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Summary. The effect of white capping on the spectral energy balance of surface waves is investigated 
by expressing the white-cap interactions in terms of an equivalent ensemble of random pressure pulses. 
It is shown first that the source function for any non-expansible interaction process which is weak-in- 
the-mean is quasi-linear. In the case of white capping, the damping coefficient is then shown to be 
proportional to the square of the frequency, provided the wave scales are large compared with the 
white-cap dimensions. The remaining free factor is determined indirectly from consideration of the 
spectral energy balance. The proposed white-capping dissipation function is consistent with the struc- 
ture of theenergy balance derived from JONSWAP, and the existence of a o-5 spectrum governed by 
a non-local energy balance between the atmospheric input, the nonlinear energy transfer and dissi- 
pation. However, closure of the energy balance involves hypotheses regarding the structure of the 
atmospheric input function which need to be tested by further measurements. The proposed set of 
source functions may nevertheless be useful for numerical wave-prediction. According to the model, 
nearly all the momentum transferred across the air-sea interface enters the wave field. For fetch- 
limited and fully developed spectra in a stationary, uniform wind field, the drag coefficient remains 
approximately constant. However, for more general wind conditions, this will not be the case and the 
wave spectrum should be included in an accurate parameterisation of the air-sea momentum transfer. 

1. Introduction 

Our understanding of the energy balance of surface-wave spectra has advanced con- 
siderably in recent years as a combined result of fundamental theoretical studies and 
detailed field investigations. With increasing insight into the structure of the source 
function governing the spectral energy balance, many of the empirical terms in nume- 
rical wave-prediction models have gradually been replaced by more reliable expressions 
derived from an analysis of the basic physical processes (Gelci et al., 1957; Hasselmann, 
1960; Pierson et al., 1966; Darbyshire and Simpson, 1967; Inoue, 1967; Barnett, 
1968; Gelci and Devillaz, 1970; Ewing, 1971). However, a persistent difficulty ob- 
structing this development has been an appropriate representation of the source term 
representing the energy loss due to white capping. It is generally believed that white 
capping is the dominant dissipative mechanism in a wave field at moderate and higher 
wind speeds - simply because other dissipative processes such as molecular viscosity or 
turbulence (Phillips, 1959; Hasselmann, 1968) appear to be inadequate to remove the 
energy which is known to be imparted to the waves by the wind. Unfortunately, how- 
ever, white capping represents a localized, strongly nonlinear interaction which can- 
not be treated by the standard perturbation techniques available for weak interactions 
and has therefore resisted a rigorous treatment. 

* Contribution from the Sonderforschungsbereich ‘Meeresforschung Hamburg’ of the Deutsche 
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Two aspects of the problem may be distinguished. Firstly, the fluid mechanical 
process of white capping itself needs to be understood. Secondly, if the theory is to 
have application in wave prediction, the effect of a random ensemble of white caps on 
the energy balance of the wave spectrum must be expressed in terms of the wave 
statistics. 

Most work on white capping has been concerned with the first question, in parti- 
cular with the conditions for the onset of white capping and the characteristics of the 
limiting wave form (cf. Schwarz, 1972; Longuet-Higgins, 1973a, and references 
quoted in these papers). A first analysis of some of the flow properties of a spilling 
breaker has recently been undertaken by Longuet-Higgins (I 973b). 

Investigations of white capping in relation to the wave spectrum have concentrated 
hitherto on the concept of a high-frequency equilibrium range, rather than on the 
source function. Assuming that the equilibrium region is controlled entirely by wave 
breaking and that the process is local in wavenumber space, Phillips (1958) suggested 
that on dimensional grounds the one-dimensional frequency spectrum F(C) should 
be of the general form F(a)=ccg2am5, where g = gravitational acceleration, 0 = fre- 
quency and a is a universal constant. A theoretical estimate of u has been given by 
Longuet-Higgins (1969) on the basis of a specific model of the energy losses in a white 
cap, assuming a prescribed aw5 spectral distribution. However, recent extensive 
measurements of wave growth during the Joint North Sea Wave Project (JONSWAP, 
Hasselmann et al., 1973) indicate that the equilibrium range of the spectrum is not 
governed primarily by wave breaking, but represents a balance between several 
processes, including the non-local energy transfer from lower to higher wavenumbers 
by resonant third-order wave-wave interactions. The fetch dependence of c( noted, for 
example, by Mitsuyasu (1968), (1969) in JONSWAP and by other workers also sug- 
gests that the (r- 5 power law cannot be explained by straight-forward dimensional 
arguments. 

In this paper the effect of white capping on the spectral energy distribution is in- 
vestigated in terms of the source function. The wave spectrum itself then follows from 
the energy-balance equation as the net response to a number of source functions, of 
which the white-capping term represents only one contribution. It is found that for 
the particular form derived for the white-capping source function, the white-capping 
losses are able to balance the energy and momentum input from the atmosphere plus 
the nonlinear transfer to shorter waves only for a particular shape of the equilibrium 
spectrum - which turns out to be approximately the rr-’ distribution. 

The structure of the white-capping source function is derived without entering into 
the details of the white-capping process itself. First it is shown that under very general 
conditions, the source function S, for any interaction process p which is strongly 
nonlinear locally but still weak-in-the-mean is quasi-linear with respect to the wave 
spectrum, i.e., S,(k)= -YE(k), where y is a functional of the entire wave spectrum. 
Assuming that the space-time scales of a white cap are small compared with the wave- 
lengths and periods of the waves under consideration, the damping factor for white 
capping is then found to be of the form y =1/o’, where q is a constant for a given wave 
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state. Finally, r~ is determined indirectly from consideration of the overall energy and 

momentum balance. 
The form of the white-capping source function is in accordance with the picture of 

the energy and momentum balance of the wave spectrum derived from JONSWAP. 
A set of three source functions (wind input, nonlinear transfer and dissipation) is 
proposed which reproduces the JONSWAP results at intermediate and large fetches, 
including the transition to the fully developed Pierson-Moskowitz spectrum. The set 
provides a basis for numerical wave prediction, but is not free from hypotheses. This 
applies in particular to the form assumed for the input source function, which needs 
to be tested by independent field studies of the air-sea interaction processes. 

2. The Source Function for a Weak-in-the-Mean Interaction Process 

Consider a random, horizontally homogeneous wave field in an infinitely deep fluid. 
Assuming that to a first approximation the waves are linear and irrotational, the 
velocity potential cp, pressure p and surface displacement 4’ can be represented within 
a given area - LIZ <x1, x2 < Ll, as Fourier sums * 

where x=(x,, x2) denotes the horizontal coordinate vector and z is the vertical 
coordinate, taken positive upwards. 

If the waves are excited by a surface pressure field 8 =xfik ( t ) eik’x, the equations of 
motion reduce to the well-known forced harmonic-oscillator equation (cf., Lamb, 
1932) 

(2.1) 

where (r2 =gk and Q,= density of water. 
After determining the surface elevation by integrating (2. l), the potential flow in the 

interior of the fluid follows from the Laplace equation with the appropriate linear 
kinematic boundary conditions at the surface and at z = - cc, 

v2cp=o, z-co (2.2) 

(2.3) 

(Pk-+O, z+-co. (2.4) 

* As usual, Fourier-Stieltjes integrals representing the fields in the infinite x-plane have been replaced 
by sums for convenience of notation. The integral limit L + ~0 may be taken after forming ensemble- 
expectation values, thereby avoiding the unwieldy notation of generalised integrals in the represen- 
tation of individual realisations. 
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It can be readily seen that an irrotational wave field which is driven by a given in- 
terior force can also be described by Equations (2.1)-(2.4), wherea in this case denotes 
an equivalent surface pressure which can be expressed in terms of the interior force 
field. 

There is no restriction on the structure of the force field. In general, any interior force 
can be decomposed into two components, of which one contributes to the generation 
of linear surface waves, whereas the other component generates currents. Since we 
shall be concerned here only with interactions which affect the wave field, we may 
ignore the current-generating term. 

Accordingly, any surface-wave interaction problem reduces to the harmonic oscilla- 
tor Equation (2.1), where the coupling is described by the equivalent pressure field #. 

For the formal treatment of wave-interaction problems it is convenient to transform 
to standard wave variables (cf., Peierls, 1955; Hasselmann, 1968) which may be 
defined in the present case as 

Substitution in Equation (2.1) yields the two first-order equations 

(2.5) 

0.6) 

in which the two homogeneous solutions of (2. l), representing waves propagating in 
the positive and negative k-directions, have been separated into the two solutions 
a;+; e-isat, &=const, of the separate equations s= f in (2.6). The wave variables 

satisfy the reality conditions &k = (aIt) *. 
In terms of ai, the surface displacement becomes 

(2.7) 
k 

Assuming that the wave components are statistically orthogonal, the mean-square 
surface displacement is then given by 

where E, denotes the wave spectrum. We shall also use interchangeably with the discrete 
notation the familiar continuous one- and two-dimensional spectra defined by 

~E,=SSB(k)dk=SSF(s)s(o,O)d~dO=S~(~)ds 
k 

where s(c, 0) denotes the spreading factor with respect to the wave-propagation 
direction 8, normalised such that j? cs (a, 0) d0 = 1. 
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Multiplication of Equation (2.6) by a1f and addition of the complex conjugate 
yields the energy equation * 

i?E, 20 
-=- 
at sew 

Im (&zIk). (2.9) 

The right-hand side of (2.9) may be recognised as the mean work done against the 
vertical orbital velocity of the wave component k by the pressure field@ (of which only 
the component CL contributes). 

We assume now that for a given interaction problem, fik is a prescribed functional 
of the wave field, @L =tk (. . ., a:, . . .). The functional may include also a dependence on 
external fields, such as the atmospheric boundary layer, currents, turbulence in the 
ocean, etc., but these are irrelevant for the present and will not be included explicitly. 

If the functional@, can be adequately represented by the first few terms of a Taylor- 
series expansion with respect to the wave variables af, the coupling represents a weak- 
interaction problem which can be treated by standard perturbation techniques. Un- 
fortunately, this approach is not applicable to processes involving locally strong 
interactions, such as white capping. However, a simple yet general technique for 
treating non-expansible interactions has been outlined by Hasselmann and Collins 
(1968) in an earlier analysis of a locally strong process, the dissipation of finite-depth 
gravity waves by turbulent bottom friction. 

The basic hypothesis of the analysis is that the interactions, although strong locally 
are weak-in-the-mean. This implies that the change induced in the wave spectrum per 
unit wavelength or period is small, and that the Gaussian property of a linear wave 
field applies to lowest order. Although the interaction functional is non-expansible, 
the wave field itself may then be represented as a perturbation series : 

where al, O = c$ eKisat is the zeroth-order free-wave solution with Gaussian statistics, 
and the terms ui,, are of order n in an appropriate perturbation parameter charac- 
terising the mean strength of the interaction. To lowest order, (2.9) may then be 
written 

8E, 20 

-z - sew 
- - Im@,( . . . . a& ,... )a:,,,). (2.11) 

It may be noted that for expansible wave-wave interaction problems, the lowest 
order expression for the source function on the right-hand side of (2.11) vanishes. In 
this case the leading term in the Taylor expansion of flL is normally quadratic in the 
wave amplitudes, so that the mean product in (2.11) is cubic, which vanishes for a 
Gaussian field. Hence the functionala needs to be expanded to higher order. However, 

* Following the established custom, we refer here to the variance spectrum of the surface displace- 
ment as the ‘energy’ spectrum. To convert later to genuine energy and momentum transfer rates, a 
factor p,,,g has to be added. 
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it is then no longer consistent to substitute the zeroth-order expressions for the wave 

components in the right-hand side of (2.1 l), and higher order terms of the wave field 

itself must also be evaluated. These complications do not arise in the case of non- 

expansible interactions, as the lowest-order source term is normally nonzero; it is 

therefore sufficient to consider only the zeroth-order wave field. 

To determine the correlation ofa, with aI,, 0 in (2.1 I), the wave field may be divided 

into two constituents, A = A' + a:, where 

represents the complete wave field and 

A' = {a:',,... aLI',, 0, ag;',,...] 

represents the complete field minus the (infinitesimal) wave component aF"=aL. 
Assuming that the pressure field is differentiable, it may then be written as 

@,(A) =w(A')+ g(A')a; +... 
k 

which yields on substitution in Equation (2.1 I), 

dE, 20 
-=- hl . 
at se, 

(2.12) 

(The subscript zero denoting the zeroth-order free-wave field has now been dropped.) 

Since all wave components are statistically independent, A' and a," represent statis- 

tically independent variables. Hence the expectation values of the quadratic products 

in (2.12) may be applied separately to each term. The first product vanishes, since 

(a:,) = 0, and the second term yields 

aE, 
-=-yEk 
at 

where 

(2.14) 

The field A' in (2.12) has been replaced again in (2.14) by the complete field A, since 

the fields differ only by an infinitesimal quantity. 

The quasi-linear form (2.13) holds generally for any differentiable interaction pro- 

cess which is weak-in-the-mean and for which (ali,pa,‘)#O. For example, source 

functions of this form have been derived for various theories of the linear interaction 

between surface waves and the turbulent atmospheric boundary layer, the damping 

of finite-depth waves by turbulent bottom friction, and ‘parametric interactions’ 

between waves and currents or waves and turbulence (cf., Phillips, 1966; Hasselmann, 
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1968). Jeffreys’ (1924) theory of wave generation by air-flow separation, although 
presumably strongly nonlinear in the wave field, should also yield a source function 
of this form. However, it may be expected that in contrast to Jeffreys’ expression for 
monochromatic waves, the factor y for a random wave field will be a function of the 
overall wave statistics. 

In the following we shall attempt to evaluate y for the particular case in which the 
pressure field& is associated with white capping. 

3. The Damping Factor y 

An explicit determination of the white-cap pressure field $ would require considera- 
tion of the internal fluid-dynamical structure of a breaking wave. Unfortunately, a 
suitable white-cap model on which such calculations could be based does not exist. 
Even the considerable work which has been devoted to the simpler question of the 
limiting wave form has focussed on special cases, such as the periodic progressive 
wave or standing wave, and not arbitrary time-dependent wave forms as encountered 
in a random wave field. It appears unlikely that the highly complex problem of deriv- 
ing a general functional relationship between the equivalent white-cap pressure field @ 
and the properties of the wave field near the wave crest can be solved in the near 
future. Accordingly, we shall attempt to avoid this difficulty by determining certain 
properties of the factor y which are insensitive to the details of the white-capping 
process. It is found, for example, that the frequency dependence of y can be deduced 
alone from the hypothesis that the space-time scales of the white caps are small com- 
pared with the wavelengths and periods of the wave components to which y applies. 
The remaining free factor is constant, except for a directional dependence, for a 
given wave state. It cannot be evaluated within the framework of the present theory 
alone, but we shall attempt a determination later based on (occasionally speculative) 
considerations of the overall energy balance of the spectrum (Sections 4,5). 

Basic for the following analysis will be the assumption that the pressure pulse 
characterising the interactions in a given white cap is a narrow distribution in space 
and time concentrated around a point Z, i defined by the position and time of the 
maximum surface displacement, al;/&, = al;/& = 0 at x = 2, t = f. It will be convenient 
to characterise the pressure pulse by its moments about FL, 7; 

(To avoid introducing a new symbol, p is used here to denote the pressure pulse of a 
single white cap; later p will again represent the entire pressure field resulting from 
the superposition of all white-cap pressure pulses.) 

In order to express y more easily in terms of the pressure moments, the quasi- 
stationarity of the wave field may be invoked to introduce a time average in Equation 
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(2.14) prior to the ensemble average, 

where z is a (large) time period encompassing the relatively short interval in which the 
white cap occurs. A spatial average is already implicit in the Fourier component. 
Hence the damping coefficient may be written in the form of a space-time integral 
over the pressure pulse 

712 LIZ 

y=-kIrn($ 1 Jl dxdtg(x,r)eVik”). 

- r/z -L/2 

(3.1) 

We assume now that the pressure pulse of a given white cap can be expressed as a 
function of various local properties of the wave field j?,, j2, . . . at the wave crest, for 
example, the surface displacement %, the acceleration 82[/~t2, the second derivatives 
c?~~/c?x&~, a’[/& at, etc. (Here as in the following, the tilde denotes values taken at 
2, L)Thenj(x, t)=b(x-jZ, t-t; &, j2, ..,) so that 

@ ah axj afi art ah ajj 
aa,+ = - aXj aa,+ al aa,' + aTjaa," (3.2) 

We may regard Z, 1 and the parameters Bj as being defined in terms of the linear 
field representation (2.7), with ai = aio. Because of nonlinear corrections, Z, 1 will then 
not denote the true position and time of the maximal surface displacement, nor will 
the parameters Bj represent identically the true displacement, acceleration, etc. at $1. 
However, provided the differences between the true crest variables and their equi- 
valent linear forms are not so great that the two sets of variables cannot be uniquely 
related, the linearised variables may still be used as a consistent set of parameters 
characterising the properties of the pressure pulse - although it must then be borne in 
mind that the physical interpretation of these parameters in terms of wave properties 
at the wave crest is only approximate. 

For a linear wave field, the variables Bj are of the general form 

k, s 

where B;(k) is a transfer function. Since the wave variable refers here to the zeroth- 

order solution ai (t ) = cxi eeisar, the value of ai at 1 may be written ai (t ) eisau-r), and 
the derivative Of Pj with respect to al (t ) in (3.2) becomes 

ab. ajj ax, afij at 
aa,+ 
~=Bfexp[L~(l-I)+ik*8]+~aa++~~~. 

1 k k 

(3.3) 

Thus the derivative ajj/aa~ in (3.2) may be expressed in terms of the remaining 
derivatives a2,/aa,’ and dipa,‘. These in turn may be determined from (3.3) by sub- 
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stituting for fij the first derivatives a[/&, and a[/&, for which the left-hand side of the 
equation vanishes by definition of the maximal surface displacement. Explicitly, (3.3) 
yields in this case 

The solutions of (3.4) are of the form 

exp[ia(t - i) + ikeji] 

with real Xi and T. 

Substituting (3.2), (3.3) and (3.5) in (3.1), the expression for y becomes 

Integrating the first two terms by parts, expanding the exponential about f, 
retaining only the lowest order pressure moment for each term, one obtains 

y = 5 N 
sew 

kikj (Ximj) + CT’ (Tm,) + Bj’ 

- 

(( ’ 

(3.5) 

(3.6) 

i and 

(3.7) 

In Equation (3.7) we have changed back to the original definition of y and $ in terms 
of the complete field of white caps, rather than a single white cap, by summing over 911 
white caps. This is expressed by the replacement of the factor I/zL’ in (3.6) by the 
number of white caps N per unit surface area and unit time. 

It may be helpful to retrace briefly the origin of the various terms in (3.7). Except for 
a factor, y represents the (infinitesimal) part of the pressure pulseD which is correlated 
in quadrature with the wave component a,‘. This was determined in Section 2 by con- 
sidering the infinitesimal variation @k induced by the component a: relative to the 
pressure fik for the same wave field without the spectral component k. For the particu- 
lar pulse representation considered here, @, consists of the changes induced by the 
shift 6% and 61 of the reference point, which affects the evaluation of the moments 
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(first and second terms in the right-hand side of (3.7)), and the changes due to varia- 
tions Sb, of the local wave parameters at the reference point (proportional to Bj+). 
The latter can be divided further into the variations of /Ii for fixed 9, f (first two terms 
and the changes in /Ij caused by varying 2 and ii (third term). 

Up to this point, no approximations have been introduced other than that the 
white-cap scales are small compared with k-l or 0-l. To reduce (3.7) further, we may 
estimate the orders of magnitude of the individual terms in (3.7) from scale conside- 
rations. 

For frequencies beyond the wind-sea peak, the wave spectrum may be represented 
fairly well by the Phillips’ (1958, 1966) form 

or 
E(k) = 42 k-4s (0) (3.8a) 

E(o)=ag2a-‘. (3.8b) 

For this distribution, the rms values of the quadratic derivatives in (3.4) are governed 
by the high-frequency range of the spectrum and depend explicitly on a cut-off fre- 
quency r~, or wave number k, = at/g. The orders of magnitude of the transfer functions 
in (3.5) may then be estimated as Xi=aO((a,ks~)-‘), T=cJO(~;~[-‘). We assume that 
the relevant cut-off for rms values evaluated at 2, f is determined by the white-cap 
scale, and that the same scale may also be used in relating the moments of the white- 
cap pressure pulse, m,:mi:m,=O(l:k;‘:o;’ ). If furthermore a/aBj=O(l/Bj), the 
largest contributions in (3.7) are found to be 

= aO(m,as~‘~-‘) 

(for those pj for which the rms values of ajj/&, or alj,/~??t are governed by the short- 
wave range of the spectrum - otherwise the term is of smaller magnitude) and the 
term B~a(dm,ldi?j> for the case Pj~ I, 

0(dm,iZ[) = aO(m,a,~‘l-‘). 

Both terms yield to lowest order 

y = r/CT2 (3.9) 

where the factor v is a function of the wave-propagation direction and the overall 
(integral) statistical properties of the wave field; it is constant for a given wave state. 
Equation (3.9) applies for aGaS, representing the first term in an expansion of the 
general form y=qa’ +~lo3/crS+1/204/0~ +.*a. 

To proceed further and evaluate the coefficients q, ql, q2,. . . would require consider- 
ation of the structure of the pressure pulse for a given white-cap model. As has been 
pointed out, the development of such a model is not an easy step and will not be 
attempted here. However, even if this were feasible, it is questionable whether knowl- 
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edge of the precise functional dependence of the coefficient q on the wave statistics 
would be of much value in practice. It may be anticipated that q is a rather sensitive 
function of the rms surface acceleration and other properties of the wave field. In this 
case, the wave field will normally be in a ‘saturated’ state in which relatively minor 
changes in the wave statistics can produce large changes in the dissipation rate. Rather 
than attempting to calculate q from the wave statistics alone, which would require 
accurate knowledge of the wave spectrum, it may then be more practicable to establish 
the absolute level of the dissipation function indirectly from consideration of the 
overall energy and momentum balance of the wave spectrum. 

Clearly, this alternative approach requires that the remaining processes governing 
the energy balance are reasonably well understood. To date, this is only partially the 
case. However, a number of field investigations of wave growth (Snyder and Cox, 
1966; Barnett and Wilkerson, 1967; Mitsuyasu, 1968, 1969; Mitsuyasu et al., 1971; 
Ross et al., 1970; Schule et al., 1971; and Hasselmann et al., 1973) have identified 
several basic features of the spectral energy balance, making it meaningful to at least 
investigate the form of the proposed wave-breaking source function 

3 S,, = - ya2E (k) 
wave breaking 

(3.10) 

in relation to existing concepts of the energy balance. 
It is found that (3.10) fits naturally into the existing framework. Thus encouraged, 

we shall attempt to complete the picture of the energy balance by proposing a simple 
expression for the least known source function Sin, representing the energy input by 
the wind. With the energy balance completed, 4 can then be determined. However, it 
must be stressed that in the present stage this last step is speculative and will need to 
be confirmed or modified by more detailed field studies of the air-sea interaction pro- 
cesses. The argument is carried through completely here largely because we expect the 
method to remain applicable even if the input source function should need to be 
modified. Also, it is felt that despite these shortcomings the proposed set of source 
functions contains fewer hypotheses than involved in current wave-prediction schemes. 

4. The Energy and Momentum Balance of the Wave Spectrum 

Before considering the contribution of the wave-breaking source function to the 
spectral energy balance, we review briefly the general structure of the energy balance 
as derived from wave-growth studies, in particular from JONSWAP. We shall be 
concerned only with the one-dimensional energy-balance equation 
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obtained by averaging the two-dimensional energy-balance equation 

; (Es) + ui ; (Fs) = s2 (a, e> 
i 

(4.2) 

over the wave propagation direction 8, measured relative to the mean wind direction 
parallel to x1. Analogous equations for the momentum balance may be obtained by 
multiplying (4.2) by the momentum/energy ratio k/a. (We remind again that a factor 
[,,,g should be included in (4.2) to convert to genuine energy and momentum.) 

The net source function Scan be divided generally into three constituents 

S = Sin + SD* + AS,, (4.3) 

representing, respectively, the input by the wind, the nonlinear transfer across the 
spectrum by conservative wave-wave interactions (third-order resonant interactions), 
and dissipative processes (including non-conservative nonlinear interactions). Measure- 
ments of wavegrowth yield the net source function S through (4.1). S,,, can be com- 
puted, for a given spectrum, from the appropriate Boltzmann-integral transfer ex- 
pressions (Hasselmann, 1962, 1963a, b). The source function Si, has been determined 
from cross-spectral measurements of surface pressure and surface displacement 
(Dobson, 1971a; Elliott, 1972; Snyder, 1973), but these measurements have not been 
combined with wave-growth studies. There exists as yet no technique for the direct 
measurement of S,,. 

An important result of JONSWAP was that the qualitative features of a growing 
wave spectrum could be largely explained in terms of the nonlinear energy transfer 
S,,. A series of computations of S,, were made for various spectral shapes. These 
showed that for any flattish spectral distribution with a low-frequency cut-off, the 
nonlinear energy transfer tends to concentrate energy at frequencies slightly higher than 
the cut-off. The peak formed in this manner continues to grow at the same frequency 
until it becomes about as narrow as the spectral peak shown in Figure 1. At this stage, 
the nonlinear energy transfer shifts to slightly lower frequencies to the left of the peak. 
Consequently, the peak no longer grows but moves as a whole towards lower frequen- 
cies. A peak sharper than the distribution shown in Figure 1 is found to flatten again 
in addition to shifting. Thus the development of a pronounced spectral peak and the 
continuous movement of the peak towards lower frequencies may be explained as a 
self-stabilising feature of the nonlinear energy transfer. Consistent with this explanation, 
it was found that most of the observed wave growth S on the forward face of the 
spectrum could be attributed to the nonlinear transfer S,,, (Figure 1). 

Qualitatively, these features are independent of the magnitude and distribution of 
Si, and S,,. However, both the level of the wave spectrum and the rate at which the 
peak moves towards lower frequencies depend strongly on these source functions. 
Unfortunately, knowledge of S and S,, from wave-growth studies alone is insufficient 
to determine Si, and S,, separately from (4.3) without further information. 

ln the case of small fetches (102,<gx/U2 55 x 102, corresponding to peak frequen- 
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ties cr, in the range 5 2 (o,,,U/g) 2 3, where Uis the wind speed), the ambiguity is reduced 
by the additional side condition that the total momentum transfer r, from the wind to 
the waves cannot exceed the total momentum transfer r across the air-sea interface. 
The latter quantity is known from atmospheric boundary-layer measurements, z= 
= g,cdU2, where Q, is the density of air and - for neutral conditions - the drag coeffi- 
cient c,=(l.Ol-1.5) x 10e3 (cf., Hasse, 1970; Smith, 1970; Pond et al., 1971; Brocks 
and Kriigermeyer, 1972; Dunckel et al., 1974, and others). 

F 

MEAN JONSWAP SPECTRUM 

- OBSERVED SPECTRUM AND SOURCE FUNCTION 

- COMPUTED NONLINEAR SOURCE FUNCTION 

Fig. 1. Wave spectrum F, net source function S and computed nonlinear transfer &,I for fetch- 
limited spectra according to JONSWAP (from Hasselmann et al., 1973). Frequency and ordinate 

scales are arbitrary. 

For small fetches, numerical integration of the net momentum r”.: gained by non- 
linear interactions in the positive high-frequency lobe of S,, (i.e., the high-frequency 
region beyond the cross-over of S,* from negative to positive values, cf. Figure 1) 
generally yield values - although scattered - of the same order as 2. The momentum 
72 is transferred to the high frequencies from the negative lobe of S,, near the spectral 
peak. (Part of the momentum from the central region is also transferred across the 
forward face to lower frequencies, causing the shift of the peak. The integrated mo- 
mentum transfer rates of the positive low-frequency, negative mid-frequency and 
positive high-frequency lobes of S,,, yield values in the ratio 1: -4: 3, respectively; 
the corresponding energy ratios are 3 : - 5:2). The simplest way to complete the 
energy balance is then to assume that the negative central lobe of S,, is largely balanced 
by the input from the wind, and the positive high-frequency lobe by dissipation, with 
no overlap between Si, and S,,. The remaining low-frequency positive lobe of S,, 
yields the wave growth. This solution is characterised by requiring a minimal mo- 
mentum input 2, from the wind, since any overlap of Si, and S,, must yield higher 
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absolute values of each source function separately in order to maintain the balance 
Sin+&= S-S,, (with given S and S,,,). In the minimal-r, case, the momentum 
dissipated in the high-frequency region of the spectrum, the momentum imparted to 
the waves by the wind in the central region of the spectrum and the nonlinear momen- 
tum transfer from medium frequencies to high frequencies are all approximately 
equal. Since $,:x r, it follows then that the minimal-r, solution already accounts for 
most of the momentum transfer across the air-sea interface and must therefore lie 
rather close to the true solution (cf., Hasselmann et al., 1973, Figure 2.22). Dobson 
(1971a) also found z,xr for small fetches. Elliott’s (1972) estimates of r, are of 
the same order, but somewhat smaller. Contrary to these authors, Snyder (1973) finds 
that r, accounts for only a few percent of r. 

Unfortunately, the minimal-z, solution is not consistent with the proposed fre- 
quency dependence (3.10) of the dissipation function. We suggest as explanation that 
for very small fetches, laminar viscous dissipation (Section 5) rather than wave 
breaking is the primary dissipation mechanism - which finds some support through 
the visual observation that white caps normally occur only at finite fetches. In the 
range 5 x IO2 5~x1 U2 5 104, corresponding to peak frequencies 3 2 cr,U/g 2 1.2, the 
computed values of r”,: are almost an order of magnitude lower than T, and an energy 
balance with overlapping source functions Si, and S,, is permissible. With S,, given 
by (3.10), an energy balance of the general form shown in Figure 2 results. Here only 
0.4 of the momentum z, imparted to the wave field is dissipated in the region of the 
positive high-frequency lobe of Snl, whereas 0.5 r, is dissipated at lower frequencies. 

1 
F (Mean JONSWAP 1 

Fig. 2. Energy balance (schematic) for fetch-limited spectra in the fetch range 5 x lo2 5gx/CJz 5 
5 10*(3 2 amlJ/g 2 1.2). Frequency and ordinate scales are arbitrary. 
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The remaining 0.1 z, is responsible for the wave growth and is therefore balanced by 
the advection z,,, of wave momentum. The total momentum input z, computed for 
this solution is of order (0.5-l .O)r. 

For a fully developed Pierson-Moskowitz (1964) spectrum (5 x 104sgx/U2, 
a,U/g E 0.9), an energy balance of the form shown in Figure 3 appears probable. The 
Pierson-Moskowitz spectrum is less sharply peaked (by a factor of 3) than the mean 
JONSWAP spectrum for finite fetches, and as a consequence, the low-frequency 

qn=0,6 Z’w 

Fig. 3. Energy balance (schematic) for a fully developed Pierson-Moskowitz (1964) spectrum. 
Frequency and ordinate scales arbitrary. 

positive lobe of S,, lies directly beneath the spectral peak, rather than on the forward 
face. It has been assumed, in accordance with most wave generation theories, that 
Si, approaches zero for aU/g < 1, so that Si, is shifted further to high frequencies than 
in the limited-fetch case. The dissipation balances the positive lobe of S,, at the peak, 
most of the input to the right of the peak, and the second positive lobe of S,, at high 
frequencies. The momentum input 2, is again found to be of order (0.5- 1.0)~. 

Although significant differences exist in the proposed energy balances at very small, 
intermediate and very large fetches, in all cases the resulting momentum transfer to 
the waves accounts for most of the air-sea momentum transfer. The same result can 
be inferred independently of the structure of the dissipation function if the input 

source function is of the general form 

Sin = bE(k) (4.4) 

where the growth factor /I is a function of k and U which is independent of the rest of 
the spectrum. An input source function of this form is characteristic for a linear 

feedback mechanism of wave generation, as has been frequently proposed (e.g., 
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Jeffreys*, 1924; Miles, 1957; Phillips, 1966; Hasselmann, 1967, 1968; Davis, 1969, 
1970; Long, 1971; Townsend, 1972). 

It follows from (4.4) that a given frequency range of the spectrum will contribute 
the same energy and momentum input to the wave field at different fetches if the level 
of the spectrum remains constant. This is approximately the case for the high- 
frequency equilibrium range. 

Consider now the frequency range cr > co, where co is the peak frequency for some 
small fetch value, gx/U’= lo’, say. At this fetch, the momentum input to the wave 
field in the range (T > (rO is computed from the minimal t,-solution to be approximately 
z. However, at larger fetches, the range U> co will also contribute approximately the 
same momentum input to the wave field, so that ~~~ NZ also at large fetches. In fact, 
since there is also some contribution to the momentum input in the range 6, < 0 <co 
at larger fetches, the equilibrium constant c1 must decrease slowly with fetch - as 
indeed observed (cf., Mitsuyasu, 1968 ; Hasselmann et al., 1973). 

A simple expression for Si, of the form (4.4) which yields Z,Z t for both small and 
large fetches and exhibits the general frequency dependence required by Figures 2 and 
3 is given by ** 

Sin= @w 

L 

5 (C cos 0 - g/U) for (r cos 0 > s/u 

0 for 0 cos e < g/u 
(4.5) 

where 13 is measured relative to the mean wind direction 0 = 0. 
It is assumed in (4.5) that &,=O for waves with phase velocities greater than the 

wind speed, although both laboratory evidence (cf., Harris, 1966; Lai and Shemdin, 
1971) and field data (Dobson, 1971b, Volkoz and Mordukhovich, 1971) indicate that 
there may be a weak feedback of energy from these waves to the wind. The Expression 
(4.5) should be regarded only as a reasonable fit of an input function of the form (4.4) 
to the existing fetch-limited data, with a plausible extrapolation to the fully developed 
case. Further direct measurements of the input function Si, are needed to resolve the 
discrepancies between existing surface-pressure measurements and to test whether the 
general linear form (4.4) and the extrapolation of (4.5) to the fully developed case are 
indeed valid. 

5. The Coefficient q 

Given an input source function Si, of the form (4.5) and the computed nonlinear 
transfer Snlr the coefficient q in the dissipation source function can now be determined 

* Jeffreys’ flow-separation model should really be excluded, as it is presumably nonlinear if applied 
to a random field; the growth factor j? in (4.4) is than dependent on the rest of the wave field (cf. 
Section 2). 
** Most input source functions used in present wave-prediction models are several factors larger than 
(4.5). They are based on earlier wave-growth studies in which the dominant contribution of nonlinear 
interactions to the growth rates on the forward face of the spectrum had not been recognised. Conse- 
quently, they yield 7w values considerably greater than the permissible upper limit (cf., Snyder and 
Cox, 1966). 
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from the energy balance. For this purpose, we consider the high-frequency, equili- 
brium range of the spectrum for which S=O, so that S,, = - Si, - S,,. Specifically, we 
regard as high-frequency the spectral region corresponding to the third, positive lobe 
of S,,,, i.e., cr>2.56,. It is convenient to define the equilibrium condition in terms of 
the momentum integrals, which can be related to the known momentum flux r across 
the air-sea interface and are insensitive to details of the spectral shape. The following 
calculations are based on a co?0 spreading factor; q is assumed independent of f?. 

The total momentum gain due to nonlinear transfer in the high-frequency lobe is 
given by (Hasselmann et al., 1973) 

(5.1) 

where the non-dimensional factor II depends only on the shape but not the energy and 
frequency scales of the spectrum. Computations yield I = 0.16 for the mean JONSWAP 
spectrum and 1= 0.12 for the Pierson-Moskowitz spectrum. 

From (4.5) the momentum input by the wind in the range ~>2.5a,,, is found to be 

T:; = O.O6e,a (g/a,,,)’ { 1 - 0.3g/a,U} . 

The momentum loss due to wave breaking follows similarly from (3.10), 

(5.2) 

T hf 
ds = - o.34~a@,g2/o,. 

Thus the equilibrium condition $I = - r,$ - ri”,’ yields 

(5.3) 

q = fQ(2.2 x 10-4(1 - 0.3g/a,U) + 2a21}. (5.4) 

Although q is determined by the energy balance at high frequencies, the Expression 
(5.4) depends not only on a but also on the peak frequency u,,,. This arises through the 
dependence of the nonlinear energy transfer at high frequencies on interactions with 
wave components in the spectral peak. Thus the equilibrium range of the spectrum 
cannot be separated dynamically from the low-frequency part of the spectrum. 

Equation (5.4) is based on a particular structure of the energy balance which takes 
account of the principal source functions identified in wave-growth studies at inter- 
mediate and larger fetches. Laminar viscous dissipation has been ignored. It is possible 
that additional processes with less pronounced signatures may also modify these 
results. For example, no account has been taken of non-conservative WKB-type 
interactions between waves of widely differing wavelengths (Phillips, 1963 ; Longuet- 
Higgins, 1963; Hasselmann, 1971). 

For a kp4 spectrum (3.8a) the principal momentum loss by laminar viscous dissi- 
pation lies in the gravity-capillary transition region of the spectrum. Taking an equi- 
librium constant c( in this range of order 0.03 (Phillips, 1966), it is found that the 
viscous momentum loss can account for all of the momentum transfer across the air- 
sea interface for wind speeds less than about 4 m s-i - which is of approximately the 
same magnitude as the critical wind speed at which white caps are first observed to 
appear. However, the value of a is very uncertain in this region of the spectrum. 

If the wind input is concentrated in the gravity-wave region of the spectrum, the 
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momentum dissipated by viscosity would need to be transferred to the gravity-capil- 
lary waves by some form of nonlinear coupling. Conservative third-order interactions 
between gravity waves alone are unable to bridge the wide spectral gap involved. It is 
conceivable that second-order interactions between gravity-capillary waves may 
transfer energy from short gravity waves into the gravity-capillary range (cf., Valen- 
zuela and Laing, 1972). An alternative mechanism is non-conservative WKB inter- 
actions, although little is known experimentally about the modulation of very short 
waves by longer gravity waves. Nevertheless, it may be expected that some fraction of 
the momentum imparted to the principal wind-sea components by the wind is trans- 
ferred to very short gravity-capillary waves, where it is dissipated, and that (5.4) 
should be modified accordingly. The correction cannot be determined with presently 
available data, but is probably small except for light winds and very small fetches. 

6. The up5 Power Law 

The u-’ dependence of the wave spectrum for frequencies beyond the wind-wave peak 
has been verified in innumerable measurements. It is therefore of interest to investigate 
whether the power law can be understood on the basis of the energy balance outlined 
in the previous section. The non-local nature of this balance in the wave-number 
domain and the observed fetch dependence of CI (and also the anisotropy of the direc- 
tional spectrum) argue against the simple dimensional explanation originally proposed 
by Phillips (1958). However, it can be shown that the suggested energy balance is 
consistent with a u-5 spectrum in the sense that only this power law yields a balance 
of both the integrated energy and momentum transfer rates. 

The integrated energy and momentum transfer for a given source function S, may 
be used to define a mean frequency 0, of the distribution S, through 

a3 n m 

5 
A= Sz, = cos 0 de IiS do&. 
9 

0 -7l 0 

Consider now a spectrum of the form 

for 0 > urn 

This yields for the wave-breaking source function (3.10) a mean frequency 

i 

n-3 

CT& = win - for n>4 
n-4 

a urn for n<4 
(6.1) 

where p is a factor less than but near to unity which depends on the directional 
distribution (for a cost 0 spreading factor and q independent of 8, ~=0.9). For 
n < 4, the momentum integral diverges at high frequencies and Z,, depends on the 
high-frequency cut-off of the spectrum (or the relation (3.10)). 
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From the general structure of the energy balance at intermediate and very large 
fetches, it can be concluded that in both fetch regions, 1?~~%2:20,,,. In the intermediate 
fetch range, Zds is about 1.5 times greater than fin, which itself is approximately equal 

to ISa,, on account of the imbalance S>O at low frequencies. For a fully developed 
equilibrium spectrum, on the other hand, the integrated energy and momentum input 
are both balanced by the dissipation, since SS 0 and the nonlinear transfer conserves 
energy and momentum. Hence I?~~= ,,,, 5. which is found to be approximately 20, for 
an input source function (4.5). Thus in both cases, is,, w 2a,, which implies nz 5 ac- 
cording to (6.1). 

Although this value is clearly only approximate, the exponent is reasonably well de- 
fined, since bdS changes rather rapidly with n. For n = 4, Equation (6.1) yields I?,,% B,, 
and for n=6, Sds= 1.4 6,. Thus the bounds may perhaps be estimated as 4.5 en< 
<5.5, which is of the same order as the observed variation in n (cf., Phillips, 1966). 

7. Conclusions 

Under rather general assumptions, the source function for wave breaking was shown 
to be of the form S,, = - qa’E(k). A quasi-linear source function of this type is charac- 
teristic for any non-expansible interaction process which is weak-in-the-mean. The 
quadratic frequency dependence of the damping coefficient in the case of wave 
breaking applies for wavelengths and periods which are large compared with the 
white-cap scales. The coefficient v is a function of the overall wave statistics and is 
constant, except for a directional dependence, for a given wave state. 

The form of the white-capping source function agrees well with the structure of the 
energy balance derived from JONSWAP and other wave-growth studies, assuming a 
linear form Si, =PE(k) for the input source function. Completion of the energy 
balance then yields an indirect determination of r~ in terms of the atmospheric input 
and nonlinear transfer. 

If Si, is linear, it can be deduced from the wave-growth data that essentially all of 
the momentum transferred across the air-sea interface enters the wave field. For fetch- 
limited and fully-developed spectra in a uniform, stationary wind field, the scales of 
the spectra vary in such a manner that the resultant drag coefficient remains approxi- 
mately constant for all fetches and wind speeds. However, for an arbitrary non- 
uniform, time-dependent wind field, this will generally not be the case. Thus an accu- 
rate parameterisation of the air-sea momentum transfer will need to incorporate the 
wave spectrum as well as the wind speed. 

The proposed energy balance, including the wave-breaking source function, was 
found to be consistent with a am5 equilibrium spectrum, which was explained here 
not in the Phillips sense as a local balance controlled primarily by wavebreaking, but 
as a non-local equilibrium involving the atmospheric input and the nonlinear transfer 
as well as the dissipation by wave breaking. 

The corresponding source function set provides a dynamically consistent basis for 
wave-prediction models. However, several hypotheses were still needed to close the 
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energy balance, in particular concerning the form of the input source function. 
Further air-sea interaction studies, including the direct determination of Si” from 
cross-correlation measurements of wave height and surface pressure, are needed to 
resolve these uncertainties. 
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