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1. Introduction

Consider the v-dimensional lattice Z¥. We define a second order difference
operator H’ by

(Hu)a) = zz,-zi; {u(a,, -, a;—1, -, a,)—2u(a)+u(a,, -+, a;4+1, -+, a,)} ,
acZ’, usC(2"),

where o is a positive constant and Cy(Z”) is the space of functions on Z" with
finite supports. Let {g(a)=¢(a, w); acZ"} be a family of independent, identi-
cally distributed non-negative random variables defined on some probability
space (Q, B, P). We are then concerned with the difference operator H* de-
pending on the random parameter o =(}:

(1) (Heu)a) = (H's)(a)—g(a, ou(a), acZ®.

The operator —H®, considered as a linear transform over Cy(Z"), is a non-
negative definite symmetric operator on L*(Z") and has a unique self-adjoint

extension —H*. Express —H" as —H "’=$[ xdE; by the associated spectral
0,%)

family {E;, —oo <x< oo} and put p*(x)=(E; I, I,), where (, ) is the L*-inner
product and I (a")=$6,,/, a, a’=Z".

Denote by < > the expectation with respect to the probability measure P
and set

(2) p(x) = {p+(x)>, —o0 <x< oo,

p(x) is a probability distribution function vanishing on (—oc, 0). We call this
the spectral distribution function associated with the ensemble of operators
{H*, o=} or rather with the disordered dynamical system governed by H“’s
(e.g. a tight binding electron model [4]).

Our main aim is to show in §4 the following asymptotic behaviours of
p(x) near the origin.
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Theorem 1.1.

E“/; log plx) == 31}5%2

with = —log{—,
14

Theorem 1.2, When v=1,

24 zq(o)> (20).

hm\/x log p(x)=— \\// nof3,

with B, = —log P(¢(0) = 0) (Z00).

Theorem 1.3. Suppose that the distribution of q(0) obeys the one-sided
stable law with exponent o, 0< < 1; {e™>=¢"2* A >0. Then

lim 2~ log p(x)< —(1—a)a/* ™.
240
If v=1 in addition, then

_a) 1/2

lim o ®/A=#N+ A Jog p(x) = — (——~3 —a

>(3-w>/(2<1—w))
40 2

If g(a)=q(a, ») is equal to a constant ¢=0 identically, then we see from
the well known Tauberian theorem [2; vol. 2, XIII] and the asymptotic form

(17) of the Laplace transform of p(x), that p(x) grows up from ¢ in a polynomial
1

(zymz)wr(%Jr 1)
Theorems 1.1~1.3 exhibit a sharp contrast to this state of the deterministic case.

Exponential characters of the spectral distribution of a disordered system
near the end points of the spectrum were derived by I.M. Lifschitz [6] by some
qualitative argument. M.M. Benderskii and L.A. Pastur [1] and L.A. Pastur
[9] have proved those rigorously for the differential operator A—g(a) in the
case of the w-dimensional continuum R”. If v=1 and if ¢(a), acR', is a
stationary Markov process taking two values 0 and 1, then 113{1 vV x log p(x)

order: p(x)~ (x—c)'?, x| c. The exponential characters in

exists and is negative finite ([1]). When ¢(a) is a stationary Gaussian process
with parameter ac R”, then under certain regularity conditions for the covariance

lim log ’: ®___ 1 — ([9]). Here p(x) is understood to be defined as above
o X 2<9(0)"
but through the integral kernel of the operator Ej.

Let us now put

(3) k(t) = S[o _eTp(ds), >0,
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Just as in [9], we will use the Kac formula for k(f) and appeal to a Tauberian
theorem of exponential type (Theorem 2.1) to prove Theorem 1.1~1.3.

We introduce the time-continuous Markov process M=(d, _@, X,, Pa) on
Z" with the generator H°: the function T,u(a)=Ea(u(X,)), acZ” t>0,ucC,

satisfies the Kolmogorov differential equation ‘%:H&Tﬂ)(u) and the initial

condition lim Tu(a)=u(a), acZ*. Here E, stands for the expectation with
140

respect to the probability measure P, governing sample paths X. starting at a.
We call the process M the (time-continuous) simple random walk on Z*. Let E
be the expectation with respect to the product measure P=Px P, then we have
the Kac expression as follows (LLemma 4.1):

(4) k) = Eexp(— [ a(X)ds); X, = 0).

By making use of the formula (4) and in connection with the range of the
sample path X,, we derive in §4 some asymptotic properties of k(f). The range
will be compared with the maximum of the absolute value of X, whose behaviours
are studied in §3. The results of §3 are valid for a large class of Markov
processes including the present random walk and the Brownian motion.

Here we state two remarks on related matters.

A fine structure of the random spectral function p“(x) is known. Consider
the operator (1) for the one dimensional semi-infinite lattice {0, 1, 2, ---} under
the fixed end boundary condition at —1. Suppose that the distribution of
¢(0) is non-degenerate and that {¢(0)> is finite. Then, for almost every
fixed o=, the one dimensional measure p“(dx) admits no absolutely con-
tinuous part (K. Ishii [4] and Y. Yoshioka [11]).

The second remark is that the averaged spectral distribution function
p(x)=<p*(x))> can be obtained as the almost sure limit of the normalized ditribu-
tion of the eigenvalues of the operator —H® restricted to each of increasing
bounded domains under some admissible boundary conditions. Thus p(x) is a
physically observable quantity of the disordered system. The ergodicity of this
kind has been studied by L.A. Pastur systematically for continuous systems.
The ergodicity for lattice systems will be formulated elsewhere.

Theorem 1.2 and 1.3 suggest some possibility to answer the question: Can
we guess some properties of ¢(0) from the knowledge of p(x)?

2. Tauberian theorems of exponential type

Consider a non-decreasing function p on (—oo, o) with p(x)=0, x<0.
We assume that p is right continuous and that k(t)=S[0’m)e‘”‘p(dx) is finite for
every £>0.
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Theorem 2.1. Fix a number v such as 0<y<1.
(i) If lim Llog)z—A4 (0=A<),

then ;1%1 log 7/ log p(x)=—A"™,
(i) I fim— logh)<—A4 (0<A=<)

then 1131 &P log p(x) = —(1—ey)y¥=P 41D,

Proof. We put

(5) (t) = S“’e-”p(x)dx .
0

Since k(t)=tx(2), it is enough to consider «(#) in place of k(f) in order to show
Theorem 2.1.

(1) Let us assume that h_mtiy log k(t)= — A. Then, for any £>0, «(t)=

re

exp{—(4-+&X'} for sufficiently large . Choose a constant C >4 and observe
the equality Scty—le"” p(x)dlec(t)—s £ “p(x)dx. The left hand side is not

cf-
—exp(—C?r)
z

greater than p(Cr,‘“"‘)1 The right hand side is not smaller than

exp {—(A+E} — k(6t) exp {—(1—&)Ct} =(1+0(1)) exp {—(A+E)'} when &
is small enough. Hence we have

(6) lim - log p(Cr) 2 —(4+)..

Put x=C¢"", then lim &%~ log p(x) = — C"*""(A+-€), from which we get our
first assertion by Iett;::g €l0and C | 4.

(ii) Let us assume that El % log k(f)<—A4 with 0<A<oco. Then, for
any €>0, x(f)<exp{—(4—&)r} if ¢t is sufficiently large. From r(t)=
Sw e p(x)dx = p(Ct'™) @%—C-—ﬂ), we have p(Ct'"" )<t «(t) exp (Cr"). Hence

c’ 1
lim }17 log p(C#~*)< —(A—&—C), from which follows
t4o0
(7) lim 72~ log p(x)< —(A—C)CY*~P,
140

Since C >0 is arbitrary and max (4— C)CY*P=(1—«)y?*~P 4/, we arrive
. <e<4
at (ii).

The second estimate of Theorem 2.1 is best possible. Indeed if we invoke
the Minlos-Povzner Tauberian theorem [8], we can obtain the next theorem.
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Theorem 2.2. Fix v with 0<vy <1 and put Ay=(1—y)y"¢"" AP,
Then ltim tiylog k(t)=—A, (0L AL ), if and only if lim 2“7 log p(x)
pee %40
—_—_A-y.
Proof. Rewriting the equality «(8t)= S ~FYp(y)dy by the change of vari-
able y=£"""y’, we have

(8) e~ BB — Swe_wcomy—wy))dy
0

with a(f)=2", $(8)—=— llog «(8t) and ¢,(y)—~{l og p(tl y) (1—v) logt}

An obvious modification of [8; §5, Theorem 2] now implies “only if”’ part of
Theorem 2.2 as follows; since lim ¢,(8) = 874, lim ¢,(1) =lim &Y log p(x)
t4oo t4oo 240

exists and equals inf (8—@B%4)=—A4,. “If” part of Theorem 2.2 follows from
0<p<ee
the analogous modification of [8; §5, Theorem 3].

Here is an immediate consequence of Theorem 2.2.

Corollary. Let G,(x), 0<x< oo, be the distribution function of the one-sided
stable law with exponent a(0<a<1): S MG (dx)=exp (—A\®), A >0. Then

lim x*/4~® log Gy(x)= —(1—a)a® =™,
£30

By appealing to the Tauberian theorem of Hardy-Littlewood type, we can
only obtain lim * °G,(x)=0 [2; vol. 2, XIII, 6, Theorem 1]. A much more
240

precise formula of G,(x) is known however [3; Theorem 2.4.6].

3. Maximum of the absolute value of the sample path

Let us start with a rather general setting. We consider a right continuous
Markov process M=(X,, P,) over Z” with a transition probability p(¢, a, b),
t>0, a, b= 2", and put

(9) M, = £|Xs|.

S
0<s

v
Here |a| denotes V2|ak|2 for a=(a,, a,, -+, a,).
k=1

Theorem 3.1. Suppose that there exists a constant B>0 such that
(10) p(t, a, )< Bt
for sufficiently large t and for any a,beZ®. Then, for each (B3>0,

o ~ B2/
fim £ log E,(e~PM s—("ﬁ ) .
‘}*I'E og Bye™™) = \/ 2me
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Proof. An integration by part leads us to
11) E (e~PM =BS“e-MF(x)dx,

where F(x)=Py(M,<x). We can further observe, for any large s (0<s<%),
(12) F(x)Z(x++/ v '/(C,B) s~ 1>,

Here [=[t/s] and C, is the volume of the »-dimensional unit ball. This is an
easy consequence of the inequality F(x)< P(| X, | <x, | X,sl S, -+, | X | SX),
the Markovian transition mechanism and the bound (10).

o — — ! 4
Using then the bound Soe‘ﬁ"(x—}-\/ v Wdx<efvy l% and the Stirling
upper estimate n! <\/2zn "¢ "e/** ([2; vol 1]), we see from (11) and (12) that
(13) E,(e7PMi) < 6PV </ 2pl(Dys™ ) e+ |

with D="(C,B)"".
B

Let us choose s such that Dis“‘/zzl, namely, s=D**t**, Then DI-s™*
s

=1land I=D *¢#—1. (13) now implies

(14) lim 77 log E(e"?M)< —vD™°,

v/2
Furthr we have from the bound C;Ig(ZL> that »D~?P=(?BB/* C;/"YF
e

—-1/v\ 2/3
= (V\’(jl; ) , proving Theorem 3.1.
e

We return to the simple random walk M:(X,, P,) introduced in §1. M is
spatially homogeneous and its transition function is expressed as

H 1 —i9-a —202tésin2ﬂ
(15) p(t’ 0, a) = W Sc e %% =1 2 do
where C is the Euclidean cube C={#; —z <0, <, i=1,2,--+,v}. To see this,

let us consider the characteristic function ¢,(9)=E0(e"9"”:t), then ¢,(8)=(dy/(0))"
and lim % (1—dya(0)) = —HI,(0)— DY H1,(0)-¢%“ = 20" é sin® %’. Hence
npoo 240

k=1
d),(ﬂ):exp(—Za-zt i} sin’ %) and (15) is nothing but the inversion formula.
=1
(15) immediately implies
(16) bt 0, a)< f(3, 0, 0), acZ”.

Furthermore
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(17) A, 0, 0)~(2za?t)™",  t—>oo.
Since sin i~%, 60, the right hand side of (15) is of the same order as

(zl S“’ e-wzw%da)“:(2nt62)-*ﬂ, yielding (7).
” -0
Theorem 3.1 now applies and we have the following. M, denotesosstllgll X.,|.

Theorem 3.2. For the simple random walk Mon 2",

lim #'73 log E’O(e—pzv'f,) < __( VO'_,G_)ZI-’» .

tp e
We continue to work with the simple random walk M.
Theorem 3.3. Fix o and B such that 0=a<1, 3>0. Then,
lim -+ o/@-0) Jog o (o84%8;7% 2 X, — ()

t-po2
- _ 3_a<1_a>2/(3—u)<”2 V20_2>(1—ab)/(s-m)ﬁz/(3_m)
- 8

l—a

2
In particular (a=0)
lim £ log Ey(ePMe; X,=0)= — f/g_;(nva'ﬂ)m.

tpo

We prepare two lemmas in order to prove Theorem 3.3. Denote by X
the k-th coordinate of X, and put M®»= sup { XP1, k=1, 2, -, v.
o<t

Lemma 3.1. For each positive integer a, the function 2,0, 0)=P0(M <
a, -, M’ <a, X,=0) has the following bound:

. — Caye 1
B(t, 0, )z D, .

Proof. p%(¢, 0, 0) can be expanded in the form 37 e @t +ndig (0)--

150, <281
R=1,2,0,V

v,,(0)’, where \,,, 1<n<2a—1, is the eigenvalue of the one-dimensional problem
%2 {u(w—1)—2u(@)Fu(x+1} =—ru(x)  xeZ?, |x| <a,

u(—a) =u(a) =0,

and v, is the corresponding eigenfunction with >3 v,(x)’=1. It is easy

to see that \,=2¢° sin’Z—”, V() = 1 sinkirx (1=£k<a—1) and v,,_,(x)=
a a

Va
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1o (k=D
a a

pansion gives rise to Lemma 3.1.

Lemma 3.2. For a and 3 as in Theorem 3.3. and for fixed n>0 and £>0,
we put

x (1=k=<a). Since

sin = |< 7, the first term of the ex-
4a| 4a

I(t) = S: [exp(—,@t“x““’——%)]-(x—l—é‘)“""’dx .
Then

(18) lim (43D 1og I(1)= — ﬁi— il <71 ;a)1/(3_m)na—m)/@—w)l@zka—a) )
tyoe —

Proof. For each C >0 and £>0,

(19) 1= S:tg[exp( — B xw_’;_t)] (@+-8)*dx

= (C'tB 4 g)—v—w [exp (_ch-w tm+e—w)]g e—(,,,/xz)dx )

2
On the other hand, integrating the inequality e"”“zg(%+—;~)f”ﬂ, we

d 3
see g e dx > :;%e“"/‘”z provided that %2 is sufficiently small.
Hence (19) leads us to

C3
I(H=
( )—477t1_38(ct!+§)v+m

1-2¢
exp (__Igcl—wtawe—zw_’?tc'z ) .

for & <% and sufficiently large z. We choose € such that a¢+&é—&a=1-—2¢,

namely, E:% (S—;) Then 1--26= ;—{—a and

—a \ —a

im - {@+8yE-a5)} — -y 7
(20) lim ¢ log 79z — (BC™*+2,)..

>

The maximum of the right hand side of (20) for C >0 is just the right hand
side of (18) and we have done.

Proof of Theorem 3.3. Let us put G(x)=P,(M,<x, X,=0) for every real
x. 'Then

(1) Ej(eP™Mi™, X,—0)— S e PG x)

o,

= (1—a)Bs® wa‘“e‘““’x‘_“G(x)dx .
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Since G(x)= pL&/vv>+1(¢, 0, 0), Lemma 3.1 implies that the left hand side of
(21) is not smaller than

(1—a)Bt*v*? S: [exp(——,@t‘”x“‘”-— ﬂzé’;Zzt)](x—l—\/ v) V" %dx .

7' vio’?

8

RemaRk. It is clear from our proof that Theorem 3.2 and 3.3 are also
true for the “pinned’ process obtained from the »-dimensional Brownian motion

Therefore Theorem 3.3 follows from Lemma 3.2 with »=

with transition density p(s, 0, a)= B 12 We‘('"'zlz"z”. We have just the same
mo’s

estimate as in Lemma 3.1 for the pinned Brownian motion.

4. Proof of Theorem 1.1~1.3

In this section, we prove the theorems stated in §1. We first show the Kac
formula (4).

Lemma 4.1. ’
Kt) = E(exp (— | a(X)d; X%,=0).
Proof. By taking the expectation { > of the both hand sides of
(22) [T ermpm(an) = B (exp(—  g(X, o)) X,=0),

we arrive at Lemma 4.1. In order to show (22), it suffices to prove

(1R, wyds
e

S‘” d.(E; 1, 1,) _ I(X)dt),

[] hed —at
(23) T g E,,(So e

for every ae>0.
The right hand side of (23) is, as a function of ac Z"”, a bounded solution
of the next equation ([5]).

24) (a—H*)v(a) = I(a), acZ’.

Here we regard H*v as the function on Z* defined at each point a by the explicit
formula (1). The left hand side of (23) equals Gol(a) with Go=(a—H*)™".
Hence (x—H*)G21(a)=((a— H)GL,, L)~(GL,, (a— H)L)=(G L,y (a— H*)L,)
=((a—H*)G,I,, 1,)=1(a).”> Since moreover |Gul(a)|’<(Gul,, Gol )1, 1,)
< a7? the left hand side of (23) is also a bounded solution of (24).

1) This point becomes trivial if one notices that the operator H® is described explicitly as
follows: YH*)={ucsL¥(Z"); H*ucL¥Z )}, Hu=H"u, uc D(H*).
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It is quite easy to show that the bounded solution of (24) is unique. To

see this, consider a bounded solution v of (¢ —H*®)v=0 and put M=sup|v(a)|.
aczY

/2 vo®
d@Dtatre’ ,bZa‘TLl o(b), we get Méa—l—vo-zM' Therefore
v=0, yielding the equality (23) and hence Lemma 4.1.

The sample path X, of M behaves as follows: it stays at its starting point
during an exponential holding time with expectation 1/ve? and then jumps to
one of its 2v neighbours with equal probability. Let us put

E,(&) = inf {>0; X,(¢)% X ()}

(25) EW(0) = inf {£>0; X(&) E[X (o), Xe(@), -+, X, (&)}
n=2,3 .

Then, from v(a)=

We have then P,(£,>f)=e """ for any ac= Z".

Denote by R,(c'o) the number of different points visited by the sample path
X () during the time interval [0, #). The range R, equals k if and only if
Erp-i(0)St<Ew). Since g(a) and ¢(b) are independent and have the same
distribution as ¢(0) when a=-b, we can readily obtain the next lemma.

Lemma 4.2.

E(exp(—{ a(X)ds); R, =k, X,=0)

—]_,;_S [€3L1¢D] -J @905

= E,((e7 /o1y e ThT S le s >3 R, =k, X, =0).

Here ],,(t):S'Ia(Xs)ds, ac 2",
0
We are now in a position to give the proof of Theorem 1.2 and 1.3.

Proof of Theorem 1.2. From Lemma 4.2, E(exp(—gtq(Xs)ds); R,zk, X,=0)
0

> P(¢(0)=0Y* P(R,=k, X,=0). Putting P(g(0)=0)=e"F: and using Lemma
4.1,

(26) K(t)ZE (e P*:; X, = 0).
When v=1, R,<2M,+ 1 and hence k(t)= E (e #:**:"; X,=0), which together
with Theorem 3.3 implies

(27) }Loro] g log k()= — %/g’; (27[0’182)2/3-

Theorem 1.2 is an immediate consequence of (27) and Theorem 2.1 (i).

Proof of Theorem 1.3. We assume that ¢(0) is distributed according to the
one-sided stable law with exponent a, 0<<a<1. By Lemma 4.2,
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E(exp(~{ a(X)ds); R =k, X, = 0)
= Ey(exp {—(J0" ], 0" ++J5, @5 Re=Fk X, =0).

gk—l

Using then Lemma 4.1 and the inequality #*k'"*=s7+s3+ -+ +si=t%,
(815 85 +++, 8520, 5,45,+ - +5,=1), we are led to

(28) E(e ™" X, = O)<k(t)<e " Py(X, =0).
The second inequality of (28) and the asymptotic formula (17) imply
(29) lim % log k(f)< —1.
tyoa

The first assertion of Theorem 1.3 follows from this and Theorem 2.1 (ii).
When »=1, we use the inequality R}™®<(2M,+1)'""*<(2M,)'" *+1 to
obtain from the first part of (28) and Theorem 3.3 that

(30) lim ¢ @+aYG-a) og k(1) > — A
tyoo
with A=3—a 1 _a>2/(3-w)( ”za,z><1—w)/(a—w)Z(Z_M)/(a_w).
1—a\ 2 8

By Theorem 2.1 (i), we then conclude lim /- *+/®]og p(x)=— A/PLE- /A=),
Z30

which is the second assertion of Theorem 1.3.
It only remains to show Theorem 1.1. We need a lemma.

Lemma 4.3.

k()< {t.EO(e-Blk,)+te—V¢2t} 12 | p={BGt-1/2}

with 8,=—log <1#‘;!(O)>.

Proof. Denote by &; the shifted path: X(6})=X,.(®), s=0. Replacing
ji’gl(t) by ’g‘l(cbgl), [=0,1, -, k—1, (£,=0), in the formula of Lemma 4.2 and

applying the Schwarz inequality twice, we obtain

(1) [Blexp(—{ gX)ds); Ry =k X, = O)F

< By (e a0 (g i a0, L Lottt 0NN P (R, — k, X,=0),
k=2 3,.-.

We next note the equality

(32) E,({e7*t9O)) = ¢7F1 acsZ”.
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In fact the left hand side equals

Bl )y = oot || e ey = (10 o

Furthermore we have
(33) E'o(<e—z£1<é)q(0)><e—z£1(£,gl)q(o)> <e'251(“"g,,_1)“(°)>) e Pk, =23,

In order to see (33), notice that £, is a stopping time (a Markov time in
the terminology of [5]) and that the random variables £,(&;), /<m, depend
only on the events occurred up to time £, Therefore the strong Markov
property ([5]) and (32) imply that the left hand side of (33) is equal to

E'o(<—251<c5>q(0>> <e—2§1céxgk ERLICN E.ng_1(<e'251“°’>))

— EO(<e—zgl(o':)q(0)> <e—zglcégk;2>qc0)>)e—ﬂl

= ese — e_Blk .
From (31) and (33), we have

[Eexp(—{ a(X)d); R<t, X, = OF

[l P . . '
tk=1 [E(CXP (_So q(Xs)ds), Rt = k’ Xt — 0)]2

A

IA

L] .« . P
t2 e P*P(R, =k, X, = 0)+tP(R; = 1)
k=1
<tE, (e PiRi) e
On the other hand, [E (exp(—gtq(Xs)ds); R,>t, X,=0)]J is not greater than the
left hand side of (33) with k=[z].

Proof of Theorem 1.1. X=0 implies M,+1§R,. Hence by virtue of
Lemma 4.3 and Theorem 3.2, we are led to

k(1)< \/T[exp{—t"3 <(z/°-—%>2/3 +- o(l)>}+exp {——Vazt}]llz-i—e‘(”l““)m ,

which implies
T 1 (veB )\
lim £7'7 log k(¢ s_,m<‘;1) .
fim g K = (75
Theorem 1.1 follows from this and Theorem 2.1 (ii).
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