shown in
Fig. 3; it expresses the
maximum flux densi-
ty value by its magni-
tude. Assuming that
the rotor currents are

zero, the flux density is proportional to the exciting currents
in the stator winding. Consequently, these currents can be
formally represented by a space vector. Considering a three-
phase winding we have

is a b c= + +( )2
3

2i a i a i , (4)

where the respective coefficients 1, a = exp(j2π/3), and a2 of
the three winding currents ia, ib and ic are unity vectors
indicating the spatial orientation of the respective winding
axes.

According to Kovács and Rács, it is the proportionality
between voltages and currents which justifies the definition
of a voltage space vector in a similar way,

us a b c= + +( )2
3

2u au a u , (5)

where ua, ub and uc are the respective phase voltages. Equa-
tions (4) and (5) effectively express the two-axes transfor-
mation of the respective three-phase quantities. The trans-
formed variables are used to establish the voltage equations

of an ac machine in terms of space vectors:

    
u is s s

s
k sj= + +r

d
d
y yt w (6a)

    
0 = + + −( )r

d
dr r

r
k rji

y yt w w (6b)

Given the proportionality between current and flux, the
flux linkage space vectors are formally defined through the
current vectors:

  ys s s h r= +l li i (7a)

  y r h s r r= +l li i (7b)

To sum up, the space vector notation as introduced by
Kovács and Rács represents the sinusoidal field by a com-
plex vector. It is postulated that the causes and the effects of
such field, namely the currents and voltages, also have the
property of space vectors owing to existing formal propor-
tionalities.

2.3 Signal flow diagram
Equations (6) and (7) can be decomposed into their real

and imaginary parts and rearranged as

  
t t w t t

y y y ys
sd

sd k s sq r rd s sd=' ' '
d

d
k u+ + + (8a)

  
t t w t t

y
y y ys

sq
sq k s sd r rq s sq=' ' '

d

d
k u+ + +− (8b)

  
t t w w t

y y y yr
rd

rd k r rq s sd=' '
d

d
k+ −( ) + (8c)

  
t t w w t

y
y y yr

rq
rq k r rd s sq=' '

d

d
k+ −( ) +− (8d)

where τs' = στ s and τ r' = στ r are the transient time constants
of the stator winding and the rotor winding, respectively, ks
= lh/ls and kr = lh/lr are the magnetic coupling factors, and σ
= 1 – lh2/lslr is the total leakage coefficient. Equations (8)
can be also derived from (1) and (2). Their representation in
graphic form is the signal flow diagram of the real state
variables, Fig. 4. The graph demonstrates the strong inter-
coupling between the four electromagnetic state variables
ysd, ysq, yrd, yrq. The complexity of this graph makes its
interpretation almost impossible [5], [6].

Fig. 4: Induction motor signal flow diagram (real state variables)
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3.  DISCUSSION OF AC MACHINE DYNAMICS

3.1 General
The behavior of a dynamic system during a general state

of dynamic transition depends on the forcing function, and
on its eigenbehavior. Supposing that the system is stable, its
eigenbehavior in a given steady-state operating point is
expressed by the particular way in which the state variables
return to their respective steady-state values after a sudden
displacement. The forcing functions must be left unchanged
so as to maintain the steady-state condition. A displacement
can be effected by adding a unit pulse to the steady-state
forcing function; the deviation from the steady-state operat-
ing point it then described by the pulse response of the
system in that very operating point.

The unit pulse transfers a determined amount of addition-
al energy to the system. This energy is temporarily deposit-
ed in the storage elements of the system, for example those
shown in Fig. 4; the energy then decays in the course of a
subsequent transient, being partly dissipated as system los-
ses, and partly absorbed by the load. This energy  can be
termed as transient energy, to be distinguished from the
flow of steady-state energy which remains constant throughout
the transient process.

Transient energy may either decay asymptotically, or, if a
mutual coupling exists between two storage elements of
different physical nature, oscillate between them. Such os-
cillation eventually fades away as the transient energy dissi-
pates. In the root locus plane, the asymptotic decay is char-
acterized by one negative real eigenvalue, whereas the os-
cillatory decay corresponds to a conjugate complex pair of
eigenvalues having negative real parts.

3.2 Root locus plot
Apart from the signal flow diagram, another way of visu-

alizing the properties of a dynamic system is the root locus
plot. It is obtained with reference to (3) from the solution of

       A Il -( ) = 0 , (9)

where I  is the n x n identity ma-
trix. The result is the n x 1 eigen-
vector l, the elements of which
are the roots of the characteristic
equation.

The following analysis concen-
trates on the electromagnetic sub-
system of an induction motor, not
considering the influence of the
mechanical system. The mechani-
cal time constant is therefore as-
sumed very large, which renders
the angular mechanical velocity ω
= const.

The root locus plot of the elec-
tromagnetic subsystem as viewed
from the stationary reference frame
is shown in Fig. 5(a) with the an-
gular mechanical velocity ω as a
parameter. The plot exhibits two
pairs of conjugate complex eigen-
values which suggest the existence
of two oscillators [5]. The sugges-

tion is supported by the particular structures in Fig. 4 that
interconnect the stator state variables ysd and ysq, and, as a
separate arrangement, the rotor state variables yrd and yrq.
The respective structures are formed by series connections
of two first-order delay systems in a negative feedback
loop, which can indeed exhibit an oscillatory response.

In the root locus plot Fig. 5(a), the imaginary part of each
pair of eigenvalues represents the eigenfrequency, and the
real part controls the damping of the associated oscillator.
Surprisingly, these eigenvalues are getting displaced to dif-
ferent locations when viewing the machine from a rotating
reference frame, Fig. 5(b). This observation contradicts the
common understanding according to which the eigenfre-
quency is an inherent property of a system. Such inconsist-
ency can be explained to some extent: The change of refer-
ence frame entails a frequency transformation, not only of
the feeding voltages and currents, but also of the machine
generated transients. However, a better way of treating this
problem is to avoid such ambiguities. This requires a dis-
tinctive approach which will be presented next.

4.  THE COMPLEX STATE VARIABLE APPROACH

4.1 Basic observations
Each pole of the root locus plot is uniquely associated

with one energy storage element of the system under con-
sideration. The storage element can be an inductor which
stores the energy in its magnetic field; it can be the rotor of
a machine and its kinetic energy at nonzero speed.

A pair of conjugate complex poles represents two inde-
pendent storage elements of different physical nature which,
in a state of dynamic excitation, exchange their energy
periodically in the form of an oscillation. The frequency
depends on the storage capacities of the two elements; it is
an inherent system property.

Such oscillator can be formed, for example, by parallel-
ling a capacitor to an inductor. The magnetic energy of the
inductor transfers to the capacitor, being temporarily stored

Fig. 5: Root locus plot of the electromagnetic subsystem, (a) stator coordinates,
(b) rotating coordinates
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as electrical energy, and then retransfers in the course of an
oscillation. Similarly, a torsional spring can temporarily
absorb the transient kinetic energy of a rotating mass, thus
assisting to sustain a damped mechanical oscillation.

Different from these examples, revolving field machines
define a class of dynamic systems for which the foregoing
interpretation does not unconditionally apply. A polyphase
winding in its two-axes representation is characterized by
two energy storage elements. Both are inductances, and as
such cannot interact to sustain independent oscillations. This
legitimates representing the magnetic energy of a polyphase
winding as one entity, not to be devided into portions attrib-
uted to the respective axes. The approach requires a second
degree of freedom which is the spatial orientation of the
magnetic field that represents the total energy. Reasoning
from that, the traditional space vector is well suited to serve
as the single state variable to represent an entire winding.

4.2 Current space vectors
The use of complex state variables for the dynamic analy-

sis requires a more rigid definition of a space vector than
that originally given by Kovács and Rács [4]; their defini-
tion is discussed in Section 2.2. It is not only the revolving
flux density wave that is sinusoidally distributed around the
airgap. Also the mmf of each phase winding has the same
distribution, which follows from the initial assumptions in
Section 2. This means that the conductors pertaining to one
phase must have a sinusoidal density distribution along the
airgap, producing a sinusoidal mmf distribution. Such dis-
tribution can be represented by a space vector. The defin-
tion of an mmf space vector, being directed in space to-
wards the maximum mmf density of the phase winding, is
not very practical. An equivalent current vector is therefore
preferred which lags the mmf space vector by 90° in space.
It points in the direction of the winding axis, thus being
aligned with the flux linkage component that is produced by
the winding current. The magnitude of the current space
vector is directly related to the respective phase current at
the winding terminals.

In a polyphase winding, each phase winding generates a
sinusoidal mmf distribution, to which a phase-current space
vector is attributed (which is different from the current
space vector of the polyphase winding). In a three-phase
winding, the phase-current space vectors are 1.ia, aib, and
a2ic, respectively, where 1 = exp(j0). The total mmf distri-
bution of all phase currents is the superposition of the re-
spective sinusoidal mmf profiles; the distribution is repre-
sented by a current space vector, expressed in (4) as the sum
of the contributing phase-current space vectors.

4.3 Voltage space vectors
With the conductors of a phase winding being arranged in

a sinusoidal density distribution around the airgap, the local
resistive voltage drop created by the winding current varies
in proportion to the winding density. This voltage assumes a
sinusoidal distribution in space to which a voltage space
vector is assigned. The same applies to the induced voltage
that originates from changes of the flux linkage. The total
phase voltage builds up as the sum of its distributed incre-
ments and equals the magnitude of the phase-voltage space
vector. A three-phase winding contributes the phase-volt-

age space vectors 1.ua, aub, and a2uc. They sum up geomet-
rically to the voltage space vector of the polyphase winding
according to (5).

4.4 Winding representation
Apart from an arrangement of distributed conductors, a

phase winding can be made up from concentrated coils on
salient magnetic poles. The field winding in the rotor of a
synchronous machine is an example. It generates a spatial
flux density distribution which is sinusoidal by virtue of an
appropriately shaped airgap, and hence it can be represented
by a flux linkage space vector yf , Fig. 6(a). Assuming that
all other machine windings have zero currents, the voltage
equation in rotor coordinates,

    
t t tf

f
f f f=

d
d
y

y+ u , (10)

characterizes the winding dynamically as a first order sys-
tem having the complex state variable yf, and the time con-
stant t f = l f/r f. The phase angle of the flux linkage wave is
identical to the rotor position angle j. In rotor coordinates,
the flux linkage vector is invariably aligned with the real
axis. dyf/dt is a distributed voltage which transforms to a
scalar dc voltage at the machine terminals, with the relative
position of the slip ring brushes contributing the phase trans-
formation angle. The signal flow graph in the center of Fig.
6(a) is the dynamic representation of (10). It refers to the
winding-fixed, i. e. the rotor coordinate system. Shown in
the bottom of Fig. 6(a) is the eigenvalue of (10).

An identical airgap flux density wave can be generated by
a polyphase winding in the stator, Fig. 6(b). The spatial
orientation of the stator flux linkage can assume any angular
orientation, depending on the magnitudes of the respective
phase currents. As before, the currents in other machine

Fig. 6: Complex notation of machine windings. (a) salient rotor
winding, (b) polyphase stator winding. From top to bottom: winding
geometry and flux linkage vectors; signal flow graphs; root loci
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windings are assumed zero. Referring again to a coordinate
system that is stationary with respect to the winding leads to

    
t t ts

s
s s s=

d
d
y

y+ u (11a)

which is a first order delay having the complex state varia-
ble ys, and the time constant ts = –1/Re{ l1}. The equation
underlines the inductive nature of the distributed winding.
The dynamic structure is shown in the center of Fig. 6(b).
The root locus is obtained from (9), where A is derived from
the state space form of (11a). Fig. 6(b) shows that a single
complex pole l1 = –1/ts + j0 exists.

A transformation of (11a) to the general k-coordinate sys-
tem is formally effected by multiplying this equation by the
rotation term exp(jw k):

    
t t w t ts

s
s k s s s s= – j

d
d
y

y y+ + u (11b)

The representation of the winding in a rotating reference
frame adds the dynamically induced voltage – jw k τs' ys to
the system equation (11b). This term maps in the signal flow
diagram Fig. 7(a) as an additional feedback loop around the
complex delay element. The root locus plot Fig. 7(b) shows
that the complex eigenvalue is now displaced by – jω k as
compared with Fig. 6(b). The displacement indicates that
the winding rotates at the angular velocity – jω k with respect
to the coordinate system. The same information is conveyed
in the signal flow diagram by the complex feedback term –
jw k τs' ys.

4.5 Comparison
The complex state variable analysis produces results that

differ from those of the real state variable notation. A com-
parison can be summarized as follows:

 The analysis of a polyphase winding as represented in (1)
by real state variables leads to a second-order system, which
corresponds to an oscillator in the signal flow structure and,
correspondingly, a pair of conjugate complex eigenvalues.
Hence the transient response is characterized by a time de-
pendent oscillation, the frequency of which depends on the
coordinate system.

Against this, the complex state variable approach repre-
sents the winding as a first-order delay, the time constant of
which is the l/r-ratio of the winding. The root locus shows a
single complex eigenvalue without a conjugate complex cor-
respondent. The imaginary part of the single complex eigen-
value represents the magnitude and the direction of the an-
gular velocity at which the winding rotates against the coor-
dinate system. Being based on one single complex eigenval-
ue, the transient response describes the spatial displacement

of the transient energy that is associated to that state varia-
ble.

It is important to observe that the stored energy of the
system is continuously spread out in space. Subdividing the
energy into two portions that are formally described by the
scalar real and imaginary parts of the corresponding space
vector is an arbitrary manipulation. Such partition of energy
depends on the phase angle of the reference frame which is
not a system property and can be freely chosen. Introducing
the real part and the imaginary part as system state variables
attaches information to them that is alien to the system
properties.

5. TRANSIENT ANALYSIS

5.1 The electromagnetic subsystem
An induction motor comprises two polyphase windings,

one located in the stator and one in the rotor. The system
equations are derived from (6) and (7):

    
t t w t ts

s
s k s s r r s s= – j' ' '

d
d

k
y

y y y+ + + u (12a)

    
t t w w tr

r
r k r r s s= – j' '

d
d

k
y

y y y+ −( ) + (12b)

The equations are visualized in the signal flow graph Fig. 8
as a complex second-order system. The two basic winding
structures demonstrate that the stator winding rotates at the
angular velocity – ω k, and the rotor winding rotates at –ω r =
– (ω k – ω ), with respect to the general ω k coordinate system.

The root locus plot Fig. 9 shows that there are two single
complex eigenvalues that get displaced as the mechanical
angular velocity ω  changes. It could be concluded that the
stretched eigenvalue curve on the left represents the rotor
winding, since its imaginary part increases almost in pro-
portion to the rotor speed. This leaves the right-hand side
curve for the stator winding, a less convincing conclusion in
view of the strong rotational component that governs the
imaginary part of the associated root in the medium speed
range.

Closer insight into the problem is gained by looking at the
propagation in space of the magnetic energy associated to
the windings. The spatial distributions are described by the
respective flux linkage vectors ys and yr.

It is assumed as a general initial condition that the ma-
chine operates in the steady-state at arbitrary values of sta-
tor voltage and stator frequency. The angular mechanical
speed w  then adjusts as determined by the load torque. A

stator winding rotor winding
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Fig. 8: Induction motor signal flow graph in terms of complex state
variables

Fig. 7: Polyphase stator winding in rotating coordinates, (a) signal
flow graph, (b) root locus
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transient process is subsequently stimulated by superimpo-
sing a unit pulse d (τ = 0) = 0 + j to the stator voltage vector.
The response is obtained as the solution of the system equa-
tions (12) as

   

      

v
x

l l l l

z x
s

r

r

r

= 1

jt

t t

wt t t

t

'

' exp exp

' exp sinh

1
2

1 1
2

1 1 2 2( ) − ( )( )

+ −( ) ( ) ( )















-

(13a)

    
      
v̂

x
z xr

s

r
=

k
t t t

'
exp sinh- 1

2( ) ( ) , (13b)

where        
    
z =

j r

r s

1 1−( ) +
wt

t t
'

' '
(13c)

and

    
x =

j js r r

s r

r s r

s r

r r
r r

k k' ' '
' '

'
' '

1
2

12−( ) +



 −

− −wt wt
t t . (13d)

The space vectors vs and vr describe the transient devia-
tion from a steady-state operating point characterized by ys

and yr. Hence the total flux linkages during a transient are
ys total = ys + vs, and yr total = yr + vr. The superposition is
permitted since the system is considered linear (w , w k =
const.).

The transient deviations vs and vr will be now discussed
for different values of the angular mechanical velocity w .

Fig. 10 shows on its left-hand side how the trajectories of
the transient flux linkage vectors vs and vr develop in a time
sequence. Their locations are displayed immediately after
the exciting pulse occurs, and then after a quarter revolu-
tion, and again after half a revolution of the rotor. The
pertaining schematic field patterns on the right-hand side
illustrate how the transient magnetic energy distributes in
space.

The field patterns extend over one pole pair of the ma-
chine. The circumferential airgap had been opened out to
become linear and given an extended width for a better
demonstration of the important field distribution details in
the airgap space. The conductors of the polyphase windings
in the stator and the rotor can be imagined as layers of
infinite thickness being located along the boundaries be-
tween the active iron and the airgap.

It is particularly important to note that the spatial flux
distributions in Fig. 10(b), as well as those in the following
figures, have been simply drawn by hand using a computer
mouse. There was no numerical field computation program
used for this purpose. The information contained in the
respective field patterns is only that conveyed by the solu-
tion (13) of the system equations. The solution provides the
sinusoidal distributions along the boundaries to the active
iron on both sides of the airgap. These distributions are
completely described by the respective magnitudes and phase
angles of the transient components of the stator flux linkage
vector and the rotor flux linkage vector.

The spatial distributions in the airgap volume have been
subsequently completed by applying the fundamental rules
that hold for the behavior of magnetic fields in the neighbor-
hood of boundaries between different magnetic materials.
The validity of the obtained results, though, was confirmed
by numerical field computation.

Fig. 9: Root locus plot, complex state variables, stator coordinates;
the circles mark the eigenvalue locations at ω = 0.1.
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5.2 Transient response at low speed
Low speed operation is defined as w  < |1/Re{ l2(w  = 0)}|.

As an example, w  = 0.1 is selected in Fig. 10. At t1 = +0, a
defined amount of transient energy is injected through the
stator terminals by a complex unit pulse that is superim-
posed to the steady-state stator voltage vector. The transient
energy is stored in a magnetic field that links exclusively
with the stator winding, and hence is categorized as a leak-
age field. This field does not link with the rotor windings
since the initial transient rotor flux linkage is zero. Rotor
currents are instantaneously induced by the sudden appear-
ance of the transient stator flux linkage. They repel the flux
linkage from the rotor. Owing to the presence of such rotor
currents, the rotor resistance gets transformed to the equiva-
lent stator circuit and influences the effective transient time
constant.

The leakage field closes through the airgap, pervading the
large distance of about a pole pitch in the circumferential
direction. The high magnetic resistance of this particular
path makes the transient inductance of the stator winding
very low. Hence the transient time constant t 2'(ω = 0.1) = –
1/Re{ l2(ω = 0.1)} is small.

As time elapses, the initial situation changes very rapidly.
This is illustrated in the center portion of Fig. 10(b) at t2 =
50 ms. The rotor has just executed a quarter revolution at
this instant of time. The displacement angle w .t 2'(w = 0.1)
= –w /Re{ l2(w = 0.1)} marked on the right indicates that the
transient time constant t 2' has elapsed long before comple-
tion of the first quarter revolution. Hence the leakage field
through the airgap has faded away almost completely. The
resistive rotor voltage drop has assisted to build up a rotor
flux linkage. That flux component has reached by now al-
most the same magnitude as the transient flux linkage in the
stator. This is demonstrated by the space vector diagram on
the left of Fig. 10(b). The corresponding field pattern on the
right shows a strong mutual flux linkage. The airgap is
intersected almost at shortest distance, from which a high
winding inductance, and consequently a large time constant
results. The mutual field will therefore persist over a longer
period of time; it has not very much reduced after another
quarter revolution as illustrated in the lower portion of Fig.
10(b).

The propagation velocity w tr of the transient fields can be
numerically extracted from (13), which represent the dotted
trajectories of the flux linkage vectors in Fig. 10(a). Shortly
after their initialization, both flux linkage vectors displace
at the constant velocity w tr = w /2. This is confirmed by the
imaginary parts of the respective eigenvalues in Fig. 9. Both
equal the time-averaged value ω tr = Im{ l1(w )} = Im{ l2(w )}
= 0.5 w  = 0.05 as indicated by the dashed horizontal line in
Fig. 9. The real parts of the two eigenvalues equal the
inverse time constants which control the decay of the leak-
age flux linkage, and the mutual flux linkage, respectively.
The field distributions show that the stator field displaces in
a positive direction with respect to the stator, and the rotor
field in a negative direction with respect to the rotor. As
seen from the common stationary reference frame, both fields
displace in the time average at ω tr as expressed by the
imaginary components of their eigenvalues.

5.3 Transient response at medium speed
The conditions of transient field propagation change at

higher speed. The particular machine investigated here (the
data are given in the Appendix) obviously exhibits unique
operating conditions around ω = 0.5, a region where the two
branches of the root locus plot in Fig. 9 have their minimum
distance and maximum curvature. As a general rule for any
machine, this condition prevails at ω ≈ 1/Re{ l2(ω = 0)}.

The particular situation at ω = 0.5 is assessed from the
details in Fig. 11(b). Following the injection of transient
energy, the transient field again penetrates from the stator
into the rotor, but slower than in the previous case. This can
be demonstrated by the evaluation of (13). The fact is con-
firmed by the value Re{ l2}, the negative inverse of which is
the time constant of the transient leakage field, w .t 2'(w =
0.5) = –w /Re{ l2(w = 0.5)}. A visual inspection confirms
that the rotor flux linkage trajectory has a different shape
than the corresponding one in Fig. 10. The field pattern in
the center portion of Fig. 11 shows that, contrasting to the
situation in Fig. 10, a leakage flux still exists after a quarter
revolution. This is necessarily so, since the rotor has not yet
displaced to the angular position w .t 2'(w  = 0.5), which it
will only reach when the transient time constant t 2'(w  =
0.5) has elapsed.

A mutual flux linkage has meanwhile established. Since
the rotor moves faster than in the previous case, the mutual
airgap field develops a strong circumferential component.
At this higher speed the respective transient flux linkages
develop a tendency to adhere to their respective windings.
As a consequence, the mechanical displacement between the
stator and the rotor does not entail proportionate displace-
ments of the stator flux linkage relative to the stator, and of
the rotor flux linkage relative to the rotor. Hence the phase
angle between the pertinent space vectors must increase.

Although most of the mechanical displacement between
the stator and the rotor is compensated by respective dis-
placements of the stator flux linkage and the rotor flux
linkage, the phase angle between the pertinent space vectors
increases. The resulting elongation of the airgap flux lines
increases the magnetic resistance encountered by the mutual
flux. Hence the time constant of the mutual flux linkage
decreases. The flux patterns further reveal that the magnetic
resistances of the leakage flux linkage and the mutual flux
linkage are almost the same, a fact which is confirmed by
the real parts of their respective root loci at ω = 0.5, Fig. 12.

The velocity at which the transient magnetic fields dis-
place along the airgap is expressed by the angular velocity
of the flux linkage vectors. The respective values are ob-
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tained from a numerical simulation and plotted as time func-
tions in Fig. 12(a). The stator flux linkage velocity starts
from zero and increases in proportion as the rotor field
builds up in magnitude. Interestingly, the initial rotor field
velocity equals ω /2 although the rotor flux linkage is still
zero at t = 0, a fact that is difficult to confirm just from the
shape of the trajectories of the flux linkage vectors in Fig.
11. The velocities of these vectors settle after a short oscil-
lation to reach their respective steady-state values, Fig. 12(a).
The comparison with the root loci in Fig. 12(b) shows that
the steady-state velocity of the transient fields equals the
imaginary parts of the respective system eigenvalues:

      w tr1,2 1,2= Im l{ } (14)

 It can be again observed that the velocity of the transient
stator field with respect to the stator equals the velocity of
the transient rotor field with respect to the rotor. Other than
at lower speed (Section 5.2), the velocities of the transient
fields relative to their windings do not sum up to the me-
chanical speed of the rotor: there remains a gap between the
two curves in Fig. 12(a). Hence the airgap flux lines in Fig.
11(b) continue to elongate throughout the transient process.

Note that the particular shape of the initial oscillation in
the velocity curves in Fig. 12(a) is not related to a system
eigenvalue, a quite peculiar obervation.

The speed range aroung ω = 1/Re{ l2(ω = 0)} marks a
particular situation in which the mutual flux linkage has
effectively decayed before the displacement angle between
the stator and the rotor field has reached the extension of
one pole pitch. This situation will not be encountered at
higher speed.

5.4 Transient response at higher speed
A third case of interest is w > |1/Re{ l2(w = 0)}|. In this

upper speed range, the rotor completes more than a revolu-
tion before the leakage transients have died out. This is
reflected in the trajectory of the rotor flux linkage vector in
Fig. 13, which completes several circles in the complex
plane before its transient energy has dissipated. It is of
particular interest that the trajectory passes repeatedly through
the origin. This happens approximately every two revolu-
tions of the rotor. The mechanism behind is explained with
reference to Fig. 14, which illustrates the spatial propaga-
tion of the transient fields at w = 0.8 in a time sequence.

At that speed, the induced rotor flux linkage is quickly
carried away by the moving rotor winding, while the tran-
sient stator flux linkage remains almost stationary. Before
the transient time constant t2'(w = 0.8) elapses, the rotor
field has reached a position that is closer to the adjacent
stator pole than to the original pole from which it had been

induced. While the
magnetic field con-
tinues to penetrate
from the stator, it
gets displaced and
becomes eventual-
ly opposed in direc-
tion to the existing
rotor flux linkage.
The magnitude of
the rotor field there-
fore recedes, com-
ing down to zero at
t4 = 18 ms in the
example Fig. 4. The
existing field distri-
bution is then
equivalent to the
starting condition at
t1 = +0. Conse-
quently, the pene-
tration of the stator
flux linkage into the
rotor starts again,
although at reduced
magnitude since
some of the tran-
sient energy has

meanwhile been dissipated. Note that the rotor field, as seen
in a given area of the rotor surface, has now established in a
reversed direction as referred to its original polarity of mag-
netization.

The disappearance and reappearance of the rotor field is a
cyclic process which is illustrated by the diagram Fig. 15.
Initially, the angular velocity of the stator flux linkage in
Fig. 15(a) increases as the rotor flux magnitude increases; it
decreases again as soon as the rotor has displaced its flux
linkage to oppose the stator flux linkage in polarity. The
rotor field then reduces to a minimum value. The interaction
with the stator almost discontinues, leaving the stator flux
linkage nearly stationary. Effectively, the rotor field moves
periodically much faster than the rotor winding. This hap-
pens whenever the large peaks in the rotor velocity curve
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speed, ω = 0.8;  (a) time functions, (b) root loci
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occur, during which w tr >> w . The field pattern Fig. 14
shows indeed that the rotor field distribution at t = t3 (marked
A) reappears in a much more advanced location B at t = t5
when the field has build up again from zero.

During the following cycles, the velocity peaks reduce in
magnitude. The average velocity ω tr, however, remains con-
stant; it equals the imaginary part of the rotor eigenvalue
(14), which is is indicated by the appropriately scaled root
locus plot in Fig. 15(b). Also the average stator field veloci-
ty is constant; it equals the imaginary part of the other
eigenvalue.

Surprisingly, the frequency and the rate of decay of the
velocity oscillations are not correlated to a system eigenval-
ue; their oscillations persist for a much longer duration than
any of the machine eigenvalues would indicate.

The field patterns in Fig. 14 demonstrate that the magnet-
ic path of the transient leakage field is shorter at w = 0.8
than that at very low speed, Fig. 10(b). Hence the transient
time constant t2'(w = 0.8) can be expected to be larger. The
opposite is true for the mutual field component: this field
develops a strong circumferential component at w = 0.8,
Fig. 14, which increases the magnetic resistance as com-
pared with the low speed case. Accordingly, the correspond-
ing transient time constant t1'(w = 0.8) must be smaller than
at lower speed. The root locus plot Fig. 9 confirms that the
two transient time constants, expressed as the inverse real
parts of the corresponding eigenvalues, approach each other
as the speed increases, finally assuming almost the same
magnitudes at high speed.

5.5 The magnetic symmetry of the induction motor
It was demonstrated that the average velocity of the tran-

sient stator field relative to the stator equals the average
velocity of the transient rotor field relative to the rotor. The
fact suggests representing the two system eigenvalues in
their respective reference frames. For this purpose, the rotor
eigenvalue is transformed to rotor  coordinates: Im{ l2

(S)(w)}
= Im{ l2

(R)(w)} – w. Fig. 16 shows that the loci of these
eigenvalues assume symmetric positions around a center
point – (1/ts' + 1/tr')/2, [10].

Although apparently convenient, the association of a par-
ticular eigenvalue to either the stator or the rotor appears
questionable as it holds only for certain speed ranges. It is in
fact the leakage and the mutual transient field components,
their velocities of propagation, and their rates of decay, that
are reflected in two single complex roots. The state-of-the-

art dynamic analysis of revolving field machines fails to
provide such comprehensive insight.

6.  CONCLUSION

The dynamic analysis of ac machines is commonly based
on real state variables. Conjugate complex pairs of eigenval-
ues describe the dynamic response as time-dependent oscil-
lations. These determine the transient phase currents at the
machine terminals and the related scalar flux linkages.

Different from that, the dynamic process inside the ma-
chine is characterized by continuous distributions in space
of voltages, currents, and flux linkages. Their stringent rep-
resentation by complex state variables discloses a more com-
prehensive description of the transient phenomena. It char-
acterizes the electromagnetic subsystem of an ac machine
by two single complex eigenvalues excluding their conju-
gate correspondents. The eigenvalues provide information
on the velocities of the transient magnetic fields, and they
also reveal the velocity of the reference frame.

The solution of the complex system equations are simple
arithmentic expressions. Nevertheless, they provide every
detail of the spatial distributions of transient magnetic fields
in the active iron and in the airgap volume, equivalent to
what can be obtained by numerical field analysis.

It is a particular appeal of the approach that it explains
with unprecedented insight the physical significance of the
root loci and the relationship of their locations to the time-
varying spatial propagation of transient magnetic fields.

Acknowledgement: The author expresses his sincere thanks to
Prof. R. Belmans, University of Leuven, Belgium, for doing
the numerical field computations that are referred to in this
paper.

7.  APPENDIX

The investigated machine has the following data:
ls = 3.005,    rs = 0.0446,    lh = 2.89,    lr = 3.13,    rr = 0.054.
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