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Abstract. We consider small random perturbations of expanding and piecewise
expanding maps and prove the robustness of their invariant densities and rates of
mixing. We do this by proving the robustness of the spectra of their Perron-Frobenius
operators.

Introduction

Let f:M — M be a dynamical system preserving some natural probability measure
Ho with density g,. This paper is motivated by the following question: does exponential
mixing imply stochastic stability? Roughly speaking, exponential mixing of (f, pg)
means that, for two observables ¢ and ¢ on M, the correlation between ¢ o f"
and 1) decays exponentially fast with n. Stochastic stability means that, if we add a
small amount of random noise to f, obtaining at noise level £ a Markov process with
invariant density g,, then g_ tends to g, as ¢ tends to zero.

The following heuristic argument suggests an affirmative answer to this question.
Consider the Perron-Frobenius operator .% associated with f acting on a suitable
class of functions. The exponential mixing property is equivalent to the presence of
a gap in the spectrum of % between the eigenvalue equal to unity and the “next
largest eigenvalue.” Corresponding to the noisy situation is a noisy Perron-Frobenius
operator %, which should not be too different from % for small . By standard
perturbation arguments for linear operators, the eigenfunction corresponding to the
eigenvalue 1 for Z, should be near that for %, proving stochastic stability.

Also, since the “second largest” eigenvalue of .% determines the rate of decay of
correlations, if there is a gap between the “second largest” and the “third largest”
eigenvalue, then a similar reasoning will show that the presence of small amounts of
noise should not affect significantly the rate of mixing of the system. When further
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gaps exist, this reasoning can be extended to some other eigenvalues of % (the
“resonances” of Ruelle [1986]).

One obvious way to make this heuristic argument rigorous would be to show that
%, converges to % in the topology of operator norms. That, unfortunately, is almost
never true. In general, the relation between £, and % depends on the dynamics as
well as the function space in question. The purpose of this paper is to examine the
nature of this perturbation for the following three models:

Our first model consists of expanding maps of the circle, which we perturb by
taking convolutions with a fixed kernel. The function space on which our Perron-
Frobenius operators act is the space of " functions. Our second model is a slight
generalization of the first: we consider expanding maps of Riemannian manifolds
followed by stochastic flows. Our third model consists of piecewise expanding maps
of the interval, which we assume to be mixing. The perturbations are the same as
those in the first model, but our test functions are only of bounded variation. All three
models, when unperturbed, have the exponential mixing property.

For the first two models we prove that % converges to % in a strong enough
sense to guarantee the convergence of the spectrum on certain regions of the complex
plane. (There is a disk containing the essential spectrum of % on which we have little
control.) The situation in the third model is somewhat more delicate. We have the
same results provided we further restrict the domain of convergence. As explained
earlier, these convergence results allow us to read off immediately properties such as
stochastic stability, robustness of the rate of mixing, etc.

Not all of our results are new. Stochastic stability, particularly in the sense of
weak convergence of measures, has been proved for various dynamical systems. See
e.g. Kifer [1988a]. Stability in the bounded variation case is first proved in Keller
[1982]. Kifer has a result in the opposite direction [1988a]. He proves the collapse of
the spectrum of a related unitary operator for hyperbolic toral automorphisms. (This
operator has continuous spectrum.) More references will be given later on.

This paper is organized as follows. In Sect. 2 we prove some simple perturbation
lemmas for abstract operators. We deal with our three models in Sect. 3, 4, and 5,
proving some dynamical lemmas that relate £, to %. We then obtain our desired
conclusions by appealing to the results in Sect. 2. We hope that this method of proof
goes beyond the situations considered in the present article.

In a forthcoming paper by the first named author some of the results here will be
brought to greater generality. Transfer operators with more general weights will be
considered, and the Fredholm determinants of the perturbed operators will be shown
to converge to that of .% on certain regions of the complex plane.

We express our thanks to Pierre Collet and Francois Ledrappier for very useful
conversations. V. Baladi acknowledges the hospitality and financial support of the
U.C.L.A,, the LH.E.S., and the Niels Bohr Institute. L.-S. Young is grateful to the
Mittag-Leffler Institute for its hospitality and support.

1. Background, Definitions, and Notations

Let f: M — M be a differentiable or piecewise differentiable transformation of a
compact Riemannian manifold. Assume that f preserves a Borel probability measure
o of the form p, = gydm, where m denotes Riemannian volume. Our aim in this
work is to study the invariant density and rate of mixing of (f, u1,) under small random
perturbations, and we do that by studying the spectral properties of the perturbed
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Perron-Frobenius operators associated with f. The purpose of this section is to give
precise definitions for all of these terms.

Let %7 denote the o-algebra of Borel sets of M and 7” the space of Borel probability
measures on M. Recall that a random perturbation of f is a family of Markov
chains .#¢ (with small ¢ > 0) defined on the measure space (M,.7), with transition
probabilities {P*(z,-)} in 2, ie., P{Z7 € E: 27 = x} = P*(z, E). We assume
that the following conditions are satisfied:

(1) The map = — P*%(x,-) is continuous for each .
(2) Each Pf(z,-) is absolutely continuous with respect to Lebesgue measure m.
(3) For any continuous test function g: M — R,

lim < sup /g(y)PE(w,dy) —g(fx) ) =0.

e—0 xeM I

If M is compact, it follows from (1) and (2) that each Markov chain .2 admits
an absolutely continuous invariant probability measure ,, i.e., a probability measure
. = 0, dm such that

. (E) = /Ps(ac,E) du(z)y, VE e 7.

(For more details, see e.g. Kifer [1988a]. Note that the assumption that P*(z, -) has
a density with respect to Lebesgue is not essential for most of the results below.)

We say that (f, p,) is stochastically stable under the perturbation £ if 41, tends to
g weakly as € — 0. Various dynamical systems have been shown to be stochastically
stable in this sense (see e.g. Kifer [1974] and the results and references in [1988a],
Benedicks-Young [1992] etc.). Sometimes, one has a stronger notion of stochastic
stability. If (¥, - ||) is a Banach space of functions p:M — R containing g, and
0., then we say that (f, u,) is stochastically stable in (7, || - ||) if ||o. — g tends to
zero as € — 0. (See e.g. Keller [1982] and Collet [1984] for certain interval maps,
with .7 = L(dm).)

We are also going to consider the convergence of the rate of mixing. Recall that
one says that 7, is the rate of decay of correlations of (f, 1) for functions in (7 .|| - )
if 7, is the smallest number such that the following holds: for each 7 > 7, and each
pair ¢,y € .7, there exists C = C(r, |||, ||%]]) such that

‘/(chf”)-wduo—/wduo/Muo

We are mostly interested in the case where 7, < 1.

Consider now the Markov chain (2", 1), and let P (z, -) be the n-step transition
probability. We say that 7, is the rate of decay of correlations of (27, n._) for functions
in (7, |||y if 7, is the smallest number such that the following holds: for each 7 > 7.
and each pair ¢, ¢ € 7, there exists C = C(1, |||, %] such that

) / < / so(y)P,i(a:,dw) @ (@) — / odu, / Vdu,

We say that the rate of mixing of (f, y1,) in .5 is robust if 7, tends to 7, as € goes
to zero. (The relation between 7, and 7, has been considered in e.g. Ruelle [1986],
for mixing Anosov flows.)

<Cr", Vn>1.

<Cr", VYn>1.
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Next we define the Perron-Frobenius operator associated with f. For this, we fix

a suitable Banach space of functions (&, || - ||) as above, and for ¢ € %, we define
)
Fo@) = Y .
Prosull | det ny|

Or, equivalently, if ¢ € % is the density of a signed measure i on M, then Fp is the
density of fyu, where f, u is the push-forward of u by f, i.e., (fir) (E) = w(f = E),
for all £ € .%. We assume that %:% — % is a well-defined bounded operator,
and that g, € & . Then 1 is an eigenvalue of %, and our invariant density g, is an
eigenfunction for the eigenvalue 1.

In our models, as in virtually all situations where the spectrum of the Perron-
Frobenius operator is understood, the operator .% is quasi-compact, i.e., its essential
spectral radius ess sp(.%) is strictly less than its spectral radius. In particular, for every
T > ess sp(F), the set o(F)N{z:|z| > 7} consists of a finite number of eigenvalues
with finite dimensional eigenspaces. If we further assume that (f, 1) is exact — which
is the case for the models considered in this paper — then it has been shown that the
spectrum of % can be written as 0(%£) = ¢,U{1}, where 1 is a simple eigenvalue (i.e.
it has a one-dimensional generalized eigenspace) and |o,|: = sup{|z|:z € o4} < 1
(see Hofbauer-Keller [1982], Ruelle [1989]).

The relationship between 7, and o is as follows: since

/(<p0f")-1/)duo=/<P'$"(d)90)dm,
we have

l/(wOf”)wduo—/wduo/wduo - ‘/so[z"wpo)— (/wgodm)go}dm}.

If [ |} dm < const-||¢|| — and this is certainly true in our models — the last expression
above is

< C - | £™(hoy) — T(hey)||
< C/ e ,

where 7 is any number strictly larger than |o,|, the constants C' and C’ depend only
on |l¢||, ||¢|| and 7, and = is the projection onto the eigenspace of 1. Thus we have
Ty = [ogl.
If || > esssp(.%), then 7, = |o,| will be referred to as an isolated rate of decay.
Corresponding to the perturbation .2 of f, we define the Perron-Frobenius
operator %, as follows: if ¢ € # is the density of u, then £ ¢ is the density
of 2, where ZF (E) = [ P¢(z, E)du(z). Moreover, if g, € %, if 1 is the only
point of o(2%4,) on the unit circle, and if it is a simple eigenvalue, then we can write
() = {1} Uoy(£,) and the interpretation of 7, as |0y(%.)| carries over as before.
In the next three sections, we will consider for each of our models the following
questions:
(1) Does |[o. — gl — 0?
(2) Does 7. — 7, (assuming that 7, is an isolated rate of decay)?
If the answers to (1) and (2) are affirmative then we may also ask:
(3) How does |lo. — g, or |7, — 7| scale with € as € — 0?
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2. Perturbation Lemmas for Abstract Operators

Let (X, |- |I) be a complex Banach space, and let {T,e > 0} be a family of bounded
linear operators on X. We make the following assumption about 7T;:

There exist two real numbers 0 < x; < k; < 1 such that the spectrum of T}
decomposes as X, U X, where

ko = inf{|z]:2 € Xy}, &, =sup{|z]:z € XZ|}. (A1)

Let X, be the eigenspace corresponding to X, and let m,: X, & X; — X, be the
associated projection. Let o(-) denote the spectrum of an operator. Our first result is

Lemma 1. Assume that there exists & < Ky such that for each sufficiently large
n € 7, there exists e(n) such that for all 0 < € < g(n),

|77 Tl < (A2)
Then, for each sufficiently small € > 0, there exists a decomposition of o(T,) into
oT,)= 25U X
such that if
ki =sup{lz|:z € X7} and k§: =inf{|z]:z € X5},
then K] < K§.

It will become clear later on that (A.2) agrees with the nature of our perturbations.
Note that we do not assume that 7"z converges to Tz as € — 0 for fixed n and/or
x, nor do we assume that for fixed ¢ we know anything about |77 — T*|| for all
large n.

Proof of Lemma 1. Fix &, ' near £, x, and £y, k{ near x, such that
‘hy < K] < k<K <Ky < Ky < Ky
Let NV be large enough for all the purpose below, in particular, we require that
N N
2 € Xy = [Tl = )™ |l
N N
re X, = Tz < )" ol .

Let £ < e(N), and let A satisfy &’ < |A| < lﬂ)é]. We will show that A ¢ o(T,).
It suffices to prove that the resolvent R(T™Y, A™) exists as a bounded operator. We
write down what it must be if it exists:

RN, M) = [T - 1Y) — (¥ — 1"
= (AT = T3 - (I = Ry, AN (@Y = 11!
=Y (RTYAO@ )" - RTg Y. .1
n=0
Assuming |7V — T|| < &%, it is enough to show [[R(TY, A\M)|| < (1/x)™.
Since R(TN, AMX, = X, for i = 0,1, we have for z € X, ||z|| = 1,
IRCTEY, AN < | RAF, A mgzel| + | R AN ym |
< R A ey ol + R A e ]
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so that it suffices to bound [|R(Tg, A")|x I, i = 0, 1.
For z € X, we have

IT6¥ 2 — ANaj| > T3V 2l — AV ]
> (k)™ = ()™ |12
> C - (k)" ],
where C is a constant depending only on x{ and sj. This gives

1

N N _
“R(TO » A )IXOH < C(,{g)N

Similarly, for z € X, we have

IT5¥ e = ANal| > (Y = =DM ],

proving
1
N \N
IR, A x|l < CEF
Hence, for large enough N,
const -(|| 7|l + |74 1D 1
IR, A < L?)HN I <% 2.2)

Define

S5i=A{ze0):z| > Ky}, Zi:i={ze0@):|z|<K'}. O
Note that x§ < ', which can be made arbitrarily near max(x, ;) by choosing &
small.

Let n5: X5 @ Xi — X be the projection associated with the spectral decom-
position of T.. For I' C C write I'V: = {#V:2 € I'}. We also use the notation
B.:={|z|=r}.

Lemma 2. If Assumptions (A.1) and (A.2) hold then ||my — n§|| — 0 as € — 0.

Proof of Lemma 2. Note that 7, can be regarded as the projection associated with
(TN, (X)N) for any N, and similarly for 75. We will again consider N large and
£ < e(N).

Let C': = Byw U B, for some & < & < rig with & < (k') /K, and oy > |o(Tp)|.

Then £ and (X5)™ are contained in the annular region bounded by C, and we have

— 1 N £ __ i N
T = 5 / Ry, NdX, w5 = 5 / RN, M.
C C

We will estimate |7, — 75| by

IA

1
o =8l < o= [ RGN - AT D]y
C

1 N N

+ the corresponding term for Bré\’
=) +Q2. 2.3)
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Using (2.1) we have

IR, N = R, D) < Y IR, D™ TN = 15|
n=1
Since I(B.~) = 2m&Y, and || R(T{, )| < const /(x")N for A € B~ [by (2.2)],
we obtain

N o= fconst\ "t - N KV N
(H <k Z N (k)" < const -A& -(R—/N?—>O as — 0.
n=1

For (2), we use (B, ) = 27rd), to get

N

(2)§const-rév~ —0as N »o00. [

K

N
Ty
For n > 1 define

Tre —TF
¢ @ = sup NTZE = Tial
:EEX() HxH
xF#0
By (A.1), C,,(e) < ™ for large enough n and small enough ¢.]

Lemma 3. Assume that (A.1)~(A.2) hold, that ||T_|| is uniformly bounded, and that
dim X, < o0. (A.3)

Let d denote the maximum algebraic multiplicity of z € U(TO}XO) and let ' and

Ky < Ky be given from Lemma 1. Then for fixed large N and € < e(N): y
1

(1) Hausdorff-distance (o(Ty| x,), o(T.| x)) < const-( C,(e) + C;z}?

(2) If &y € X, is an eigenvector for Ty with TyZ, = vy, then T_ has an eigenvector

C 1/d
25 € X§ with eigenvalue v§ which is const - (Cl e+ ]\/71(\,5)> -near vy such that
Rg
N Cy@) "
125 — Zol| < const-(C’l(eH— /i\’]N ) .
0

The assumption that ||T|| is uniformly bounded is not essential since for some
large iterate |7V ]| < | 78| 4 <% for all small enough e.

Proof of Lemma 3. First we show that X§ = graph(S.,) for some linear S, : X, — X,
with ||S.|| — 0 as &€ — 0. To see this, consider £ small and let z € X§. Since
lx — mpzl| < ||m§ — mpll [jz]], it follows that if @ = (z4,2,) € X, ® X, then
|z, || < ||| This inequality implies in particular that if z, 2’ € X§ and myz = wya’
then z = 2'.

Next, we estimate {|.S,|. We know by (A.3) that there exists z, € X, ||lz,|l = 1,
such that
||7T1TEN(CCO’ SsmO)”

S| < .
| E” - HWOT:N(”"()-S;%)H
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This is
I (Y + R 5.1+ Cyte)

2.4
Y — o A+ 5.1 - RN @4

from which we see that
CN(E)

S_|| < const .
.1 < const XS

Define 7_: X, — X, by
Tg(az) =myo T (x,S.%).
Then for x € X, with ||z|| = 1, we have
1Tee — Toall < |Imoll - (T2 — Tozl| + | TS|l

< const - <C'1(€) + 7.0 - Cli\/lz(vs))'
0

There is a similar bound for |7, o T_(x, S.z) — m Tyz| with € X,. The assertions
of Lemma 3 follow immediately (see e.g. Wilkinson [1965]). [

3. The Simplest Model:
Expanding Maps of the Circle and Perturbations by Convolutions

A. The Unperturbed Model

Assume first that our manifold M is equal to the circle S'. Let f be a &7
transformation of S' (2 < r < o0o) which is expanding, ie., |f’| > A\ > 1. The
expanding constant of f is the largest A such that this inequality holds. This implies
the existence of a unique absolutely continuous invariant probability measure p, with
respect to which f is mixing (in fact, exact).

We set %7 = #7~1(S!) and let || - || be the usual £~ '-norm. Let % :.7 — .7
be the Perron-Frobenius operator associated with f:

- )
Fo(z) = Z 90, .
s (W)

It is proved in Ruelle [1989] (see also Collet-Isola [1991]) that .4 is quasi-compact
with essential spectral radius bounded above by (1/A\)" L.

We remark that if the map f is #°° or &, we can let £ act on the Fréchet space
%z °°(S1) of % functions, respectively the Banach space %“(S!) of real analytic
functions endowed with the supremum norm. Using the fact (Ruelle [1989]) that,
for a & map, the eigenfunctions of .% acting on ' for 1 <1’ < r—1 are all
elements of Z7~1(S), it makes sense to speak of the eigenvalues of .% when acting
on £°°(S1), even though #°°(S!) is not a Banach space. In particular, one can view
% E(SNy — £°(S) as a “compact” operator. If 7 = w, the operator .% is (truly)
compact, and much is known about it (Ruelle [1976], Mayer [1976], etc.). We will
not discuss further the cases r = oo, w, but our results clearly hold there too.

We remark also that 7, = |0/ is not always an isolated rate of decay. Consider
for instance the map z — z> on S! and its the transfer operator acting on real
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analytic functions. By following the computation in Ruelle [1986], one checks that
the relevant Fredholm determinant is equal to (1 — z), so that the only eigenvalue
is 1. This implies (Ruelle [1976, 1989, 1990]) that the transfer operator acting on
#Z7T(Sh), with 1 < r < oo has no eigenvalue besides 1 whose modulus is bigger than
the essential spectral radius. The other “algebraic” maps z — 2k for integers k > 3,
have the same property. However, as pointed out to us by Mark Pollicott, the above
examples do not seem to be generic: a necessary condition for the lack of nontrivial
eigenvalues in the spectrum of the operator acting on analytic functions is the fact that
the trace of the Fredholm operator is equal to 1. By considering analytic perturbations
of the algebraic examples, one can arrange that the value of this trace changes. For
example, the projection on the circle of the periodic map x — 2x(mod 1) + d sin 27z
only has one fixed point (if § > 0 is not too large), and the trace of its Perron-
Frobenius operator can easily be computed to be 1/(1 — §) > 1, so that there is at
least one eigenvalue besides 1 whose real part is strictly positive.

B. Type of Perturbation. Convolutions
For € > 0, let §_:R — R be a function in L'(dm) satisfying
f. >0, suppf,. C [—¢,e], and /95 =1.

Consider the random perturbation .2, where the transition probabilities P*(x, dy)
have densities 8, (y— fz). (Note that the density depends only on the difference y— fx.)
Equivalently, using Fubini’s Theorem, one can describe this process as given by f
followed by a random translation by w, where w is distributed according to 0. We
call such a perturbation a random perturbation by convolution (see Kifer [1988a,
Chap. IV)).

The perturbed Perron-Frobenius operator .%.: 2" 1(S') — #~1(S') can be
written as follows: for p € #7~1(S)),

(Zp) (@) = / (Z) (@ ~ w)l, (w)dw
= / o (x — fy)dm(y).

Analogous operators have been used by Keller [1982, Sect. 5] and Collet [1984]
among others. The operator %, is clearly linear and bounded on Z"~!(S). Also, it
is quasi-compact and the density g, is in £~ (Ruelle [1990]).

If we had made the additional assumption that 6, is €7 !, then %, would be a
compact operator on % ~1(S"). This follows from the fact that a kernel operator

p(z) — / Kz, p)pdmy), ¢ e &%Sh,
S‘

with 90 kemel K(-,-) is compact (see e.g. Yosida [1980, p. 277]).
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C. Statement of our Results

We now state our main results, which give partial answers to the questions posed in
Sect. 1 for this simplest model:

Theorem 1. Let f:S' — S' be a ™ expanding map (r > 2) of the circle as defined
in Sect. 3.A, with expanding constant A, and let i, = p, dm be its unique absolutely
continuous invariant probability measure. Let % be a small random perturbation of
f of the type described in Sect. 3.B, with invariant measure . = o, dm. Then:
(1) The dynamical system (f, ) is stochastically stable under 4 in the space
of 7! functions, i.e., |lo. — oy, tends to 0 as ¢ — 0. Moreover, we have
llo. — aoll,—2 = OCe).

Let 7, and T_ be the rates of decay of correlations for f and % respectively, in
the space of 7! functions.
) If iy > A" then the rate of mixing is robust, i.e., 7, — Ty as € — 0.
Furthermore, if 7y > \="=2 then |1, — 75| = O(e'/%) for some integer d > 1.

We show in fact that
(3) For each & > 0, the spectrum of ¥, restricted to {|z| > A"~V 4 &}, converges
to that of % (restricted to the same domain) as € — 0.

The proofs below yield the same results for small deterministic perturbations by
translations (i.e., maps f¢ = [+t with [t| < £), as well as for perturbations of Z”
expanding transformations of higher-dimensional tori.

D. Dynamical Lemmas

In this section we prove the dynamical lemmas which will allow us to reduce
Theorem 1 to an abstract statement about linear operators acting on Banach spaces
(see Sect. 2). The setting and notations are as in Sect. 3.A and 3.B.

Lemmad. (1) For a fixedn € Z* and p € 77,
| Zlo — %"l -0 as e —0.
(2) For a fixedn € 2" and ¢ € Z7~', we have in the €72 norm || - ||, _,,
1906 ~ %70l » = 0),  <—0.

Proof of Lemma 4. 1t suffices to show the lemma for n = 1, the inductive step follows
from the triangle inequality

1200 — £l = | LAL2 " o) — Z(£™ )|
<L o = T + 14U E o) = L)

(The induction hypothesis need only be applied to ¢ and 2™ 1)

(1) Since £, ¢ = 0_* ¢, each derivative satisfies Dk(;%gp) =6,% DFE(% o). Tt hence
suffices to consider % -norms. But if v is continuous the convolution 6«1 converges
uniformly to 1.
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(2) To show the claimed asymptotic scaling in the %" ~2 norm, it again suffices to
consider the case r = 2. Observe that for any ¢ € %" the Mean Value Theorem
implies

10, % () — p(@)| < / 6.() |(ia — ) — @) dt

< suply©) / 6.(t) - |t] dt

< sgp ['@©f-2¢. O

We want to emphasize that in general ., does nof converge to 4 in the operator
topology when & — 0. (For example, if 6 is #7~!, the operators %, are all compact
and convergence in norm would imply that %" is compact too — but this is well-known
to be false: see the explicit construction of essential spectral values in Collet-Isola

[1991].)
The key lemma follows:

Lemma 5. Let A > \="~D pe given. Then there exists Ny € Z* such that for each
n > N,, there exists €(n) > 0 such that for each € < £(n), one has

L2 — 9| <A™

Proof of Lemma 5. We use the following notations: C' represents a constant indepen-
dent of n and ¢; ¢, . represents a constant depending only on n and £ (and not on
test functions), and lending to zero as € — 0 for each fixed n. We also write g for
1/|f’1. Recall that

(Lro)@= > oW -g(fy)..-g(f"'y)

y: fry=z

— Y .

y: fi=x
where the second equality defines (£ ", ). Writing, for = (T, ..., t,),
fF@=fC. . @D+t +t)..)+1,,

we have
(21 (x) = /.../dt1 Sode, 8. 6.0,
> w97y

yp fPyp==

:/.../dtl..‘dtn@(tl)..ﬁg(tn) Yo (FFe),.

yp fRyp=e
= / e / dt,...dt,6.t)...0.,) (,%tl’go) (z),

where the last two equalities define (%?(p) and (,%glgo)yf.
We have used the fact that all orbits are strongly shadowable: that is, if € is small
enough, then for a fixed = and a fixed n-tuple (¢,...,t,) with |t,| < &, there is
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a natural bijection between the set {y: f"(y) = z} and the set {y;: ff(yp) = z}.
Moreover, for each pair (y, yy) corresponding to a choice of an inverse branch of f
at z we have

9@) - 9(fy) - 9"y = 9w - 9(Fry) - 9(fF D £ e, B

We first show the lemma in the case r = 2. Let us compare % and %, in the
#-norm noting || = sup || and |¢’| = sup |¢’|,

n—1
(FFo)y,, = (p@) £, 1D ( [T+ Cme)

7=0
= (Z"), £ e (el + ¢ 3.2)

Hence, summing over inverse branches, and integrating over the ¢,,
(F70) @) = (L") @) £ ¢, el - (3.3)

We now consider first derivatives, using the Leibnitz Theorem and decomposing
d T
Jr («g,g' P)yg
into a first part A which is a sum of terms where some g factor is differentiated and

a second part B where ¢ is differentiated. For the first part we have

n—1

A= " oWagwp - 19 FLupg(fvp - gwplaFE v - g(fF 'yp
=0

= (W) e, ' Dw) - [g P @) 1. g(f" 'y e,
J

. d .
= (the corresponding part for . (:%"go)y) + e, (el + ¢’ (3.4

For the second part, we get

n—1 n—1
B=¢'@p- [[ 9o [ 9Flvd
§=0

j=0

n—1 n—I1
= (@' F2[¢'))- (Hg(ij)icn,a> : (Hg(ij)icn,s)
Jj=0 7=0

n—1 2 n—1
=¢'®) ( 1T g(f%/)) +e, ¢/l £ 21/ [ aw) - (3.5)
9=0 =0
Summing over inverse branches, and integrating over the ¢,, we obtain
(FreY = (& ) £, el 220l A > [[eH@n. 36
y: f(y)=z

Since the sum in the last term of the right-hand side is equal to .%£"(1) (z), we know
that it is uniformly bounded since £™(1) converges.
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For arbitrary differentiability r, note that for £ < r — 2, the terms of the Et
derivative (") involve only the I derivative of ¢ for I < k so that

(L2 — (£ < e, Nelpm < cnellell,_y -

The only potentially troublesome term is part B of (%)™~ D(2), ie.,
/.../dtI ...dtHGE(tl)...Ga(tn)Zw(r_l)(y;)(ﬂg(fgyg)> .
Yy J

but the same argument as above yields an additional error term of the type
Cpellelly 1 +C APl O 3.7

In fact, we have not used the expanding condition as stated but only a slightly
weaker condition:

3\ > 1 such that lim (inf|f”’(x)|1/") > A,

E. Proof of Theorem 1

Unless otherwise stated we will use the results in Sect. 2 with X the space of "1
functions on S, || - || the #" ! norm, T, = ¥ and T, = £..

To prove (1), we let Xy = {1}. Lemma 5 together with the fact that (f, p,) is exact
tell us that conditions (A.1) to (A.3) in Sect.2 are met. We also know that ||.%,|| is
uniformly bounded, that 1 is always an eigenvalue of ., and g, is an eigenfunction
for 1. We conclude from Lemma 1 that X must be the linear span of g.. Lemma 3

o 1/d
then tells us that for any & < 1, ||o, — gl = O < <CI (e)+ ]\IIJE,E)> ) which tends
K

0

to zero as £ — 0 by Lemma4 (1), proving stochastic stability in (£7~1(S1), ]| - ).
Since Cy(e): = |2 05 — 0|, the speed with which Cy(¢) tends to 0 depends on
the modulus of continuity of D"~!g,. In particular, if we rewrite everything with
X = #""%(S" and || - || the ¥ 2 norm, then D" 2g, is Lipschitz and we have by
Lemma4(2) Cy(e) = O(¢). This completes the proof of (1).

To prove (2), we let Xy = o(£)N{|z| > 7,}. Note that conditions (A.1) and (A.2)
in Sect. 2 are guaranteed by our assumption that 7, > A~ "D > esssp(¥). Since
o(%) C (0(‘%5’X5)U0(‘:%5|Xf))’ we know that 7, = sup{|z|:z € J(f§f€|xoe), z # 1}

c 1/d
Lemma 3 then tells us that for any 7} < 79, |7, — 7.| = O((Cl(e) + %) >,
To
proving the robustness of 7.

To see how |7. — 7,/ scales with £, we let % act on (7 2(SY), || - ||,_,) instead
of (27 1(SY, |l ||, ). Since the eigenfunctions of % are always ¢! the rates of

decay of correlations are the same in both cases provided that 7, > A~"~2 (note that
this implies in particular > 2). So even as we change the space on which # acts,
the definition of %), remains unchanged. In fact, X, stays the same (Ruelle [1989]).
In the definition of Cy(¢), we are now dealing with #™" 2 norms for functions in X,
a finite dimensional subspace of #7~1(S!). By Lemma 4 (2), we have C n(€) = O(e).
Hence |7, — 7| = O(e'/9).

To prove (3), let £y = a(£)N{|z] > A=V + 5} O
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4. Expanding Maps of Manifolds Followed by Stochastic Flows

This is a generalization of Sect. 3.

A. The Unperturbed Model

Here, M is a %°° compact, connected Riemannian manifold without boundary, and
fiM — M is a &" map for some 2 < r < co. We assume that f is expanding, i.e.,
there exists A > 1 such that for all « in M and all v in T, M, we have |D f, v| > Ajv|.
The largest such A is called the expanding constant of f. It is well-known that an
expanding map f admits a unique absolutely continuous invariant probability measure
o = 09 dm with respect to which f is exact (see e.g. Maii¢ [1987]).

Let # = {p:M — R: pis 771}, For ¢ € .7, we define ||| to be the &7 !
norm of ¢, defined using a set of charts that will remain fixed throughout. The Perron-
Frobenius operator .2:.% — .% is defined as usual. Ruelle’s results stated in the last
section are in fact proved in this more general setting. In particular, we have the
inequality

esssp(%) < A D,

B. Type of Perturbation: Time-c-Maps of Stochastic Flows

Let Xy, X,,..., X, be & vector fields on M, and consider the stochastic
differential equation of Stratonovich type

m
dgt:Xodt—Q—ZXiodﬂ;, “.1)
i=1
where {3} is the standard m-dimensional Brownian motion. We define .%°, our
e-perturbation of f, to be £, o f, i.e., #* is the Markov chain whose transition
probabilities are given by

Pé(z, E) = Prob{(¢, o f) (z) € E}.

If the vector fields X,,..., X, span the tangent space of M, then condition (2) from
Sect. 1 is satisfied.

As in the last section, we wish to view .%7 as the composition of random maps.
To do that we realize the solution of (4.1) as a stochastic process

&,: 82 — Diff*° (M),
where (§2, P) is a probability space and {¢,} satisfies
(i) & = Id, the identity map,
(i) for ¢y <¢; <...<t,, the increments §, o &, ! , are independent,

(iii) for s < t, the composition &, o ;! depends only on ¢ — s,
(iv) with probability 1, the stochastic flow &, has continuous sample paths.
(See e.g. Kunita [1990] for more information.) Our perturbed process .2 can then

be viewed as the random map
s fy,0 fw1 ,

where wy,w,, ..., € §2 are independent and f,, : =& (w;) o f.
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Using this representation of %™, we can write the perturbed Perron-Frobenius
operator .7, : % "~V (M) — ZTH(M) as

(Zap @ = [ P )@,

where
o(y)

(Zo)@= Y [det Df, ()]

y: fuy=T

In fact, Z_ is still in the framework studied by Ruelle [1990] and in particular is
quasicompact. Again, %, has 1 as an eigenvalue, with eigenfunction g, € # "'
equal to the density of the invariant measure for .27,

In the remainder of this subsection we summarize a few technical estimates about
the #"-norms of £,_ that will be needed later on. For £ ¢ Diff" (M), we define the

T .
#7-norm ||€]|, to be [I€]|, = >_ |D*¢|, where |D*¢| is computed using a fixed system

=0

max(Jj¢|,, I€7"]1,.). We assume that |||Id ||| = 1. For

I

of charts, and let []|£]]]:
6 > 0, we define the sets
Ws: = {€ € DI (M): ||j€]l] < 1+ 6},
Wy ={f=mn,0...0n:n, € %s,vi},
and the random variable 7, (8): = inf{s:§, ¢ 2}
It is proved in Baxendale [1984] and Kifer {1988b] that for all € > 0,
P{r, () <e} <(P{r(®) <eh™.
Also, using a formula in Franks {1979, Lemma 3.2], we obtain inductively that for
all § in 75,
el <er'a+o1a+o + 1,

where the constant C' only depends on r. From these estimates, we easily derive the
following sublemmas:

Sublemma 1 (Baxendale [1984], Kifer [1988b]). Fix k > 0. Then for all sufficiently
small € > 0, the expectation
E(lIENN) < oo

Proof of Sublemma 1. Fix an arbitrary 6 > 0 and choose ¢ such that P{r,(§) < ¢} is
sufficiently small. Let 7, = 0, and define A, : = {7,,_(§) <& < 7,(5)}. Then

EllENF <> sup{lllé]l]:€ € 1 - P(A,)

n=1
o

<) IO A O+ 6+ DHE (P <ep)V <00 O

n=1

The proof of Sublemma 1 also gives the uniform integrability of |||£.]||* as e
varies. We state that as Sublemma 2.

Sublemma 2. Fix k > 0 and assume ¢ is small. Then given o > 0, there exists 3 > 0
(independent of €) such that for all A C 2 with P(A) < 3,

E(IEN - x < .
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Sublemma 3. (Essentially in Baxendale [1984].) Fix k > 0. Then
E|ll¢. —1d|]|F -0 ase—0.
Proof of Sublemma 3. Write

Elle, —1d||* = S B(lie. —1d]]] - x4,)"

n=1
First let ¢ — 0O for fixed 6 to get
tim El€, — 14 ]|[* < sup{|lj¢ ~ 1al|:€ € %}

The quantity on the right clearly tends to zero as § — 0. [

C. Statement of our Results

Theorem 2. Let f: M — M be a €7 expanding map as described in Sect. 4.A, with
expanding constant A, and let i, = o, dm be its unique absolutely continuous invariant
probability measure. Let { %, & > 0} be a small random perturbation of f of the type
described in Sect.4.B, with invariant probability measure ;1. = o, dm. Then:
(1) The dynamical system (f, p,) is stochastically stable under % in the space of
&1 functions, i.e., the " '-norm of p. — g, tends to zero as € — 0.

Let 1y and 7, be the rates of decay of correlations for f and % respectively, in
the space of &7~ functions. If, in addition, 7y > A==V, then:
(2) The rate of mixing for f is robust, i.e., T, — 7y as € — 0.

We show in fact that
(3) For each § > 0, outside of {|z| < A==V 4§}, the spectrum of % converges to
that of £ as € — 0.

Remark. We conjecture that the correct scaling in ¢ for this kind of perturbation is

”Qe - QOHT—2 = O(\/g)

D. Dynamical Lemmas

The setting and all notations are as in Sects. 4.A and B, and except for the scaling
statement the two lemmas needed are identical to those in Sect. 3. Once again, they
are:

Lemma 6. For fixedn € Z" and p € 771,
|Zlp — L0 =0 as € — 0.

Lemma7. Let A > A\~"~D pe given. Then there exists N, € Z* such that for all
n > N, there exists e(n) > 0 such that for each & < e(n),

|7~ 27| < Am

We will use the proof of Lemma 7, with » = 2, to illustrate how the analysis in
Sect. 3.D can be adapted to the present setting. The other proofs are handled similarly.
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Using the random maps representation of .2 and the notation in Sect. 3.D, we
have fngumo...ofwl if d=(w,...,w,) € 27, and

(1) (@) = / / Pldwy). .. Pldw,) (£2) @),

where

EH@= Y -

1
i |det DfZw)|

Let n be fixed for now. For local considerations we will assume that we are in
Euclidean space.

Sublemma 4.

2 (znp) = /P(d )., P(dw,) - (£29)

d:vfs(’o_/'“ W) ... W, iz, ).
Proof of Sublemma 4. We fix x € M, and write

d " . .
@z, (Z5p)(x) = lim D),

where

- 1 T Vi) d vzt

¢t(w) = E{(gaj ) (r+ tui) - (a%@' ©) (37)} = d? (%Q ©) (:Ut) s

for some z,, where v, is the unit vector in the i direction. Our assertion amounts
to exchanging the order of the limit and integrals. To do that, we will produce
® € L'(0", P™) with |®,| < |®|. Differentiating the expression for . %% above,

we observe that ey (ZZp) (x,) is the sum of finitely many terms, each one of which
is bounded in absolute value by a product of the form

Clolly - MecplliF . eIl

where C' is a constant depending on f and n, and k;,...,k, depend on n and
the dimension of M. We set &(&J) to be the corresponding sum. It follows from
Sublemma 1 that & is integrable. Hence the Dominated Convergence Theorem applies.
o

Consider first & = (wy, . . .,w,,), where f¥ is &2 very near f* for 1 < k < n, say
| £ — f*|l, < 6 for some § > 0. We assume & is small enough so that the inverse
branches of fZ are easily identified with those of f™. Then the same argument as in
Sect. 3.D, line by line, gives

Lie =L 0+ sllell s
and p d
— (BZpy=—(F"p) +COATT .
i (ZZe) s (Z7p) £ ¢, sllelly llll4

The strategy of our proof is as follows: first we choose n and then 6 = §(n) so
that for all & with the properties above, we have

| £5 0 — Z7pll < Aol



372 V. Baladi and L.-S. Young

for some AP < A" < A. We then choose ¢ < & such that if £2,: =
{wil|f, = fll, = 6}, then P(£2)) is very small, small enough that these “bad” o
do not contribute significantly to || .£)¢ — %" pl||. More precisely, let

025 ={wy, ..., wy)iw; & 2y, Vi} and Q27 = {(wy,...,w,)iw,; € }.

First we consider the #%-norm:

| et — ZTl = / AP (@) (LG — L")
nn
/'7"9" i+ [azzel 1270,
J= lnn

The (23-term has been shown to be bounded above by ¢, _ - [¢||;, and

/ (2l < 127 - ol - P2y,
7

the last factor of which can be made small as & — 0. It remains to estimate [ | %2l
Note that £ is a sum of finitely many terms of the form Qn
e()
{detDf,, ()]...1detDf, ()

This expression is bounded above by
C ol - el eIl

Its integral over {27 is therefore bounded above by

Clgl- (gEmankz) -E(|||s€||1'fj -x%)

By Sublemma 2, the last factor can again be arranged to be arbitrarily small by
choosing ¢ small. This proves

l)C/ng(p - »%n§0| < Cne” ||<P||1 :
A similar argument (see Sublemma 4) gives

d d .
Flp— == L | < A"l + e, el <A™l O

dz, ¢ dz,

E. Proof of Theorem 2

Use Sect. 2 and proceed as in Sect. 3.E.
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5. Piecewise Expanding Maps of the Interval
A. The Unperturbed Model

We consider here f:1 — I, where [ = [0,1] and f is a continuous piecewise w2,
piecewise expanding map. More precisely, we assume that there exists a partition
0=gay <a <...<ay =1of Isuch that for each ¢, the restriction f|[az,az+1] can

be extended to a %2 map with min |f’| > A > 1. The a, are called the turning points
of f. The continuity assumption on f is imposed only for simplicity of exposition.
One could replace it by piecewise continuity and consider left-hand and right-hand
limits of the turning points.

Recall that for ¢:I — R, the total variation of ¢ on an interval [a, b] is defined
to be

= — JNnm>la<lg, <z, <...< <b,.
var ¢ Sup{;lw(wm) plalin =1, a <z < fﬂn_}

We use ||, = [ |¢] to denote the L'-norm of ¢ with respect to Lebesgue measure.
T

Let BV: = {¢:I — C: vargp < oc}. One often considers the Banach space
(BV, ]| - |), where
el = varo +lol, -

Let %% be the Perron-Frobenius operator associated with f acting on (BV, || - |).

The spectrum of . in this setting has been studied by many people (Wong [1978],
Hofbauer-Keller {1982}, Rychlik [1983]). It has been shown that .’ is quasi-compact,
its spectral radius is equal to one, it has unity as an eigenvalue, and its essential spectral
radius is equal to

€ = lim (sup(1/|(f™'D"/" < 1/X.

[The derivative of f is not well-defined at the turning points, but both limits
fila) = lilm fi(x) and f'(a;) = liTm f'(x) exist; we replace implicitly each
xla; Ty

occurrence of f’(a,) by the maximum of these two limits.]

Let g, be an eigenfunction for the eigenvalue 1, with |gy|; = 1. Then g, is the
density of an invariant probability measure p,, for f. We assume that f has no other
absolutely continuous invariant probability measure, and that f is weak mixing with
respect to u,. Under these assumptions, it has been shown that 1 is the only point
of () on the unit circle, its generalized eigenspace is one-dimensional, and that
To: = sup{jz|:z € o(#),z # 1} < 1 measures the exponential rate of decay of
correlations for functions in BV (Hofbauer-Keller [1982], Keller [1984]).

In our analysis to follow, it will be necessary for us to work with some other
norms in BV. For 0 < v < 1, we define

ol = - vare + el .

Note that for any 0 < v < +' the norms || - || and || - ||, are equivalent.
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B. Type of Perturbation: Convolutions

As in Sect. 3.B, we consider a small random perturbation .2 of f by convolution.
Let us make the assumption that f(/) C [§,1 — 8], for some 6 > 0, so that we can
avoid the problems at the boundary of I when f is perturbed. (There are other ways
to deal with this.) We obtain as before a perturbed transfer operator %, acting on
(BV, || ID. As in the first two models, %, has 1 as an eigenvalue with eigenfunction
o, which is the density of an invariant probability measure £, for 2™ (Lemma 19 in
Keller [1982]).

It is known that not all piecewise expanding maps are stochastically stable. A
major difference between the situation here and that in Sect. 3 is that we do not have
the kind of “shadowing” property used in the proof of Lemma 5. More precisely, let
t=(t,...,t,) and f7 be as in Sect. 3.D. We count the smallest number of intervals
on which f” is monotone, for that measures in some way the number of “distinct
orbits” of f. In general /7' may have many more intervals of monotonicity than .
See Fig. 1 for an example in which a turning point fixed by f generates 2 — 2 extra
intervals of monotonicity for ftP This example is not stochastically stable, not even
in the sense of weak convergence of p, (see Keller [1982, Sect. 6] and also Blank
[1992]).

We remark that the “shadowing” property used in our proof of Lemma5 is not
the usual shadowing property: we deal only with orbits of finite length but require a
complete matching of backwards branches of the map. For more information on the
usual shadowing for interval maps see Coven-Kan-Yorke [1988].

C. Statement of our Results

From our discussion in the last subsection we see that our situation improves if the

turning points do not get mapped near themselves. We say that f has no periodic

turning point if f*(a;) # a, for all k > 1. The kernel 6, used in our convolutions is

called symmetric if 8 (x) = 6,(—x), V. The definition of © is given in Sect. 5.A.
We first state our result assuming that f has no periodic turning points

1 —
0.9}
0.8} ]
0.7} l
0.6} 1
0.5} !
0.4} ]
0.3t ]
0.2} |
0.1} l

1 iterate, epsilon = 0.04 ; 4 iterates, epsilon = 0.04

%2 02 06 08 1 04 045 0.5 5.55 0.6

Fig. 1. The fourth iterate of a map with a fixed turning point compared to the fourth iterate of a
perturbation
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Theorem 3. Let f:1 — [ be as described in Sect.5.A, with a unique absolutely
continuous invariant probability measure p, = oy dm, and let 2 be a small random
perturbation of [ of the type described in Sect. 5.B with invariant probability measure
0. dm. We assume also that f has no periodic turning points. Then
(1) The dynamical system (f, i) is stochastically stable under % in LY(dm), i.e.,
lo, — 00!, tends to 0 as e — 0.

Let 7, and T, be the rates of decay of correlations for f and 3% respectively for
test functions in BV .
2) 1f7'02 > O then 1, — 15 as € — 0.

We show in fact that
(3) if we let T = min{|z| .z € 0(X),|z| > VO, then there exists § > O such that the
spectrum of % restricted to {|z| > T — &}, converges to that of % (restricted to the
same domain) as & — 0.

Theorem 3'. Let [ and .2°° be as in Theorem 3, except that we do not require that f
has no periodic turning points. Then
(1) is true if either © < 1/2; or © < 2/3 and 8, is symmetric;
(2) and (3) are true if VO is replaced by \/26; or /O by \/(3/2)0 if 0, is symmetric.
The square roots arise from our use of balanced norms in the proofs of Lemmas 9
and 9. We do not know to what extent they are needed. We do not know either if we
can weaken the replacement of & by 26 [or (3/2)@] in Theorem 3’. However, it is
clear that some hypothesis on f or on the nature of our perturbations is necessary to
give the type of results we want (see Sect. 5.B). We remark also that the hypothesis
we use for proving stochastic stability is slightly weaker than that in Keller [1982,
Sect. 6] or Kifer [1988a, Chap. IV] (in the latter reference, only weak convergence is
shown and the assumption that A > 2 is implicitly used, see also Blank [1992]).

D. Dynamical Lemmas

The setting and notations are as in Sect. 5.A and 5.B. We have the obvious lemma:
Lemma 8. For fixedn > 1 and ¢ € L',
£ — F"pl; =0 as € - 0.
It is not true in general that var(%.¢ — Z¢) — 0 as € — 0 for a fixed p € BV.
We will use the notations ¢,, ., g = 1/|f'|, and f*, £ of Sect. 3.D. We also write
9*"W) = 9@) - 9fY . 9(f* '),
97 D) = 9w - 9(fryp - - 97y,

We let

M =#{k:k > 1,f%a,) € {ag,...,ap}},
and .Z = max M, < M + 1. Note that f is without periodic turning points if and
only if % < co.

Denote by &£, the “partition” of I into (closed) intervals of monotonicity of f™,
and by &2, ; the “partition” of I into (closed) intervals of monotonicity for f;'. Write
& =1n; U...Un,. By definition an element 7(j,, . ..,7,_,) of &, is an interval
of the form

n(jo, s ajn—l) = njo N f_l(nJl) n...n f_(ngl)(njn—l) ?
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with nonempty interior; and an element 7'(jy, - . ., j, ) of &, 7 is an interval of the
form

. . _ —(n—1
' Gos - dna1) = 3 O Fe @) NV G700y, )

with nonempty interior.

If .72 = 0, it is not difficuit to check that for fixed n > 1, there exists e(n) such
that, for all ¢ < £(n), the elements of &, ; are in bijection with those of &,. We
say that two such intervals 1(jg, ..., j,_,) € £, and 7'(g,---,J,—1) € &, ; are
associated and that iy’ is admissible. (Think of € as being so small that two associated
intervals are virtually the same.)

Consider now the case .# > 1. We fix n and assume that £ is sufficiently small
for this value of n. Consider fZ, where each |t,| < e. We associate elements of 2,
with those in Z,, 7 as before, but in general this will not account for all the elements
of £, r An element of £,  without a counterpart in &£, is called nonadmissible.

Let us look at how nonadmissible elements are created. Let a, be a turning point,
and let ¢ > O be the first time f7a; returns to the turning set. From the definition
of & we see that the two intervals adjacent to a, in £, 7 are admissible, but that

%4, may have two nonadmissible intervals adjacent to a,. This is due to the fact
that f9(a; —é, a,-+6) lies on one side of some turning point a,,, while fg(ai —0,a,+6)
may intersect both sides of a,,. We think of these two newly created nonadmissible
intervals as so short that their dynamics up to time n is tied to that of a,.

If there is no ¢/, with ¢ < ¢’ < n, such that f q/ai is in the turning set again, then in
%, ¢ these two nonadmissible intervals will be the only ones between the admissible
intervals nearest to a,. If, however, such a q' exists, then the same mechanism as
before may create two new nonadmissible intervals for & ., 7 In addition to that,
each one of the already existent nonadmissible intervals near a, may get divided
again, giving rise to a total of 22 4+ 2 = 6 nonadmissible intervals near a, in o%q, s

Continuing this reasoning, if a; returns to the turning set L times before time 7,
then the maximum number of nonadmissible intervals created near a, is 20440 — 2.
Also, if f¥z = a, for k < n, then an imprint of the picture at a, is made at z, giving
rise to other nonadmissible intervals between admissible ones in Z,, ;. These are the
only ways in which nonadmissible intervals are created.

To sum up, we have the following estimates. If f has no periodic turning points,
ie. if ./# < oo, then between any two admissible intervals in &, ; there are at most

27+ nonadmissible ones. If f has periodic turning points, then the maximum number
of contiguous nonadmissible intervals is at most 2" — 2.

We now “trim” the intervals of %, and the admissible intervals of Z,, -

Assume first that .# = 0 and ¢ is small enough. Let n € Z,, and ' € Z, rbe a
pair of associated intervals of monotonicity. We decompose 7 and ' into two parts
as follows: set G(n,7) = f™n 0 f2 and ng = (f*,)" NG, nly = (f2n) (G
and let ng = n\n, and 7z = n'\n;. We again say that the intervals 7 and n, are
associated and that ), and 15 are their respective co-respondents. We denote by B
the union of all co-respondents 1 and by B’ the union of all co-respondents 7.
Then, for fixed n the measures of B and B’ both tend to zero as ¢ tends to zero.

In the case where ./ > 1, we decompose associated intervals n € £ and
n € Z,pinto ' = ng U&p and n = ng Ung as described in the case ./ = 0.
We again say that 7, and 7, are associated and that 75 is the co-respondent of
Na. We define the co-respondents of 1y, to be €5 together with half of the non-
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admissible intervals immediately to the left and half of those to the right of 5’. Each
non-admissible interval is hence the co-respondent of a unique 7;,. We denote by B
the union of all the “bad” intervals 15, and by B’ the union of all co-respondents.

Lemma 9. Assume that f has no periodic turning points and let © < A*> < 1. Then,
there exist C > 0 and N, € Z* such that for each n > Ny there exists e(n) > 0 such
that for each € < e(n),

VL0 = L g < € AT
Recall that || - || 4» is the balanced norm with weight A™ (see Sect. 5.A).

Proof of Lemma 9. In the proof, & denotes a generic constant slightly larger than G.
(We will have to increase O slightly a finite number of times in the argument.) There
exists an n, such that g"(z) < ém if n > g,

We have

27 — ZF ol < 275 oxpdll + 1™ ex )l + (£ oxn gy — %7 (exps)Il -
(5.1
We start with the details of the proof for the first “bad” term |27 (¢xp/)|: the
second “bad” term is obtained by similar (more classical) bounds. The third term will
be considered in Egs. (5.10) to (5.14) below.
For each 7/ B ¢ B’ and for 2 € f7n' B, we have

FEOX ) @) = o) - 9 - 9",

where y; is the unique element of 7’ B such that J#yp) = x. It follows that

Bl < / o] <IN’ B) - (varp + |¢])), (5.2)
B

where (' B) denotes the length of the interval 7' B.
Summing (5.2) over all intervals 7' B, we get

| AE xS e - (Varp + pl)). (5.3)
For the variation, we have for any interval ' € ”%n,{’

var (e, ) < vnz}np sup g7 + sup [l - vna}rgtﬁ +2- sup fo] - sup g7 (5.4)
7 7 7 7

Were it not for the last term of (5.4), everything would be much easier! We will use
the following easily proved inequalities: if n is large enough, say n > n,, and ¢ is
sufficiently small, then for n' € £

T, i

SUp gy’ < or

7 3 (5.5)
var gt < on,

,’7/

(The first inequality is obvious, the second is proved by induction.)
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Set n, = max(ngy,n,) and assume first that n = n,. The interval 7/ B is a subset
of some 7’ € £,, rand is a co-respondent of a unique good interval 7/ B. From (5.4)
and (5.5), denoting by 7" the smallest interval containing 1’G and 7/, we obtain:
var L (px,y p) < var LR (ex,,)
< varg- " + (vz}/rcp + ir}/f|<p[) (Va}rgtf‘ +2- supg?)
7 n n n n

va}rgtﬁ +2- s:;/pg?

< varg - 460" + (") inf |
,'7// n !

ln™)
<varp-46" + D - l(n") inf|y] , (5.6)
' n
where D = sup [varg;® +2-supg;*1/l,,, with [, equal to the infimum of the
U'Eazmg ' 7’

lengths of admissible intervals in &,, . Note that when € tends to zero, [,,, tends to

infl(n), for n in %nz’ and observe that (") inf @] < [ |¢].
7" 't
Summing (5.6) over all intervals n’ B, and using the fact that the good intervals

7 & are overcounted at most 2% times, we get for n = n,,
var(F2(pxp)) < 4277 - O™ -var(p) + 27D - |yl ,
and, by increasing © slightly and assuming n, is large enough,

var(EMexp)) < Y, var(BHpx,))
mEL, §

< 0" var(p) + 27D - gl . (5.7

If n > n,, writt n = q-n, + 7 with r < n,. If a vector  of length 2n, is the
concatenation of two vectors 7 and ¥ of length n,, and &, { are the unique intervals in
%nz’ﬁ, respectively Z,  such that a given 7' € £, 7 is equal to (f*|)~'(€) N ¢,
then

21 n
L oxn) = Lt (Xe - Ly (Xe - 9))-

In particular

> ovarZ (e - LR 9D

ge%nz,ﬁ

< O™ var(F 2 (x  0) + 27D | Z 1 x - 9),

< O™ -var(F Hx, - )+ 27D - / o] .
¢

A standard induction argument yields
var £ (px ) < 6" .varp+ D' -yl , (5.8)

where D' is essentially 2D/(1 — &) (see e.g. Rychlik [1983, Lemma 7, and
Proposition 1]).
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The problem we have to deal with now is that the term D’ - ||, in (5.8) is not
small. To do this, we follow the “balancing” idea suggested to us by Collet [1991].
Not knowing which y to choose for now, we rewrite (5.3) and (5.8) using our new
norm [ - |

| Z7 ox gl S ¢y (v - varg + [y,
v var(Er(exp) < v- 0" varp+- D' - gl .
Together, they give
125 explly < (e + O™ +7- DY -floll, <@+ D -7 -llell,. (5.9
We now bound the difference |[£™px 1\ ) — Z7 (X gyl We first consider
the supremum norm to control the L' part. Let us fix some point z in fr{I\B"). By
assumption, there exist two nonempty sets of intervals ng , C I\B', and 15 ; C I\B
(7 =1,...,k(z)) such that x € f"(nG’j) = ft?(né;’k) for j = 1,...,k(x). Fixing
J and denoting by y, respectively yp, the unique n-preimage of = in n = ng
respectively ' = n’G’ ;» we have d(y, yp) = ¢, . and hence

J?

LX) (@) = 0PI - 9(f™ )
< (P + var ¢)- "W +c,.)

< ZMpx,) (@) + O™. var p+te,, ( var ¢ + sup |<,0{) (5.10)
nun’ ’ nuUn’

We have an analogous lower bound. Summing over j, we get:
"%ﬁ((PX(I\B’)) - "%n(SOX(I\B))tI < sup li'?(SDX([\B/)) (z) — ~%n(90X(I\B)) ()]
S@"var<p+cn76|<p|1. (5.1D)

The “trimming” was not really needed for the bound (5.11) on the L'-norm since
MBuU ftiL(B’ ) has a measure tending to zero as € tends to zero, but it will be crucial
for the next bound.

Consider an associated pair (1, ;) which for simplicity of notation we write as
(n,n"). Defining the bijection ¥:7' — 1 by ¥(y;) = y, we obtain

var( £ (px,y) — L7(ex,)) = var(ggox,, — (§"@) o ¥x,,)
< var((gF X,y — g7 (p o W)ih,) + var(gr (p o W)x,r — (4" @) o ¥X,y)

< var(gl(p — @ o W) + var (p(gf o ¥ — g™))

n n=¥n

+ 2 sup(g(p — 0 o W) -+ 2sup(ip(gf o ¥~ — g™))

o’ n

< sup g - var(p — o W) + vargy - sup ¢ — p o ¥|

' n' n' !

+sup |¢| - var(gf — g" o ¥) + varp - sup |gif — g" o V|

n n n n'
+2supgy - suplp — @ o | + 2supy| - sup |gF — g" o ¥

n n n 7

< 20" . var(p) + 6" - var  +suply| - c, . + varp - 20"
n'Un nUn’ n ’ n

+26™. var +2suplp|- ¢, (5.12)
nun n
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where we have used that f is £ in the last inequality to get var(gy — gto¥)<c, ..
7

We have also used the fact that ' — n as € — 0, so that n U is a connected
interval.

Summing the above inequalities over all elements of Z, , and noting that intervals
of the form 7 U/ intersect at most two of their neighbors, we get

var(£ "™ (ex p p) — LF (exnp)) < 6" - (varp + |¢],). (5.13)
From (5.11) and (5.13) we find:
H=%)n(‘PXI\B) - :%1@)(1\3')”7 <y O™ - (varp +gl)
<y 8"yl - (5.14)

Adding (5.9), the analogue of (5.9) for £™ and (5.14), and integrating over £, we

obtain B .
.27 — M|, < 20" + D'y + 416"

Remembering that A> > O, we see that if we let v = A", then the right side
of the above inequality is bounded above by C' - A™. This completes the proof of
Lemma9. L[]

Lemma9'. Let A be such that © < min(A,2A?). Then there exist C > 0 and N, € Z.*
such that for each n > N, there exists e(n) > 0 such that for each ¢ < £(n),

|0 = ™ < C- @A)

If each 0, is symmetric, then for A such that © < min(A, (3/2)A%) we have the better
inequality

£~ L Mg < C- (3 A)".

Proof of Lemma 9’. We shall follow the proof of Lemma 9, noting only the modifi-
cations which are necessary when .# = oo.
We see that the only important change occurs when we sum (5.6) over the intervals

7' B. Since each good interval 1’G has at most 2! co-respondents, the sum yields
for n = n,:
var(ZH(exp)) < 2+ (26)" -var(p) + 2" 'D - |g|, .

For general n = ¢ - n, + r, the same induction argument as in the proof of Lemma 9
allows us to replace Inequality (5.8) by

var £ (px ) < (20)" -varp+2" - D' - gl .
Inequality (5.9) hence becomes
1L xpll, < (¢ + QO + 72" D) - [l -
Inequality (5.14) does not have to be changed. Summing up, we have
1280 = Z7ll, < (@6)" +77'6" +42" D" ¢l

and hence the inequality as claimed.

Assume now that each ¢, is symmetric. Again inequality (5.14) does not have
to be changed, and it suffices to get a bound replacing (5.9). Let 1, be a trimmed
admissible interval for f7* which is associated with n; C 7 € &, , where a boundary
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point b of 7 is periodic. We claim that there exists a sequence S = {s,},_; ., of
signs s, =€ {+,—} such that 7, has at most 2*() nonadmissible co-respondents

N5, where 0 < k(S) < n is the numbers of coordinates ¢, of ¢ such that the sign of
t; = s,. Indeed, take s, to be + or —, depending on whether the 4™ iterate of b is
a local maximum or a local minimum respectively for f™. (For example, in the map
of Fig. 1, the sequence of signs is s, = + for all j.)

We first sum (5.6) over the bad intervals 7; for which k(n;) is equal to some
fixed k and call this partial sum A,. Since 6. is symmetric, we have

28
/95(t1)~~95(tn)f4k < <Z> o (@™ -varp+ D),

: 2 n k _ an _
hence, using 28 =3 1,
=\ k

var S (px ) < Z/Qs(tl)...Hs(tn)Ak <((3/2)-6)" -varp + (3/2)"D - ||, .
k

We thus obtain
122 ox )l < (¢, +((3/2)- O +~-GB/™ - D) |loll,,
<[G/2O)" +v-3/"DT- ¢l
which yields the claim. [

We have implicitly used the following inequality in the proofs of Lemma9 and
Lemma 9": assume that 1(z,t) is a function of two variables such that the function
t — 0_(ty)(z, ) is in L'(dm) for each fixed 2, then

1
var, ( / dt Qe(t)w(wyt)> < / dt 0,(t) var, i(x,t).

As in the first two models, we have not used in the proofs the expanding condition
as stated, but only the slightly weaker assumption © < 1.

E. Perturbation Lemmas for Abstract Operators: a Modified Version of Sect. 2

Because of the need to introduce the norms || - [, we need a slightly refined version
of Sect. 2. Again, (X, || - ||) is a complex Banach space, and {7, > 0} is a family
of bounded linear operators on X. We assume that 7|, satisfies conditions (A.1) and
(A.3) in Sect. 2, ie., o(Ty) = X, U 5, with

ky: =sup{lzliz € X} <inf{|z|:z € X} = 1kq,

and dim X, < oo. We further assume that J; can be written as the union of isolated
sets
D= UX . (A’.1)
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where V', , could be empty and dim X, , is at most finite. (The notations 7, o, 7 |,
X, o and X | have the obvious meanings.) Let

Ky =supflzl:iz € B}

We assume that there is another norm |- | on X such that || < ||z for all z, and
a family of norms || - [|,,, with 0 <y < 1 with

-l =l I+ A=l

(In particular || - | < [|- ]I, < |- [l and [ - [ <[} - |,.)
Condition (A.2) is replaced by the assumption that there exists x with (x,; /) <
& < K, such that for each large enough N € Z* there exists (V) such that for all
0 <e < e(N),
TN = T < RV @.2)

We shall need two sublemmas:
Sublemma 5. Assume (A.1), (A’.1), and (A.3). Then for any k{, < Ky, K| > K|, there
exists Ny such that for all n > Ny, any 0 <y < 1,and any x € X, y € Xl,O’
M Tzl = k)™ =]l
@ T3 vll., < ED Myl

Proof of Sublemma5. We prove (1). Since X, is finite dimensional, all norms are
equivalent. We choose IV, such that for all n > N, and x € X,

T3 2] = (ko)"[o  and || Tgz]] = (sp)" ||
The same inequality then holds for {| - ||, which is a weighted average of | - | and
-1 &

Sublemma 6. If (A.1), (A’.1), and (A.3) hold, then there exists a constant C' such that
forany 0 < v <1, we have ||my|, < C, ||m oll, < C, and ||m ][, <2C + 1.

Proof of Sublemma 6. For x € X, we have
Imoll., < [lmoz| < const|my| - |z| < const|mg] - ||, ,

where we have used again the fact that the norms | - | and || - || are equivalent on
the finite-dimensional space X,,. We proceed in the same way for |7 o||,. To finish,

observe that 7y + 7y o + 7 = I so that ||m ||, < ||Imgll., + |7 pll, + 1. O
We can now prove:

Lemma 1'. Assume (A.1), (A.3), (A1), and (A’.2), then the conclusion of Lemma I
from Sect. 2 is true.

Proof of Lemma I'. Let

Ky < K) <K <Ky <Ky <Ky,
Ky < Ky <Kk <K,

4
K11

K

/

<K .
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Let NV be large enough for various purposes. In particular, we require (see Sub-
lemma 5) that
z € Xo = Ty zll o = ()™l o
2 € X o= T3 allow < DV |zllon
re X, = IT5 )| < (&N [l
We let ¢ < (V) and will show that A ¢ o(T,) for A with &’ < |A] < &{ (f &' is
close enough to k).
We proceed as in Lemma 1, using || - |~ in the place of || - || and estimating

|R(TG, AM)|| .~ by projecting onto X;, X o, and X, |. It follows from our choice
of constants that for x € X, we have

17" — Azl . > const- (k)™ ||zl v
and for z € X],o’ we have
TN 2 — Az~ > const- (&)Y ||z||, .~ -

As for z € X, |, we have

N
K//
1T el v < ITall < WY [lall < { =2 ) flelon s
K

from which it follows that
| Ty 2 — Azl v > const- (&) ||z|| .~ -
These estimates together with Sublemma 6 give
1
R, AN <—. O
IR A < —

Note that, unlike the situation in Sect. 2, x’ cannot be taken arbitrarily near x.

Lemma 2 from Sect. 2 holds in the present setting, with convergence in the sense
of the || - || ~-norm (i.e., for any § > O there are N € Z* and e(N) such that, for
each € < e(N), ||my — 75|~ < 6), and the same proof.

Define T T
CY(e): = sup [Tew = Toz|
z€ Xy |$'
x7#0
and assume that
Clie)—0 ase—0. (A .4)

Lemma 3. Assume (A.1), (A.3), (A1), (A".2), (A’4), and that \T,| is uniformly
bounded. Then
U(Ts|xg) - U(T0|XO)

as e — 0.

Proof of Lemma 3'. As in Lemma 3, we show that X = graph(S,) for some linear
S.: X, — X, with ||S,|,~ = 0as N — oo and € — 0, € < &(N).

Define T.: X, — X, as before. To prove our claim, it suffices to show that
T, —Ty| — 0ase — 0.
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Now for z € z,, with |z| = 1,

|T5x = Thz| < [mpl - (T — Tyz| + T, S.x)
< mol - (CF (&) + |T,| - 1S,

and it only remains to show that |S,z| — O. This is true because

Sz < IS llaw |2l o
< IS v (8N - const-jz| + (1 — &™) - Jz)). O

Proof of Theorem3. Obviously we wish to apply the results above to T, = .%,
T. = %4, X = BV etc. We will indicate how to prove assertion (3). Let
O < @ < @" be such that ©” is arbitrarily near ©. We let

I ={z€0(£)lz| <O},
Yio={2€0(£)0 < |z < very,
Ty ={z € o(#):]2| 2 VO"}.

and choose % = A near v/6" such that © < k2 < k/6". The norm of %, : L' — L!
is equal to 1, and it follows from Lemma 9 that .%, is quasi-compact so that g, € BV
(see e.g. Keller [1982, p. 315]). Theorem 3 hence follows from Lemma 3’ and the
results stated in Sect. 5.A and 5.B.

(The fact that the L'-norm is strictly speaking only a norm when one quotients
out functions of bounded variation ¢ for which |p]; = 0 is not a problem, see
Proposition 1 in Baladi-Keller [1990].) O

Proof of Theorem3'. Again we prove (3). We let k;; < @' be as above. Here,

however, we consider only s, > v/20" and let x = A be very slightly smaller than
ko/2. Then © < 2x* < & which is the hypothesis of Lemma 9’. Lemma 9’ does not
yield (A’.2) but only the weaker bound

TN = TV || v < @)Y

However, since we can assume that the constant x’ in the proof of Lemma 1’ satisfies
Ky < K < 2K < K' < Ky, we obtain an improved version of (5.15):

const(||moll,on + {7y oll v + (1711l 1
(kN T e

|RT@y AN ,ov <

The other requirement on & in (A’.2), namely that x,; < Kk, is also satisfied. The
conclusion of Lemma 1’ is thus still valid. (The proof of Lemma 2 can be modified
in a similar fashion.) We finish as in Theorem 3.

If the functions §_ are symmetric, we can replace each factor 2 by 3/2 in the above
choices.
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