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Abstract

Neural networks are known to be a class of highly

expressive functions able to fit even random input-

output mappings with 100% accuracy. In this

work we present properties of neural networks

that complement this aspect of expressivity. By

using tools from Fourier analysis, we highlight a

learning bias of deep networks towards low fre-

quency functions – i.e. functions that vary glob-

ally without local fluctuations – which manifests

itself as a frequency-dependent learning speed.

Intuitively, this property is in line with the ob-

servation that over-parameterized networks pri-

oritize learning simple patterns that generalize

across data samples. We also investigate the role

of the shape of the data manifold by presenting

empirical and theoretical evidence that, somewhat

counter-intuitively, learning higher frequencies

gets easier with increasing manifold complexity.

1. Introduction

The remarkable success of deep neural networks at general-

izing to natural data is at odds with the traditional notions of

model complexity and their empirically demonstrated ability

to fit arbitrary random data to perfect accuracy (Zhang et al.,

2017a; Arpit et al., 2017). This has prompted recent in-

vestigations of possible implicit regularization mechanisms

inherent in the learning process which induce a bias towards

low complexity solutions (Neyshabur et al., 2014; Soudry

et al., 2017; Poggio et al., 2018; Neyshabur et al., 2017).

In this work, we take a slightly shifted view on implicit

regularization by suggesting that low-complexity functions

are learned faster during training by gradient descent. We
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expose this bias by taking a closer look at neural networks

through the lens of Fourier analysis. While they can ap-

proximate arbitrary functions, we find that these networks

prioritize learning the low frequency modes, a phenomenon

we call the spectral bias. This bias manifests itself not just

in the process of learning, but also in the parameterization of

the model itself: in fact, we show that the lower frequency

components of trained networks are more robust to random

parameter perturbations. Finally, we also expose and ana-

lyze the rather intricate interplay between the spectral bias

and the geometry of the data manifold by showing that high

frequencies get easier to learn when the data lies on a lower-

dimensional manifold of complex shape embedded in the

input space of the model. We focus the discussion on net-

works with rectified linear unit (ReLU) activations, whose

continuous piece-wise linear structure enables an analytic

treatment.

Contributions1

1. We exploit the continuous piecewise-linear structure

of ReLU networks to evaluate its Fourier spectrum

(Section 2).

2. We find empirical evidence of a spectral bias: i.e.

lower frequencies are learned first. We also show that

lower frequencies are more robust to random perturba-

tions of the network parameters (Section 3).

3. We study the role of the shape of the data manifold: we

show how complex manifold shapes can facilitate the

learning of higher frequencies and develop a theoretical

understanding of this behavior (Section 4).

2. Fourier analysis of ReLU networks

2.1. Preliminaries

Throughout the paper we call ‘ReLU network’ a scalar func-

tion f : Rd 7! R defined by a neural network with L hidden

layers of widths d1, · · · dL and a single output neuron:

f(x) =
⇣

T (L+1) � � � T (L) � · · · � � � T (1)
⌘

(x) (1)

1Code: https://github.com/nasimrahaman/SpectralBias
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where each T (k) : R
dk−1 ! R

dk is an affine function

(d0 = d and dL+1 = 1) and �(u)i = max(0, ui) denotes

the ReLU activation function acting elementwise on a vector

u = (u1, · · ·un). In the standard basis, T (k)(x) = W (k)x+
b(k) for some weight matrix W (k) and bias vector b(k).

ReLU networks are known to be continuous piece-wise lin-

ear (CPWL) functions, where the linear regions are convex

polytopes (Raghu et al., 2016; Montufar et al., 2014; Zhang

et al., 2018; Arora et al., 2018). Remarkably, the converse

also holds: every CPWL function can be represented by a

ReLU network (Arora et al., 2018, Theorem 2.1), which in

turn endows ReLU networks with universal approximation

properties. Given the ReLU network f from Eqn. 1, we can

make the piecewise linearity explicit by writing,

f(x) =
X

✏

1P✏
(x) (W✏x+ b✏) (2)

where ✏ is an index for the linear regions P✏ and 1P✏
is the

indicator function on P✏. As shown in Appendix B in more

detail, each region corresponds to an activation pattern2 of

all hidden neurons of the network, which is a binary vector

with components conditioned on the sign of the input of the

respective neuron. The 1⇥ d matrix W✏ is given by

W✏ = W (L+1)W (L)
✏ · · ·W (1)

✏ (3)

where W
(k)
✏ is obtained from the original weight W (k) by

setting its jth column to zero whenever the neuron j of the

kth layer is inactive.

2.2. Fourier Spectrum

In the following, we study the structure of ReLU net-

works in terms of their Fourier representation, f(x) :=
(2⇡)d/2

R
f̃(k) eik·xdk, where f̃(k) :=

R
f(x) e−ik·xdx

is the Fourier transform3. Lemmas 1 and 2 yield the explicit

form of the Fourier components (we refer to Appendix C

for the proofs and technical details).

Lemma 1. The Fourier transform of ReLU networks de-

composes as,

f̃(k) = i
X

✏

W✏k

k2
1̃P✏

(k) (4)

where k = kkk and 1̃P (k) =
R

P
e−ik·xdx is the Fourier

transform of the indicator function of P .

2We adopt the terminology of Raghu et al. (2016); Montufar
et al. (2014).

3Note that general ReLU networks need not be squared inte-
grable: for instance, the class of two-layer ReLU networks repre-
sent an arrangement of hyperplanes (Montufar et al., 2014) and
hence grow linearly as x ! 1. In such cases, the Fourier trans-
form is to be understood in the sense of tempered distributions

acting on rapidly decaying smooth functions φ as hf̃ ,φi = hf, φ̃i.
See Appendix C for a formal treatment.

The Fourier transform of the indicator over linear regions

appearing in Eqn. 4 are fairly intricate mathematical objects.

Diaz et al. (2016) develop an elegant procedure for evalu-

ating it in arbitrary dimensions via a recursive application

of Stokes theorem. We describe this procedure in detail4 in

Appendix C.2, and present here its main corollary.

Lemma 2. Let P be a full dimensional polytope in R
d. Its

Fourier spectrum takes the form:

1̃P (k) =
dX

n=0

Dn(k)1Gn
(k)

kn
(5)

where Gn is the union of n-dimensional subspaces that are

orthogonal to some n-codimensional face of P , Dn : Rd !
C is in Θ(1) (k ! 1) and 1Gn

the indicator over Gn.

Lemmas 1, 2 together yield the main result of this section.

Theorem 1. The Fourier components of the ReLU network

f✓ with parameters ✓ is given by the rational function:

f̃✓(k) =
dX

n=0

Cn(✓,k)1H✓
n
(k)

kn+1
(6)

where H✓
n is the union of n-dimensional subspaces that are

orthogonal to some n-codimensional faces of some polytope

P✏ and Cn(·, ✓) : R
d ! C is Θ(1) (k ! 1).

Note that Eqn 6 applies to general ReLU networks with

arbitrary width and depth5.

Discussion. We make the following two observations. First,

the spectral decay of ReLU networks is highly anisotropic

in large dimensions. In almost all directions of Rd, we have

a k−d−1 decay. However, the decay can be as slow as k−2

in specific directions orthogonal to the d� 1 dimensional

faces bounding the linear regions6.

Second, the numerator in Eqn 6 is bounded by NfLf (cf.

Appendix C.3), where Nf is the number of linear regions

and Lf = max✏ kW✏k is the Lipschitz constant of the net-

work. Further, the Lipschitz constant Lf can be bounded as

(cf. Appendix C.6):

Lf 
L+1Y

k=1

kW (k)k  k✓kL+1
∞

p
d

LY

k=1

dk (7)

where k ·k is the spectral norm and k ·k∞ the max norm, and

dk is the number of units in the k-th layer. This makes the

4We also generalize the construction to tempered distributions.
5Symmetries that might arise due to additional assumptions

can be used to further develop Eqn 6, see e.g. Eldan & Shamir
(2016) for 2-layer networks.

6Note that such a rate is not guaranteed by piecewise smooth-

ness alone. For instance, the function
p

|x| is continuous and

smooth everywhere except at x = 0, yet it decays as k−1.5 in the
Fourier domain.
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bound on Lf scale exponentially in depth and polynomial

in width. As for the number Nf of linear regions, Montufar

et al. (2014) and Raghu et al. (2016) obtain tight bounds

that exhibit the same scaling behaviour (Raghu et al., 2016,

Theorem 1). In Appendix A.5, we qualitatively ablate over

the depth and width of the network to expose how this

reflects on the Fourier spectrum of the network.

3. Lower Frequencies are Learned First

We now present experiments showing that networks tend to

fit lower frequencies first during training. We refer to this

phenomenon as the spectral bias, and discuss it in light of

the results of Section 2.

3.1. Synthetic Experiments

Experiment 1. The setup is as follows7: Given frequen-

cies  = (k1, k2, ...) with corresponding amplitudes ↵ =
(A1, A2, ...), and phases � = ('1,'2, ...), we consider the

mapping � : [0, 1] ! R given by

�(z) =
X

i

Ai sin(2⇡kiz + 'i). (8)

A 6-layer deep 256-unit wide ReLU network f✓ is trained

to regress � with  = (5, 10, ..., 45, 50) and N = 200 in-

put samples spaced equally over [0, 1]; its spectrum f̃✓(k)
in expectation over 'i ⇠ U(0, 2⇡) is monitored as train-

ing progresses. In the first setting, we set equal amplitude

Ai = 1 for all frequencies and in the second setting, the

amplitude increases from A1 = 0.1 to A10 = 1. Figure 1

shows the normalized magnitudes |f̃✓(ki)|/Ai at various

frequencies, as training progresses with full-batch gradient

descent. Further, Figure 2 shows the learned function at

intermediate training iterations. The result is that lower fre-

quencies (i.e. smaller ki’s) are regressed first, regardless of

their amplitudes.

Experiment 2. Our goal here is to illustrate a phenomenon

that complements the one highlighted above: lower fre-

quencies are more robust to parameter perturbations. The

set up is the same as in Experiment 1. The network

is trained to regress a target function with frequencies

 = (10, 15, 20, ..., 45, 50) and amplitudes Ai = 1 8 i.
After convergence to ✓∗, we consider random (isotropic)

perturbations ✓ = ✓∗ + �✓̂ of given magnitude �, where ✓̂

is a random unit vector in parameter space. We evaluate

the network function f✓ at the perturbed parameters, and

compute the magnitude of its discrete Fourier transform at

frequencies ki to obtain |f̃✓(ki)|. We also average over 100

samples of ✓̂ to obtain |f̃E✓(ki)|, which we normalize by

|f̃✓∗(ki)|. Finally, we average over the phases � (see Eqn 8).

7More experimental details and additional plots are provided
in Appendix A.1.

The result, shown in Figure 3, demonstrates that higher fre-

quencies are significantly less robust than the lower ones,

guiding the intuition that expressing higher frequencies re-

quires the parameters to be finely-tuned to work together. In

other words, parameters that contribute towards expressing

high-frequency components occupy a small volume in the

parameter space. We formalize this in Appendix D.

Discussion . Multiple theoretical aspects may underlie these

observations. First, for a fixed architecture, recall that the

numerator in Theorem 1 is8 O(Lf ) (where Lf is the Lip-

schitz constant of the function). However, Lf is bounded

by the parameter norm, which can only increase gradually

during training by gradient descent. This leads to the higher

frequencies being learned9 late in the optimization process.

To confirm that the bound indeed increases as the model

fits higher frequencies, we plot in Fig 1 the spectral norm

of weights of each layer during training for both cases of

constant and increasing amplitudes.

Second (cf. Appendix C.4), the exact form of the Fourier

spectrum yields that for a fixed direction k̂, the spectral

decay rate of the parameter gradient @f̃/@✓ is at most one

exponent of k lower than that of f̃ . If for a fixed k̂ we

have f̃ = O(k−∆−1) where 1  ∆  d, we obtain for the

residual h = f � � and (continuous) training step t:

�
�
�
�
�

dh̃(k)

dt

�
�
�
�
�
=

�
�
�
�
�

df̃(k)

dt

�
�
�
�
�
=

�
�
�
�
�

df̃(k)

d✓

�
�
�
�
�

| {z }

O(k−∆)

|⌘·dL/d✓|
z}|{�
�
�
�

d✓

dt

�
�
�
�

= O(k−∆) (9)

where we use the fact that d✓/dt is just the learning rate times

the parameter gradient of the loss which is independent10

of k, and assume that the target function � is fixed. Eqn 9

shows that the rate of change of the residual decays with in-

creasing frequency, which is what we find in Experiment 1.

3.2. Real-Data Experiments

While Experiments 1 and 2 establish the spectral bias by

explicitly evaluating the Fourier coefficients, doing so be-

comes prohibitively expensive for larger d (e.g. on MNIST).

To tackle this, we propose the following set of experiments

to measure the effect of spectral bias indirectly on MNIST.

Experiment 3. In this experiment, we investigate how the

validation performance dependent on the frequency of noise

8The tightness of this bound is verified empirically in ap-
pendix A.5.

9This assumes that the Lipschitz constant of the (noisy) target
function is larger than that of the network at initialization.

10Note however that the loss term might involve a sum or an
integral over all frequencies, but the summation is over a different
variable.
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(a) Equal Amplitudes (b) Increasing Amplitudes

Figure 1. Left (a, b): Evolution of the spectrum (x-axis for frequency) during training (y-axis). The colors show the measured amplitude

of the network spectrum at the corresponding frequency, normalized by the target amplitude at the same frequency (i.e. |f̃ki
|/Ai) and the

colorbar is clipped between 0 and 1. Right (a, b): Evolution of the spectral norm (y-axis) of each layer during training (x-axis). Figure-set

(a) shows the setting where all frequency components in the target function have the same amplitude, and (b) where higher frequencies

have larger amplitudes. Gist: We find that even when higher frequencies have larger amplitudes, the model prioritizes learning lower

frequencies first. We also find that the spectral norm of weights increases as the model fits higher frequency, which is what we expect

from Theorem 1.

(a) Iteration 100 (b) Iteration 1000 (c) Iteration 10000 (d) Iteration 80000

Figure 2. The learnt function (green) overlayed on the target function (blue) as the training progresses. The target function is a superposition

of sinusoids of frequencies κ = (5, 10, ..., 45, 50), equal amplitudes and randomly sampled phases.

Figure 3. Normalized spectrum of the model (x-axis for frequency,

colorbar for magnitude) with perturbed parameters as a function of

parameter perturbation (y-axis). The colormap is clipped between

0 and 1. We observe that the lower frequencies are more robust to

parameter perturbations than the higher frequencies.

added to the training target. We find that the best valida-

tion performance on MNIST is particularly insensitive to

the magnitude of high-frequency noise, yet it is adversely

affected by low-frequency noise. We consider a target

(binary) function ⌧0 : X ! {0, 1} defined on the space

X = [0, 1]784 of MNIST inputs. Samples {xi, ⌧0(xi)}i
form a subset of the MNIST dataset comprising samples xi

belonging to two classes. Let  k(x) be a noise function:

 k(x) = sin(kkxk) (10)

corresponding to a radial wave defined on the 784-

dimensional input space11. The final target function ⌧k
is then given by ⌧k = ⌧0 + � k, where � is the effective

amplitude of the noise. We fit the same network as in Exper-

iment 1 to the target ⌧k with the MSE loss. In the first set of

experiments, we ablate over k for a pair of fixed �s, while

in the second set we ablate over � for a pair of fixed ks.

In Figure 4, we show the respective validation loss curves,

where the validation set is obtained by evaluating ⌧0 on a

separate subset of the data, i.e. {xj , ⌧0(xj)}j . Figure 11 (in

appendix A.3) shows the respective training curves.

Discussion. The profile of the loss curves varies signif-

icantly with the frequency of noise added to the target.

In Figure 4a, we see that the validation performance is

adversely affected by the amplitude of the low-frequency

noise, whereas Figure 4b shows that the amplitude of high-

11The rationale behind using a radial wave is that it induces
oscillations (simultaneously) along all spatial directions. Another
viable option is to induce oscillations along the principle axes
of the data: we have verified that the key trends of interest are
preserved.
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(a) k = 0.1 (b) k = 1 (c) β = 0.5 (d) β = 1.

Figure 4. (a,b,c,d): Validation curves for various settings of noise amplitude β and frequency k. Corresponding training curves can be

found in Figure 11 in appendix A.3. Gist: Low frequency noise affects the network more than their high-frequency counterparts. Further,

for high-frequency noise, one finds that the validation loss dips early in the training. Both these observations are explained by the fact that

network readily fit lower frequencies, but learn higher frequencies later in the training.

frequency noise does not significantly affect the best vali-

dation score. This is explained by the fact that the network

readily fits the noise signal if it is low frequency, whereas the

higher frequency noise is only fit later in the training. In the

latter case, the dip in validation score early in the training is

when the network has learned the low frequency true target

function ⌧0; the remainder of the training is spent learning

the higher-frequencies in the training target ⌧ , as we shall

see in the next experiment. Figures 4c and 4d confirm that

the dip in validation score exacerbates for increasing fre-

quency of the noise. Further, we observe that for higher

frequencies (e.g. k = 0.5), increasing the amplitude � does

not significantly degrade the best performance at the dip,

confirming that the network is fairly robust to the amplitude

of high-frequency noise.

Finally, we note that the dip in validation score was also

observed by Arpit et al. (2017) with i.i.d. noise12 in a classi-

fication setting.

Experiment 4. To investigate the dip observed in Experi-

ment 3, we now take a more direct approach by considering

a generalized notion of frequency. To that end, we project

the network function to the space spanned by the orthonor-

mal eigenfunctions 'n of the Gaussian RBF kernel (Braun

et al., 2006). These eigenfunctions 'n (sorted by decreas-

ing eigenvalues) resemble sinusoids (Fasshauer, 2011), and

the index n can be thought of as being a proxy for the fre-

quency, as can be seen from Figure 6 (see Appendix A.4

for additional details and supporting plots). While we will

call f̃ [n] as the spectrum of the function f , it should be

understood as f̃ [n] = hfH,'niH, where fH 2 span{'n}n
and fH(xi) = f(xi) on the MNIST samples xi 2 X . This

allows us to define a noise function as:

 �(x) =

NX

n

⇣ n

N

⌘�

'n(x) (11)

12Recall that i.i.d. noise is white-noise, which has a constant
Fourier spectrum magnitude in expectation, i.e. it also contains
high-frequency components.

where N is the number of available samples and � = 2. Like

in Experiment 3, the target function is given by ⌧ = ⌧0+� ,

and the same network is trained to regress ⌧ . Figure 5

shows the (generalized) spectrum ⌧ and ⌧0, and that of f
as training progresses. Figure 13 (in appendix) shows the

corresponding dip in validation loss, where the validation

set is same as the training set but with true target function

⌧0 instead of the noised target ⌧ .

Figure 5. Spectrum of the network as it is trained on MNIST target

with high-frequency noise (Noised Target). We see that the network

fits the true target at around the 200th iteration, which is when the

validation score dips (Figure 13 in appendix).

Discussion. From Figure 5, we learn that the drop in valida-

tion score observed in Figure 4 is exactly when the higher-

frequencies of the noise signal are yet to be learned. As the

network gradually learns the higher frequency eigenfunc-

tions, the validation loss increases while the training loss

continues to decrease. Thus these experiments show that

the phenomenon of spectral bias persists on non-synthetic

data and in high dimensional input spaces.

4. Not all Manifolds are Learned Equal

In this section, we investigate subtleties that arise when

the data lies on a lower dimensional manifold embedded in

the higher dimensional input space of the model. We find
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Figure 6. Spectrum (x-axis for frequency, colorbar for magnitude)

of the n-th (y-axis) eigenvector of the Gaussian RBF kernel matrix

Kij = k(xi,xj), where the sample set is {xi 2 [0, 1]}50i=1 is N =
50 uniformly spaced points between 0 and 1 and k is the Gaussian

RBF kernel function. Gist: The eigenfunctions with increasing n
roughly correspond to sinusoids of increasing frequency. Refer to

Appendix A.4 for more details.

that the shape of the data-manifold impacts the learnabil-

ity of high frequencies in a non-trivial way. As we shall

see, this is because low frequency functions in the input

space may have high frequency components when restricted

to lower dimensional manifolds of complex shapes. We

demonstrate results in an illustrative minimal setting13, free

from unwanted confounding factors, and present a theoreti-

cal analysis of the phenomenon.

Manifold hypothesis. We consider the case where the data

lies on a lower dimensional data manifold M ⇢ R
d em-

bedded in input space (Goodfellow et al., 2016), which we

assume to be the image �([0, 1]m) of some injective map-

ping � : [0, 1]m ! R
d defined on a lower dimensional

latent space [0, 1]m. Under this hypothesis and in the con-

text of the standard regression problem, a target function

⌧ : M ! R defined on the data manifold can be identified

with a function � = ⌧ � � defined on the latent space. Re-

gressing ⌧ is therefore equivalent to finding f : Rd ! R

such that f � � matches �. Further, assuming that the data

probability distribution µ supported on M is induced by �

from the uniform distribution U in the latent space [0, 1]m,

the mean square error can be expressed as:

MSE(x)
µ [f, ⌧ ] = Ex∼µ|f(x)� ⌧(x)|2 =

Ez∼U |(f(�(z))� �(z)|2 = MSE
(z)
U [f � �,�] (12)

Observe that there is a vast space of degenerate solutions f
that minimize the mean squared error – namely all functions

13We include additional experiments on MNIST and CIFAR-10
in appendices A.6 and A.7.

Figure 7. Functions learned by two identical networks (up to initial-

ization) to classify the binarized value of a sine wave of frequency

k = 200 defined on a γL=20 manifold. Both yield close to per-

fect accuracy for the samples defined on the manifold (scatter

plot), yet they differ significantly elsewhere. The shaded regions

show the predicted class (Red or Blue) whereas contours show the

confidence (absolute value of logits).

on R
d that yield the same function when restricted to the

data manifold M.

Our findings from the previous section suggest that neural

networks are biased towards expressing a particular subset

of such solutions, namely those that are low frequency. It is

also worth noting that there exist methods that restrict the

space of solutions: notably adversarial training (Goodfellow

et al., 2014) and Mixup (Zhang et al., 2017b).

Experimental set up. The experimental setting is designed

to afford control over both the shape of the data manifold and

the target function defined on it. We will consider the family

of curves in R
2 generated by mappings �L : [0, 1] ! R

2

given by

�L(z) =RL(z)(cos(2⇡z), sin(2⇡z))

where RL(z) = 1 +
1

2
sin(2⇡Lz) (13)

Here, �L([0, 1]) defines the data-manifold and corresponds

to a flower-shaped curve with L petals, or a unit circle when

L = 0 (see e.g. Fig 7). Given a signal � : [0, 1] ! R

defined on the latent space [0, 1], the task entails learning a

network f : R2 ! R such that f � �L matches the signal �.

Experiment 5. The set-up is similar to that of Experi-

ment 1, and � is as defined in Eqn. 8 with frequencies

 = (20, 40, ..., 180, 200), and amplitudes Ai = 18 i. The

model f is trained on the dataset {�L(zi),�(zi)}
N
i=1 with

N = 1000 uniformly spaced samples zi between 0 and 1.

The spectrum of f � �L in expectation over 'i ⇠ U(0, 2⇡)
is monitored as training progresses, and the result is shown

in Fig 8 for various L. Fig 8e shows the corresponding mean

squared error curves. More experimental details in appendix

A.2.



On the Spectral Bias of Neural Networks

(a) L = 0 (b) L = 4 (c) L = 10 (d) L = 16 (e) Loss curves

Figure 8. (a,b,c,d): Evolution of the network spectrum (x-axis for frequency, colorbar for magnitude) during training (y-axis) for the same

target functions defined on manifolds γL for various L. Since the target function has amplitudes Ai = 1 for all frequencies ki plotted, the

colorbar is clipped between 0 and 1. (e): Corresponding learning curves. Gist: Some manifolds (here with larger L) make it easier for the

network to learn higher frequencies than others.

Figure 9. Heatmap of training accuracies of a network trained to

predict the binarized value of a sine wave of given frequency (x-

axis) defined on γL for various L (y-axis).

The results demonstrate a clear attenuation of the spectral

bias as L grows. Moreover, Fig 8e suggests that the larger

the L, the easier the learning task.

Experiment 6. Here, we adapt the setting of Experiment 5

to binary classification by simply thresholding the function

� at 0.5 to obtain a binary target signal. To simplify visual-

ization, we only use signals with a single frequency mode k,

such that �(z) = sin(2⇡kz+'). We train the same network

on the resulting classification task with cross-entropy loss14

for k 2 {50, 100, ..., 350, 400} and L 2 {0, 2, ..., 18, 20}.

The heatmap in Fig 9 shows the classification accuracy for

each (k, L) pair. Fig 7 shows visualizations of the functions

learned by the same network, trained on (k, L) = (200, 20)
under identical conditions up to random initialization.

Observe that increasing L (i.e. going up a column in Fig 9)

results in better (classification) performance for the same

target signal. This is the same behaviour as we observed in

Experiment 5 (Fig 8a-d), but now with binary cross-entropy

loss instead of the MSE.

14We use Pytorch’s BCEWithLogitsLoss. Internally, it
takes a sigmoid of the network’s output (the logits) before evaluat-
ing the cross-entropy.

Discussion. These experiments hint towards a rich inter-

action between the shape of the manifold and the effective

difficulty of the learning task. The key mechanism under-

lying this phenomenon (as we formalize below) is that the

relationship between frequency spectrum of the network f
and that of the fit f � �L is mediated by the embedding map

�L. In particular, we argue that a given signal defined on

the manifold is easier to fit when the coordinate functions

of the manifold embedding itself has high frequency com-

ponents. Thus, in our experimental setting, the same signal

embedded in a flower with more petals can be captured with

lower frequencies of the network.

To understand this mathematically, we address the following

questions: given a target function �, how small can the

frequencies of a solution f be such that f � � = �? And

further, how does this relate to the geometry of the data-

manifold M induced by �? To find out, we write the Fourier

transform of the composite function,

(̂f � �)(l) =
Z

dkf̃(k)P�(l,k) (14)

where P�(l,k) =

Z

[0,1]m
dz ei(k·�(z)−l·z)

The kernel P� depends on only � and elegantly encodes

the correspondence between frequencies k 2 R
d in input

space and frequencies l 2 R
m in the latent space [0, 1]m.

Following a procedure from Bergner et al., we can further

investigate the behaviour of the kernel in the regime where

the stationary phase approximation is applicable, i.e. when

l2 + k2 ! 1 (cf. section 3.2. of Bergner et al.). In this

regime, the integral P� is dominated by critical points z̄ of

its phase, which satisfy

l = J�(z̄)k (15)

where J�(z)ij = ri�j(z) is the m⇥ d Jacobian matrix of

�. Non-zero values of the kernel correspond to pairs (l,k)
such that Eqn 15 has a solution. Further, given that the

components of � (i.e. its coordinate functions) are defined
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on an interval [0, 1]m, one can use their Fourier series rep-

resentation together with Eqn 15 to obtain a condition on

their frequencies (shown in appendix C.7). More precisely,

we find that the i-th component of the RHS in Eqn 15 is

proportional to p�̃i[p]ki where p 2 Z
m is the frequency

of the coordinate function �i. This yields that we can get

arbitrarily large frequencies li if �̃i[p] is large15 enough for

large p, even when ki is fixed.

This is precisely what Experiments 5 and 6 demonstrate in a

minimal setting. From Eqn 13, observe that the coordinate

functions have a frequency mode at L. For increasing L, it

is apparent that the frequency magnitudes l (in the latent

space) that can be expressed with the same frequency k (in

the input space) increases with increasing L. This allows the

remarkable interpretation that the neural network function

can express large frequencies on a manifold (l) with smaller

frequencies w.r.t its input domain (k), provided that the

coordinate functions of the data manifold embedding itself

has high-frequency components.

5. Related Work

A number of works have focused on showing that neural

networks are capable of approximating arbitrarily complex

functions. Hornik et al. (1989); Cybenko (1989); Leshno

et al. (1993) have shown that neural networks can be uni-

versal approximators when given sufficient width; more

recently, Lu et al. (2017) proved that this property holds

also for width-bounded networks. Montufar et al. (2014)

showed that the number of linear regions of deep ReLU

networks grows polynomially with width and exponentially

with depth; Raghu et al. (2016) generalized this result and

provided asymptotically tight bounds. There have been

various results of the benefits of depth for efficient approxi-

mation (Poole et al., 2016; Telgarsky, 2016; Eldan & Shamir,

2016). These analysis on the expressive power of deep neu-

ral networks can in part explain why over-parameterized

networks can perfectly learn random input-output mappings

(Zhang et al., 2017a).

Our work more directly follows the line of research on im-

plicit regularization in neural networks trained by gradient

descent (Neyshabur et al., 2014; Soudry et al., 2017; Pog-

gio et al., 2018; Neyshabur et al., 2017). In fact, while our

Fourier analysis of deep ReLU networks also reflects the

width and depth dependence of their expressivity, we fo-

cused on showing a learning bias of these networks towards

simple functions with dominant lower frequency compo-

nents. We view our results as a first step towards formalizing

the findings of Arpit et al. (2017), where it is empirically

shown that deep networks prioritize learning simple patterns

15Consider that the data-domain is bounded, implying that γ̃
cannot be arbitrarily scaled.

of the data during training.

A few other works studied neural networks through the lens

of harmonic analysis. For example, Candès (1999) used

the ridgelet transform to build constructive procedures for

approximating a given function by neural networks, in the

case of oscillatory activation functions. This approach has

been recently generalized to unbounded activation functions

by Sonoda & Murata (2017). Eldan & Shamir (2016) use

insights on the support of the Fourier spectrum of two-layer

networks to derive a worse-case depth-separation result.

Barron (1993) makes use of Fourier space properties of the

target function to derive an architecture-dependent approxi-

mation bound. In a concurrent and independent work, Xu

et al. (2018) make the same observation that lower frequen-

cies are learned first. The subsequent work by Xu (2018)

proposes a theoretical analysis of the phenomenon in the

case of 2-layer networks with sigmoid activation, based on

the spectrum of the sigmoid function.

In light of our findings, it is worth comparing the case of

neural networks and other popular algorithms such that

kernel machines (KM) and K-nearest neighbor classifiers.

We refer to the Appendix E for a detailed discussion and

references. In summary, our discussion there suggests that 1.

DNNs strike a good balance between function smoothness

and expressivity/parameter-efficiency compared with KM;

2. DNNs learn a smoother function compared with KNNs

since the spectrum of the DNN decays faster compared with

KNNs in the experiments shown there.

6. Conclusion

We studied deep ReLU networks through the lens of Fourier

analysis. Several conclusions can be drawn from our anal-

ysis. While neural networks can approximate arbitrary

functions, we find that they favour low frequency ones –

hence they exhibit a bias towards smooth functions – a phe-

nomenon that we called spectral bias. We also illustrated

how the geometry of the data manifold impacts expressivity

in a non-trivial way, as high frequency functions defined on

complex manifolds can be expressed by lower frequency

network functions defined in input space.

We view future work that explore the properties of neural

networks in Fourier domain as promising. For example,

the Fourier transform affords a natural way of measuring

how fast a function can change within a small neighborhood

in its input domain; as such, it is a strong candidate for

quantifying and analyzing the sensitivity of a model – which

in turn provides a natural measure of complexity (Novak

et al., 2018). We hope to encourage more research in this

direction.
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