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Abstract

We consider random graphs such that each edge is determined by an
independent random variable, where the probability of each edge is not
assumed to be equal. We use a Chernoff inequality for matrices to show
that the eigenvalues of the adjacency matrix and the normalized Laplacian
of such a random graph can be approximated by those of the weighted
expectation graph, with error bounds dependent upon the minimum and
maximum expected degrees. In particular, we use these results to bound
the spectra of random graphs with given expected degree sequences, in-
cluding random power law graphs.

1 Introduction

The spectra of random matrices and random graphs have been extensively stud-
ied in the literature (see, for example, [3], [4], [6], [8], [13]). We here focus on
matrices with entries as independent random variables. Throughout, we will
consider G to be a random graph, where pr(vi ∼ vj) = pij , and each edge
independent of each other edge.

For random graphs with such general distributions, we derive several bounds
for the spectrum of the corresponding adjacency matrix and (normalized) Lapla-
cian matrix (complete definitions and notation are in section 2). Eigenvalues of
the adjacency matrix have many applications in graph theory, such as describing
certain topological features of a graph, such as connectivity and enumerating the
occurrences of subgraphs [6], [13]. Eigenvalues of the Laplacian matrix provide
information about diffusion, and have many applications in studying random
walks on graphs and approximation algorithms [6].

∗Research supported in part by ONR MURI N000140810747, and AFOR’s complex net-
works program.
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Before we proceed to examine eigenvalues of random graphs with given ex-
pected degree sequences and random power law graphs, we will first prove the
following two general theorems. Previously, Oliveira [18] considered the same
problem of approximating the spectra of the adjacency matrix and the Lapla-
cian of random graphs. The following two theorems improve the results in [18]
since the assumptions in our theorems are weaker. In addition, we improve
the bound for the eigenvalues of the adjacency matrix by a factor of 2, and we
improve those for the Laplacian by a factor of 7/

√
3.

Theorem 1. Let G be a random graph, where pr(vi ∼ vj) = pij, and each
edge is independent of each other edge. Let A be the adjacency matrix of G,
so Aij = 1 if vi ∼ vj and 0 otherwise, and Ā = E(A), so Āij = pij. Let ∆
denote the maximum expected degree of G. Let ε > 0, and suppose that for n
sufficiently large, ∆ > 4

9 ln(2n/ε). Then with probability at least 1 − ε, for n
sufficiently large, the eigenvalues of A and Ā satisfy

|λi(A)− λi(Ā)| ≤
√

4∆ ln(2n/ε)

for all 1 ≤ i ≤ n.

Theorem 2. Let G be a random graph, where pr(vi ∼ vj) = pij, and each
edge is independent of each other edge. Let A be the adjacency matrix of G,
as in Theorem 1. Let D be the diagonal matrix with Dii = deg(vi), and D̄ =
E(D). Let δ be the minimum expected degree of G, and L = I −D−1/2AD−1/2
the (normalized) Laplacian matrix for G. Choose ε > 0. Then there exists a
constant k = k(ε) such that if δ > k lnn, then with probability at least 1− ε, the
eigenvalues of L and L̄ satisfy

|λj(L)− λj(L̄)| ≤ 3

√
3 ln(4n/ε)

δ

for all 1 ≤ j ≤ n, where L̄ = I − D̄−1/2ĀD̄−1/2.

Here ln denotes the natural logarithm. We note that in these two theorems,
the bound is simultaneously true for all eigenvalues with probability at least
1− ε.

As an example, we apply these results to the G(w) model, first introduced in
[7], which produces a random graph with a specified expected degree sequence
w = (w1, w2, . . . , wn). The spectrum of the adjacency matrix of this model has
been studied in [9]. In that paper, it is proven that if m = wmax is the maximum
expected degree, then

d̃−
√

2m2ρ lnn ≤ λmax(A) ≤ d̃+

√
6
√
m lnn(d̃+ lnn) + 3

√
m lnn, (1)

where ρ = (
∑
wi)
−1, and d̃ =

∑
w2
i∑

wi
is the second-order average degree. Using

Theorem 1, we prove the following:
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Theorem 3. For the random graph G(w), if the maximum expected degree m
satisfies m > 8

9 ln(
√

2n), then with probability at least 1 − 1/n = 1 − o(1), we
have

• The largest eigenvalue, λmax(A), of the adjacency matrix of G(w) satisfies

d̃−
√

8m ln(
√

2n) ≤ λmax(A) ≤ d̃+

√
8m ln(

√
2n)

• For all eigenvalues λi(A) < λmax(A), we have

|λi(A)| ≤
√

8m ln(
√

2n)

In particular, if d̃�
√
m lnn, then λ1(A) = (1 + o(1))d̃ a.a.s..

While the asymptotics in Theorem 3 for λ1(A) are the same as those in (1),
the bounds in Theorem 3 are a significant improvement upon these. Moreover,
[9] does not provide bounds for λi(A) for i > 1 other than in the case that√
mi � d̃ ln2 n.

For the Laplacian spectrum of G(w), the best known bound for λk(L) >
λmin(L) = 0 is given in [10]. If we take w̄ to be the average expected degree,
and g(n) a function going to ∞ with n arbitrarily slowly, the result in [10] is
that, for wmin � ln2 n,

max
k
|1− λk(L)| ≤ (1 + o(1))

4√
w̄

+
g(n) ln2 n

wmin
.

We not only improve upon this bound in Theorem 4, but we extend to the case
that wmin � lnn, rather than ln2 n.

Theorem 4. For the random graph G(w), if the minimum expected degree wmin
satisfies wmin � lnn, then with probability at least 1− 1/n = 1− o(1), we have
that for all eigenvalues λk(L) > λmin(L) of the Laplacian of G(w),

|λk(L)− 1| ≤ 3

√
6 ln(2n)

wmin
= o(1).

Using the G(w) model, we can also build random power law graphs in the
following way. Given a power law exponent β, maximum degree m, and average

degree d, we take wi = ci−
1

β−1 for each i with i0 ≤ i < n + i0. The values

of c and i0 depend upon β, m and d, in particular, c = β−2
β−1dn

1
β−1 and i0 =

n
(
d(β−2)
m(β−1)

)β−1
. One can easily verify that the number of vertices of degree k is

proportional to k−β (see [8], [9]). In section 4, we show how Theorems 3 and 4
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can be applied in this setting to provide bounds on the spectra of random power
law graphs. The remainder of this paper is organized as follows: In section 2, we
develop notation and key tools to prove Theorems 1 and 2. Section 3 is devoted
to the proofs of these two main theorems. Section 4 contains the details of the
proofs of Theorems 3 and 4, applications of these theorems to random power
law graphs, as well as a discussion of our main results as applied to Gn,p.

2 Key Tools

As to notation, throughout the paper, given an n×n Hermitian matrix A, ‖A‖
denotes the spectral norm, so ‖A‖ = max |λ|, where the maximum is over all
eigenvalues λ of A. We order the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Given two
matrices A and B, we say A � B if B − A is positive semidefinite. We refer
to this ordering as the semidefinite order. If A is a random n × n matrix, we
write E(A) to denote the coordinate-wise expectation of A, so E(A)ij = E(Aij).
Similarly, var(A) = E((A− E(A))2).

We shall use several applications of functions to matrices. In general, if
f is a function with Taylor expansion f(x) =

∑∞
n=0 anx

n, we take f(A) =∑∞
n=0 anA

n. We note that notions of convergence are as in [16]. In particular,
we will often use the matrix exponential, exp(A) =

∑∞
n=0

1
n!A

n. We note that
exp(A) is always positive definite when A is Hermitian, and that exp(A) con-
verges for all choices of A. Moreover, we shall require brief use of the matrix
logarithm. In general, if B = exp(A), we say that A is a logarithm of B. As
our matrices will be Hermitian, it is sufficient for uniqueness of this function to
require that the logarithm also be Hermitian. Any notation not mentioned here
pertaining to matrices is as in [16].

Given a graph G, we will use A to denote the adjacency matrix for G,
so Aij = 1 if vi ∼ vj and 0 otherwise. We use D to denote the diagonal
matrix with Dii = degG(vi). If G is a random graph, then Ā denotes the
expectation of A, and D̄ the expectation of D. The Laplacian of G is denoted
by L = I −D−1/2AD−1/2, and L̄ = I − D̄−1/2ĀD̄−1/2 is the Laplacian matrix
for the weighted graph whose adjacency matrix is Ā. All other notation referring
to graph properties is as in [6].

We shall require the following concentration inequality in order to prove our
main theorems. Previously, various matrix concentration inequalities have been
derived by many authors including Ahlswede-Winter [2], Cristofides-Markström
[12], Oliveira [18], Gross [15], Recht [19], and Tropp [20]. Here we give a short
proof for a simple version that is particularly suitable for random graphs.

Theorem 5. Let X1, X2, . . . , Xm be independent random n×n Hermitian ma-
trices. Moreover, assume that ‖Xi − E(Xi)‖ ≤ M for all i, and put v2 =
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‖
∑

var(Xi)‖. Let X =
∑
Xi. Then for any a > 0,

pr(‖X − E(X)‖ > a) ≤ 2n exp

(
− a2

2v2 + 2Ma/3

)
.

For the proof, we will rely on the following results:

Lemma 1 (see, for example, [20]). Let f, g : R → R, and suppose there is a
subset S ⊆ R with f(a) ≤ g(a) for all a ∈ S. If A is a Hermitian matrix with
all eigenvalues contained in S, then f(A) � g(A).

Lemma 2 ([17]). Given a fixed Hermitian matrix A, the function X 7→ Tr(exp(A+
logX)) is concave on the set of positive definite X.

We note that any real-valued function that is convex with respect to the
semidefinite order admits an operator Jensen’s inequality (see, for example,
[19]). That is to say, if f is convex with respect to the semidefinite order,
then for a random matrix X, f(E(X)) ≤ E(f(X)). Given a fixed matrix A
and a random Hermitian matrix X, we may apply the function in Lemma 2 to
eX . By then applying the operator Jensen’s inequality as stated, we obtain the
following:

Lemma 3. If A is a fixed matrix and X is a random Hermitian matrix, then

E(Tr(exp(A+X))) ≤ Tr(exp[A+ log(E[expX])]). (2)

We shall use this result to overcome the difficulties presented by working
with the semidefinite order, as opposed to real numbers. The primary problem
that must be overcome is that unlike real numbers, the semidefinite order does
not respect products.

Proof of Theorem 5. We assume for the sake of the proof that E(Xk) = 0 for
all k. Clearly this yields the general case by simply replacing each Xk by
Xk − E(Xk).

Let g(x) = 2
x2 (ex − x− 1) = 2

∑∞
k=2

xk−2

k! . Notice that g is increasing, so in
particular, if x ≤ M , g(x) ≤ g(M). Given θ > 0, we have that ‖θXk‖ ≤ θM ,
and thus g(θXk) � g(θM)I by Lemma 1. Therefore,

E(eθXk) = E(I + θXk +
1

2
θ2X2

kg(θXk)) (3)

� I +
1

2
g(θM)θ2E(X2

k) (4)

� e
1
2 g(θM)θ2E(X2

k). (5)
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We use this to prove the following claim:

Claim 1: For matrices Xk as given,

E

[
Tr(exp

(
m∑
k=1

θXk

)
)

]
≤ Tr(exp

(
m∑
k=1

1

2
g(θM)θ2E(X2

k)

)
)

Proof of Claim 1: For a given k, let Ek(·) := E(·|X1, X2, . . . , Xk). Then we
have

E

[
Tr(exp

(
m∑
k=1

θXk

)
)

]
= EE1E2 . . .Em−1

[
Tr(exp

(
m−1∑
k=1

θXk + θXm

)
)

]

As the Xi are independent, each Xk is fixed with respect to Em−1 except Xm,
and Em−1(expXm) = E(expXm). Applying inequality (2) from Lemma 3, we
have

EE1E2 . . .Em−1

[
Tr(exp

(
m−1∑
k=1

θXk + θXm

)
)

]
≤

EE1E2 . . .Em−2

[
Tr(exp

(
m−1∑
k=1

θXk + log E(exp(θXm))

)
)

]
.

Iteratively applying this process, we obtain

E

[
Tr(exp

(
m∑
k=1

θXk

)
)

]
≤ Tr(exp

(
m∑
k=1

log E(exp θXm)

)
).

As both log(·) and Tr(exp(·)) are monotone with respect to the semidefinite
order (these facts can be easily proven with basic manipulations), inequality (5)
implies that

E

[
Tr(exp

(
m∑
k=1

θXk

)
)

]
≤ Tr(exp

(
m∑
k=1

log e
1
2 g(θM)θ2E(X2

k)

)
)

≤ Tr(exp

(
m∑
k=1

1

2
g(θM)θ2E(X2

k)

)
),

as desired.
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Now, given a > 0, for all θ > 0 we have

pr(λmax(X) ≥ a) ≤ e−θaE(exp(θλmax(X)))

≤ e−θaE(Tr(exp(θX)))

= e−θaE
[
Tr(exp

(∑
θXk

)
)
]

≤ e−θaTr(exp

(∑ 1

2
g(θM)θ2E(X2

k)

)
)

≤ e−θanλmax(exp

(
1

2
g(θM)θ2

∑
E(X2

k)

)
)

≤ n exp

(
−θa+

1

2
g(θM)θ2v2

)

Notice that if x < 3, we have g(x) = 2
∑∞
k=2

xk−2

k! ≤
∑∞
k=2

xk−2

3k−2 = 1
1−x/3 .

Take θ = a
v2+Ma/3 . Clearly, θM ≤ 3, and thus we have

pr(λmax(X) ≥ a) ≤ n exp

(
−θa+

1

2
g(θM)θ2v2

)
= n exp

(
− a2

2v2 + 2Ma/3

)

Therefore, pr(‖X‖ ≥ a) ≤ 2n exp
(
− a2

2v2+2Ma/3

)

3 Proofs of the Main Theorems

In this section, we provide proofs of the two main theorems using Theorem 5.

Proof of Theorem 1. Let G be a random graph as described in the statement of
the theorem, where the edge vivj appears with probability pij .

Given 1 ≤ i, j ≤ n, let Aij be the matrix with a 1 in the ij and ji positions
and a 0 everywhere else. Let hij = 1 with probability pij and 0 otherwise. Take
Xij = hijA

ij , so A =
∑
Xij . Thus, we can apply Theorem 5 to A with M = 1.

We need first to calculate v2.

Now, if i 6= j, then

var(Xij) = E((hij − pij)2(Aij)2)

= var(hij)(A
ii +Ajj)

= pij(1− pij)(Aii +Ajj)
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Similarly, var(Xii) = pii(1− pii)Aii. Therefore,

‖
∑

var(Xij)‖ =

∥∥∥∥∥∥
n∑
i=1

 n∑
j=1

pij(1− pij)

Aii

∥∥∥∥∥∥
= max

i=1,...,n

n∑
j=1

pij(1− pij)

≤ max
i=1,...,n

n∑
j=1

pij = ∆.

Take a =
√

4∆ ln(2n/ε). By the assumption on ∆, we have a < 3∆, and
thus we obtain

pr(‖A− Ā‖ > a) ≤ 2n exp

(
− a2

2v2 + 2Ma/3

)
≤ 2n exp

(
−4∆ ln(2n/ε)

4∆
)

)
= ε.

To complete the proof, we recall Weyl’s Theorem (see, for example, [16]),
which states that for Hermitian matrices M and N , max

k
|λk(M) − λk(N)| ≤

‖M −N‖. Thus, with probability at least 1− ε, we have that for all 1 ≤ i ≤ n,
|λi(A)− λi(Ā)| <

√
4∆ ln(2n/ε).

Proof of Theorem 2. We will again use Weyl’s Theorem, as in the proof of The-
orem 1, so we need only bound ‖L−L̄‖. For each vertex vi, put di = deg(vi) and
ti = E(di), the expected degree of the ith vertex. Let C = I − D̄−1/2AD̄−1/2.
Then ‖L− L̄‖ ≤ ‖C − L̄‖+ ‖L− C‖. We consider each term separately.

Now, C − L̄ = D̄−1/2(A − Ā)D̄−1/2. Using notation as in the proof of
Theorem 1, let

Yij = D̄−1/2((hij − pij)Aij)D̄−1/2

=
hij − pij√

titj
Aij

Then C − L̄ =
∑
Yij , so we can apply Theorem 5 to bound ‖C − L̄‖. Notice

‖Yij‖ ≤ (titj)
−1/2 ≤ 1

δ . Moreover,

E(Y 2
ij) =

{
1
titj

(pij − p2ij)(Aii +Ajj) i 6= j
1
t2i

(pii − p2ii)Aii i = j
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Thus, we obtain

v2 =
∥∥∥∑E(Y 2

ij)
∥∥∥ =

∥∥∥∥∥∥
n∑
i=1

n∑
j=1

1

titj
(pij − p2ij)Aii

∥∥∥∥∥∥
= max

i=1,...,n

 n∑
j=1

1

titj
pij −

n∑
j=1

1

titj
p2ij


≤ max

i=1,...,n

1

δ

n∑
j=1

pij
ti

 =
1

δ

Take a =
√

3 ln(4n/ε)
δ . Take k to be large enough so that δ > k lnn implies

a < 1 (in particular, choosing k > 3(1+ln(ε/4)) is sufficient). Applying Theorem
5, we have

pr(‖C − L̄‖ > a) ≤ 2n exp

(
−

3 ln(4n/ε)
δ

2/δ + 2a/(3δ)

)

≤ 2n exp

(
−3 ln(4n/ε)

3

)
≤ ε/2

For the second term, note that by the Chernoff bound (see, for example, [1]),
for each i,

pr(|di − ti| > bti) ≤
ε

2n
if b ≥

√
ln(4n/ε)

ti

Take b =
√

ln(4n/ε)
δ , so that for all i, we have pr(|di − ti| > bti) ≤ ε

2n . Then

we obtain

‖D̄−1/2D1/2 − I‖ = max
i=1,...,n

∣∣∣∣∣
√
di
ti
− 1

∣∣∣∣∣ .
Note that for 0 < x < 1, we have |

√
x−1| ≤ |x−1|. Taking x = di

ti
> 0, we have

that with probability at least 1 − ε
2 , this is at most b =

√
ln(4n/ε)

δ = 1√
3
a < 1

for all i. Thus we obtain

‖D̄−1/2D1/2 − I‖ = max
i=1,...,n

∣∣∣∣∣
√
di
ti
− 1

∣∣∣∣∣ ≤
√

ln(4n/ε)

δ

with probability at least 1− ε
2 .
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We note that as the Laplacian spectrum is in [0, 2], we have ‖I − L‖ ≤ 1.
Therefore, with probability at least 1− ε

2 , we have

‖L− C‖ = ‖I −D−1/2AD−1/2 − I + D̄−1/2AD̄−1/2‖
= ‖D−1/2AD−1/2 − D̄−1/2D1/2D−1/2AD−1/2D1/2D̄−1/2‖
= ‖(I − L)− (D̄−1/2D1/2)(I − L)(D1/2D̄−1/2)‖
= ‖(D̄−1/2D1/2 − I)(I − L)D1/2D̄−1/2 + (I − L)(I −D1/2D̄−1/2)‖
≤ ‖D̄−1/2D1/2 − I‖‖D1/2D̄−1/2‖+ ‖I −D1/2D̄−1/2‖
≤ b(b+ 1) + b = b2 + 2b

Finally, as b = 1√
3
a and a < 1, we have that with probability at least 1− ε,

‖L− L̄‖ ≤ ‖C − L̄‖+ ‖L− C‖

≤ a+
1

3
a2 +

2a√
3
≤ 3a,

completing the proof.

4 Applications to Several Graph Models

The above theorems apply in a very general random graph setting. Here we
discuss the applications of Theorems 1 and 2 for the Erdös-Rényi graph and for
the G(w) model, as discussed in section 1 above. We begin by examining the
Erdös-Rényi graph.

The Erdös-Rényi graph is a well studied random graph (see, for example,
[1], [5]) where pij = p for i 6= j and 0 for i = j for some p ∈ (0, 1). We denote
this graph by Gn,p. If J represents the n × n matrix with a 1 in every entry,
then for Gn,p, Ā = p(J − I) and D̄ = (n − 1)pI. An application of Theorem 1
yields

Theorem 6. For Gn,p, if p > 8
9n ln (

√
2n), then with probability at least 1 −

1/n = 1− o(1), we have

|λi(A)− λi(p(J − I))| ≤
√

8np ln (
√

2n).

We note that stronger results for the spectrum of the adjacency matrix of
Gn,p can be found in [21], [14]. Specifically, in [14], it is shown that for pn ≥
c lnn, λ1(A) = pn+O(

√
pn), and all other eigenvalues satisfy |λi(A)| = O(

√
pn).

Here, we are at best able to show that |λi(A) − λi(p(J − I))| ≤ O(pn). The
spectrum of p(J − I) is {p(n − 1),−p}, where −p has multiplicity n − 1, so
if i > 1, we have only that λi(A) = O(pn). However, due to the very strong
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symmetries in Gn,p, it seems unlikely that the methods used to investigate this
graph in detail will extend to general random graphs.

For the Laplacian of Gn,p, we obtain L̄ = I − 1
n−1 (J − I). An application of

Theorem 2 yields

Theorem 7. If pn� lnn, then with probability at least 1− 1/n = 1− o(1), we
have

|λk(L)− λk(I − 1

n− 1
(J − I))| ≤ 3

√
6 ln(2n)

pn
= o(1)

for all 1 ≤ k ≤ n.

The spectrum of I − 1
n−1 (J − I) is { 1

n−1 , 1 + 1
n−1}, where 1 + 1

n−1 has
multiplicity n − 1. Thus, we see that if pn � lnn, then w.h.p. L has all
eigenvalues other than λmin(L) close to 1. This result is not new (see [10], [11]),
and [11] also considers the case where pn ≤ lnn.

We now turn to the G(w) model. We begin by precisely defining the model.
Given a sequence w = (w1, w2, . . . , wn), we define the random graph G(w) to
have vertex set {v1, . . . , vn}, and edges are independently assigned to each pair
(vi, vj) with probability wiwjρ, where ρ = 1∑

wi
. In this way, the expected

degree of vi is wi for each i. Moreover, the matrix Ā with Āij = pr(vi ∼ vj)
is given by Ā = ρw′w, and as such has eigenvalues ρ

∑
w2
i and 0, where 0

has multiplicity n − 1. Let d̃ denote the expected second order average degree

of G(w), so d̃ =
∑
w2
i∑

wi
= ρ

∑
w2
i . Applying Theorem 1 with ε = 1/n, we

immediately obtain Theorem 3.

Similarly, we can apply Theorem 2 to obtain concentration results for the
spectrum of the Laplacian matrix for G(w). Notice that the value of k given in
Theorem 1 will here be k(ε) = k(1/n) > 3(1 + ln(1/(4n))), so the requirement
in Theorem 4 that wmin � lnn is sufficient to give that for n sufficiently large,
wmin > k lnn. This theorem improves on the bounds for the eigenvalues of the
Laplacian given in [10], as seen in section 1 above.

Let x = (w
1/2
1 , w

1/2
2 , . . . , w

1/2
n ). Then we have

(D̄−1/2ĀD̄−1/2)ij =
ρwiwj√
wiwj

= ρ
√
wiwj ,

so L̄ = I−ρx′x. Thus, the eigenvalues of L̄ are 0 and 1, where 1 has multiplicity
n− 1. Applying Theorem 2 with ε = 1/n, we obtain Theorem 4.

Recall, as described in section 1, we can use the G(w) model to build random
power law graphs. Given a power law exponent β, maximum degree m, and

average degree d, we take wi = ci−
1

β−1 for each i with i0 ≤ i < n + i0, with

c = β−2
β−1dn

1
β−1 and i0 = n

(
d(β−2)
m(β−1)

)β−1
. We obtain the following bounds for d̃

(see [9]):
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d̃ =


d (β−2)2
(β−1)(β−3) (1 + o(1)) if β > 3

1
2d ln 2m

d (1 + o(1)) if β = 3

d (β−2)2
(β−1)(3−β)

(
m(β−1)
d(β−2)

)3−β
(1 + o(1)) if 2 < β < 3

(6)

In [10], bounds are given for the largest eigenvalue of the adjacency matrix
of a random power law graph as described. In particular, the authors show that
for a random power law graph as above with adjacency matrix A,

1. If β ≥ 3 and m > d2 log3+ε n, then a.a.s. λ1(A) = (1 + o(1))
√
m.

2. If 2.5 < β < 3 and m > d
β−2
β−2.5 ln

3
β−2.5 n, then a.a.s. λ1(A) = (1+o(1))

√
m.

3. If 2 < β < 2.5 and m > ln
3

2.5−β n, then a.a.s. λ1(A) = (1 + o(1))d̃.

We note that these theorems require specific relationships between m and d,
as noted. Applying Theorem 3 to a random power law graph, we can eliminate
such requirements, although the bounds are less clean:

Theorem 8. Suppose G(w) is a random power law graph as described above.
If m > 8

9 ln(
√

2n) then with probability 1− o(1), we have

• If β > 3, then∣∣∣∣λ1(A)− d (β − 2)2

(β − 1)(β − 3)
(1 + o(1))

∣∣∣∣ ≤√8m ln(
√

2n)

• If β = 3, then∣∣∣∣λ1(A)− 1

2
d ln

2m

d
(1 + o(1))

∣∣∣∣ ≤√8m ln(
√

2n)

• If 2 < β < 3, then∣∣∣∣∣λ1(A)− d (β − 2)2

(β − 1)(3− β)

(
m(β − 1)

d(β − 2)

)3−β

(1 + o(1))

∣∣∣∣∣ ≤
√

8m ln(
√

2n)

From these bounds, one might be able to derive specific relationships between
m and d that lead to particular values for λ1(A).

Finally, we can apply Theorem 4 to the random power law graph model
described here to obtain bounds on the Laplacian spectrum:

Theorem 9. Suppose G(w) is a random power law graph as described above.

If wmin = ci
− 1
β−1

0 = mn
β

1−β � lnn, then with probability 1− o(1), we have that
for λk(L) > λmin(L),

|λk(L)− 1| ≤ 3

√
6 ln(2n)

mn
β

1−β
= o(1).
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