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CONCEPTS & SYNTHESIS
EMPHASIZING NEW IDEAS TO STIMULATE RESEARCH IN ECOLOGY
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Abstract. The use of structural equation modeling (SEM) is often motivated by its utility
for investigating complex networks of relationships, but also because of its promise as a means
of representing theoretical concepts using latent variables. In this paper, we discuss
characteristics of ecological theory and some of the challenges for proper specification of
theoretical ideas in structural equation models (SE models). In our presentation, we describe
some of the requirements for classical latent variable models in which observed variables
(indicators) are interpreted as the effects of underlying causes. We also describe alternative
model specifications in which indicators are interpreted as having causal influences on the
theoretical concepts. We suggest that this latter nonclassical specification (which involves
another variable type—the composite) will often be appropriate for ecological studies because
of the multifaceted nature of our theoretical concepts.
In this paper, we employ the use of meta-models to aid the translation of theory into SE

models and also to facilitate our ability to relate results back to our theories. We demonstrate
our approach by showing how a synthetic theory of grassland biodiversity can be evaluated
using SEM and data from a coastal grassland. In this example, the theory focuses on the
responses of species richness to abiotic stress and disturbance, both directly and through
intervening effects on community biomass. Models examined include both those based on
classical forms (where each concept is represented using a single latent variable) and also ones
in which the concepts are recognized to be multifaceted and modeled as such. To address the
challenge of matching SE models with the conceptual level of our theory, two approaches are
illustrated, compositing and aggregation. Both approaches are shown to have merits, with the
former being preferable for cases where the multiple facets of a concept have widely differing
effects in the system and the latter being preferable where facets act together consistently when
influencing other parts of the system. Because ecological theory characteristically deals with
concepts that are multifaceted, we expect the methods presented in this paper will be useful for
ecologists wishing to use SEM.

Key words: coastal wetland; composite variables; formative measurement; meta-models; multifaceted
concepts; reflective measurement; structural equation meta-models; structural equation modeling; theoretical
concepts; theoretical constructs.

INTRODUCTION

Ecological research, especially the study of communi-

ties and ecosystems, has been accused of lacking

sufficient cohesion to support robust generalizations.

As Lawton (1999) described the problem, ‘‘. . . ecological

patterns and the laws, rules and mechanisms that

underpin them are contingent on the organisms involved

and their environment. This contingency is manageable

at a relatively simple level of ecological organization [e.g.,

populations] and . . . in large sets of species [macro-

ecological studies], but overwhelmingly complicated at

intermediate scales characteristic of community ecolo-

gy.’’ Several authors (Simberloff 2004, Scheiner and
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Willig 2005, Kearney and Porter 2006,McGill et al. 2006)

have challenged Lawton’s conclusion and argued that the

continued study of communities and ecosystems is not

only scientifically valid, but essential to societal needs.

Underlying the discussion of how to study ecological

communities is the fundamental problem of extracting

generalizations when studying heterogeneous collections

of study objects. Communities and ecosystems represent

heterogeneous collections compared to many other fields

of endeavor (e.g., population ecology) because the units

of study vary from one to the next in both species

composition and environmental controls. Yet, commu-

nities and ecosystems have common properties of

general interest just as do other objects of study. The

solution to the problem of generalizing about commu-

nities and ecosystems, we believe, calls for suitable

methods and procedures (Scheiner and Willig 2005).

Recently, ecologists have become attracted to the

possibility that structural equation modeling (SEM) can

be used to address this challenge by providing a way to

link specific system attributes to general, theoretical

concepts through the use of latent variables. Structural

equation modeling (Bollen 1989, Kline 2005) is a

scientific methodology that aspires to make a strong

and explicit connection between empirical data and

theoretical ideas. While SEM has its roots in evolution-

ary genetics (from path analysis; Wright 1921), most

developments have occurred in the human sciences

within the disciplines of econometrics, psychometrics,

and sociometrics (Tomer 2003). There are a growing

number of efforts to adapt SEM to the study of biological

problems (Shipley 2000, Pugesek et al. 2003, Grace 2006),

including studies of natural selection (Scheiner et al.

2000), life history strategies (Vile et al. 2006), ecological

communities (Irwin 2006), genomics (Li et al. 2006), and

physiological integration (Tonsor and Scheiner 2007).

Reasons biologists might use SEM include: (1) it is

theory oriented, as opposed to null hypothesis oriented,

(2) its capacity to represent hypotheses about causal

networks, (3) its procedures for testing among competing

models, and (4) its value as a framework for interpretation

when there are large numbers of predictors and responses

with complex causal connections. An important part of

the appeal of SEM for ecologists and evolutionary

biologists is the claim that it can facilitate our ability to

relate data to theory by using latent variables to represent

theoretical entities. It is this aspect of SEM that we focus

on in this paper. In our presentation we consider con-

ventional structural equation modeling practice and

suggest the use of meta-models as aids for translating

theoretical ideas into structural equation models (SE

models). First, we give a brief synopsis of the structural

equation modeling workflow process to facilitate the

discussion that follows. Because of the significant amount

of terminology required to describe the issues in this

paper, we include a glossary (Table 1). When terms in the

glossary are first used in the text, they are italicized.

A BRIEF OVERVIEW OF STRUCTURAL EQUATION MODELING

Background

SEM is best understood as a scientific framework, not a

particular statistical technique. Here we are distinguish-

ing between statistical tools and how those tools are used

for building scientific knowledge from evidence (Scheiner

2004). SEM is concerned with developing and evaluating

models so as to extract scientific understanding about

systems. Numerous statistical techniques have been em-

ployed in SEM analyses. In the first generation of SEM,

estimation was conducted through the decomposition of

correlations (Wright 1934), while in the second genera-

tion, maximum likelihood procedures have predominat-

ed.More recently, Bayesian ideas andmethods have been

incorporated in structural equation models (e.g., Raftery

1993) and estimation using Markov Chain Monte Carlo

methods in combinationwith Bayes’ theorem is becoming

increasingly common (Scheines et al. 1999, Rupp et al.

2004, Arhonditsis et al. 2006, Lee 2007).

One thing that distinguishes SEM from most other

current approaches to data modeling is its emphasis on

estimating causal effects through the study of path

relations (for example, through the test of mediation).

Because of its focus on understanding direct and indirect

pathways, SEM is well suited for studying hypotheses

about multiple processes operating in systems, which is a

key reason biologists are becoming increasingly interest-

ed in SEM. SEM involves more than simply the

estimation of model parameters, however. It also fits

within a workflow process designed to advance our

scientific understanding (Fig. 1). In this process, theoret-

ical ideas are first translated into models for evaluation

(step 1), a process known in statistical circles as

specification. Formulated models must then be consid-

ered for their mathematical suitability (step 2), especially

for their identification (whether the structure of themodel

permits unique estimates for all parameters. Parameter

estimates (step 3) permit the creation of a model-implied

covariance matrix, which is used to evaluate model–data

consistency throughmodel testing. If it is determined that

alternative models need to be evaluated (step 4), the

process can continue (step 5), but we now judge that our

application of SEM is exploratory (until additional data

are available for testing revised models). Only when we

determine that ourmodel is acceptable (step 6), and to the

degree possible our best model, do we trust parameter

estimates, which feeds into the process of interpretation

for our specific situation (step 7). Generalization to some

broader population of hypothetical samples or cases can

be either formal (e.g., meta-analytic summaries or

multigroup comparisons) or informal (abstraction or

synthesis, step 8). In the process of generalization, we

involve additional information such as scientific context,

suspected contingencies, the limits of the data, and our

scientific objectives. Finally, the activity of generalization

informs the distillation of theoretical models and ideas
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TABLE 1. Terminology related to structural equation models and the extensions presented in this paper.

Term Definition

Aggregation of indicators A process whereby indicators can be combined so as to represent model components at a
higher level of abstraction.

Block A basic unit of model construction that involves indicators and either latent or composite
variables (Fig. 4).

Causal indicators Sometimes referred to as cause indicators. Observed variables that represent influences on a
latent variable. In the case of causal indicators, arrows in an SE model point from
indicators to latent variables. Composites are specified using causal indicators.

Composite variables A special type of latent variable that is completely specified by causal indicators. Composites
typically possess no estimate of measurement error; if they did, they would be referred to
as latent composites. The differences between composite and latent variables are detailed
in Fig. 4.

Construct Something constructed from the human mind, a concept, or an ideal object. Often refers to a
conceptualization that has been thoughtfully considered for its validity (see ‘‘validity’’).

Effect indicators Observed variables representing the effects (manifestations) of latent processes. Generally
arrows in a structural equation model point from latent variables to effect indicators.

Emergent variable system A collection of variables with some common properties, but with inconsistent relations to
other parts of a system.

Endogenous variables Variables with single-headed arrows pointing to them in a model.
Exogenous variables Variables without single-headed arrows pointing to them, but typically with single-headed

arrows pointing away from them.
Factor analytic From factor analysis, in which constructs are modeled using latent variables with multiple

effect indicators (Fig. 7A).
Formative measurement A situation where causal indicators are associated with a latent variable or composite.
Hybrid model Models that contain both factor-analytic and path elements (Fig. 4). In such models, we

refer to the structural model as the relationships among latent variables and the
measurement model as the relationship of indicators to latent variables.

Indicators Observed variables, i.e., ones for which we have measurements.
Latent variables Hypothesized variables for which we have no direct measurements.
Manifest variables Measured (observed) variables.
Measurement error The error associated with obtaining precise (repeatable) values for a variable. When a

variable is measured with error, it is often recognized in SEM that there exists a difference
between the latent, error-free variable we wished to measure and the observed (error-
contaminated) variable actually measured.

Measurement model The part of a structural equation model that relates the indicator to the latent or composite
variables.

Mediation A key feature of SEM is the test of mediation, which relates directly to the study of causal
relationships using path relations. In the test of mediation, we ask whether the effect of
one entity (X ) on another (Y ) can be explained by a third variable (Z ).

Model degrees of freedom In SE models, the model degrees of freedom come from having more known values (from
the covariance matrix of the data) than estimated values (required by the model). Models
in which all possible pathways are specified are saturated and possess 0 degrees of
freedom. Nonzero degrees of freedom permit the testing of model structure.

Model testing In SEM, model testing is principally directed toward the discovery of misspecification, or the
mismatch between model structure and data structure. When models fail to include
important pathways, they fail the test of absolute fit. When models contain unimportant
pathways, they are said to fail the test of parsimony. A key element of model building and
testing in SEM is that the addition or removal of pathways should be based on theoretical
justifications rather than as part of an automatic procedure.

Reflective measurement The situation where effect indicators are associated with a latent variable.
Reliability The degree to which indicators correlate with the true scores for a latent variable.
Second-order latent variable A latent variable whose indicators are other latent variables.
Second-order latent composite A latent variable whose latent indicators are causal/formative and for which error variance is

declared to be zero.
Sheaf coefficient The coefficient summarizing the effect of a composite on some response, usually associated

with an outgoing arrow from a composite.
Specification The process of converting a theory into a statistical model.
Structural equation meta-model
(SEMM)

A general-form model that represents processes among theoretical constructs, while omitting
statistical details.

Structural equation modeling
(SEM)

The process of developing and evaluating structural equation models.

Structural equation models
(SE models)

Statistical models containing or specifying multiple, causal pathways. SE models typically
specify all of the elements of the underlying equations.

Two-stage compositing process In the first stage of the development of models with composites, a partially reduced form of
the model is used for evaluating the significance of pathways contributing to the
composite. In the second stage, the combined effects of causal indicators are summarized
through the development of composites and the estimation of a sheaf coefficient. See
Grace and Bollen (2008) for details.

Validity The degree to which indicators accurately represent the theoretical meaning of a construct.
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(step 9), which then guides the specification of new

candidate models for subsequent study (step 1).

An illustration of the modeling process

Keeley et al. (2005) conducted a study of the postfire

response of California shrubland (chaparral and sage-

brush) communities that was further investigated by

Grace and Keeley (2006) using SEM. Here we use a

subset of the data from that study for illustrative

purposes (Fig. 2). (In figures and tables throughout the

paper, theoretical constructs and latent variables have

initial capitalization and observed variables are uncap-

italized.) Keeley et al. (2005) sought to understand

spatial heterogeneity in postfire vegetation recovery

following extensive wildfires that occurred in southern

California in 1993. Ninety study sites were established

across the burned region and 1000-m2 plots (one at each

site) were used to sample prefire conditions and postfire

responses. In this example, we consider three variables:

the maximum age of shrub stands that burned in the fire

(estimated from growth rings of remaining stem bases),

fire severity (based on postfire skeletal remains), and

plant cover in the year following the burn (measured as

percentage of ground surface).

Prior to multivariate examination of the data,

hypotheses were developed for evaluation using SEM.

FIG. 1. The workflow process associated with structural equation modeling (SEM). The SEM process is based on principles of
sequential learning and repeated testing of ideas and interpretations. Structural equation meta-models primarily aid step 1, though
they may also support steps 8 and 9.

FIG. 2. Example model used to illustrate the structural equation modeling process, extracted from a larger model presented by
Grace and Keeley (2006). This model evaluates the hypothesis that the reason older stands of shrubs have lower rates of post-fire
plant recovery is because they have more severe fires. Circles represent latent variables; boxes represent observed variables that
serve as indicators for the latent variables. In figures and tables throughout, theoretical constructs and latent variables have initial
capitalization, and observed variables are uncapitalized. A fixed quantity of error variance (0.273) is specified for the measure of fire
severity while the error variances for age and total cover are set to 0; d1 is the error term for exogenous variable 1, and e1 and e2 are
the error terms for endogenous variables 1 and 2. See A brief overview of structural equation modeling: An illustration of the modeling
process for an explanation of the variables.
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In this example, older shrub stands had lower plant

recovery after fire. The first and primary mechanism

hypothesized was that older stands would have pos-

sessed more fuel and thereby experienced more severe

fires. The more severe fires in older stands would

presumably cause more damage to perennial tissues

and higher mortality of seeds in the soil seedbanks

(Keeley 1991), leading to reduced plant recovery. Since

there were estimates of fire severity at each site, it is

possible to perform the test of mediation. If the

relationship between plant recovery and stand age was

caused by higher fire severity in older stands, covari-

ances among variables should be consistent with the

model in Fig. 2. This model implies a mathematical

equivalency between the covariance between stand age

and plant recovery and the product of the coefficients

for the two paths linking stand age to plant recover

(stand age affects fire severity and fire severity affects

plant recovery). A failure to observe that equivalency

(known as conditional independence) implies some other

process mediating the observed relationship between

stand age and plant recovery. The authors considered

several candidate mechanisms, including: (1) older

stands had depleted seed banks (because of seed

mortality over time) and (2) in older stands shrubs

resprouted more vigorously and those resprouts sup-

pressed the establishment of herbaceous plants.

We can deepen our consideration of SEM in this

example through the use of latent variables with single

indicators (Fig. 2). Fundamental tomodern SEMpractice,

it is recognized that measurement error contributes to bias

in path coefficients. In this case, the researchers had

previously conducted studies in which the repeatability of

fire severity measurements was evaluated. Based on this

information (and methods described in Grace and Keeley

2006), measurement reliability was used to specify the

error for fire index 1 in the model.

We estimated the model with data from Grace and

Keeley (2006) using maximum likelihood procedures in

conjunction with the software Mplus (version 4.21;

Muthén and Muthén 2008), which provides us with a

chi-square statistic that can be used to test the

hypothesis of model – data consistency. In this case,

we obtain a chi-square (v2) of 2.35 with 1 model degree

of freedom, which has an associated P value for

goodness of fit equal to 0.125. Using the standard

critical P value of 0.05 (below which we would declare a

significant deviation between observed and model-

implied covariances), we conclude that the model is a

sufficient approximation of the true model that we can

use the parameter estimates obtained for interpretation.

Further evaluations of the model showed that no

pathway could be dropped from the model without

resulting in significant deviations between model and

data. Because this example is included simply to

illustrate certain steps in the SEM process, model results

are not presented or discussed here (see Grace and

Keeley 2006 for more detail).

Relative to the SEM process outlined in Fig. 1, in this

example theoretical ideas were used to consider possible

models in advance of the estimation process. The initial

model was found to be adequate and further evaluations

showed it to be robust. The SEM workflow process

encourages and supports the conduct of subsequent

studies and Keeley et al. (2008) have further examined

relationships between stand age, fire severity, and plant

recovery. Building on the initial results from Grace and

Keeley (2006), Keeley et al. (2008) used data from

another set of fires in chaparral habitat to examine more

complex structural equation models that evaluated the

roles of stand age, stand architecture, and abiotic

conditions on fire severity and plant recovery. In that

study, they found an effect of stand age on plant

recovery independent of fire severity (i.e., a direct path

from stand age to plant recovery; Fig. 2). Collectively,

these results suggest that our theoretical model of fire in

these ecological systems should allow for additional

processes whereby stand age can influence post-fire plant

recovery. SEM philosophy also encourages subsequent

studies to investigate the causes behind direct paths by

measuring presumed linking factors and performing

tests of mediation, thereby strengthening our under-

standing of causal mechanisms.

Latent variables and theoretical constructs

Ecologists have a significant history of using path

models (e.g., Wootton 2002), though not with the

inclusion of latent variables. Such models are sometimes

referred to as econometric models (Bollen 1989:80) and

are of the form

y ¼ Cxþ Byþ f ð1Þ

where y is a vector of endogenous response variables, x a

vector of exogenous predictors, C and B are matrices of

coefficients, and f is a vector of errors for the equations.

The classic form of structural equation models is

described by the three fundamental equations of the

LISREL model (Bollen 1989:319–320):

x ¼ Kxnþ d ð2Þ

y ¼ Kygþ e ð3Þ

g ¼ Bgþ Cnþ f: ð4Þ

Here x and y are interpreted as vectors of observed

indicators of exogenous and endogenous latent vari-

ables, n and g are vectors containing the individual

exogenous and endogenous latent variables, Kx and Ky

are vectors of coefficients relating indicators to latent

variables, B and C are now coefficient matrices for

effects of endogenous and exogenous latent variables on

endogenous latent variables, d and e are vectors of

measurement errors for x and y, and f is a vector of

errors for the g variables. Essentially, the LISREL
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equations describe a framework in which causes are seen

to be latent and the observed variables are manifesta-

tions of latent processes.

The interpretation of a latent variable is one for which

we have no observed values or ‘‘sample realizations’’

(Bollen 2002). However, frequently much more is

implied by the term. A historical perspective can yield

some insight into the various ways latent variables are

discussed. The latent variable tradition in SEM stems

from early work by Spearman (1904) who proposed a

one-factor model of general intelligence for humans.

Spearman proposed that what was of interest was an

underlying ability that could only be measured indirect-

ly, with empirical measures of intelligence presumed to

be imperfect representations of the underlying causal

mechanisms. Sewell Wright, the originator of path

analysis and an evolutionary biologist, also used latent

variable models (Wright 1918) to examine hypotheses

about the genetic control of animal allometry. Following

from such work, the factor-analytic perspective arose

and has long held a central place within the SEM

tradition.

In contemporary SEM, latent variables are frequently

relied upon to represent theoretical constructs in models

(although there are actually several uses of latent

variables in models, see Bollen 2002). One of the leading

introductory textbooks on SEM (Kline 2005) describes

latent variables as allowing for the testing of hypotheses

‘‘. . . at a higher level of abstraction’’ and goes on to state

that latent variables serve as a means of representing

‘‘theoretical constructs’’. Raykov and Marcoulides

(2006) give that through the use of latent variables, SE

models are ‘‘. . . conceived in terms of not directly

measurable . . . theoretical or hypothetical constructs.’’

Other authors (MacCallum 1995, Schumacker and

Lomax 1996) provide similar descriptions. Because the

use of latent variables and associated concepts are not a

traditional part of biometric training, it is important

that ecologists and other natural scientists have addi-

tional background information before using latent

variables in SE models.

To fully understand the above statements, we need to

be clear about what is meant and implied by the use of

the term ‘‘construct.’’ Viswanathan (2005) defines a

construct as ‘‘. . . a concept specifically designed for

scientific study.’’ He goes on to say, ‘‘Constructs are

concepts devised or built to meet scientific specifications.

These specifications include precisely defining the

construct, elaborating on what it means, and relating it

to existing research.’’ Thus, the nuanced difference

between a concept and a construct is that the latter

has been rigorously defined for scientific purposes and

its treatment as a coherent entity with consistent

properties can be justified. There are many concepts in

ecology that meet these criteria; however, because of the

absence of an equivalent measurement tradition in the

biological sciences, there has been no formal consider-

ation of these distinctions.

When it comes to the details of specifying structural

equation models using latent variables, there has been a

substantial debate about a variety of issues in the human

sciences. As we discuss below, classical measurement

theory (Nunnally and Bernstein 1994: Chapter 6)

presumes that underlying constructs (or at least their

dimensions) can be represented using latent variables

and the measured indicators are to be viewed as effects

(or reflections) of the underlying latent causes. There are

cases, however, where the measured indicators actually

have causal influences on the construct (e.g., they form

the construct). Here, proper model specification can be

quite different from that defined by classical measure-

ment theory. When the wrong specification is used for a

situation, the misspecification can have profound effects

on model results and the validity of interpretations. A

number of studies have discussed this issue and shown

the need to routinely consider formative measurement

options in model specification (Bagozzi and Edwards

1998, Diamantopoulos and Winklhofer 2001, Edwards

2001, Jarvis et al. 2003, MacKenzie et al. 2005, Bagozzi

2007, Bollen 2007, Diamantopoulos et al. 2008). These

studies further suggest that SE models may be com-

monly misspecified because of the tendency to assume

that a classical (reflective) approach is the appropriate

way to proceed. The characteristics of the theoretical

concepts being modeled have a major influence on the

proper way to specify models related to those concepts.

For this reason, in the next section we will briefly

consider some of the distinctive characteristics of

theoretical concepts in ecology.

THE NATURE OF THEORETICAL CONCEPTS IN COMMUNITY

AND ECOSYSTEM ECOLOGY

The question of what constitutes a coherent theory in

ecology has received significant consideration (e.g.,

Pickett et al. 2007). Both Bollen (2002) from the social

sciences and Scheiner and Willig (2005) from the

ecological sciences offer similar descriptions of scientific

theories. In the words of Scheiner and Willig (2005), ‘‘A

unified theory is a conceptual structure consisting of a

few general propositions that characterize a wide

domain of phenomena and from which can be derived

an array of models.’’ Theories typically deal with

specified objects of study, their properties, and the

processes that cause relationships. In the social sciences,

the objects of study are typically individual human

beings or some level of their aggregation. There is a

strong parallel to population ecology here, with its focus

on a single species, its attributes, and behaviors. For the

study of ecological communities or ecosystems, which

include all the species and their abiotic conditions within

a defined area, the objects of study are characteristically

more diverse in the sense that they differ from each other

to a greater degree than in studies of a single species. To

use an analogy, in community and ecosystem ecology it

can be said that we seek to compare apples with oranges,

while in population ecology, we seek to compare apples
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with apples. In both cases, there is a degree of

heterogeneity that is ignored for the sake of generaliza-

tion. In the study of populations, the genetic, pheno-

typic, and historical differences among individuals are

often ignored for the sake of model simplicity and

generality. In the study of communities, the objects of

generalization characteristically differ from each other

to a greater degree. In both cases, however, objects have

common properties and theories are based on proposi-

tions about the mechanistic causes of the relationships

among those objects.

One thing that challenges the study of communities

and ecosystems is the degree of abstraction sometimes

associated with its theoretical concepts. Some concepts

are quite concrete, others less so. While we can readily

count the number of species in a community sample

(though with less than perfect reliability), often theoret-

ical interest focuses on a more general idea like

biodiversity, which encompasses not only the number

of species but other properties such as the variety of

functional groups, taxonomic lineages, and the equita-

bility of representation among members of the group.

Other theoretical concepts often discussed in ecology

include entities such as trophic levels, resources,

environmental stress, disturbance, productivity, stabili-

ty, and resilience. In the social sciences, multifaceted

concepts such as these are sometimes referred to as

emergent variable systems (DeVellis 2003, Kline 2006).

A further challenge to comparison and generalization

in ecology is that the metrics used to measure theoretical

constructs in different communities are not entirely

consistent. The inconsistency is driven, in part, by the

need to sample what is appropriate for each community

or ecosystem. Grassland communities, for example,

typically differ in species composition and life form

distributions. Even greater differences exist, for exam-

ple, when comparing grassland and shrubland commu-

nities. Such differences can have substantial implications

for our ability to compare these communities since

metrics are contingent on the non-overlapping elements

in the different samples. For example, functional groups

are defined by their constituent species, so that the

diversity of functional groups is dependent on the

species in each community. Contingency may be even

greater for the abiotic features that are important in

different locations.

To be more explicit, we might represent the effects of

environmental stress on community properties (for

example) as

Y HXþ f ð5Þ

where Y is a set of community properties, X is a set of

abiotic properties (e.g., soil properties for terrestrial

ecosystems or water quality properties for aquatic

ecosystems), H is a matrix of coefficients, and f is a set

of unspecified factors influencing Y. We use the

directional arrow instead of an equality sign in deference

to Pearl’s (2000) complaint about the causal ambiguity

of the mathematical equality sign. When Y is represent-

ed by a common metric y and X a common metric x

across all objects in a sample, we can describe an element

of H (b) that relates the per unit effect of x on y. The

statistical properties of this situation are well under-

stood. However, what do we do when we wish to

compare a case where the influential elements of Y are

x1, x2, and x3, to another case where the influential

elements of Y are x4, x5, and x6? Such a comparison is a

central challenge for the study of ecological systems

(Lawton 1999). The typical solution has been for

theories to be evaluated informally and verbally rather

than rigorously and quantitatively.

USING META-MODELS TO GUIDE SPECIFICATION

OF STRUCTURAL EQUATION MODELS

Meta-modeling is the process of establishing a general

framework for designing specific models. Meta-models,

in turn, are ones that serve the purpose of defining

general model features that can apply to a variety of

particular situations. Meta-modeling has been proposed

as a fundamental methodological necessity for dealing

with complex systems (Van Gigch 1991), though it has

seen limited usage as a formal process outside of

computer programming up to this point. We define

structural equation meta-models (SEMMs) as models

that represent general relationships among multiple

theoretical constructs while omitting statistical detail.

In essence, many conceptual models can be seen to serve

as meta-models, but with meta-modeling there is

intended a greater degree of formality. We argue in this

paper that meta-models can (1) help to organize

ecological theory in a form that is more clearly defined

and operational, (2) facilitate the proper specification of

structural equation models, (3) provide a framework for

drawing general interpretations from our analyses, and

(4) aid in making comparisons. In this section, we first

demonstrate the translation of a set of theoretical

propositions into a meta-model, and then give some of

the criteria that should be considered when deciding on

appropriate ways to specify SE models, and finally

present an application.

A structural equation meta-model

In 1999, Grace proposed a synthetic theory of

diversity regulation for grassland ecosystems. This

theory can be described in terms of the theoretical

definitions of the constructs (including any separate

dimensions) and a set of propositions about the

processes that connect constructs. In this case, we have

four constructs to define, all of which have been

discussed at length in the ecological literature. First,

we define abiotic stress as the environmental conditions

in a system that collectively limit biological productivity

below the potential physiological maximum of the

species mixture. At a general level, there are two major

dimensions associated with this definition, the edaphic

and the climatic. Individual elements may combine to
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cause abiotic stress, although a single element can

dominate. Second, a ‘‘disturbance’’ is an event that

causes abrupt damage or mortality resulting in a loss of

community biomass. There are numerous agents that

can cause disturbance, including fires, human activities,

grazing, storms, floods, and landslides. What all these

agents have in common is damage and mortality.

However, for each type of agent there can be unique

impacts not shared by the other types (e.g., grazers and

some human activities disturb the soil, while others, such

as fire and storms, typically do not). Numerous the-

oretical analyses have considered the potential effects of

disturbance on ecological communities. Third, commu-

nity biomass represents organic matter accumulated

through the generative actions of organisms. Related

constructs include: gross production, the rate of loss or

turnover of material, the rate of accumulation of

material, and the accumulation of dead organic matter.

There can also be dimensions to biomass, including

above- vs. belowground biomass and stems vs. leaves.

Finally, plant diversity refers to the variety of organism

in a place. It has three major dimensions, (1) the number

of species, (2) the degree of inequality of their rep-

resentations, and (3) the variety of functional attributes

they collectively contain.

Propositions about processes that connect constructs

include the following: (1) Disturbance results in a

reduction of community biomass through a direct loss

of material. (2) Disturbance can result in a loss of species

through selective extinction. (3) Abiotic stress inhibits

growth, which may lead to local reductions in commu-

nity biomass. (4) Abiotic stress affects species richness

through a filtering of the species pool whereby fewer and

fewer species can survive at increasing levels of stress. (5)

Community biomass and species richness respond

uniquely to abiotic stress because surviving species

(e.g., saltmarsh species) may actually be quite produc-

tive. (6) Species richness initially increases with increas-

ing community biomass but begins to decline at higher

levels because of competitive exclusion.

The above-described theoretical constructs and causal

processes involved in the synthetic theory of diversity

regulation can be translated into a structural equation

meta-model (Fig. 3). In this meta-model the dotted

boxes represent theoretical constructs, the directed

arrows represent dependencies, and in this example the

model form is static rather than dynamic. In this meta-

model, we make no attempt to specify exactly how

constructs will be represented in an SEM (with latent,

observed, or other kinds of variables), but only present

the general forms of the hypothesized dependencies. The

intent of the meta-model is to specify structure at the

level of abstraction consistent with theory. In this

example, the pathways among the constructs are given

labels to describe hypothesized causal processes. The

assignment of labels to pathways is not required (and

may be infeasible in some cases), though a description of

the theoretical meaning of all relationships in the model

should be made explicit (e.g., Anderson et al. 2007:

Table 1).

The meta-model in Fig. 3 indicates that abiotic stress

and the disturbance regime are expected to have direct

effects on diversity (i.e., direct pathways to diversity) as

well as indirect effects/pathways mediated through in-

fluences on community biomass. More detailed meta-

models could be developed that include, for example,

distinctions between resource and nonresource abiotic

factors and between community biomass and resource

depletion (see discussion in Grace 1999). The form of

this meta-model (Fig. 3) is intended to be consistent with

the original presentation of the example for which it will

be used (Grace and Pugesek 1997).

Some criteria for specifying structural equation models

Grace and Bollen (2006, 2008) describe some of the

criteria to be considered when deciding on model

specification. Fig. 4 provides a brief summary of some

FIG. 3. Initial structural equation meta-model representing major categories of influences on spatial variations in plant
diversity. For theoretical background, see Grace (1999). Round-edge boxes with dotted outlines represent theoretical constructs.
The meaning of the labels assigned to pathways is described in Using meta-models to guide specification of structural equation
models: A structural equation meta-model, along with the theoretical definitions of the constructs.
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important distinctions. We define a block as a basic unit

of model design (represented in the figure by the dashed
boxes). Three types of blocks are shown, each with

distinctive features and each appropriate for different

situations depending on the presumed characteristics of

the theoretical constructs and the properties of the set of

measured indicators (also known as manifest variables).

In the L-to-M block type, sometimes referred to as
reflective (Fig. 4A), causation is presumed to flow from

the latent cause to the manifest variables and the

indicators in such a block are often referred to as effect

indicators because they represent observed effects of the
unobserved cause. This contrasts with the M-to-L and

M-to-C block types (Fig. 4B, C) where the indicators are

causal indicators and sometimes described as formative.

Such a block structure is appropriate when the latent

process is caused or influenced by the indicators (an
extension of the above LISREL equations is needed to

accommodate the case of causal indicators.) In the M-

to-L block type, we have no measures of the latent

factor, but we presume its existence is not entirely
determined by the three causal indicators (x1–x3), thus

the existence of an additional error term f.
In the M-to-C block type, the collective influences of

x1–x3 determine the latent variable. Its error variance is

specified to be zero because the latent variable is

completely determined by the causal indicators. In this
case, the latent variable is a composite variable. There are

two kinds of composites, those for which the loadings

from causes have a priori fixed values (e.g., the

importance values used in vegetation studies) and those

for which the weights are contingent upon the situation.
The latter is the type of composite considered in this

paper. These composites are analogous to multiple

regression predictors in that the weights are derived

from a process that maximizes variance explanation in
one or more response variables that are influenced by

the composite (response variables are not shown in the

figure). More complex block structures are possible

(Kline 2006, Grace and Bollen 2008), including some

where the composites are formed from latent variables.

Models containing composites are typically unidenti-

fied and special procedures are needed to estimate these
models. Grace and Bollen (2008) describe a two-stage

compositing process based on the use of partially-

reduced form models that can overcome these problems

sufficiently to permit the solution of certain cases. First,

a composite is not identified unless it is embedded in a
larger model and has at least one effect on some

endogenous (response) variable. Since a composite has

its error variance set to zero, that parameter is not

problematic. However, as with latent variables, the scale

of the composite has to be set and this will typically
involve fixing the parameter of one of the causal

indicators to a value of 1.0, meaning the composite

has the scale of that indicator. This solution creates a

problem for the evaluation of the statistical significances

for the causal indicators, however, since not all of their
parameters are freely estimated. One approach to

evaluating the paths from causal indicators that have

fixed values is to use a partially-reduced form model in

which the composite is omitted and the direct paths

from causal indicators to response variables are
evaluated. After evaluation, the results can be used to

correctly specify the composites as necessary to repre-

sent the causal effects. This leaves only the problem of

what to do when there is more than one path flowing out

from a composite. The solution to this problem is
beyond our scope at the present time and the interested

reader is referred to Grace and Bollen (2008:207).

An example

In 1997, Grace and Pugesek conducted a study of a
coastal wetland landscape in which they collected data

on the relationships of plant diversity and community

biomass to variations in stress and disturbance (see Plate

1). One hundred and ninety field plots were studied and
indicators for these constructs were measured. The

measured indicators and their associations with con-

structs are shown in Fig. 5 and a summary of the data is

in Table 2. In this presentation, we wish to illustrate

what the model architectures would be if we assume

FIG. 4. Presentation of block types showing relationships between observed (manifest, M) variables x1–x3 and latent variables
(L) or composites (C). A composite variable is a direct product of some set of causes and is declared to have zero error variance
(from Grace and Bollen 2008). In the L!M block, the latent variable is exogenous to the observed variables and is designated as
such using the symbol n1. However, in the M ! L block, the latent variable is endogenous and designated with the symbol g1.
Being endogenous, the variable g1 possesses an error term f1. The symbols d1, d2, and d3 are the error terms for exogenous variables
1, 2, and 3.
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either that our theoretical constructs should be repre-

sented in the classical fashion by treating the indicators

as effects (Fig. 4A) or by treating the indicators as

causes (Fig. 4B, C).

In classical measurement theory, which derives largely

from the study of human personality characteristics, it

has generally been assumed that proper constructs are

unidimensional and appropriately represented by a

single latent variable with multiple reflective indicators

for each construct (Viswanathan 2005). Structural

equation models derived from this same tradition are

sometimes referred to as hybrid models (Kline 2005:74)

and for our example would take the form shown in Fig.

6. Since there are no direct arrows between observed

variables in this model, it is hypothesized in this case

that the complete set of covariances among observed

FIG. 5. Associations between measured variables or indicators (in rectangles) and theoretical constructs (in dotted outlines).
Note that the causal directions are not specified for relationships between indicators, and constructs are not specified. Variables
lighthi and lightlo are two measures of light penetration shown as possible indicators for the construct Community Biomass. Other
non-intuitive variables are defined in Table 2.

TABLE 2. Sample correlations and standard deviations for the variables used in the main example (data from Grace and Pugesek
[1997]).

Variable lightlog light� %dstb�
species
count masslog

soil
carbon�

soil
organic�

soil low
flooding�

soil high
flooding�

soil
salinity

lightlog 1.000
light 0.858 1.000
%dstb 0.667 0.776 1.000
species count �0.251 �0.404 �0.228 1.000
masslog �0.699 �0.794 �0.686 0.291 1.000
soil carbon 0.060 0.157 0.218 0.119 �0.096 1.000
soil organic 0.012 0.120 0.186 0.132 �0.071 0.973 1.000
soil low flooding 0.552 0.439 0.249 �0.374 �0.426 �0.170 �0.211 1.000
soil high flooding 0.547 0.462 0.290 �0.406 �0.466 �0.150 �0.188 0.959 1.000
soil salinity 0.327 0.321 0.216 �0.292 �0.138 0.249 0.244 0.073 0.052 1.000

Mean 2.85 0.28 2.78 6.95 6.74 1.03 2.32 3.90 3.50 2.62
SD 1.11 0.285 3.29 3.33 1.44 0.605 1.23 1.33 1.27 1.68

Notes: The variable lightlog is the natural log of the percentage of full sunlight reaching the ground surface; light refers to the
percentage of full sunlight reaching the ground surface; %dstb refers to the percentage of the area of a plot that had obvious signs of
disturbance; species count refers to the number of species in a plot; masslog refers to the natural log of the above-ground plant
biomass in a plot; soil carbon refers to the percentage of soil mass that is carbon; soil organic refers to the percentage of soil mass
that is organic; soil low flooding refers to the highest elevation in a plot, which is associated with the least level of flooding; soil high
flooding refers to the lowest elevation in a plot, which is associated with the greatest level of flooding; and soil salinity refers to the
estimated salinity in parts per thousand. The bottom two rows report the mean and standard deviation for each variable. In figures
and tables throughout the paper, theoretical constructs and latent variables have initial capitalization, and observed variables are
uncapitalized.

� These variables were divided by 10 before analysis.
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variables can be explained by the interactions among

four unmeasured entities as represented by the relation-

ships among the latent variables. If this model ade-

quately describes the processes that have generated the

data, the indicators in a block should be expected to be

reasonably well correlated with each other and the

strengths of intercorrelations should be roughly equal

among indicators. These expectations can be used to

allow the characteristics of the data to tell us whether

our data are consistent with our theoretical formulation.

In this case, if we attempt to solve the model in Fig. 6

using the data from Grace and Pugesek (1997) and some

appropriate software (in this case, Mplus; Muthén and

Muthén 2008), we are unable to obtain convergence to a

solution. This result (along with other diagnostics)

indicates that we have a model that is so misspecified

that we cannot obtain even approximate parameter

estimates. One way out of this dilemma would be

through model simplification. Following the historic

path analysis tradition, we could choose a subset of the

observed variables to build our model, with one variable

selected for each construct. While having many merits,

particularly parsimony, such an approach ignores much

in the SEM tradition that seeks to support causal

inference.

In order to develop an appropriate model for our

example, we need to consider both theoretical and

empirical criteria. We can accomplish this by consider-

ing several questions involving theoretical criteria: (1)

Do our constructs have multiple dimensions or facets? If

so, how do our measures relate to those dimensions? (2)

What do we believe to be the direction of causality? Do

the indicators derive from a common process or do they

combine to form our construct? (3) Are the indicators

within a single block interchangeable as if they are

replicate measures of the same thing? (4) Do we expect

the indicators to necessarily covary? If one indicator was

to go up would we expect the other indicators to also go

up? Alternatively, do we believe that different indicators

in a block are controlled by different processes and not

necessarily measures of the same thing?

With regard to empirical considerations, we ask two

additional kinds of questions: (5) How strongly and

consistently correlated are the indicators in a block? (6)

Are there known measurement errors, and if so, do we

have any estimates of the reliability of our measures?

Collectively, these questions provide guidance for the

specification of models. In the following section, we use

these questions selectively to consider how the structural

equation meta-model (Fig. 3) and associated indicators

FIG. 6. Example of a structural equation model based on classical measurement theory (which is sometimes known as a hybrid
model). Here each theoretical construct is represented by a single latent variable (circle), and all measured variables (rectangles) are
represented as effect indicators. Error variables are represented by either d (for exogenous variables), e (for endogenous variables),
or f (for endogenous latent variables).
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(Fig. 5) can be translated into an appropriate structural

equation model. We do not claim that the model

developed is the ‘‘true’’ model, only one for which we

have considered many possible architectures and select-

ed one after careful consideration.

Specification of an appropriate structural equation model

Our theoretical description of diversity stated that it

consists of multiple dimensions: specifically species

richness, life form richness, and evenness. Grace and

Pugesek (1997) focused on the richness dimension and

we follow suit for simplicity. In this case, a single

indicator (a count of the number of species in each plot)

measures the dimension species richness. One question

we must consider is whether we have a valid measure of

species richness. Based on a very substantial literature

on this subject, we conclude that a count of the species is

consistent with the theoretical meaning of species

richness. Another issue to consider is the question of

the reliability (precision) of our measure. Since reliabil-

ity is a scale-free metric, our primary concern here is

with the degree to which our measure correlates with the

true values. Undoubtedly there will be some discrepan-

cies among repeated attempts to measure the number of

species in plots, which is one way we could estimate

reliability. Data from multiple censuses (J. B. Grace,

unpublished data) indicates that for the community

sampled in this study, reliability for these data is

approximately 92%. Based on the information available,

it would seem appropriate to model the species richness

dimension of the construct plant diversity using a latent

variable having a single indicator of specified reliability

(Fig. 7).

For community biomass, the measures available

include an estimate of the maximum standing crop of

biomass, plus measures of the degree of shading created

by that biomass (in units of percent of full sun reaching

the ground surface). There has been some discussion

FIG. 7. The initial structural equation model for the main example. In this model, theoretical constructs are shown using
dashed, round-edged boxes with the variables used to represent those constructs inside. Single-indicator latent variable blocks were
used to represent Richness, Biomass, Disturbance, and Salinity. Flooding and Infertility were each represented using two effect
indicators. The Resource Depletion construct was represented using a polynomial regression structure where the model effect of
light on richness was of the form y¼xþ log xþ e, where y is the response, x the predictor, and e refers to error. Loadings that were
fixed to a value of 1.0 or �1.0 to set the scale for latent or composite variables are shown in the figure. Error variables are
represented by either d (for exogenous variables), e (for endogenous variables), or f (for endogenous latent variables). For more
information on this model, refer to Using meta-models to guide specification of structural equation models: Specification of an
appropriate structural equation model.
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about the validity of different measures of community

biomass for understanding patterns of diversity (Grace

1999). Again, our minimal requirement for a sufficient

measure is one that correlates well with the causal

variable, an assumption we believe is reasonable for

maximum standing crop when studying grasslands

(although there are communities for which this assump-

tion would not be reasonable). However, as Grace and

Pugesek (1997) concluded, it may be most appropriate

to consider the amount of light reaching the ground as a

measure of resource depletion rather than community

biomass. Based on this reasoning, it would seem

appropriate to deviate from our original meta-model

to recognize resource depletion as an additional

construct in this case. For the construct community

biomass we are left with one indicator, standing

biomass. Similarly, the construct resource depletion

has a single indicator, light penetration.

Both theory and experience tell us that the relation-

ships among biomass, light, and species richness are not

necessarily linear and may be unimodal (Grime 1973,

Mittelbach et al. 2001, Scheiner and Willig 2005). It is

beyond our purpose here to discuss the intricacies of

modeling nonlinear pathways (see Stolzenberg 1980,

Wall and Amemiya 2000), though it is necessary to

describe the structure of the model specification

employed in this example. Our examination of relation-

ships in the data, plus our experience in modeling similar

situations, led us to represent community biomass using

a single-indicator latent variable (correcting for imper-

fect reliability as described in Grace and Pugesek 1997).

Logarithmic transformation of the indicator for biomass

was observed to improve the linearity of its relations

with other variables in the model to an acceptable

degree. Light, however, required a polynomial regres-

sion specification to model its unimodal relationship

with richness (Fig. 7). To keep our model as simple as

possible for our purposes, only observed variables were

used for representing light (i.e., we assume perfect

measurement). Consistent with the philosophy of

polynomial regression (Heise 1972), two terms (light

and its natural logarithm) were included in the model.

To capture the combined effects for the two terms in the

polynomial relationship, light and its log were treated as

causal indicators for a composite variable named the

light effect. The result is that the relationship between

light and richness is modeled as a second-order

polynomial relationship summarized by the path from

light effect to richness.

For disturbance, our theoretical definition describes

both common and unique aspects associated with

different disturbances, with the common aspect being

the removal or destruction of community biomass. For

this construct we identified three causes of disturbance

(animal activity, scouring, and debris deposits), all of

which create bare ground. Several lines of thought

suggest that these measures are causal indicators instead

of effect indicators. First, we do not conceptualize

disturbance as a single latent entity, but in this case,

something formed from the combined effects of animals,

waves, and debris. Second, we would not expect the

three indicators to be positively correlated with each

other because there is no causal process driving their

simultaneous variation. Nor are these indicators well

PLATE 1. Aerial infrared view of a portion of the Pearl River, Louisiana, USA, coastal wetland landscape. Photo credit: U.S.
Geological Survey.
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correlated (data not shown) as would be expected for a

set of effect indicators. These lines of evidence suggest

the indicators for disturbance are better treated as causal

rather than as effects of a common process. In this case,

since all three are measured in the same units, bare

ground, we used total bare ground from all sources as

our single measure of disturbance (Fig. 7). An approx-

imate reliability estimate of 90% was used to specify

measurement error for our indicator.

The construct referred to as abiotic stress has the most

indicators in this example and they can be sorted among

three dimensions of abiotic stress: (1) salinity stress, (2)

flooding stress, and (3) infertility. (Note that in this

example we distinguish soil infertility from resource

depletion, the latter of which results from competitive

uptake of resources by other organisms.) Consistent

with the treatment in Grace and Pugesek (1997), each of

the three dimensions can be represented using a latent

variable (Fig. 7). For salinity stress, there exists a single

indicator. Multiple measures within plots were taken

during data collection and the information from those

provides an estimate of reliability (92%) that can be used

to specify measurement error. For flooding stress, both

maximal and minimal flooding depths were measured in

each sample plot and these can be used as multiple

indicators for flooding stress. In this case, the consis-

tency between multiple measures provides the estimation

of reliability as an integral part of the structural

equation model and specification of error quantities is

not required. For infertility, soil organic matter esti-

mates can serve as multiple indicators of the quantity of

total nutrients in the soil, which would be expected to be

low in sandy soil deposits having low organic content

and high in peat-rich soils. The indicators available, the

percentage of the soil that is organic and the percentage

of the soil that is carbon, represent two different

analytical approaches to estimating the same thing. It

seems appropriate that these two indicators be viewed as

effects since they are expected to be comparable under

nearly all circumstances, and, in fact, are observed to be

highly correlated (r ¼ 0.97). Note that these indicators

are inversely related to infertility in that soils with low

values of soil organic are infertile (thus, the loading in

the model relating soil organic to infertility is set to �1
to reverse code the relationship).

SEM results

Estimation of the model shown in Fig. 7 resulted in

fairly poor model–data fit (v2 ¼ 69.98, df ¼ 21, P ,

0.001). Examination of residuals revealed that there

were effects of disturbance and salinity on light. Also,

chi-square tests confirmed that two of the originally

specified paths (from salinity and infertility to commu-

nity biomass) could be omitted from the model. The

modified model (Fig. 8) was found to have adequate fit

(v2 ¼ 31.75, df ¼ 21, P ¼ 0.062; RMSEA ¼ 0.052 with

probability of a close fit¼ 0.43). Consistent with Grace

and Pugesek (1997), the added effects of salinity and

disturbance on light can be interpreted as morphological

responses by the plants to those conditions. A summary

of the numerical results from the analysis of the model

shown in Fig. 7 are presented in Table 3. Readers

interested in the detailed findings for this system can

refer to Grace and Pugesek (1997).

MODELING MULTIFACETED CONSTRUCTS

AT A MORE GENERAL LEVEL OF ABSTRACTION

In the previous section, we demonstrated how a meta-

model can facilitate the translation of theoretical

knowledge into SE models. The model we developed

for this example included latent variables with multiple

indicators for some of the dimensions of abiotic stress.

While such latent variable specification permits a degree

of generalization, our SE model (Fig. 8) is a rather

specific instantiation of the theory embodied in our

meta-model (Fig. 3). For example, in our meta-model we

express theoretical interest in abiotic stress but in our SE

model, we treat the individual dimensions (salinity,

flooding, and infertility) as separate entities. The

question remains, therefore, as to how we might examine

the overall effects of abiotic stress on community

production, resource depletion, and species richness.

Bagozzi and Edwards (1998) refer to this as the problem

of representing constructs at the appropriate ‘‘depth’’ of

generality. There are two main approaches we might use

to scale up our analysis so that we can match our SE

model better with our meta-model, one involves second-

order latent composites and the other involves the

aggregation of indicators.

Modeling with second-order latent composites

A second-order latent variable is one whose indicators

are other latent variables. Second order latent variables

are typically used to represent multifaceted constructs.

In our case, we are interested in whether we can use a

second-order latent variable to represent abiotic stress,

which we have shown to be multidimensional. Before

specifying a second-order latent variable, we must first

ask whether our dimensions of stress (salinity, flooding,

and infertility) are reflective of a higher order factor or

whether the dimensions work together formatively to

cause the total stress effect. A simple diagnostic we could

use in that decision is to ask whether we think salinity,

flooding, and soil infertility would necessarily vary

together. Salinity is determined primarily by distance

from the ocean while flooding is determined by

variations in elevation. Thus, these are not reflective of

a common process and will not be consistently

correlated with each other. We might expect that soil

organic matter could covary with flooding and salinity,

but we would still think that its contribution to stress is

causal instead of reflective. Collectively, this evidence

argues in favor of interpreting the dimensions of abiotic

stress to be causes of stress that work in combination.

Fig. 9 illustrates the model structure we get if we

specify a second-order latent variable representing the
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combined causal influences of all three stress dimensions

on species richness (the species filter). Because our

second-order latent (named Species Filter to represent

the process we believe it captures) has a zero error

variance and is entirely formed from its indicators, we

classify it as a latent construct (Grace and Bollen 2008).

In this case, since only the flooding dimension of abiotic

stress affects biomass and only the salinity dimension

affects light, there is no need to represent their effects

using second-order latent variables. We conclude,

therefore, that the architecture shown in Fig. 9 is

appropriate for this situation (a more complete exposi-

tion of this result is given in the Appendix). Select results

for this model are given in Table 4.

The statistical results obtained for the model in Fig. 9

are the same as for the model without the second-order

latent variable except that the path from salinity to

species filter is constrained to a fixed value of 1.0 (for

identification purposes) and now we have an estimate

for the path from species filter to richness (unstandard-

ized value¼�0.655 with a standard error of 0.128 and a

P value of ,0.001). In essence, the model shown in Fig.

8 is a partially reduced form version of the model in Fig.

9, which explains why the results are so similar (Grace

and Bollen 2008).

Aggregation of indicators

Bagozzi and Heatherton (1994) and Bagozzi and

Edwards (1998) have described another approach that

can be used to model multifaceted constructs. When

working with multifaceted constructs, there exists a

hierarchy of conceptual levels that may be of interest

(e.g., the level of the dimension, the ‘‘facet’’ level, vs. the

level of the construct, the ‘‘global’’ level). One way to

represent models at different levels of generality or

conceptual depth involves the aggregation of indicators.

A full discussion of the criteria by which one would

decide on the appropriate level of aggregation is beyond

our purpose here (see Bagozzi and Edwards 1998);

however, we can illustrate the aggregation approach for

our example by considering a model in which we

aggregate salinity, flooding, and infertility into a single

index so as to represent their collective effects (Fig. 10).

FIG. 8. Revised model based on estimation results for the model in Fig. 7. Diagnostics indicated that additional effects of
Salinity and Disturbance on light were necessary and appropriate. Paths from Salinity and Infertility to Biomass were not required
and were removed from the model. Model v2¼ 29.58, df¼ 19, P¼ 0.057; RMSEA¼ 0.054 with probability of a close fit¼ 0.39).
Error variables are represented by either d (for exogenous variables), e (for endogenous variables), or f (for endogenous latent
variables).
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The process of aggregation is relatively straightfor-

ward and typically involves summing or averaging

indicator scores. In our case, this involves two stages.

If we examine Fig. 8, we recall that we have two in-

dicators for flooding and two for infertility. Aggregation

at the dimension level would involve combining the

information from the individual indicators for a

dimension into a single indicator. For flooding, our

two indicators are in the same units, so averaging their

values gives us an indicator of average flooding depth.

For infertility, our indicators are not in the same units.

We could convert organic to carbon using literature

values, but in this case we relativized both indicators (as

proportion of their maximum values) and then averaged

them. For the second stage of aggregation, the

remaining indicators were relativized and then all were

summed into a single index of total stress. For this

index, the indicator for infertility was assigned negative

values since high levels of stress are associated with low

levels of organic. Following this process of aggregation,

we were able to produce a model in which stress is

represented by a single latent variable having one

indicator, an index of stress with each dimension

weighted equally. For this example, we considered the

measurement error for this combined index to be small

and set the error variance to zero.

As Bagozzi and Heatherton (1994) point out, aggre-

gation across dimensions for multifaceted constructs can

produce indices that fail to capture the combined

influences of the construct if the multiple facets of a

construct have different effects elsewhere in the system.

Despite this, the conceptual simplicity achieved with an

overall index of stress might still make aggregated

models useful if the loss of information is not too great.

Results for the aggregated model (Fig. 10) are presented

in Table 5 and can be compared to those for the

nonaggregated model in Table 4 to evaluate the effects

of aggregation. R2 values for endogenous variables in

nonaggregated (and aggregated) models were as follows:

Richness, 0.43 (0.41); light, 0.82 (0.80); and Biomass,

0.67 (0.60). While we provide no formal test results here,

we can see that the results for richness and light were

similar for the two models, while for biomass, there was

a modest loss of variance explanation associated with

the aggregated model. Examination of path coefficients

(Tables 4 and 5) shows that the standardized effects of

stress in the aggregated model are modestly but

consistently lower than in the nonaggregated model.

At the same time, coefficients for some of the other

pathways also differ between models, though in an

inconsistent way.

The choice between using a model based on compos-

iting (Fig. 9) vs. aggregation (Fig. 10) is somewhat

complex. On the one hand, total aggregation for abiotic

stress yields a simpler model that fits the data more

closely and provides a single index for abiotic stress. On

the other hand, there is a loss of information from

aggregation of dimensions in a multifaceted construct,

as well as some distortion of the relative effects in the

model. We do not wish to condemn or endorse either

TABLE 3. SEM results for the model in Fig. 8.

Pathway Estimate SE Critical ratio P

Species Richness  Light Effect �9.024 1.288 �7.005 ,0.001
Species Richness  Infertility �0.602 0.164 �3.670 ,0.001
Species Richness  Flooding �1.032 0.181 �5.696 ,0.001
Species Richness  Salinity �0.655 0.128 �5.120 ,0.001
light  Biomass �0.133 0.014 �9.446 ,0.001
light  Salinity 0.029 0.006 4.544 ,0.001
light  Disturbance 0.025 0.006 4.449 ,0.001
Biomass  Flooding �0.348 0.056 �6.180 ,0.001
Biomass  Disturbance �0.272 0.023 �11.911 ,0.001
Light Effect  light 1.000 NA NA NA
Light Effect  lightlog �0.243 0.024 �10.116 ,0.001
species count  Species Richness 1.0 NA NA NA
masslog  Biomass 1.0 NA NA NA
%dstb  Disturbance 1.0 NA NA NA
soil carbon  Infertility �0.480 0.008 �57.56 ,0.001
soil organic  Infertility �1.0 NA NA NA
soil high flooding  Flooding 1.000 0.001 .100 ,0.001
soil low flooding  Flooding 1.000 NA NA NA
soil salinity  Salinity 1.0 NA NA NA
Flooding $ Infertility 0.291 0.115 2.533 0.01
Salinity $ Flooding 0.119 0.154 0.770 .0.05
Flooding $ Disturbance 1.200 0.313 3.833 ,0.001
Salinity $ Infertility �0.505 0.154 �3.281 ,0.001
Infertility $ Disturbance �0.767 0.298 �2.576 ,0.05
Salinity $ Disturbance 1.178 0.407 2.892 ,0.01

Notes: Model v2 was 31.75, df¼ 21, P¼ 0.062. The root mean square error of approximation
(RMSEA) was 0.052 with probability of a close fit¼0.43. R2 values: species richness, 0.43; light,
0.82; Biomass, 0.67. Arrows indicate direction of causation. ‘‘NA’’ indicates nonapplicable
values associated with ‘‘fixed’’ parameters.

JAMES B. GRACE ET AL.82 Ecological Monographs
Vol. 80, No. 1

C
O
N
C
E
P
T
S
&
S
Y
N
T
H
E
S
I
S



approach here since our purpose is to illustrate different

ways of modeling multifaceted constructs. Further, we

can combine both approaches by using compositing to

set the weights for aggregated indices, improving their

specificity. Both approaches can be useful for general-

ization, with the former being preferable for cases where

the multiple facets in a construct have widely differing

effects in the system and the latter being preferable

where they do not. Also, both models can be derived

from our meta-model, and both can serve to inform our

theory.

RELATING SEM RESULTS BACK TO THE META-MODEL

Qualitative comparisons

There are at least two levels of precision by which we

can relate our SEM findings back to our meta-model.

The first is qualitative. If we consider how our results

compare to our initial meta-model (Fig. 3), they suggest

a revised meta-model (Fig. 11). First, making a narrow

distinction between community biomass itself and its

effects on resource depletion was important, as the

indicators for these two concepts were not interchange-

TABLE 4. Coefficients for key paths in Fig. 9.

Pathway Unstandardized estimates Standardized estimates

Species Richness  Species Filter �0.655 �0.58
Species Richness  Light Effect �9.024 �0.42
light  Salinity 0.029 0.17
light  Disturbance 0.025 0.28
light  Biomass �0.133 �0.62
Biomass  Disturbance �0.272 �0.66
Biomass  Flooding �0.348 �0.33

Notes: Estimated R2 values for endogenous variables: Richness, 0.43; light, 0.82; Biomass,
0.67. Model v2 ¼ 31.75, df ¼ 21, P ¼ 0.062. Arrows indicate direction of causation.

FIG. 9. Modification of the model in Fig. 8 with an added second-order latent composite (Species Filter) that represents the
collective effects of the three dimensions of Abiotic Stress (Salinity, Flooding, and Infertility) on Richness. The model in Fig. 8
serves as the partially reduced form of this model. Reference to results for the partially reduced form model (Table 3) permits the
pathways contributing to the composite Species Filter to be tested for significance.
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able (a criterion for multiple indicators of a latent fac-

tor). Second, our results raise questions about whether

we would expect to find a direct effect of disturbance on

species richness in future studies. We might expect that

selective extinction effects (our interpretation of this

pathway) could occur in certain circumstances, so we

should continue to anticipate them, but they do not

appear to be a constant feature. Third, we found

evidence for effects of abiotic stress and disturbance

on plant morphology that altered the biomass-light

relationship. In both disturbed and stressful habitats,

plants tended to have a more upright morphology and to

permit more light penetration per unit biomass than in

undisturbed, less stressed locations. Such effects ap-

peared to be rather prominent suggesting that morpho-

logical responses (which could be of various sorts in

different situations) should be built into our theoretical

expectations. These inferences are unaffected by whether

we use results from a compositing approach vs. an

aggregation of indicators.

Semi-quantitative comparisons

A second level of precision by which we might relate

our SEM findings back to our meta-model is semi-

quantitative. Scientists are commonly interested in the

relative importances of different processes and ecologists

might ask, for example, ‘‘What are the relative impor-

tances of different processes controlling species richness

in my system?’’ To consider how we might use our

numerical results to compare different pathways in our

model, we need to mention the basic issue of coefficient

interpretation.

FIG. 10. Model in which an aggregated index of abiotic stress is used to represent that construct. See Modeling multifaceted
constructs at a more general level of abstraction: Aggregation of indicators for a description of the procedures used for aggregation.

TABLE 5. Coefficients for key paths in Fig. 10.

Pathway Unstandardized estimates Standardized estimates

Species Richness  Stress �4.751 �0.53
Species Richness  Light Effect �9.495 �0.43
light  Stress 0.111 0.14
light  Disturbance 0.032 0.37
light  Biomass �0.113 �0.53
Biomass  Disturbance �0.298 �0.72
Biomass  Stress �0.724 �0.20

Notes: Estimated R2 values for endogenous variables: Richness, 0.41; light, 0.80; Biomass,
0.60. Model v2¼ 0.578, df ¼ 2, P¼ 0.749. Arrows indicate direction of causation.
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Grace and Bollen (2005) discuss several issues related

to the interpretation of path coefficients in regression

and structural equation models. In this paper, we have

the additional matter of interpreting coefficients relating

composites (light effect and species filter) to richness. To

briefly describe the challenges (see Pedhazur [1997] for

a deeper consideration), unstandardized coefficients

(which are in raw units, e.g., species lost per unit salinity

increase) are the fundamental product of most SEM

analyses. The challenge is to compare effects of different

factors on common or different responses using these

disparate scales. Standardized coefficients, which are the

typical devices used by subject matter specialists for

comparing pathways, are most often calculated by

multiplying the unstandardized parameter values by

the ratio of the standard deviations of the variables on

either end of a path (e.g., SDx/SDy). There are a number

of cautions, however, for using standardized coefficients.

Path coefficients in structural equation models are

best thought of as prediction coefficients. We can

express this notion through a hypothetical question,

‘‘If we vary a predictor by some amount while holding

constant all other variables except the response variable

of interest, how much would it respond?’’ For unstan-

dardized coefficients, interpretations are fairly straight-

forward. For standardized coefficients, there are some

challenges to interpretation. First, standard deviations

are not constant units; they can differ for any given

variable from sample to sample. Second, the use of

standard deviations depends on the assumption of a

normal distribution. For these reasons, some statisti-

cians do not recommend the use of standardized

coefficients for interpretations, particularly when com-

paring among samples or studies. Sewell Wright (1960)

and John Tukey (1954) debated this point and there are

still divided opinions. Simply put, standardized coeffi-

cients are handy for certain kinds of comparisons, but

have a less precise meaning than unstandardized

coefficients.

Grace and Bollen (2005) have proposed an alternative

standardization procedure, the ‘‘relevant range stan-

dardization.’’ For each parameter in a model, investiga-

tors specify a range of variation over which the observed

relationship is expected to hold. Unstandardized coef-

ficients are then multiplied by the ratio of the ranges

instead of the ratio of the standard deviations for each

path. These range-standardized coefficients predict

changes in terms of proportions of the ranges of

variation, which is conceptually related to standardizing

by standard deviations, but anchored to a more

considered choice of scale. While not a perfect solution

to the problem of comparing path coefficients, this

alternative procedure can clarify the meaning of the

values used and reduce some sources of error. When

variable distributions are approximately normal, sample

sizes are large, and the observed ranges are the ones that

are relevant, conventional standardized coefficients are

comparable to range-standardized values and both can

be interpreted in similar fashion.

Coefficients involving composites deserve additional

explanation. When standardized, these coefficients can

be interpreted as the predicted range responses that

could be maximally caused by the collective effects of the

elements making up the composite. These values,

understood in this way, are analogous to the other path

coefficients described. For the coefficient relating

richness to light effect, we have an estimate of the

standardized relationship between what can be thought

of as a multiple regression predictor (the composite

variable light effect) and the variable it is constructed to

predict (species richness). What is different is that

richness is first increasing and then decreasing across

the range of light levels. We cannot think of the

FIG. 11. Revised meta-model based on the results of the SEM analyses. An additional construct, Resource Depletion, has been
added to better delineate the theoretical distinction between the biomass in the community sample and the shading it produces. This
change in the revised model reflects the originally unanticipated effects of both Abiotic Stress and Disturbance on Resource
Depletion through effects on plant morphology. Plus and minus signs refer to positive and negative effects.
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coefficient in this case as expressing the variation in

richness across a range of values for light, only across a

range of values for the multiple regression predictor (see

Stolzenberg [1980] for further discussion of this topic).

As Kline (2005:122) describes, the interpretation of

standardized path coefficients is imprecise and best

thought of as semi-quantitative. It is possible to use

either bootstrapping or Markov chain Monte Carlo

methods to estimate standard errors for standardized

path coefficients. However, direct statistical compari-

sons would have to be made with great caution because

the units are not strictly comparable. Relating results

from our SEM analyses back to our theory, and

therefore the meta-model, will tend to be somewhat

imprecise and subjective to a degree. However, both the

use of composites and aggregation can potentially aid

such comparisons by allowing us to summarize our

results at higher levels of abstraction possible with

simple latent variables.

CONCLUSIONS

Generalizing about ecological systems is challenging.

Part of the challenge comes from the characteristics of

the theoretical concepts themselves. SEM can be a

substantial asset for the study of ecological systems, but

care is required for proper model specification. Non-

classical specifications involving causal indicators and

composites, as well as methods such as aggregation, will

often be both appropriate and necessary to represent the

general ecological ideas that unify the study of

communities and ecosystems. Such alternative specifica-

tions can also facilitate our ability to relate the results

from SEM analyses back to the level of abstraction in

our theories. Meta-models can help with both of these

enterprises. Meta-modeling may also prove to be an aid

to comparisons among systems and generalization by

providing a formal framework that helps to bridge the

gap between ecological theory and ecological data.
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APPENDIX

Further exposition on modeling with a second-order composite (Ecological Archives M080-002-A1).
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