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Abstract—In-band full-duplex (FD) operation is practically
more suited for short-range communications such as WiFi and
small-cell networks, due to its current practical limitations on
the self-interference cancellation. In addition, cell-free massive
multiple-input multiple-output (CF-mMIMO) is a new and scal-
able version of MIMO networks, which is designed to bring
service antennas closer to end user equipments (UEs). To achieve
higher spectral and energy efficiencies (SE-EE) of a wireless
network, it is of practical interest to incorporate FD capability
into CF-mMIMO systems to utilize their combined benefits.
We formulate a novel and comprehensive optimization problem
for the maximization of SE and EE in which power control,
access point-UE (AP-UE) association and AP selection are jointly
optimized under a realistic power consumption model, resulting
in a difficult class of mixed-integer nonconvex programming. To
tackle the binary nature of the formulated problem, we propose
an efficient approach by exploiting a strong coupling between
binary and continuous variables, leading to a more tractable
problem. In this regard, two low-complexity transmission designs
based on zero-forcing (ZF) are proposed. Combining tools from
inner approximation framework and Dinkelbach method, we de-
velop simple iterative algorithms with polynomial computational
complexity in each iteration and strong theoretical performance
guaranteed. Furthermore, towards a robust design for FD CF-
mMIMO, a novel heap-based pilot assignment algorithm is
proposed to mitigate effects of pilot contamination. Numerical
results show that our proposed designs with realistic parameters
significantly outperform the well-known approaches (i.e., small-
cell and collocated mMIMO) in terms of the SE and EE. Notably,
the proposed ZF designs require much less execution time than
the simple maximum ratio transmission/combining.
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I. INTRODUCTION

Peak data rates in the order of tens of Gbits/s, massive con-

nectivity and seamless area coverage requirement along with

different use cases are expected in beyond 5G networks [2]–

[4]. Multiple-antenna technologies, which offer extra degrees-

of-freedom (DoF) have been a key element to provide huge

spectral efficiency gains of modern wireless communication

systems [5], [6]. However, multiple-antenna systems based on

half-duplex (HD) radio will apparently reach their capacity

limits in near future due to under-utilization of radio resources.

In addition, the use of multiple-antenna also causes a serious

concern over the global climate and tremendous electrical costs

due to the number of associated radio frequency (RF) ele-

ments [7]. Consequently, spectral efficiency (SE) and energy

efficiency (EE) will certainly be considered as major figure-

of-merit in the design of beyond 5G networks.

In-band full-duplex (FD) has been envisaged as a key

enabling technology to improve the SE of traditional wireless

communication systems [8], [9]. By enabling downlink (DL)

and uplink (UL) transmissions on the same time-frequency

resource, FD radios are expected to increase the SE of a

wireless link over its HD counterparts by a factor close to

two [10], [11]. The main barrier in implementing FD is the

self-interference (SI) that leaks from the transmitter to its

own receiver on the same device. Fortunately, recent advances

in active and passive SI suppression techniques have been

successful to bring the SI power at the background noise

level [12], [13], thereby making FD a realistic technology

for modern wireless systems. However, there still exists a

small, but not negligible, amount of SI due to imperfect SI

suppression, referred to as residual SI (RSI). As a result, FD-

enabled base station (BS) systems have been widely studied in

small-cell (SC) cellular networks [14]–[22], where the residual

SI can be further handled by power control algorithms.

Recently, a new concept of multiple-input multiple-output

(MIMO) networks and distributed antenna systems (DAS),

called cell-free massive MIMO (CF-mMIMO), has been pro-

posed to overcome the inter-cell interference, as well as

to provide handover-free and balanced quality-of-experience

(QoE) services for cell-edge user equipments (UEs) [5], [23]–

[28]. In CF-mMIMO, a very large number of access point (AP)

antennas are distributed over a wide area to coherently serve

numerous UEs in the same resources; this inherits key charac-

teristics of collocated massive MIMO (Co-mMIMO) networks,

such as favorable propagation and channel hardening [29],

[30]. CF-mMIMO has significantly better performances in
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terms of SE and EE, compared to small-cell [23] and Co-

mMIMO networks [28], respectively. It can be easily foreseen

that performance gains of CF-mMIMO come from the joint

processing of a large number of distributed APs at a central

processing unit (CPU). The CPU is essentially the same as

the edge-cloud computing in cloud radio access networks (C-

RANs). Thus, C-RAN can be viewed as an enabler of CF-

mMIMO [5].

A. Motivation

From the aforementioned reasons, it is not too far-fetched

to envisage a wireless system employing the FD technology in

CF-mMIMO, called FD CF-mMIMO. It is expected to reap all

key advantages of FD and CF-mMIMO, towards enhancing the

SE and EE performances of future wireless networks. More

importantly, FD CF-mMIMO can be considered as a practical

and promising technology for beyond 5G networks since low-

power and low-cost FD-enabled APs are well suited for short-

range transmissions between APs and UEs. Despite the clear

benefits of these two technologies, FD CF-mMIMO poses

the following obvious challenges on radio resource allocation

problems: (i) Residual SI still remains a challenging task in

the design of FD CF-mMIMO, having a negative impact on its

potential performance gains; (ii) A large number of APs and

legacy UEs result in stronger inter-AP interference (IAI) and

co-channel interference (CCI, caused by the UL transmission

to DL UEs), compared to traditional FD cellular networks

[14]–[22]; (iii) FD CF-mMIMO increases the network power

consumption due to additional number of APs. It has been

noted that low power APs consume about 30% of the total

power consumption of a mobile network operator [31]. These

motivate us to investigate a joint design of precoder/receiver,

AP-UE association and AP selection along with an efficient

transmission strategy to attain the optimal SE and EE perfor-

mances of FD CF-mMIMO systems.

B. Review of Related Literature

FD small-cell systems have been investigated in many prior

works. For example, the authors in [15] studied a single-

cell network with the aim of maximizing the SE under the

assumption of perfect channel state information (CSI). This

work was generalized in [16] where user grouping and time

allocation were jointly designed. To accelerate the use of FD

operation, [17] proposed a half-array antenna mode selection

to mitigate the effect of residual SI and CCI by serving UEs

in two separate phases. This design is capable of enabling

hybrid modes of HD and FD to utilize a full-array antenna

at the BS. The application of FD to emerging subjects has

also been investigated, including FD non-orthogonal multiple

access [18], FD physical layer security [19] and FD wireless-

powered MIMO [20], [32]. The SE maximization for FD

multi-cell networks was considered in [21] and with the

worst-case robust design in [22], where coordinated multi-

point transmission was adopted. It is widely believed that

this interference-limited technique can no longer provide a

high edge throughput and requires a large amount of backhaul

signaling to be shared among BSs. In addition, the common

transmission design used in these works is linear beamforming

for DL and minimum mean square error and successive inter-

ference cancellation (MMSE-SIC) receiver for UL. Although

such a design can provide a very good performance, it is only

suitable for networks of small-to-medium sizes.

CF-mMIMO has recently received considerable attention. In

particular, the work in [23] first derived closed-form expres-

sions of DL and UL achievable rates which confirm the SE

gain of the CF-mMIMO over a small-cell system. Assuming

mutually orthogonal pilot sequences assigned to UEs, [24]

analyzed impacts of the power allocation for DL transmission

using maximum ratio transmission (MRT) and zero-forcing

(ZF). The results showed that the achievable per-user rates

of CF-mMIMO can be substantially improved, compared to

those of small-cell systems. To further improve the network

performance of CF-mMIMO, a beamformed DL training was

proposed in [25]. The authors in [26] examined the problem

of maximizing the minimum signal-to-interference-plus-noise

ratio (SINR) of UL UEs subject to power constraints. More

recently, the EE problem for DL CF-mMIMO was investigated

using ZF in [27] and MRT in [28], by taking into account the

effects of power control, non-orthogonality of pilot sequences,

channel estimation and hardware power consumption. Two

simple AP selection schemes were also proposed in [28] to

reduce the backhaul power consumption. The conclusion in

these works was that ZF and MRT beamforming methods can

offer excellent performance when the number of APs is large.

Despite its potential, there is only a few attempts on

characterizing the performance of FD CF-mMIMO in the

literature. In this regard, the authors in [33] analyzed the

performance of FD CF-mMIMO with the channel estimation

taken into account, where all APs operate in FD mode. By a

simple conjugate beamforming/matched filtering transmission

design, it was shown that such a design requires a deep SI

suppression to unveil the performance gains of the FD CF-

mMIMO system over HD CF-mMIMO one. Tackling the

imperfect CSI and spatial correlation was studied in [34],

showing that FD CF-mMIMO with a genetic algorithm-based

user scheduling strategy is able to help alleviating the CCI and

obtaining a significant SE improvement. However, the effects

of SI, IAI and CCI are not fully addressed in the above-cited

works, leading to the need of optimal solutions, which is the

focus of this paper.

C. Research Gap and Main Contributions

Though in-depth results of multiple-antenna techniques

were presented for HD [5] and FD operations [14]–[22], they

are not very practical for FD CF-mMIMO due to the large size

of optimization variables. In addition, a direct application of

CF-mMIMO in [23]–[28] to FD CF-mMIMO systems would

result in a poor performance since the additional interference

(i.e., residual SI, IAI and CCI) is strongly involved in both

DL and UL transmissions. In FD CF-mMIMO systems, the

number of APs is large, but still finite, and thus the effects

of SI, IAI and CCI are acute and unavoidable. These issues

have not been fully addressed in [33], [34]. Meanwhile, the

EE performance in terms of bits/Joule is considered as a key
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performance indicator for green communications [31], which

is even more important in FD CF-mMIMO systems due to a

large number of deployed APs. To the authors’ best knowl-

edge, the EE maximization, that takes into account the effects

of imperfect CSI, power allocation, AP-DL UE association,

AP selection, and load-dependent power consumption, has not

been previously studied for FD CF-mMIMO.

In the above context, this paper considers an FD CF-

mMIMO system under time-division duplex (TDD) operation,

where FD-enabled multiple-antenna APs simultaneously serve

many UL and DL UEs on the same time-frequency resources.

The network SE and EE of the FD CF-mMIMO system are

investigated under a relatively realistic power consumption

model. Furthermore, we propose an efficient transmission

design for FD CF-mMIMO to resolve practical restrictions

given above. More precisely, power control and AP-DL UE

association are jointly optimized to reduce network interfer-

ence. Inspired by the ZF method [35], two simple, but efficient

transmission schemes are proposed. It is well-known that in

massive MIMO networks, ZF-based schemes achieve close

performance to the MMSE ones but with much less complexity

[30]. In contrast with [33] and [34], AP selection is also taken

into account to preserve the hardware power consumption. We

note that the EE objective function strikes the balance between

the SE and total power consumption. The main contributions

of this paper are summarized as follows:

• Aiming at the optimization of SE and EE, we introduce

new binary variables to establish AP-DL UE association

and AP selection. This design not only helps mitigate

network interference (residual SI, IAI and CCI) but also

saves power consumption (i.e., some APs can be switched

off if necessary). In our system design, APs can be

automatically switched between FD and HD operations,

which allows to exploit the full potential of FD CF-

mMIMO.

• We formulate a generalized maximization problem for

SE and EE by incorporating various aspects such as joint

power control, AP-DL UE association and AP selection,

which belongs to the difficult class of mixed-integer

nonconvex optimization problem. To develop an unified

approach to all considered transmission schemes, we first

provide fundamental insights into the structure of the

optimal solutions of binary variables, and then transform

the original problem into a more tractable form.

• Two low-complexity transmission schemes for DL/UL are

proposed, namely ZF and improved ZF (IZF) by employ-

ing principal component analysis (PCA) for DL and SIC

for UL. The latter based on the orthonormal basis (ONB)

is capable of canceling multiuser interference (MUI) and

further alleviating residual SI and IAI. We then employ

the combination of inner convex approximation (ICA)

framework [36], [37] and Dinkelbach method [38] to

develop iterative algorithms of low-computational com-

plexity, which converge rapidly to the optimal solutions as

well as require much lower execution time than the simple

maximum ratio transmission/combining (MRT/MRC).

• Towards practical applications, we further consider a

robust design under channel uncertainty, where the UL

training is taken into account. To this end, we develop

a novel heap-based pilot assignment algorithm to reduce

both the pilot contamination and training complexity.

• Extensive numerical results confirm that the proposed

algorithms greatly improve the SE and EE performance

over the current state-of-the-art approaches, i.e., SC-

MIMO and Co-mMIMO under both HD and FD oper-

ation modes. It also reveals the effectiveness of joint AP

selections in terms of the achieved EE performance.

D. Paper Organization and Notation

The remainder of this paper is organized as follows. The FD

CF-mMIMO system model is introduced in Section II. The

formulation of the optimization problem and the derivation of

its tractable form are provided in Section III. Two ZF-based

transmission designs along the proposed algorithm are pre-

sented in Sections IV and V. The pilot assignment algorithm is

presented in Section VI. Numerical results are given in Section

VII, while Section VIII concludes the paper.

Notation: Bold lower and upper case letters denote vectors

and matrices, respectively. XT and XH represent normal

transpose and Hermitian transpose of X, respectively. Tr(·),
‖ · ‖ and | · | are the trace, Euclidean norm and absolute value,

respectively. a � b stands for the element-wise comparison

of vectors. diag(a) returns the diagonal matrix with the main

diagonal constructed from elements of a. C and R denote

the space of complex and real matrices, respectively. Finally,

x ∼ CN (0, σ2) and x ∼ N (0, σ2) represent circularly

symmetric complex and real-valued Gaussian random variable

with zero mean and variance σ2, respectively.

II. SYSTEM MODEL

A. Transmission Model

Fig. 1. An illustration of the full-duplex cell-free massive MIMO system.

An FD CF-mMIMO system operated in TDD mode is

considered, where the set M , {1, 2, · · · ,M} of M =
|M| FD-enabled APs simultaneously serves the sets K ,

{1, 2, · · · ,K} of K = |K| DL UEs and L , {1, 2, · · · , L}
of L = |L| UL UEs in the same time-frequency resource, as

illustrated in Fig. 1. The total number of APs’ antennas is

N =
∑

m∈MNm where Nm is the number of antennas at AP

m, while each UE has a single-antenna. We assume that APs,

DL and UL UEs are randomly placed in a wide area. All APs
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are equipped with FD capability by circulator-based FD radio

prototypes [12], [13], which are connected to the CPU through

perfect backhaul links with sufficiently large capacities (i.e.,

high-speed optical ones) [23]. In this paper, we focus on slowly

time-varying channels, and thus, conveying the CSI via the

backhaul links occurs less frequently than data transmission.

We assume that data transmission is performed within a

coherence interval, which is similar to TDD operation in the

context of massive MIMO [30]. Based on the joint processing

at the CPU, the message sent by an UL UE is decoded by

aggregating the received signals from all active APs due to

the UL broadcast transmission. In addition, APs are geo-

graphically distributed in a large area, and thus, each DL UE

should be served by a subset of active APs with good channel

conditions [23], [28]. This is done by introducing new binary

variables to establish AP-DL UE associations. Such a design

offers the following two obvious advantages: (i) improving

the SE for a given system bandwidth and power budget of

APs, while still ensuring the quality of service (QoS) for all

UEs; (ii) managing the network interference more effectively.

For notational convenience, let us denote the m-th AP, k-th

DL UE and ℓ-th UL UE by APm, Udk and Uuℓ , respectively. The

channel vectors and matrices from APm → Udk, Uuℓ → APm,

Uuℓ → Udk and APm′ → APm, ∀m′ ∈ M are denoted by hd
km ∈

C
1×Nm , hu

mℓ ∈ C
Nm×1, gccikℓ ∈ C and GAA

mm′ ∈ C
Nm×N

m′ ,

respectively. Note that GAA
mm is the SI channel at APm, while

GAA
mm′ , ∀m 6= m′ is referred to as the inter-AP interference

(IAI) channel since UL signals received at APm are corrupted

by DL signals sent from APm′ . The reason for this is that the

SI signal can only be suppressed at the local APs [12], [13].

To differentiate the residual SI and IAI channels, we model

GAA
mm′ as follows:

GAA
mm′ =

{ √

ρRSImmGSI
mm, if m = m′,

GAA
mm′ , otherwise,

where GSI
mm denotes the fading loop channel at APm which

interferes the UL reception due to the concurrent DL trans-

mission, and ρRSImm ∈ [0, 1) is the residual SI suppression

(SiS) level after all real-time cancellations in analog-digital

domains [10], [17], [19], [20]. The fading loop channel GSI
mm

can be characterized as the Rician probability distribution with

a small Rician factor [39], while other channels are generally

modeled as h =
√
βḧ with h ∈ {GAA

mm′ ,hd
km,h

u
mℓ, g

cci
kℓ },

accounting for the effects of large-scale fading β (i.e., path

loss and shadowing) and small-scale fading ḧ whose elements

follow independent and identically distributed (i.i.d.) CN (0, 1)
random variables (RVs).

1) Downlink Data Transmission

Let us denote by xdk and xuℓ the data symbols with unit

power (i.e., E
[
|xdk|2

]
= 1 and E

[
|xuℓ |2

]
= 1) intended for

Udk and sent from Uuℓ , respectively. The beamforming vector

wkm ∈ C
Nm×1 is employed to precode the data symbol xdk

of Udk in the DL, while pℓ denotes the transmit power of Uuℓ in

the UL. After performing a joint radio resource management

algorithm at the CPU, the data of Udk is routed to APm via

the m-th backhaul link only if ‖wkm‖ > 0. To do so, let us

introduce new binary variables αkm ∈ {0, 1}, ∀k ∈ K,m ∈

M to represent the association relationship between APm and

Udk, i.e., αkm = 1 implying that Udk is served by APm and

αkm = 0, otherwise. Using these notations, the signal received

at Udk can be expressed as

ydk =
∑

m∈M
αkmhd

kmwkmx
d
k +

∑

ℓ∈L

√
pℓg

cci
kℓ x

u
ℓ

︸ ︷︷ ︸

CCI

+
∑

m∈M

∑

k′∈K\{k}
αk′mhd

kmwk′mx
d
k′

︸ ︷︷ ︸

MUI

+nk, (1)

where nk ∼ CN (0, σ2
k) is the additive white Gaussian noise

(AWGN), and σ2
k is the noise variance. By treating MUI and

CCI as noise, the received SINR at Udk is given as

γdk(w,p,α) =

∑

m∈M αkm|hd
kmwkm|2

χk(w,p,α)
, (2)

where χk(w,p,α) ,
∑

m∈M

∑

k′∈K\{k} αk′m|hd
kmwk′m|2+

∑

ℓ∈L pℓ|gccikℓ |2 + σ2
k, w , [wH

1 , · · · ,wH
K ]H ∈ C

NK×1 with

wk , [wH
k1, · · · ,wH

kM ]H ∈ C
N×1, p , [p1, · · · , pL]T ∈

R
L×1, and α , {αkm}∀k∈K,m∈M. We note that in (2), αkm

is equal to α2
km for any αkm ∈ {0, 1}.

2) Uplink Data Transmission
The received signal at APm can be expressed as

y
u
m =

∑

ℓ∈L

√
pℓh

u
mℓx

u
ℓ

+

∑

m′∈M

∑

k∈K
αkm′G

AA
mm′wkm′x

d
k

︸ ︷︷ ︸

RSI + IAI

+nm, (3)

where nm ∼ CN (0, σ2
API) is the AWGN. The CPU aggregates

the received signals from all APs, and the Uuℓ’s signal is then

extracted by using a specific receiver. In general, let us denote

the receiver vector to decode the Uuℓ’s message received at

APm by amℓ ∈ C
1×Nm , and thus, the received signal of Uuℓ

at APm can be expressed as rumℓ = amℓy
u
m. Consequently,

the post-detection signal for decoding the Uuℓ’s signal is ruℓ =
∑

m∈M rumℓ. By defining hu
ℓ ,

[
(hu

1ℓ)
H , · · · , (hu

Mℓ)
H
]H ∈

C
N×1, ḠAA

m′ ,
[
(GAA

1m′)H , · · · , (GAA
Mm′)H

]H ∈ C
N×N

m′ ,

aℓ = [a1ℓ, · · · ,aMℓ] ∈ C
1×N and n , [nH

1 , · · · ,nH
M ]H ∈

C
N×1, the SINR in decoding Uuℓ’s message is given as

γuℓ (w,p,α) =
pℓ|aℓhu

ℓ |2∑

ℓ′∈L\{ℓ} pℓ′ |aℓhu
ℓ′ |2 + IAA

ℓ + σ2
AP‖aℓ‖2

, (4)

where IAA
ℓ ,

∑

m′∈M

∑

k∈K αkm′ |aℓḠAA
m′wkm′ |2 is the ag-

gregation of RSI and IAI.

B. Power Consumption Model

We now present a power consumption model that accounts

for power consumption for data transmission and baseband

processing, as well as circuit operation [40], [41]. As pre-

viously discussed, we introduce new binary variables µm ∈
{0, 1}, ∀m ∈ M to represent operation statuses of APm. In

particular, APm is selected to be in the active mode if µm = 1,

and switched to sleep mode otherwise. With µ , {µm}∀m∈M,

the total power consumption is generally written as

PT(w,p,α,µ) = PD(w,p,α,µ) + PC(µ), (5)
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where PD(w,p,α,µ) is the power consumption for data

transmission and baseband processing, and PC(µ) is the power

consumption for circuit operation; these are detailed as fol-

lows:

• The power consumption PD(w,p,α,µ) can be sub-

categorized into three main types as:

PD(w,p,α,µ) =
∑

m∈M

µm

νAPm

∑

k∈K
‖wkm‖2 +

∑

ℓ∈L

pℓ
νuℓ

︸ ︷︷ ︸

radiated power

+B · FSE(w,p,α) · P bh

︸ ︷︷ ︸

load-dependent power

+
∑

m∈M

∑

k∈K
µmαkmP

d
km + L

∑

m∈M
µmP

u
m

︸ ︷︷ ︸

baseband power

.

(6)

The radiated power is the power consumption for the

transmitted data between APs and UEs, where νAPm ∈
[0, 1] and νuℓ ∈ [0, 1] are the power amplifier (PA)

efficiencies at APm and Uuℓ depending on the design

techniques and operating conditions of the PA [31].

The load-dependent power is the power consumption

spent to transfer the data between APs and CPU in the

backhaul which is proportional to the achievable sum

rates [41], where B, FSE(w,p,α) and P bh are the system

bandwidth, total SE and average backhaul traffic power of

all links, respectively. The baseband power is the required

power for data processing, waveform design, sync and

precoder/receiver computing for Udk (denoted by P d
km) and

per-UL-user reception (denoted by P u
m). It is obvious that

when µm = 0, P d
km = P u

m = 0.

• The power consumption PC(µ) can be modeled as

PC(µ) =
∑

m∈M

µmP
a
APm

+
∑

m∈M

(1− µm)P s
APm

+
∑

m∈M

P cir
APm

+
∑

k∈K

P d,cir
k +

∑

ℓ∈L

P u,cir
ℓ , (7)

where P a
APm

and P s
APm

are the fixed powers to keep APm

in the active and sleep modes, respectively; P cir
APm

, P d,cir
k

and P u,cir
ℓ are the powers required for circuit operation

at APm, DL and UL UEs, respectively.

III. OPTIMIZATION PROBLEM DESIGN

A. Original Problem Formulation

From (2) and (4), the SE in nats/s/Hz is given as

FSE

(
w,p,α

)
,
∑

k∈K

R
(
γdk(w,p,α)

)
+
∑

ℓ∈L

R
(
γuℓ (w,p,α)

)
,

(8)

where R(x) , ln(1 + x). The EE in nats/Joule is defined as

the ratio between the sum throughput (nats/s) and the total

power consumption (Watt):

FEE

(
w,p,α,µ

)
,
B · FSE(w,p,α)

PT(w,p,α,µ)
. (9)

To lighten the notations, the system bandwidth B will be omit-

ted in the derivation of the algorithms in this paper, without

affecting the optimal solutions. By introducing the constant

η ∈ {0, 1} for the objective-function selection between the SE

and EE, the utility function can be written as

F (w,p,α,µ) = ηFSE(w,p,α) + (1− η)FEE(w,p,α,µ).

It is worth mentioning that if η = 1 (η = 0, respectively), we

arrive at the SE maximization problem (the EE maximization,

respectively).

Assuming perfect CSI between APs and UEs, we study a

joint design of power control, AP-DL UE association and AP

selection, which is formulated as

max
w,p,α,µ

F (w,p,α,µ) (10a)

s.t. µm ∈ {0, 1}, ∀m ∈ M, (10b)

αkm ∈ {0, 1}, ∀k ∈ K,m ∈ M, (10c)

‖wkm‖2 ≤ αkmP
max
APm

, ∀k ∈ K,m ∈ M, (10d)
∑

k∈K
αkm‖wkm‖2 ≤ µmP

max
APm

, ∀m ∈ M, (10e)

0 ≤ pℓ ≤ Pmax
ℓ , ∀ℓ ∈ L, (10f)

R
(
γdk(w,p,α)

)
≥ R̄d

k, ∀k ∈ K, (10g)

R
(
γuℓ (w,p,α)

)
≥ R̄u

ℓ , ∀ℓ ∈ L. (10h)

Constraint (10d) is used to express the AP-UE association,

while constraints (10e) and (10f) imply that the transmit pow-

ers at APm and Udk are limited by their maximum power budgets

Pmax
APm

and Pmax
ℓ , respectively. Moreover, constraints (10g) and

(10h) are used to ensure the predetermined rate requirements

R̄d
k and R̄u

k for Udk and Uuℓ , respectively. We can see that

the objective (10a) is nonconcave and the feasible set is also

nonconvex. Hence, problem (10) is a mixed-integer nonconvex

optimization problem due to binary variables involved, which

is generally NP-hard.

B. Tractable Problem Formulation for (10)

The major difficulty in solving problem (10) is due to

binary variables involved. It is not practical to try all pos-

sible AP-DL UE associations and AP selections, especially

for networks of large size. In addition, the strong coupling

between continuous variables (w,p) and binary variables

(α,µ) makes problem (10) even more difficult. Consequently,

the problem is intractable and it is impossible to solve it

directly. Even for a fixed (α,µ), a direct application of the

well-known Dinkelbach algorithm [38] for (10) still involves

a nonconvex problem, and thus, its convergence may not

be always guaranteed [7]. In what follows, we present a

tractable form of (10) by exploiting the special relationship

between continuous and binary variables, based on which the

combination of ICA method and Dinkelbach transformation

can be applied to solve it efficiently for various transmission

strategies.

1) Binary Reduction of α

The binary variables α and the continuous variables w are

strongly coupled, as revealed by the following lemma.

Lemma 1: If problem (10) contains the optimal solution

α∗
km = 0 for some (k,m), it also admits wkm = 0 as an
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optimal solution for the corresponding beamforming vector.

Proof: Please see Appendix A.

From Lemma 1, it is straightforward to see that constraint

(10d) is naturally satisfied at the optimal point. In particular,

when αkm = 1 (or αkm = 0), constraint (10d) is addressed

by tighter constraint (10e) (or by Lemma 1). In connection to

Lemma 1, we establish the following main result.

Theorem 1: For any k ∈ K and m ∈ M, let the null

space (including zero vector) of hd
km be ker(hd

km) and u ∈
U ,

{
(w,p,α,µ)|wkm ∈ ker(hd

km)
}
⊆ F , where F is the

feasible set of (10). The following state is obtained:

ũ = argmax
u∈U

F (u) = (w,p,α,µ|wkm = 0 & αkm = 0).(11)

Proof: Please see Appendix B.

The merits of Theorem 1 are detailed as follows. First,

even some possible values of wkm ∈ ker
(
hd
km

)
can make

|hd
kmwkm|2 to be null, the zero vector wkm = 0 is the best

value among them. Second, there exists only one of two pairs

for the beamforming vector and AP-DL UE association in

the optimal solution, which is (w∗
km, α

∗
km) ∈

{
(0, 0), (w̄, 1)

}

with w̄ /∈ ker
(
hd
km

)
. Without loss of optimality, we can

replace α by 1 in the component containing the compound

of α and w, and use a substituting function of w for α

in others. Particularly, we define the 2-tuple of continuous

variables as C , {w,p}, and Γd ,
{
γdk(C,1)|∀k ∈ K

}
and

Γu ,
{
γuℓ (C,1)|∀ℓ ∈ L

}
with all entries of α being replaced

by ones.

In short, problem (10) can be rewritten as

max
C,{w,p},µ

ηF̄SE

(
Γd,Γu

)
+ (1− η)F̄EE

(
Γd,Γu, C,µ

)
(12a)

s.t.
∑

k∈K

‖wkm‖2 ≤ µmP
max
APm

, ∀m ∈ M, (12b)

R
(
γdk(C,1)

)
≥ R̄d

k, ∀k ∈ K, (12c)

R
(
γuℓ (C,1)

)
≥ R̄u

ℓ , ∀ℓ ∈ L, (12d)

(10b), (10f), (12e)

where F̄SE

(
Γd,Γu

)
, RΣ(Γd)+RΣ(Γu), F̄EE

(
Γd,Γu, C,µ

)
,

F̄SE

(
Γd,Γu

)

P̄T(C,µ)
, and P̄T(C,µ) , PT(C, fspr(w), µ) with RΣ(X ) =

∑

x∈X R(x). The signal-power ratio function is defined as

fspr : w → rsp ,
[
rsp
(
wkm,h

d
km|w(κ)

k ,hd
k

)]

∀k∈K,m∈M
, (13)

with hd
k , [hd

k1, · · · ,hd
kM ] ∈ C

1×N , and

rsp
(
x1, c1|x2, c2

)
,

|c1x1|2
|c2x2|2 + ǫ

, (14)

where ǫ is a very small real number added to avoid a numerical

problem when APm turns to sleep mode, and w
(κ)
k is a

feasible point of wk at the κ-th iteration of an iterative algo-

rithm presented shortly. αkm is correspondingly replaced by

rsp
(
wkm,h

d
km|w(κ)

k ,hd
k

)
in PT(C, fspr(w),µ). We note that

(14) is considered as a soft converter from the binary variables

into continuous ones, which also indicates the quality of

connection between an AP and a UE. As a result, 0 � rsp � 1

is considered as an estimate of α after solving problem (12),

i.e.,

α∗
km = B

(
rsp
(
w∗

km,h
d
km|w∗

k,h
d
k

)
, ̟
)
, ∀k ∈ K,m ∈ M, (15)

where

B(x,̟) ,

{

1, if x > ̟,

0, if x ≤ ̟,
(16)

and the per-AP power signal ratio ̟ is a small number

indicating x ≈ 0 if x ≤ ̟, and w∗
km is the optimal solution

of wkm.

Remark 1: By Lemma 1, it is true that

rsp
(
w∗

km,h
d
km|w∗

k,h
d
k

)
≤ ̟ yields w∗

km → 0. Without loss

of optimality, we can omit α in the following derivations.

2) Binary Reduction of µ

The binary variable µ is mainly involved in (5). Using

Lemma 1, we have the following result.

Theorem 2: By treating µm, ∀m ∈ M as a constant in

each iteration, its solution in the next iteration is iteratively

updated as:

µ(κ+1)
m = max

{

max
k∈K

B
(

rsp
(
w

(κ)
km,h

d
km|w(κ)

k ,hd
k

)
, ̟
)

,

max
ℓ∈L

B
(

rsp
(
√

p
(κ)
ℓ hu

mℓ,amℓ|
√

p
(κ)
ℓ hu

ℓ ,aℓ
)
, ̟
)}

, (17)

where the function B(:, :) was defined in (16).

Proof: Please see Appendix C.

From Theorem 2, the total power consumption in (5) can be

rewritten as

P̄T(C,µ(κ)) = PD(C, fspr(w),µ(κ)) + PC(µ
(κ)), (18)

which involves the continuous variables in C only.

In summary, the original problem (10) can be cast as the

following simplified problem:

max
C,{w,p}

ηF̄SE

(
Γd,Γu

)
+ (1− η)F̄EE

(
Γd,Γu, C,µ(κ)

)
(19a)

s.t.
∑

k∈K
‖wkm‖2 ≤ µ(κ)

m Pmax
APm

, ∀m ∈ M, (19b)

(10f), (12c), (12d). (19c)

Remark 2: It is clear from the discussion above that solv-

ing (19) boils down to finding a saddle point for C , {w,p},

while the binary variables α and µ are post-updated by

(15) and (17), respectively. We should emphasize that the

binary variables are relaxed to soft-update functions in (19)

to reduce the complexity, while maintaining their roles as in

the original problem (10). These results hold true for arbitrary

linear precoder/receiver schemes, which are discussed in detail

next.

IV. PROPOSED SOLUTION BASED ON ZERO-FORCING

In this section, we first present an efficient transmission

design; this retains the simplicity of the well-known ZF

method while enjoys the similar performance of the optimal

MMSE method as in the context of massive MIMO [30].

Then, an iterative algorithm based on the ICA method and

Dinkelbach transformation is developed to solve the problem

design, followed by the initialization discussion.
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A. ZF-Based Transmission Design

To make ZF feasible, the total number of APs’ antennas

is required to be larger than the number of UEs, i.e., N >
max{K,L}, which can be easily satisfied in massive MIMO

systems. For ease of presentation, we first rearrange the sets

of beamforming vectors, channel vectors and power allocation

between transceivers as follows: W , [w1, · · · ,wK ] ∈
C

N×K , Hd ,
[
(hd

1)
H , · · · , (hd

M )H
]H ∈ C

K×N , Hu ,
[
hu
1, · · · ,hu

L

]
∈ C

N×L, Gcci ,
[
(gcci

1 )H , · · · , (gcci
K )H

]H ∈
C

K×L with gcci
k ,

[
gccik1 , · · · , gccikL

]
∈ C

1×L, G̃AA ,
[
ḠAA

1 , · · · , ḠAA
M

]
∈ C

N×N , and Du , diag
([√

p1 · · · √pL
])

.

1) ZF-Based DL Transmission

For HZF = (Hd)H
(
Hd(Hd)H

)−1
, the ZF precoder matrix

is simply computed as WZF = HZF(Dd)
1
2 , where Dd =

diag
([
ω1 · · ·ωK

])
and ωk represents the weight for Udk. As a

result, constraint (19b) becomes

Tr
(
(HZF)HBmHZFDd

)
≤ µ(κ)

m Pmax
APm

, ∀m ∈ M, (20)

which is a linear constraint, where Bm = diag(bm) ∈
{0, 1}N×N with

bm =
(
0 · · · 0
︸ ︷︷ ︸

m−1∑

m′=1

N
m′

1 · · · 1
︸ ︷︷ ︸

Nm

0 · · · 0
)
. (21)

The simplicity of ZF is attributed to the fact that the size

of NK scalar variables of w is now reduced to K scalar

variables of ω , [ω1, · · · , ωK ]T ∈ R
K×1. The SINR of Udk

with ZF precoder is

γd,ZFk (ω,p) =
ωk|hd

kh
ZF
k |2

‖gcci
k Du‖2 + σ2

k

, (22)

where hZF
k is the k-th column of the ZF precoder HZF and the

MUI term |hd
kwk′ |2 ≈ 0, ∀k′ ∈ K \ {k}.

Remark 3: The following result characterizes the relation-

ship between ω and WZF:

WZF = fW(ω,HZF), (23)

where fW(ω,X) , X
(
diag(ω)

) 1
2 . Hence, wkm is recovered

by extracting from the ((m − 1)Nm + 1)-th to (mNm)-th
elements of wk, where wk is the k-th column of WZF.

2) ZF-Based UL Transmission

Let AZF =
(
(Hu)HHu

)−1
(Hu)H ∈ C

L×N be the ZF

receiver matrix at the CPU. The SINR of Uuℓ with ZF receiver

is

γu,ZFℓ (ω,p) =
pℓ|aZFℓ hu

ℓ |2
‖aZFℓ G̃AAWZF‖2
︸ ︷︷ ︸

IAI + RSI

+σ2
AP‖aZFℓ ‖2

, (24)

where aZFℓ is the ℓ-th row of AZF.

B. Proposed Algorithm

Before proceeding, we provide some useful approximate

functions following ICA properties [36], [37], which will be

frequently employed to devise the proposed solutions.

• Consider the convex function hfr(x, y) , x2/y with

(x, y) ∈ R
2
++. The concave lower bound of hfr(x, y)

at the feasible point (x(κ), y(κ)) is given as [19]

hfr(x, y) ≥
2x(κ)

y(κ)
x− (x(κ))2

(y(κ))2
y := h

(κ)
fr (x, y). (25)

• For the quadratic function hqu(z) , z2 with z ∈ R++,

its concave lower bound at z(κ) is

hqu(z) ≥ 2z(κ)z − (z(κ))2 := h(κ)qu (z). (26)

Next, problem (19) with ZF design now reduces to the

following problem

max
ω,p

ηF̄SE

(
ΓZF
d ,Γ

ZF
u

)
+ (1− η)F̄EE

(
ΓZF
d ,Γ

ZF
u , CZF,µ(κ)

)
(27a)

s.t. R
(
γd,ZFk (ω,p)

)
≥ R̄d

k, ∀k ∈ K, (27b)

R
(
γu,ZFℓ (ω,p)

)
≥ R̄u

ℓ , ∀ℓ ∈ L, (27c)

(10f), (20), (27d)

where ΓZF
d

, {γd,ZFk (ω,p)|∀k ∈ K} and ΓZF
u

,

{γu,ZFℓ (ω,p)|∀ℓ ∈ L}. Problem (27) involves the nonconcave

objective (27a), and nonconvex constraints (27b) and (27c). To

apply ICA method, a new transformation with an equivalent

feasible set is required. Let us start by rewriting the objective

(27a) as F̄
(
ΓZF
d ,Γ

ZF
u , CZF

)
, F̄SE

(
ΓZF
d ,Γ

ZF
u

)
P̄ (CZF), where

P̄ (CZF,µ(κ)) ,
(
η + (1−η)

P̄T(CZF,µ(κ))

)
and CZF , {ω,p}.

Theorem 3: Problem (27) is equivalent to the following

problem

max
ω,p,λ,φ

F̃SE

(
Λd,Λu

)

φ
(28a)

s.t. P̄ (CZF,µ(κ)) ≥ 1/φ, (28b)

γd,ZFk (ω,p) ≥ λdk, ∀k ∈ K, (28c)

γu,ZFℓ (ω,p) ≥ λuℓ , ∀ℓ ∈ L, (28d)

λdk + 1 ≥ exp(R̄d
k), ∀k ∈ K, (28e)

λuℓ + 1 ≥ exp(R̄u
ℓ), ∀ℓ ∈ L, (28f)

(10f), (20), (28g)

where F̃SE

(
Λd,Λu

)
, ln |I + Λd| + ln |I + Λu| is a con-

cave function, with Λd , diag([λd1 · · ·λdK ]) and Λu ,

diag([λu1 · · ·λuL]); φ and λ , {λd,λu} with λd , {λdk}∀k∈K

and λu , {λdℓ}∀ℓ∈L are newly introduced variables. Here

λdk and λdℓ can be viewed as soft SINRs for Udk and Uuℓ ,

respectively.

Proof: Please see Appendix D.

In problem (28), the nonconvex parts include (28b)-(28d).

Following the spirit of the ICA method, we introduce a new

variable ξ ∈ R++ to equivalently split constraint (28b) into

two constraints as

(28b) ⇔
{

P̄T(CZF,µ(κ)) ≤ hqu(ξ) , ξ2, (29a)

ξ2 ≤ φ(ηP̄T(CZF,µ(κ)) + 1− η). (29b)

We note that P̄T(CZF,µ(κ)) is a linear function in (ω,p) due

to (23), and thus, (29b) is a second order cone (SOC) repre-

sentative [42, Sec. 3.3]. Using (26), the nonconvex constraint
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(29a) can be iteratively replaced by the following convex one

P̄T(CZF,µ(κ)) ≤ h(κ)qu (ξ). (30)

Next, we can rewrite (28c) equivalently as

(28c) ⇔







hfr(
√
ωk, ψ

d
k) , ωk/ψ

d
k ≥ λdk, ∀k ∈ K, (31a)

ψd
k ≥ ‖gcci

k Du‖2 + σ2
k

|hd
kh

ZF
k |2 , ∀k ∈ K, (31b)

where ψd , {ψd
k}∀k∈K are new variables. Since (31b) is a

linear constraint, we focus on convexifying (31a) using (25)

as

h
(κ)
fr (

√
ωk, ψ

d
k) ≥ λdk, ∀k ∈ K. (32)

Similarly, with new variables ψu , {ψu
ℓ}∀ℓ∈L, constraint

(28d) is iteratively replaced by the following two convex ones

h
(κ)
fr (

√
pℓ, ψ

u
ℓ ) ≥ λuℓ , ∀ℓ ∈ L, (33a)

ψu
ℓ ≥ ‖aZFℓ G̃AAWZF‖2 + σ2

AP‖aZFℓ ‖2
|aZFℓ hu

ℓ |2
, ∀ℓ ∈ L. (33b)

With the above discussions based on the ICA method, we

obtain the following approximate problem of (28) (and hence

(27)) with the convex set solved at iteration (κ+ 1):

max
ω,p,λ,ψ,ξ,φ

F̃SE

(
Λd,Λu

)

φ
(34a)

s.t. (10f), (20), (28e), (28f),

(29b), (30), (31b), (32), (33), (34b)

where ψ , {ψd,ψu}. We can see that the set of variables in

(34) is independent of the numbers of APs and antennas, which

differs from the original problem (10). The objective (34a)

is a concave-over-linear function, which can be efficiently

addressed by the Dinkelbach transformation. In particular, we

have

VZF,(κ+1) = argmax
VZF∈F(κ)

F̈ (κ) , F̃SE

(
Λd,Λu

)
− t(κ)φ, (35)

where F (κ) ,
{
VZF ,

{
ω,p,λ,ψ, ξ, φ

}
|(34b) holds

}
and

t(κ) ,
F̃SE

(
Λ

(κ)
d ,Λ(κ)

u

)

φ(κ) . To start the computational procedure,

an initial feasible point (ω(0),p(0),ψ(0), ξ(0), φ(0)) for (35)

is required. This is done by guaranteeing QoS constraints

(28e) and (28f) to be satisfied. Thus, we successively solve

the following simplified problem of (34)

max
VZF,θ

Θ ,
∑

k∈K
θdk +

∑

ℓ∈L
θuℓ (36a)

s.t. λdk + 1− exp(R̄d
k) ≥ θdk, ∀k ∈ K, (36b)

λuℓ + 1− exp(R̄u
ℓ) ≥ θuℓ , ∀ℓ ∈ L, (36c)

θdk ≤ 0, ∀k ∈ K, θuℓ ≤ 0, ∀ℓ ∈ L, (36d)

(10f), (20), (29b), (30), (31b), (32), (33), (36e)

where θ , {θdk, θuℓ}∀k∈K,ℓ∈L are slack variables. The ini-

tial feasible point (ω(0),p(0),ψ(0), ξ(0)) for (35) is found

when the objective (36a) is close to zero, and φ(0) =
1/P̄ (CZF,(0),µ(0)). The proposed algorithm for solving the

ZF-based SE-EE problem (10) is summarized in Algorithm 1.

Algorithm 1 Proposed Algorithm to Solve ZF-based SE-EE

Problem (10)

1: Initialization: Compute ZF precoder and receiver: HZF

and AZF.
2: Set F̈ (κ) := −∞, κ := 0, and solve (36) to generate an

initial feasible point (ω(0),p(0),ψ(0), ξ(0), φ(0)).
3: repeat {Solving (27)}
4: Solve (35) to obtain the optimal solution

(ω⋆,p⋆,λ⋆,ψ⋆, ξ⋆, φ⋆) and F̈ (κ+1).

5: Update (ω(κ+1),p(κ+1),ψ(κ+1), ξ(κ+1), φ(κ+1)) :=
(ω⋆,p⋆,ψ⋆, ξ⋆, φ⋆).

6: Set κ := κ+ 1.
7: until Convergence
8: Update (ω∗,p∗) := (ω(κ),p(κ)).
9: Use (23) to recover wkm, ∀k ∈ K,m ∈ M.

10: Compute α∗ and µ∗ as in (15) and (17), respectively.
11: Repeat Steps 1-9 with fixed values of α∗ and µ∗ to find

the exact solution of (w∗,p∗).
12: Use (w∗,p∗,α∗,µ∗) to compute F (w∗,p∗,α∗,µ∗) in

(10a).
13: Output: The optimal solution (w∗,p∗,α∗,µ∗) and ob-

jective value F (w∗,p∗,α∗,µ∗).

C. Convergence and Complexity Analysis

1) Convergence Analysis

Algorithm 1 is mainly based on inner approximation and

Dinkelbach transformation, where their convergences were

proved in [36] and [38], respectively. Specifically, as provided

in [38], the optimal solution of problem (35) is derived as a

minorant obtained at each iteration of the ICA-based approx-

imate problem (34). From the properties of the ICA method

[37], it follows that F (κ) ⊂ F (κ+1), resulting in a sequence

(ω(κ),p(κ),ψ(κ), ξ(κ), φ(κ)) of improved points of (34) and

a sequence of non-decreasing objective values. Moreover,

F (κ) is a convex connected set, as shown in [17]. Therefore,

Algorithm 1 is guaranteed to arrive at least at a locally optimal

solution for (28) (and hence (27)) when κ→ ∞, satisfying the

Karush-Kuhn-Tucker conditions according to [36, Theorem 1].

2) Computational Complexity

Before deriving the complexity, we consider the following

stages of Algorithm 1:

• The pre-processing stage computes constant matrices, i.e.,

HZF and AZF. This stage contributes a minor part to

the total complexity since it only executes the matrix

computation, which can be done easily. For the ZF design,

it implies a computational complexity of O(N3) floating

operations (flops).

• The major complexity comes from the optimization of the

involved variables. This is associated to the main loop in

solving (27) (i.e., Steps 3-7 in Algorithm 1), of which

the per-iteration complexity is O
(
c2.5(v2+ c)

)
, with v =

(3K + 3L + 2) scalar decision variables and c = (M +
3K + 4L+ 2) linear/SOC constraints [17].

It can be observed that the per-iteration complexity for the

main loop is less dependent on M , since problem (35) only

contains M linear constraints in (20). Moreover, the size of

HZF and AZF remains unchanged. Therefore, the complexity

based on the proposed design is almost the same for different

transmission strategies. In Table I, we provide the major com-



9

TABLE I
COMPLEXITY COMPARISON.

Transmission strategies Pre-processing (flops)
Per-iteration complexity

for optimization

Proposed ZF-based design O(N3) O
(
c2.5(v2 + c)

)

MRT/MRC O(N2) O
(
c2.5(v2 + c)

)

plexities of the proposed ZF and MRT/MRC, which are quite

comparative. However, the execution time partially depends on

the complexity of solving the successive approximate program

in an iterative algorithm, as well as the feasible region under

the structure of constant matrices in the pre-processing stage.

This will be further elaborated through numerical examples.

V. PROPOSED SOLUTION BASED ON IMPROVED

ZERO-FORCING

From (24), it can be seen that the IAI and RSI are still

the main limitations of FD CF-mMIMO. Thus, our next

endeavor is to propose an IZF-based design to manage the

network interference more effectively. In particular, ONB-ZF

with PCA, referred to as ONB-ZF-PCA, is developed for the

DL transmission to mitigate the effects of IAI and RSI. In

addition, we also adopt a ZF-SIC receiver for UL reception to

further accelerate the performance of the ZF-based design.

A. IZF-Based Transmission Design

1) ONB-ZF-PCA-Based DL Transmission

The key idea of the ONB-ZF-PCA method is to utilize

ONB-ZF for MUI cancellation and exploit PCA to depress

the effects of IAI and RSI on UL transmission. For WIZF ,

[w1 . . . wK ] ∈ C
N×K , we introduce the ONB-ZF-PCA

procedure and its operation as follows.

Procedure 1: The ONB-ZF-PCA precoder is computed as

WIZF = PQHT̃(Dd)
1
2 , (37)

where Dd was already defined in (20), and other matrix

components P, Q, and T̃ are determined by the following

steps:

1) Using the PCA method, we can express the covariance

matrix of G̃AA as

(G̃AA)HG̃AA = UEUH , (38)

where U and E are unitary and diagonal matrices,

respectively, which are derived by using singular value

decomposition (SVD).

2) Let e , [e1, · · · , eN ], where e1 ≥ e2 ≥ · · · ≥ eN ≥ 0
are eigenvalues on the diagonal of E. We define N̄ as

N̄ , min
{{
n ∈ N , {1, · · · , N}

∣
∣fERn (e) ≥ δ

∧ n < N − 1
}
∪ {N − 1}

}

, (39)

where fERn (e) =
∑

n

i=1 ei∑
N

i=1 ei
denotes the ratio of the first

n eigenvalues to the sum of all eigenvalues, and δ is a

percentage threshold for the sum of first N̄ eigenvalues

over all eigenvalues with δ = 99%.

3) Compute P: We compute P = I − ŪŪH , where Ū is

generated from the first N̄ columns of U.

4) Compute Q: The economy-size LQ decomposition is

applied to the compound matrix HdP such as HdP =
TQ, where T ∈ C

K×K is a lower triangular matrix

and Q ∈ C
K×N is an ONB matrix. Since K ≪ N

in CF-mMIMO, the economy-size decomposition can be

exploited to reduce the computational complexity, leading

to QQH = I but QHQ 6= I.

5) Compute T̃: The entry at the i-th row and j-th column

of T̃ ∈ C
K×K , denoted by T̃ij , is generally computed

by using the following recursive expression:

T̃ij =







− 1
Tii

∑i−1
j′=j Tij′ T̃j′j , if i > j,

1, if i = j,

0, otherwise,

(40)

where Tij denotes the entry at the i-th row and j-th
column of T obtained in Step 4.

Proof: Please see Appendix E.

Remark 4: We note that the matrix P computed via the

PCA method aims at mitigating the effects of IAI and RSI.

On the other hand, we can use the ZF precoder matrix based on

ONB only (i.e., by skipping Steps 1-3). The LQ decomposition

in Step 4 is applied to Hd instead of HdP, i.e., Hd = TQ.

Then, a simpler precoder matrix can be constructed as

WONB-ZF = QHT̃(Dd)
1
2 . (41)

Based on Procedure 1 and in the same manner as (20), the

power constraint at APm becomes

Tr
(
T̃HQPBmPHQHT̃Dd

)
≤ µ(κ)

m Pmax
APm

, ∀m ∈ M. (42)

The SINR at Udk with the ONB-ZF-PCA precoder is

γd,IZFk (ω,p) =
ωk|hd

kh
IZF
k |2

‖gcci
k Du‖2 + σ2

k

, (43)

where hIZF
k is the k-th column of HIZF , PQHT̃.

2) ZF-SIC-Based UL Transmission

The decoded signals are successively removed before de-

coding the next signals, following the SIC principle [43].

Assuming that the decoding order follows the UL UEs’ index,

i.e., ℓ = 1, 2, · · · , L, the Uuℓ’s signal is decoded by treating

signals of Uuℓ′ for ℓ′ ≥ ℓ + 1 as noise, while other signals

are removed by SIC. The remaining MUI at Uuℓ is further

canceled by the ZF receiver. Thus, the ZF-SIC receiver for

decoding Uuℓ’s signal can be expressed as aIZFℓ , which is the

first row of AIZF
ℓ ,

(
(H̄u

ℓ)
HH̄u

ℓ

)−1
(H̄u

ℓ)
H ∈ C

(L−ℓ+1)×N ,

where H̄u
ℓ ,

[
hu
ℓ , · · · ,hu

L

]
∈ C

N×(L−ℓ+1) and D̄u ,

diag
([√

pℓ, · · · ,√pL
])

. Accordingly, the SINR of Uuℓ with

ZF-SIC receiver becomes

γu,IZFℓ (ω,p) =
pℓ|aIZFℓ hu

ℓ |2
‖aIZFℓ G̃AAWIZF‖2 + σ2

AP‖aIZFℓ ‖2
, (44)

where ‖aIZFℓ H̄u
ℓ+1D̄

u
ℓ+1‖2 → 0 due to the ZF-SIC matrix

AIZF
ℓ .

B. IZF-Based Optimization Problem

Similarly to problem (27), the IZF-based optimization prob-

lem can be expressed as

max
ω,p

ηF̄SE

(
ΓIZF
d ,ΓIZF

u

)

+(1− η)F̄EE

(
ΓIZF
d ,ΓIZF

u , CIZF,µ(κ)
)

(45a)
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s.t. R
(
γd,IZFk (ω,p)

)
≥ R̄d

k, ∀k ∈ K, (45b)

R
(
γu,IZFℓ (ω,p)

)
≥ R̄u

ℓ , ∀ℓ ∈ L, (45c)

(10f), (42), (45d)

where ΓIZF
d

, {γd,IZFk (ω,p)|∀k ∈ K}, ΓIZF
u

,

{γu,IZFℓ (ω,p)|∀ℓ ∈ L} and CIZF , {ω,p}. It can be seen

that the nonconvex parts in problems (27) and (45) have a

similar structure, and thus, we can slightly modify Algorithm

1 to solve (45).

VI. PROPOSED HEAP-BASED PILOT ASSIGNMENT

STRATEGY

The developments presented in the previous sections are

based on the assumption of perfect CSI to realize the potential

performance of the proposed FD CF-mMIMO. However, it is

of practical interest to take imperfect CSI into account. Each

coherence interval in FD CF-mMIMO can be divided into two

phases: UL training and data transmission in DL-UL. The co-

herence interval is short, and thus, each UE should practically

be assigned a non-orthogonal pilot sequence, resulting in the

well-known pilot contamination problem [29]. Therefore, the

main goal of this section is to develop a pilot assignment

algorithm based on the heap structure to reduce the effect of

pilot contamination and training complexity. We note that the

pilot assignment based on greedy method given in [23] not

only requires high complexity due to the strategy of trial and

error, but also is inapplicable to FD CF-mMIMO due to the

additional channel estimation of CCI links.

Remark 5: The channels of fading loop and IAI (i.e.,

GSI
mm and GAA

mm′ , ∀m 6= m′) are assumed to be the same

as before. The reason for the fading loop channel is that the

transmit and receive antennas are co-located at the APs. On

the other hand, APs are generally fixed in a given area without

mobility, and thus, the IAI channels can be perfectly acquired

at the CPU at the initial deployment of the FD CF-mMIMO

networks.

A. Channel Estimation and MSE Minimization Problem

We assume that all UEs share the same orthogonal set of

pilots, and the DL and UL UEs send training sequences in

different intervals to allow the channel estimation of CCI links.

Let τ < min{K,L} be the length of pilot sequences. Then,

the pilot set is defined as Ξ , [ϕ1, · · · ,ϕτ ] ∈ C
τ×τ , where

ϕi ∈ C
τ×1 satisfies the orthogonality, i.e., ϕH

i ϕi′ = 1 if

i = i′ ∈ Tp , {1, · · · , τ}, and ϕH
i ϕi′ = 0, otherwise. We

introduce the assignment variable υij ∈ {0, 1} to determine

whether the i-th pilot sequence is assigned to the j-th UE,

with j ∈ Tu , {1, · · · , U} and U ∈ {K,L}. As a result, the

pilot assigned to UE j can be expressed as ϕ̄j = ϕi if υij =

1. Let Ξ̄ , [ϕ̄1, · · · , ϕ̄U ] ∈ C
τ×U be the pilot assignment

matrix, such as Ξ̄ = ΞΥ, where Υ , [υij ]i∈Tp,j∈Tu
∈ C

τ×U

following by the condition:
∑

i∈Tp
υij ≤ 1, ∀j ∈ Tu.

The training procedure for FD CF-mMIMO in TDD op-

eration is executed in two phases. In the first phase, UL

UEs send their pilot signals to APs to perform the channel

estimation, and at the same time DL UEs also receive UL

pilots to estimate CCI channels. In the second phase, DL

UEs send their pilot signals along with the estimates of CCI

links to APs. The training signals received at APm can be

written as Ytr
m =

∑

j′∈Tu

√

τptrj′ ϕ̄j′hmj′ +Zm, where hmj ∈
{hd

km, (h
u
mℓ)

H} ∈ C
1×Nm , and ptrj and Zm ∼ CN (0, σ2

API)
denote the UL training power of UE j and the AWGN,

respectively. Using the linear MMSE (LMMSE) estimation

[44], the channel estimate of hmj is given as

ĥmj =

√

τptrj βmj

∑

j′∈Tu
τptrj′ βmj′ |ϕ̄H

j ϕ̄j′ |2 + σ2
AP

ϕ̄H
j Ytr

m , (46)

where βmj ∈ {βdkm, βumℓ} is the large-scale fading of the link

between APm and UE j. We denote h̃mj = hmj − ĥmj as the

channel estimation error, which is independent of hmj . The

elements of h̃mj can be modeled as i.i.d. CN (0, εmj) RVs,

where

εmj = βmj

(

1−
τptrj βmj

∑

j′∈Tu
τptrj′ βmj′ |ϕ̄H

j ϕ̄j′ |2 + σ2
AP

)

. (47)

In an analogous fashion, the channel estimate and channel

estimation error of CCI link gccikℓ executed at Udk are given as

ĝccikℓ =

√
τptrℓ β

cci
kℓ

∑

ℓ′∈L τp
tr
ℓ′ β

cci
kℓ′ |ϕ̄H

ℓ ϕ̄ℓ′ |2 + σ2
k

ϕ̄H
ℓ y

tr,cci
k , (48)

and g̃ccikℓ ∼ CN (0, εccikℓ ), respectively, where

εccikℓ = βccikℓ

(

1− τptrℓ β
cci
kℓ

∑

ℓ′∈L τp
tr
ℓ′ β

cci
kℓ′ |ϕ̄H

ℓ ϕ̄ℓ′ |2 + σ2
k

)

. (49)

Here, βccikℓ denotes the large-scale fading of CCI link Uuℓ →
Udk, and y

tr,cci
k =

∑

ℓ∈Tu

√

τptrj′ ϕ̄ℓg
cci
kℓ + zk, with zk ∼

CN (0, σ2
kI), is the UL UEs’ training signals received at Udk.

The CSI of CCI links is directly fed back to APs using a

dedicated control channel to ensure a low-complexity channel

estimation at DL UEs. To mitigate the effects of pilot contam-

ination, a pilot assignment for the main DL and UL channels

is far more important that of CCI channels. Thus, we consider

the following MSE minimization problem:

min
Υ

max
j∈Tu

∑

m∈M

Nmεmj

βmj

(50a)

s.t. υij ∈ {0, 1},
∑

i∈Tp

υij ≤ 1, ∀i ∈ Tp, ∀j ∈ Tu. (50b)

B. Heap Structure-Based Pilot Assignment Strategy

Problem (50) is a min-max problem for sum of fractional

functions, for which it is hard to find an optimal solution. For

an efficient solution, we first introduce the following theorem.

Theorem 4: Problem (50) can be solved via the following

tractable problem:

min
Υ

max
j∈Tu

∑

j′∈Tu

β̃j′υ
H
j υj′ , s.t. (50b), (51)

where β̃j′ ,
∑

m∈MNmτp
tr
j′ βmj′ .

Proof: Please see Appendix F.

Remark 6: For ῡjj′ = υH
j υj′ , the objective func-

tion in (51) becomes a kind of bottleneck assignment

problem with the partial of max function replaced by

min max
j∈Tu

∑

j′∈Tu
β̃j′ ῡjj′ . This indicates that all pilots play
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the same roles and the optimal solution for pilot assignment

depends on how to cluster UEs which share the same training

sequence.

Thus far, we have provided the tractable MSE minimization

problem. We now propose the heap structure-based pilot

assignment strategy. To do this, the following definition is

invoked.

Definition 1: Min heap (Hmin) is a tree-based structure,

where Hmin
p is a parent node of an arbitrary node Hmin

c . Then,

the key of Hmin
p is less than or equal to that of Hmin

c . In a

max heap (Hmax), the key of Hmax
p is greater than or equal to

that of Hmax
c [45]. We note that a node of heap contains not

only the keys (values) to build a heap structure, but also other

specific parameters depending on storage purposes. Therefore,

if a node is moved on the heap, all its parameters are also

moved in company.

Let H ∈ {Hmin,Hmax}, the following main operations are

involved:

• Generate a heap
(
G(x, {y})  H

)
: The size and keys

of H follow the size and values of vector x, where {y}
is a set of parameters.

• Find min/max value
(
H → (x, {y})

)
: To return the root

key x and the parameter set {y} of H.

• Extract the root node
(
H ⊢ (x, {y})

)
: To pop the root

node out of H (i.e., extract the max/min value), and then

assign to (x, {y}). Next, H is updated to restore the heap

condition.

• Replace and Sift-down
(
H ⊣ (x, {y}

)
: To replace the

root node with the key x and its parameter set {y}, and

then, move the root node down in the tree to restore the

heap condition.

Let uID
i be the i-th column of the identity matrix of size τ

(Iτ ). Then, the feasible set of the j-th column variable of

matrix Υ, corresponding to UE j, is determined as υj ∈
{uID

i |i ∈ Tp}, j ∈ Tu, satisfying constraint (50b). From

Theorem 4, if the i-th pilot is assigned to two arbitrary UEs

j, k ∈ Tu, we have
∑

j′∈Tu

β̃j′υ
H
j υj′ =

∑

j′∈Tu

β̃j′υ
H
k υj′ =

∑

j′∈Tu

β̃j′(u
ID
i )Hυj′ .

We define a pilot-reused coefficient (PRC) of the i-th pilot by

β̄i ,
∑

j′∈Tu
β̃j′(u

ID
i )Hυj′ , and rewrite (51) equivalently as

min
Υ

max
i∈Tp

{β̄i}, (52a)

s.t. υj ∈ {uID
i |i ∈ Tp}, j ∈ Tu. (52b)

It is realized that if the i-th pilot is assigned to UE j, the

PRC of the i-th pilot increases by a factor of β̃j . To minimize

the maximum of PRCs, a heuristic assignment is executed

such that the pilot with the smallest PRC is assigned to UE j
with the largest β̃j . The following example is to illustrate the

procedure of the proposed heap-based pilot assignment.

Example: we consider a scenario where τ = 4
pilots need to be assigned to U = 10 UEs with

a given large-scale fading as: [β̃1, · · · , β̃10] =
[0.0107, 0.0881, 0.1384, 0.0309, 0.0798, 0.0531, 0.0130,
0.0765, 0.0109, 0.0102]. The assignment progress is described

in Table II.

TABLE II
STATES OF HEAP STRUCTURES PER ITERATION

#Iter. Min-heap (Hmin) Max-heap (Hmax)

0

0.0107

0.0309 0.1384

0.0881

1

4 3

2

Pilot index

Key of node

0.0798

0.0765 0.0130

0.0531

5

8 7

6

User index

Key of node

0.0109 0.0102

Initial state:

• τ pilots are assigned to the first τ UEs, leading to Hmin with τ nodes

• U − τ remaining UEs are put into Hmax

Execution:

• Pop the root node of Hmax, and assign pilot 1 to UE 5
• Compute β̄1 = 0.0107 + 0.0798 = 0.0905
• Update Hmin and Hmax

1

0.0905

0.0309

0.13840.0881

1

4

32

0.0765

0.01300.0531

8

76

0.0109 0.0102

• Pop the root node of Hmax and assign pilot 4 to UE 8
• Compute β̄4 = 0.0309 + 0.0765 = 0.1074
• Update Hmin and Hmax

2

0.0906

0.1074

0.1384

0.0881

1

4

3

2

0.0130

0.0531

7

6

0.0109 0.0102

• Pop the root node of Hmax and assign pilot 2 to UE 6
• Compute β̄2 = 0.0881 + 0.0531 = 0.1412
• Update Hmin and Hmax

3

0.0906

0.1075 0.1384

0.1412

1

4 3

2

0.0130

7

0.0109

0.0102

9

• Pop the root node of Hmax and assign pilot 1 to UE 7
• Compute β̄1 = 0.0906 + 0.0130 = 0.1036
• Update Hmin and Hmax

4

0.1036

0.1075 0.1384

0.1412

1

4 3

2

0.0109

0.0102

9

10

• Pop the root node of Hmax and assign pilot 1 to UE 9
• Compute β̄1 = 0.1036 + 0.0109 = 0.1145
• Update Hmin and Hmax

5

0.1145

0.1075

0.1384

0.1412

1

4

3

2

0.0102

10

• Pop the root node of Hmax and assign pilot 4 to UE 10 which

complete the pilot assignment
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Algorithm 2 Proposed Heap-Based Pilot Assignment for MSE

Minimization Problem (51)

1: Compute β̃ , [β̃j ]j∈Tu
as in Theorem 4.

2: Randomly assign τ pilots to the first τ UEs in Tu, yielding
υj , ∀j = 1, · · · , τ .

3: Execute G([β̃]1:τ , {υj}j=1,··· ,τ )  Hmin.

4: Execute G([β̃]τ+1:U , {τ + 1, · · · , U})  Hmax.
5: while Hmax 6= ∅ do

6: Hmax ⊢ (β̃j′ , {j′}). {Root node is removed from Hmax}
7: Hmin → (β̄i, {υi}).
8: υj′ := υi.

9: Hmin ⊣ (β̄i + β̃j′ , {υi}).
10: end while
11: Concatenate assignment variable vectors as Υ :=

[υ1, · · · ,υU ].
12: Output: Pilot assignment matrix Ξ̄ = ΞΥ.

The proposed algorithm for pilot assignment is summarized

in Algorithm 2. It takes the complexity of O
(
U log2(τU)

)

for deriving the assignment solution, which is relatively low

complexity. For simplicity, this training strategy is referred to

as Heap-FD, in which Algorithm 2 is operated twice, i.e., with

U = L for UL channel estimation in the first phase, and with

U = K for achieving DL and CCI channel estimates in the

second phase. On the other hand, the training strategy for HD

systems can be done by setting U = K+L, called Heap-HD.

For a given τ -length of pilot sequences, Heap-FD requires the

training time of 2τ , while Heap-HD needs only τ . However,

it is anticipated that the channel estimate quality of Heap-FD

would be better than Heap-HD, due to smaller number of UEs

sharing the same pilot set in Heap-FD.

Remark 7: The SE-EE problem (10) can be reformulated

as a worst-case robust design by treating CSI errors as noise.

More specifically, we use channel estimates (rather than the

perfect ones) to perform data transmission. The additional

component introduced by CSI errors in the denominators of

SINRs is a linear function, and thus, can be easily tackled by

our proposed methods given in Sections IV and V. We refer

the interested reader to [17, Sec. V] for further details of the

derivations.

VII. NUMERICAL RESULTS

In this section, we provide numerical examples to quan-

titatively evaluate the performance of the proposed FD CF-

mMIMO.

A. Simulation Setup and Parameters

A system topology illustrated in Fig. 2 is considered, where

all APs and UEs are located within a circle of 1-km radius.

The entries of the fading loop channel GSI
mm, ∀m ∈ M

are modeled as independent and identically distributed Rician

RVs, with the Rician factor of 5 dB [19]. The large-scale

fading of other channels is modeled as [23]

β = 10
PL(d)+σshz

10 , (53)

where β ∈ {βAAmm′ , βdkm, β
u
mℓ, β

cci
kℓ }, ∀m,m′ ∈ M, k ∈ K, ℓ ∈

L and m 6= m′; The shadow fading is considered as an

RV z ∈ {zAAmm′ , zdkm, z
u
mℓ, z

cci
kℓ } ∼ N (0, 1) with standard

deviation σsh = 8 dB. The three-slope model for the path

TABLE III
SIMULATION PARAMETERS

Parameter Value

System bandwidth, B 10 MHz
Reference distances, (d0, d1) (10, 50) m

Residual SiS, ρRSI = ρRSImm, ∀m -110 dB [46]
Noise power at receivers -104 dBm
Number of APs and UEs, (M , K, L) (64, 10, 10)
Number of antennas per AP, Nm, ∀m 2

Rate threshold, R̄ = R̄d
k = R̄u

ℓ , ∀k, ℓ 0.5 bits/s/Hz
PA efficiency at APm, νAPm

, ∀m 0.39
PA efficiency at Uuℓ , νuℓ , ∀ℓ 0.3

Backhaul traffic power, P bh 0.25 W/(Gbits/s)

Baseband power, P d
km = P u

m, ∀k,m 0.1 W
APs’ power in active/sleep modes, (P a

APm
, P s

APm
), ∀m (10, 2) W

APs’ circuit operation power, P cir
APm

, ∀m 1 W

UEs’ circuit operation power, P d,cir
k = P u,cir

ℓ , ∀k, ℓ 0.1 W
Power budget at UL UEs, Pmax

ℓ , ∀ℓ 23 dBm
Total power budget for all APs, MPmax

AP 43 dBm
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Fig. 2. A system topology with M = 64 and K = L = 10 located within
a circle of 1-km radius is used in numerical examples.

loss in dB is given by [23], [47]

PL(d) =− 140.7− 35 log10(d)

+ 20c0 log10(
d

d0
) + 15c1 log10(

d

d1
), (54)

where d ∈ {dAAmm′ , ddkm, d
u
mℓ, d

cci
kℓ } is the distance between

transceivers as corresponding to β; di, with i = {0, 1}, denotes

the reference distance and ci , max{0, di−d
|di−d|}. Note that

the distances d and di in (54) are measured in km. Unless

specifically stated otherwise, other parameters are given in

Table III, where all APs are assumed to have the same power

budget Pmax
AP = Pmax

APm
, ∀m. Herein, the parameters of power

consumption and PA efficiencies follow the study in [41]. We

use the modeling tool YALMIP in the MATLAB environment.

The SEs are divided by ln 2 to be presented in bits/s/Hz.

For comparison, the following two known schemes are

considered:

1) “Co-mMIMO:” A BS is deployed at the center of the

considered area to serve all UEs. To conduct a fair

comparison, the centered-BS is equipped with N =
∑

m∈MNm number of antennas with the total power

budget of MPmax
AP = 43 dBm.

2) “SC-MIMO:” Under the same setup with CF-mMIMO,

each UE is only served by one AP, but each AP can serve

more than one UE. To make ZF feasible, the number of
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both FD and HD operations.
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Fig. 4. Average SE versus the residual SiS, ρRSI, for different transmission
strategies in CF-mMIMO.

UEs served by one AP must be less than its own number

of antennas.

Both FD and HD operations are employed to evaluate the

performance of those schemes. For HD operation, DL and UL

transmissions are separately carried out in two independent

communication time blocks. As a result, there is no CCI at DL

UEs, and no RSI and IAI on UL reception, but the achieved

SE and EE are devided by two. To show the effectiveness of

the proposed ZF- and IZF-based transmissions presented in

Sections IV and V, respectively, we additionally examine the

following transmission strategies:

1) “ONB-ZF:” The precoder matrix for DL transmission

WONB-ZF is computed as in (41), while UL reception

adopts the ZF-SIC receiver similar to IZF.

2) “MRT/MRC:” MRT and MRC are applied to DL and

UL, respectively. This is easily done by replacing HZF

and AZF with (Hd)H and (Hu)H , respectively.

B. Numerical Results for SE Performance

Fig. 3 depicts the average SE performance as a function

of the residual SiS ρRSI for different schemes in both FD

and HD operations. We recall that the SI has no effect on

the performance of HD-based schemes. The first observation

is that FD-based schemes outperform HD counterparts at a

sufficiently small level of ρRSI. In particular, at ρRSI = −130
dB, FD CF-mMIMO and FD SC-MIMO provide more than

40% SE performance gain over those of HD ONB-ZF designs.
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Fig. 5. Cumulative distribution function versus the average SE.

The SE of FD Co-mMIMO scheme and its HD counterpart

confirms the promising performance of the FD system. Specif-

ically, when the residual SiS is very small (i.e., ρRSI = -150

dB), the performance of FD Co-mMIMO nearly doubles that

of HD Co-mMIMO. However, its performance is dramatically

degraded when ρRSI increases. The reason is that the FD Co-

mMIMO system with one centered BS serving all UEs in a

large area must allocate a high transmit power to far DL UEs,

leading to higher SI power. On the other hand, when ρRSI

is more severe, the probabilities of infeasibility of the FD

schemes are higher, resulting in the degraded performance.

Another interesting observation is that the proposed FD CF-

mMIMO scheme provides the best performance among FD-

based schemes and significantly better performance than HD

for a wide range of ρRSI, including the practical value of ρRSI =

-110 dB [46]. These results further confirm that FD operation

is well suited for CF-mMIMO systems.

To evaluate the effectiveness of the proposed ZF and IZF

transmission strategies in CF-mMIMO, we compare the aver-

age SE of our designs with two simple transmission designs:

ONB-ZF and MRT/MRC, as shown in Fig. 4. With our

proposed FD IZF design, the SE improves significantly. The

ONB-ZF-PCA precoding in IZF not only cancels MUI for

DL transmission, but also depresses the effect of residual SI

on UL reception. In addition, ONB-ZF provides slightly better

performance than ZF in both FD and HD. However, the gap

between FD ONB-ZF- and FD ZF-based designs is gradually

small when ρRSI increases. It reflects the fact that the effect of

residual SI on the system performance of CF-mMIMO is more

serious than that of MUI, which brings less benefit of using

SIC in the MUI cancellation. The MRT/MRC design is always

inferior in both FD and HD operations since it is unable to

manage the network interference effectively. The difficulty in

handling the IAI and residual SI of ONB-ZF and ZF designs

causes their FD system to provide worse performance than the

proposed FD IZF.

Fig. 5 shows the cumulative distribution function (CDF)

of different transmission strategies in FD CF-mMIMO with

the references to HD CF-mMIMO and HD Co-mMIMO. The

figure clearly shows that the feasibility probabilities of all the

considered schemes are smaller when the SE is higher. As

expected, FD CF-mMIMO with the proposed IZF and ONB-
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Fig. 6. Average SE versus the number of APs with different transmission
strategies in FD CF-mMIMO.

ZF designs outperforms others. In addition, FD CF-mMIMO

with IZF offsets SE with about 12 bits/s/Hz more than FD CF-

mMIMO with ONB-ZF. Although the ONB-ZF design is able

to cancel MUI, it still suffers the large amount of IAI, which

is even more severe in FD CF-mMIMO with the dense AP

deployment. Its performance is therefore slightly better than

that of HD CF-mMIMO at mid-point and 95-percentile point.

FD CF-mMIMO with MRT/MRC provides worst performance,

which can be explained as follows. MRT/MRC for DL/UL

transmission using the channel conjugates (i.e., (Hd)H and

(Hu)H ) is inapplicable to handle the residual SI and also

totally passive with the IAI. Such interference is inherent to

the MRT/MRC design in FD CF-mMIMO. The CDFs with

respect to the SE again validate the advantage of IZF with

ONB-ZF for MUI cancellation and PCA procedure for IAI

and residual SI depression.

In Fig. 6, we plot the average SE of different transmission

strategies in FD CF-mMIMO versus the number of APs,

M ∈ [48, 128]. It is straightforward to see that increasing the

number of APs causes stronger IAI in CF-mMIMO networks.

However, as can be seen from the figure, the SEs of all the

considered transmission strategies are monotonically improved

when M increases. This results imply that it is enough for

each AP to select a suitable number of UEs around it, without

causing much interference to other APs.

C. Numerical Results for EE Performance

Before providing the EE performance, we show the status

of APs (i.e., active and sleep modes) in Fig. 7 and operation

behavior of APs (i.e., DL/UL or FD) in Fig. 8, gaining more

insights into the effect of AP selection. We consider the system

topology illustrated in Fig. 2, and the IZF design to maximize

the EE. It can be seen in Fig. 7 that most APs located far

way from UEs switch off to reduce power consumption, since

the large effect of path loss makes power consumption for

these APs inefficient. In contrast, APs in the area of dense

UEs become strongly active in order to enhance the SE

F̃SE

(
Λd,Λu

)
, which dominates the loss caused by φ in (35).

This result suggests an interesting observation that each UE

should be served by a small subset of active APs to manage the

network interference more effectively. Fig. 8 shows how the

power budget at an active AP is allocated to UEs. Intuitively,

the active APs dynamically connect to near UEs for the EE

improvement, and thus, HD (DL/UL) or FD mode is selected
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Fig. 7. Active and sleep modes of APs using the system topology in Fig. 2.
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depending on either DL or UL transmission of near UEs, as

long as their rate thresholds are satisfied. Specifically, APs are

operated in DL and UL modes when they are located close to

DL and UL UEs, respectively, and the FD mode, otherwise.

In other words, the proposed method allows active APs to

dynamically switch between DL/UL (in HD) and FD modes

based on the channel conditions of all UEs to alleviate the IAI,

residual SI and CCI. These observations reflect the importance

of the joint design of AP-UE association and AP selection to

obtain the maximum EE performance. It is expected that FD

CF-mMIMO with AP selection outperforms the case without

AP selection, as discussed in the following part.

We now examine the EE performance versus the number of

UEs (K = L) in FD CF-mMIMO with different transmission

strategies, as illustrated in Fig. 9. To ensure a high feasibility

of the considered schemes even when the number of UEs is

large, we set the number of APs to M = 256. The EE of the

considered transmission strategies first increases, approaches

the optimal point, and then decreases, as the number of UEs
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Fig. 9. Average EE versus the number of UEs in FD CF-mMIMO with
M = 256 and R̄ = 0.5 bits/s/Hz.

increases. This phenomenon is attributed to the fact that, for

small and medium numbers of UEs, the SE improvement

dominates the total power consumption, leading to the signifi-

cantly enhanced EE performance. However, when the number

of UEs is very large (i.e., K = L > 50), the SE is slightly

improved, even reduced, due to stronger network interference,

while the total power consumption increases quickly since

more APs are required to be active to serve larger number

of UEs. Nevertheless, our proposed IZF design outperforms

the baseline ones.

Fig. 10 plots the average EE as a function of the number

of APs M for R̄ ∈ {0, 0.5} bits/s/Hz, with and without

AP selections. For benchmarking purpose, we consider two

baseline schemes: (i) Power consumption of sleep APs is

completely set to zero, named as “IZF with perfect AP

selection (IZF w/ Perf. AP Sel.);” (ii) AP-UE association and

AP selection are used in company with the channel matrix

transpose and an equal weight coefficient for all UEs, referred

to as “AP selection without weight beamforming design (AP

Sel. w/o WBF).” It can be seen that the IZF design with AP

selection obtains much better EE performance than without

AP selection, i.e., up to about 50% EE gain. However, the

EE with AP selection degrades when the number of APs

becomes large, since the sleep APs still consume a fixed

power in sleep modes, as given in (7). This also explains

why the perfect AP selection achieves the best performance

among all the schemes and gradually increases along with

the number of APs. In addition, increasing M brings no

benefit to the schemes without AP selection. We can also

see that the performance gaps between R̄ = 0 bits/s/Hz and

R̄ = 0.5 bits/s/Hz of all considered schemes are narrower

when M increases. The larger the number of APs, the higher

the probability for UEs to efficiently select a subset of APs

with good channel conditions, leading to better rate fairness

among all UEs.

D. Numerical Results for Heap-Based Pilot Assignment Algo-

rithm 2

It can be easily foreseen that the quality of channel estimates

mainly depends on the relationship between the number of

UEs and dimension of pilot set (or pilot length, τ ). To evaluate

the performance of the proposed FD training strategy, we first

investigate the normalized MSE (NMSE) as a function of the

number of UEs. As depicted in Fig. 11, we consider four
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Fig. 11. Normalized MSE versus the number of UEs in CF-mMIMO with
τ ∈ {2, 8}.

strategies: two heap structures for pilot assignment (Heap-

FD and Heap-HD), and two random pilot assignments (Rand-

FD and Rand-HD). As expected, the proposed heap training

schemes outperform the random ones. It can also be ob-

served that FD training strategies offer better performance in

terms of NMSE compared to HD ones, by exploiting larger

dimension of pilot sequences more efficiently. In particular,

when K = L > τ , NMSE of the proposed Heap-FD is

around 5 dB and 7 dB less than Heap-HD, corresponding to

τ = 2 and τ = 8, respectively. However, we note that the

FD training strategy requires a double training time over its

HD counterpart, leading to the difference of the effective time

for data transmission. The SE under imperfect CSI can be

expressed as

F̂SE

(
w,p,α

)
=
τc − τt
τc

FSE

(
w,p,α

)
, (55)

where τc and τt are the coherent time and training time, re-

spectively. We now plot the SE performance for the worst-case

robust design by taking into account the channel estimation.

In Fig 12, we set τc = 200, τt = 2τ for FD and τt = τ
for HD. Unsurprisingly, Heap-FD schemes outperform HD

ones, and their performance gaps are even more remarkable

when the number of UEs increases. This again demonstrates

the effectiveness of the proposed Heap-based pilot assignment

algorithm for FD CF-mMIMO by reaping both the advantages

of higher dimension of pilot sequences for training and FD for

data transmission.
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Fig. 13. Typical EE convergence behaviors of Algorithm 1 over a random
channel realization.

E. Convergence Behavior and Computational Capability of

Algorithm 1

We have numerically observed that the convergence behav-

ior of the SE optimization in Algorithm 1 is similar to that

of the EE. For the sake of brevity, only the EE convergence

performance is plotted in Fig. 13 by setting η = 0, with

M ∈ {64, 128}. Since each AP has an average percentage

of rate contributed to UEs ˆ̟ = 1/M , we consider ̟ given

in (16) as 0.1% and 1% of 1/M , as illustrated in Fig. 13(a)

and Fig. 13(b), respectively. As seen, Algorithm 1 converges

very fast, and attains 99% EE performance within about 10

iterations for both the first phase (Steps 1-9 in Algorithm

1) and second phase (Step 11 in Algorithm 1). The figure

also clearly demonstrates the effect of the selection of per-AP

power signal ratio ̟ on the EE performance. For ̟ = 0.1%
of 1/M , the gap between two phases is very small, i.e., lower

than 0.05% of the EE achieved in phase 1. For ̟ = 1% of

1/M , the EE loss in phase 2 increases up to 3% and 5% ,

corresponding to M = 64 and M =128, respectively. It simply

implies that the value of ̟ should be properly chosen to not

only achieve a good performance, but also recover an exact

binary value of α and µ.

Finally, we provide the average execution time of the

proposed designs, which mainly aims at showing how their

computational complexities scales with the network size. The

codes are implemented in MATLAB with the modeling tool-

box YALMIP running on a computer of Intel(R) Core(TM)

i7-6700 CPU @ 3.4 GHz, RAM 16 GB and Windows 10.

Fig. 14(a) shows that the execution time of all the proposed

designs slightly increases even when M increases rapidly,

since the problem is less dependent on M . However, the

execution time scales exponentially with respect to the number

of UEs, as shown in Fig. 14(b). Although the computational

complexities of IZF, ONB-ZF, and MRT/MRC design are

similar, the distinct feasible regions would lead to different

processing times. The higher execution time of MRT/MRC is

due to its smaller feasible region. To be more comprehensive,

Fig. 14(c) plots the normalized effective sum power of IAI

and RSI (i.e., ‖G̃AAW‖2/σ2), and the execution time versus

the percentage of N̄ eigenvalues in (39) over the total eigen-

values, δ ∈ (0.6, 0.99]. Clearly, the normalized sum power

of IAI and RSI for ONB-ZF and MRT/MRC are unchanged,

regardless of the value of δ. The reason is that ONB-ZF has

to preserve the structure of the ZF matrix, while MRT/MRC

is based on the transpose of channel responses to compute

the precoder/receiver. More importantly, the IZF transmission

design is capable of providing lower leakage IAI/RSI power

and execution time at the large value of δ.

VIII. CONCLUSION

We have investigated the SE and EE of an FD CF-mMIMO

network by jointly optimizing power control, AP-UE associa-

tion and AP selection. The realistic power consumption model,

which accounts for data transmission, baseband processing

and circuit operation, has been taken into consideration in

characterizing the EE performance. Also, the special rela-

tionship between binary and continuous variables has been

efficiently exploited to reduce the number of optimization

variables. First, we have derived the iterative procedure based

on the ICA framework and Dinkelbach method to solve the

ZF-based problem, where each iteration only solves a simple

convex program. Aiming at efficient network interference

management, we have then proposed an improved ZF-based

transmission by incorporating ONB-and-PCA in the DL, and

SIC in the UL. In addition, a novel and low-complexity pilot

assignment algorithm based on the heap structure has been

developed to improve the quality of channel estimates.

The proposed algorithm admitted fast convergence rate,
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(b) Average execution time versus the number of UEs, with M = 256.
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Fig. 14. Average execution time of Algorithm 1 for different transmission
strategies in FD CF-mMIMO.

and showed to significantly outperform SC-MIMO and Co-

mMIMO in terms of SE and EE by jointly optimizing the

parameters involved. Via presented results, it can be con-

cluded that FD CF-mMIMO with IZF transmission design

is much more robust against the effects of residual SiS and

IAI and requires lower execution time than ZF, ONB-ZF and

MRT/MRC. Numerical results also showed that much better

EE performance can be yielded by our joint design together

with the AP selection.

APPENDIX A: PROOF OF LEMMA 1

Suppose that the optimal solution for (10) is found as a

2-tuple u∗ , (s∗,µ∗), where s∗ , (w∗,p∗,α∗| α∗
km =

0 & w∗
km 6= 0). Let s̃ , (w̃,p∗,α∗|α∗

km = 0 & w̃km = 0),
yielding ũ = (̃s,µ∗). We are now in a position to prove

F (u∗) ≤ F (ũ) as ũ is an optimal point. Inspired from [48], it

can be realized that the numerator and denominator of γdk(s
∗)

in (2) remain unchanged for any w∗
km. From (8), FSE(s

∗) is

the same with respect to {w∗
km}. Moreover, αkm coupled with

wkm in (4) gives γuℓ (s
∗) = γuℓ (̃s), and thus, FSE(s

∗) = FSE(̃s).
On the other hand, if ‖w∗

km‖2 > 0, then PD(u
∗) ≥ PD(ũ)

given by the first term in (6). The equality between PD(u
∗)

and PD(ũ) holds if µ∗
m = 0. As a result, PT(u

∗) ≥ PT(ũ) leads

to FEE(u
∗) ≤ FEE(ũ) as well as F (u∗) ≤ F (ũ). Moreover,

the indexes k and m in s∗ are arbitrary in the sets K and

M, respectively. It is concluded that if α∗
km = 0, u∗ admits

w̃km = 0 to generate an optimal solution, which completes

the proof.

APPENDIX B: PROOF OF THEOREM 1

Let us define u = (s,µ) ∈ U ,
{
(w,p,α,µ)|wkm ∈

ker(hd
km)

}
⊆ F , ∀k ∈ K, m ∈ M, where s represents the

triple (w,p,α) as part of quadruple u. To prove Theorem

1, we need to show two states: (i) F (u|wkm = 0) ≥
F (u|wkm 6= 0), ∀αkm ∈ {0, 1}; and (ii) F (u|wkm =
0 & αkm = 0) ≥ F (u|wkm 6= 0 & αkm = 1). For the

first state, we denote u0 ∈
{
(s0,µ) ∈ U|wkm = 0

}
, and

u1 ∈
{
(s1,µ) ∈ U|wkm 6= 0

}
and consider DL SINRs

in (2) with respect to s0 and s1. For wkm ∈ ker(hd
km), it

follows that |hd
kmwkm|2 = 0, and thus, γdk(s0) = γdk(s1). On

the other hand, γdk′(s0) ≥ γdk′(s1), ∀k′ ∈ K \ {k} implies

that the component |hd
k′mwkm|2 in the denominator of SINR

for Udk′ is equal to or greater than zero, where the equality

holds if wkm = 0. In addition, we have FSE(s0) ≥ FSE(s1)
due to γuℓ (s0) ≥ γuℓ (s1), ∀ℓ ∈ L. Meanwhile, it is true that

‖wkm‖2 > 0 for any wkm 6= 0, yielding PD(u0) ≤ PD(u1)
and PT(u0) ≤ PT(u1). That is to say FEE(u0) ≥ FEE(u1) as

well as F (u0) ≥ F (u1), concluding the first state. The second

state is easily proved by following the same steps in Appendix

A.

APPENDIX C: PROOF OF THEOREM 2

The power consumption for data transmission and baseband

processing PD(V, fspr(w),µ) is rewritten as

PD(V, fspr(w),µ) =
∑

m∈M
µm

(
∑

k∈K

(‖wkm‖2
νAPm

+ LP u
m

+rsp
(
wkm,h

d
km|w(κ)

k ,hd
k

)
P d
km

)
)

+B · FSE(w,p,α) · P bh +
∑

ℓ∈L

pℓ
νuℓ
. (C.1)

It can be foreseen that if µm = 0, the signal power of all

UEs served by APm becomes zero. In other words, µm is also

coupled with wkm, ∀k ∈ K, and amℓ, ∀ℓ ∈ L. The first term

in (C.1) is associated with the DL and UL power allocation,

and thus, µm must be strictly updated with respect to the DL

and UL signal power, showing (17).

APPENDIX D: PROOF OF THEOREM 3

The proof is done by showing the fact that problems (27)

and (28) share the same optimal objective and solution set.

From the introduction of soft SINRs λ, it is straightforward
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to prove that constraints (28c) and (28d) must be active

(i.e., holding with equalities) at optimum. As a result, con-

straints (27b) and (27c) can be converted to linear constraints

(28e) and (28f), respectively. In addition, we can decompose

F̄SE

(
ΓZF
d ,Γ

ZF
u

)
as F̄SE

(
ΓZF
d ,Γ

ZF
u

)
= RΣ(Γ

ZF
d )+RΣ(Γ

ZF
u ), where

RΣ(Γ
ZF
d ) ≥ RΣ(λd) =

∑

k∈K
ln(1 + λdk)

= ln
(∏

k∈K
(1 + λdk)

)

= ln |I+Λd|, (D.1a)

RΣ(Γ
ZF
u ) ≥ RΣ(λu) =

∑

ℓ∈L
ln(1 + λuℓ)

= ln
(∏

ℓ∈L
(1 + λuℓ)

)

= ln |I+Λu|. (D.1b)

Then, we have

F̄SE

(
ΓZF
d ,Γ

ZF
u

)
≥ ln |I+Λd|+ ln |I+Λu|
:= F̃SE

(
Λd,Λu

)
. (D.2)

Equalities in (28c) and (28d) also lead to an equality of (D.2).

In the same spirit, we can further show that constraint (28b)

is also active at optimum, which completes the proof.

APPENDIX E: PROOF OF PROCEDURE 1

Suppose that a projection matrix P = I − (G̃AA)H
(
G̃AA

(G̃AA)H
)−1

G̃AA is applied to cancel the IAI and RSI. Accord-

ingly, the effects of MUI, IAI and RSI can be ignored by

considering W̄ = PQHT̃(Dd)
1
2 as a precoder matrix.

• MUI cancellation: it follows that

HdW̄
[a]
= TQQHT̃(Dd)

1
2

[b]
= T̄(Dd)

1
2 ,

where [a] is obtained via Step 4, while [b] comes from

the structure of T̃ in Step 5. Clearly, MUI is completely

removed, since both T̄ and Dd are diagonal matrices.

• IAI and RSI cancellation: the effective IAI and RSI are

generally expressed by G̃AA. We have

G̃AAW̄ = G̃AAPQHT̃(Dd)
1
2 = 0.

due to G̃AAP = 0. However, G̃AA is a concatenation of

IAI and RSI matrices, leading to a full-rank matrix in

most cases. In other words, P must be forced to 0, and

thus, should not be joined into the precoder matrix W̄. To

overcome this issue, we exploit the PCA-based method

to depress the IAI and RSI in the rest of this proof.

To derive matrix P, we consider a low-rank approximation

via the PCA method as in Steps 1-3. From (38) and (39), the

low-rank approximation of G̃AA can be derived from the N̄ -top

eigenvalues as

(G̃AA
N̄
)HG̃AA

N̄
= ŪĒ

1
2 Ē

1
2 ŪH , (E.1)

where Ū ∈ C
N×N̄ involves the first N̄ columns of U, and the

diagonal matrix Ē ∈ C
N̄×N̄ has the main diagonal with the

N̄ -top eigenvalues of E in (38). We note that ŪHŪ = I, but

ŪŪH 6= I. By treating G̃AA as G̃AA
N̄

= Ē
1
2 ŪH , the projection

matrix P can be calculated as

P = I− (G̃AA
N̄
)H
(
G̃AA

N̄
(G̃AA

N̄
)H
)−1

G̃AA
N̄

= I− ŪĒ
1
2 (Ē

1
2 ŪHŪĒ

1
2 )−1Ē

1
2 ŪH = I− ŪŪH , (E.2)

showing Step 3.

APPENDIX F: PROOF OF THEOREM 4

From Ξ̄ = ΞΥ, it is clear that ϕ̄j = Ξυj with υj being
the j-th column of Υ. Therefore, εmj can be expressed as a
function of assignment variables, i.e.,

Nmεmj

βmj

= Nm

(

1− τptrj βmj
∑

j′∈Tu
τptr

j′
βmj′ |υH

j ΞHΞυj′ |2 + σ2
AP

)

= Nm

(

1− τptrj βmj
∑

j′∈Tu
τptr

j′
βmj′ |υH

j υj′ |2 + σ2
AP

)

[a]
= Nm

∑

j′∈Tu\{j}
τptrj′βmj′υ

H
j υj′ + σ2

AP

τptrj βmj +
∑

j′∈Tu\{j}
τptr

j′
βmj′υ

H
j υj′ + σ2

AP

,

(F.1)

where [a] comes from the fact that υH
j υj′ ∈ {0, 1}, ∀j, j′ ∈

Tu, and υH
j υj′ = 1 when j = j′. In addition, for arbi-

trary values of x, y and z, such that 0 ≤ z < x < y,

it is true that x−z
y−z

≤ x
y

≤ x+z
y+z

. Upon setting x =
∑

j′∈Tu\{j}
τptrj′ βmj′υ

H
j υj′ + σ2

AP and y = x + τptrj βmj , z
is the amount of disparity in x when υj changes. It implies

that when υj changes, x and y vary by the same amount of z.

Consequently, we replace x/y with y for the ease of solution

derivation, and thus the objective (50a) can be rewritten as

max
j∈Tu

∑

m∈M
Nm

∑

j′∈Tu

τptrj′ βmj′υ
H
j υj′ + σ2

AP

= max
j∈Tu

∑

j′∈Tu

υH
j υj′

∑

m∈M
Nmτp

tr
j′ βmj′ + σ2

AP. (F.2)

Since σ2
AP in (F.2) is the constant, we can arrive at a tractable

optimization problem (51).
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