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Abstract

In this thesis, I study the spectral characteristics of large dynamic networks and formulate

the spectral evolution model. The spectral evolution model applies to networks that evolve

over time, and describes their spectral decompositions such as the eigenvalue and singular value

decomposition. The spectral evolution model states that over time, the eigenvalues of a network

change while its eigenvectors stay approximately constant.

I validate the spectral evolution model empirically on over a hundred network datasets,

and theoretically by showing that it generalizes a certain number of known link prediction

functions, including graph kernels, path counting methods, rank reduction and triangle closing.

The collection of datasets I use contains 118 distinct network datasets. One dataset, the signed

social network of the Slashdot Zoo, was specifically extracted during work on this thesis. I also

show that the spectral evolution model can be understood as a generalization of the preferential

attachment model, if we consider growth in latent dimensions of a network individually.

As applications of the spectral evolution model, I introduce two new link prediction algo-

rithms that can be used for recommender systems, search engines, collaborative filtering, rating

prediction, link sign prediction and more. The first link prediction algorithm reduces to a one-

dimensional curve fitting problem from which a spectral transformation is learned. The second

method uses extrapolation of eigenvalues to predict future eigenvalues.

As special cases, I show that the spectral evolution model applies to directed, undirected,

weighted, unweighted, signed and bipartite networks. For signed graphs, I introduce new ap-

plications of the Laplacian matrix for graph drawing, spectral clustering, and describe new

Laplacian graph kernels. I also define the algebraic conflict, a measure of the conflict present in

a signed graph based on the signed graph Laplacian. I describe the problem of link sign predic-

tion spectrally, and introduce the signed resistance distance. For bipartite and directed graphs,

I introduce the hyperbolic sine and odd Neumann kernels, which generalize the exponential and

Neumann kernels for undirected unipartite graphs. I show that the problem of directed and

bipartite link prediction are related by the fact that both can be solved by considering spectral

evolution in the singular value decomposition.

I



Zusammenfassung

In dieser Doktorarbeit beschreibe ich das spektrale Verhalten von großen, dynamischen Netzwer-

ken und formuliere das spektrale Evolutionsmodell. Das spektrale Evolutionsmodell beschreibt

das Wachstum von Netzwerken, die sich im Laufe der Zeit ändern, und charakterisiert ihre

Eigenwert- und Singulärwertzerlegung. Das spektrale Evolutionsmodell sagt aus, dass im Lau-

fe der Zeit die Eigenwerte eines Netzwerks wachsen, und die Eigenvektoren nahezu konstant

bleiben.

Ich validiere das spektrale Evolutionsmodell empirisch mit Hilfe von über einhundert Netz-

werkdatensätzen, und theoretisch indem ich zeige, dass es eine gewisse Anzahl von bekann-

ten Algorithmen zur Kantenvorhersage verallgemeinert, darunter Graph-Kernel, Pfad-Zähl-

Methoden, Rangreduktion und Triangle-Closing. Die Sammlung von Datensätzen, die ich ver-

wende enthält 118 distinkte Datensätze. Ein Datensatz, das soziale Netzwerk mit negativen Kan-

ten des Slashdot-Zoo, wurde speziell während des Verfassens dieser Arbeit extrahiert. Ich zeige

auch, dass das spektrale Evolutionsmodell als Generalisierung des Preferential-Attachment-

Modells verstanden werden kann, wenn Wachstum in latenten Dimensionen einzeln betrachtet

wird.

Als Anwendungen des spektralen Evolutionsmodells führe ich zwei neue Algorithmen zur

Kantenvorhersage ein, die in Empfehlungssystemen, Suchmaschinen, im Collaborative-Filtering,

für die Vorhersage von Bewertungen, für die Vorhersage von Kantenvorzeichen und mehr ver-

wendet werden können. Der erste Kantenvorhersagealgorithmus ergibt ein eindimensionales

Curve-Fitting-Problem, aus dem eine spektrale Transformation gelernt wird. Die zweite Me-

thode verwendet Extrapolation von Eigenwerten, um zukünftige Eigenwerte vorherzusagen.

Als Spezialfälle zeige ich, dass das spektrale Evolutionsmodell auf gerichtete, ungerichtete,

gewichtete, ungewichtete, vorzeichenbehaftete und bipartite Graphen erweitert werden kann.

Für vorzeichenbehaftete Graphen führe ich neue Anwendungen der Laplace-Matrix zur Graph-

zeichnung, zur spektralen Clusteranalyse, und beschreibe neue Laplace-Graph-Kernel, die auf

vorzeichenbehaftete Graphen angewendet werden können. Ich definiere dazu den algebraischen

Konflikt, ein Maß für den Konflikt, der in einem vorzeichenbehafteten Graphen vorhanden ist,

und das auf der vorzeichenbehafteten Laplace-Matrix begründet ist. Ich beschreibe das Problem

der Vorhersage von Kantenvorzeichen spektral, und führe die vorzeichenbehaftete Widerstands-

Distanz ein. Für bipartite und gerichtete Graphen führe ich den Sinus-Hyperbolicus- und un-

geraden Neumann-Kernel ein, welche den Exponential- und den Neumann-Kernel für ungerich-

tete unipartite Graphen verallgemeinern. Ich zeige zudem, dass das Problem der gerichteten

und bipartiten Kantenvorhersage verwandt sind, dadurch dass beide durch die Evolution der

Singulärwertzerlegung gelöst werden können.

II



Acknowledgments

I could not have written this PhD thesis without help and support from many people.

I thank Narcisse Noubissi Noukumo who got me started with collaborative filtering at the
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Chapter 1

Introduction

Networks are everywhere. Whenever we look at the interactions between things, a network
is formed implicitly. In the areas of data mining, machine learning, information retrieval and
others, networks are modeled as graphs. Many, if not most problem types apply to graphs,
such as clustering, classification, prediction and pattern recognition. Networks arise in almost
all areas of research, commerce and daily life: social networks, road networks, communication
networks, trust networks, hyperlink networks, chemical interaction networks, neural networks,
collaboration networks and lexical networks. The content of books is routinely modeled as
book–word networks, taste as person–item networks and interaction as person–object networks.
Databases, the data storage method par excellence, are based on the relational model, where
relations essentially correspond to edges in a network of entities, resulting in arbitrary networks.
Accordingly, a growing number of applications in the areas of data mining, machine learning
and information retrieval make use of data in the form of networks. Social networks, the Web,
scientific citation graphs, user ratings graphs, trust networks and communication networks are
all examples of dataset types that can be represented as networks. In all these cases, information
is represented as nodes connected by edges, and it is the structure of the network itself that is
of interest, as opposed to data attached to each node.

Mathematically, networks are modeled as graphs. A graph is a mathematical structure that
consists of nodes called vertices and links called edges. Networks from many different areas can
be modeled as graphs. For instance, vertices can represent persons, websites, scientific publi-
cation or words, and edges can represent friendship between persons, links between websites,
citations between scientific publications or lexical relationships between words. The mathemat-
ical theory studying graphs is called graph theory. An important branch of graph theory is
spectral graph theory, in which graphs are analysed using methods from linear algebra. For
instance, a social network of n persons can be represented as a matrix of size n× n, where an
entry is one when two persons are friends of each other and zero otherwise. This matrix is called
the adjacency matrix of the social network and contains all structural information about the
network, but it does not contain any additional information such as person names. However,
this matrix can be used to reveal structural properties of the social network. For instance, the
eigenvectors and eigenvalues of this matrix can be used to group people in the network into
coherent communities.

Many applications that make use of networks can be described as the prediction of links.
For instance, recommending friends in a social network, predicting new hyperlinks on the Web,
predicting movie ratings for users and predicting future email traffic can all be described as
problems of link prediction. In a broad sense, the link prediction problem consists of predicting
the location or weight of future edges in a network, given a known network. Link prediction
in this general sense is used in almost all recommender systems, filtering systems and search
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engines. Variants of the link prediction problem are the prediction of new links in a network, the
prediction of ratings and the prediction of the meaning of edges, for instance to learn whether
two persons are going to be friends or enemies.

In this thesis, spectral graph theory is used to predict which nodes of a network will be
connected in the future. This problem is called the link prediction problem, and is known under
many different names depending on the network to which it is applied. For instance, finding
new friends in a social network, recommending movies and predicting which scientists will
publish a paper together in the future are all instances of the link prediction problem. Several
link prediction algorithms based on spectral graph theory are already known in the literature.
However there is no general theory that predicts which spectral link prediction algorithms work
best, and under what circumstances certain spectral link prediction algorithms work better than
others. To solve these problems, this thesis proposes the spectral evolution model : A model that
describes in detail how networks change over time in terms of their eigenvectors and eigenvalues.
By observing certain growth patterns in actual networks, we are able to predict the growth of
networks accurately, and thus can implement relevant recommender systems for all types of
network datasets.

1.1 Motivation: Recommender Systems

As an example, consider a social network. A social network consists of users and their connec-
tions. These connections between users may represent friendship, trust, or simply an interaction
such as a sent email. A social network can be represented as a network in which nodes are users
and links represent pairwise relations between them. A small sample social network is shown in
Figure 1.1. This small network contains six persons and six friendship links between them. Let
us now consider one specific user, the one labeled 1 in the network. This user has two friends:
2 and 4. While this user has only two friends in the network, the actual person behind user 1
may in fact know more people in real life. Therefore, a common task in social networks consists
recommending new friends to users. In our example, user 1 may in fact know the users 3 and
5, who are already friends of 1’s friends. Since we know, in general, only the existence of links
between users, a recommender system as described here must base its recommendation on the
structural properties of the network, and cannot use other features or properties attached to
individual nodes in the graph.

As a result, a good recommender system must predict which links exist between nodes. This
problem is called link prediction, and will be the main problem studied in this thesis for which
new solutions are introduced. In a broader context, the problem of link prediction can be used
to model many different applications:

• Social recommender systems can be implemented as the prediction of links between a
single user and other items.

• In the case of collaborative filtering, the task is to predict the weight of links between
users and items.

• Finding related documents can be seen as predicting links from one document to another,
given a set of links between documents and their topics or contained words.

• Finding related work can be modeled as link prediction between scientific publications
connected by citations.

• Similar authors in a bibliographic network can be found by predicting links between
authors.
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Figure 1.1: A social network of six persons (1, 2, 3, 4, 5, 6) and their relationships (solid lines).
The persons 2, 3, 4, 5 and 6 can be partitioned into friends of 1, friends-of-friends of 1, and
further friends. A recommendation can be represented as a new edge between 1 and other
persons that are not direct friends (dashed lines). The prediction of these kinds of edges is
solved by recommender systems, and is one of the applications to which the methods presented
in this thesis can be applied.

• Biological interactions between molecule types can be predicted using the known metabolic
network.

These applications suggest the study of link prediction algorithms that apply to any type of
network. As we will see, an unweighted network can be interpreted as a network with edge
weights zero or one, and the link prediction problem then becomes the problem of predicting
this value of zero or one for a given node pair.

1.2 Background: Eigenvalue Decomposition

How can networks be analysed? On one hand, the global structure of networks has to be taken
into account to characterize the network itself and to compare it with other networks. On
the other hand, local structure is needed for learning at the node and link level, such as when
defining node centralities or link prediction functions. As shown in this thesis, both levels can
be studied separately by considering the eigenvalue decomposition. The eigenvalue decompo-
sition is a mathematical construction that can be uniquely computed. When the eigenvalue
decomposition is applied to a network, the result consists of eigenvectors and eigenvalues. De-
composing a network into eigenvalues and eigenvectors, both levels can be analysed separately:
The eigenvalues, which are also called the spectrum of the network, contain global information
about the network, and the eigenvectors contain local information. This separation can then
be exploited to predict network growth. As we will show, this is possible because in practice,
only the eigenvalues of a network change over time, and the eigenvectors stay constant. By
extrapolating the change of eigenvalues into the future, the new eigenvalues can be recombined
with the known eigenvectors to give the predicted future network, resulting in new links.

These two observations are the basis of the rest of this thesis: to analyse networks spectrally.
The result of this work can therefore be used in all applications that need to make predictions

in networks.
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1.3 Thesis: Spectral Evolution

The main result presented in this thesis is the spectral evolution model of network growth.
The spectral evolution model describes the change in a network in terms of the eigenvalue
decomposition of its adjacency matrix. In order to talk about change in a network, we need
to know the state of the network at different times. Since in this work we are only interested
in the network structure, we only need to know the set of links in function of time. In all
network datasets we encountered, this can be derived by knowing the creation time of each link,
although it would be enough to know the creation order of edges. The spectral evolution model
described in this thesis can be stated as follows:

• During the process of network evolution, the eigenvalues increase, while the eigenvectors
stay approximately constant. This observation is possible in networks where edge creation
times are known.

These observations can be made on many real-world networks. In these networks, knowing
that the eigenvectors stay constant allows us to derive link prediction algorithms that compute
the eigenvalue decomposition of a given network, and learn a new set of eigenvalues. By reusing
the known eigenvectors, the new eigenvalues give link prediction scores for all missing edges in
the network, and can be used to implement recommender systems in these networks. As we
will show, these link prediction methods also work when it is not known at what time an edge
is added, resulting in link prediction algorithms that apply to any kind of network.

1.4 Application: Link Prediction Algorithms

The spectral evolution model can be exploited to derive new link prediction algorithms, which in
turn can be used for recommender systems. In this thesis, we will derive two new link prediction
algorithms, both of which give only accurate results when network growth is spectral:

• A curve fitting algorithm, which works by supervised learning of a spectral transformation
based on observed network growth. This algorithm is suitable for networks in which growth
is spectral and regular.

• An extrapolation algorithm, in which the growth of individual eigenvalues is projected into
the future, resulting in predictions for new edges. This algorithm is suitable for networks
whose growth is spectral but irregular.

While the two algorithms both assume the correctness of the spectral evolution model, they are
otherwise very different: This first algorithm assumes smooth spectral transformations, whereas
the second algorithm assumes irregular spectral transformations. Both algorithms are applied
to a collection of over one hundred network datasets in experiments. In addition to these two
new algorithms, we also show evaluation results for common link prediction algorithms as a
baseline.
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1.5 Outline

Chapter 2 introduces spectral graph theory, which is the basis for the eigenvalue and singular
values decompositions. Then, we present the large collection of networks datasets
used in this work, including the Slashdot Zoo, which was extracted in the course of
writing this thesis from the technology news website slashdot.org. This chapter
makes the following contributions:

• A survey of one hundred and eighteen network datasets (2.2)
• A new dataset, the Slashdot Zoo (2.2.3)

Chapter 3 introduces the main observation of this thesis: The spectral evolution model. This
chapter presents several tests on the network collection to validate the model di-
rectly, showing that eigenvectors of networks stay approximately constant over
time, while eigenvalues grow. This chapter makes the following contributions:

• A new model of graph growth, the spectral evolution model (3.1)
• The latent preferential attachment model (3.3.5)

Chapter 4 describes methods for learning link prediction functions based on spectral trans-
formations, generalizing a certain number of standard link prediction algorithms.
Two new algorithms are presented: one based on curve fitting, the other on spectral
extrapolation. This chapter makes the following contributions:

• A new link prediction algorithm based on curve fitting (4.2)
• A new link prediction algorithm based on spectral extrapolation (4.3)

Chapter 5 studies the special case of networks with weighted edges. A particular case are
edges with negative weight, which leads to an extension of the Laplacian matrix.
A special focus is given on the implicit multiplication rule resulting from negative
weights. This chapter makes the following contributions:

• A new spectral graph drawing algorithm for signed networks (5.2)
• A formalization of the algebraic conflict (5.4.4)
• The introduction of signed spectral clustering (5.5)
• The application of graph kernels to link sign prediction (5.6)
• The signed resistance distance (5.8.1)

Chapter 6 presents the special case of networks with asymmetry. These are either bipartite,
resulting in a rectangular biadjacency matrix, or directed, giving an asymmetric
square adjacency matrix. In both cases, the eigenvalue decomposition is replaced
with the singular value decomposition. This chapter makes the following contribu-
tions:

• The hyperbolic sine and odd Neumann pseudokernels for bipartite link pre-
diction (6.1.2)

Each chapter will give short experimental results relevant to one area. Appendix A gives
the list of all datasets used in the dissertation, along with basic statistics about them. The
complete evaluation results are listed in Appendix B. Finally, Appendix C gives a short guide
to computing matrix decompositions using GNU Octave.
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1.6 Publications and Own Contributions

This thesis contains material published previously in conference papers, as listed in Table 1.1.
Material included from these papers was written by myself. Papers by me which did not
contribute to this thesis are omitted.

The analysis of the Slashdot Zoo in Section 2.2.3 is based on a paper published at the In-
ternational World Wide Web Conference 2009 [KLB09]. The Slashdot Zoo was extracted and
analysed by me. Parts of the analysis of the spectral evolution model in Chapter 3 and of the
spectral extrapolation algorithm in Section 4.3 were published at the International Conference
on Information and Knowledge Management 2010 [KFB10]. The spectral evolution and ex-
trapolation methods were developed by myself. The curve fitting algorithm for link prediction
described in Section 4.2 was originally published at the International Conference on Machine
Learning 2009 [KL09], and was developed by me. Chapter 5 on signed networks is based on
work published at the Industrial Conference on Data Mining 2007 [KS07], at the European
Conference on Artificial Intelligence 2008 [KSB+08] and at the SIAM International Conference
on Data Mining 2010 [KSLL10]. In these papers, I contributed the parts relevant to this thesis:
the derivation of the signed Laplacian, the implementation of the graph kernels, and the proofs.
The work on bipartite networks in Section 6.1 is based on a paper published at the International
Conference on Information Processing and Management of Uncertainty in Knowledge-based Sys-
tems 2010 [KDLA10]. This paper was written by me, with coauthors having a supportive role.
The paper [KSN+10] was not published during my PhD studies. All datasets presented in that
paper were prepared by me. The paper about link prediction using temporal tensor decomposi-
tion presented at the Behavioral Informatics Workshop 2011 [SCAK11] was mainly written by
Stephan Spiegel and Jan Clausen; my contribution lies in showing the equivalence between the
tensor decomposition-based method and joint diagonalization, as explained in Section 4.5.

Table 1.1: List of papers written for this PhD thesis.

Datasets
The Slashdot Zoo [KLB09] (WWW 2009)
A survey of network datasets [KSN+10] (Unpublished)

Link Prediction
Assessing unrated items [KLMA07] (ICDIM 2007)
Adapting ratings [KA07] (IRI 2007)
Tensor decomposition [SCAK11] (BI@PAKDD 2011)

Graph Kernels
Similarity kernels [KLB08] (ICPR 2008)
Kernel scalability [KLBA08] (RecSys@ECAI 2008)

Learning Spectral Transformations
Learning by curve fitting [KL09] (ICML 2009)
Spectral extrapolation [KFB10] (CIKM 2010)

Signed Networks
Electrical resistance models with negative edges [KS07] (IndCDM 2007)
Signed resistance distance [KSB+08] (ECAI 2008)
Signed Laplacian kernels [KSLL10] (SDM 2010)

Bipartite Networks
Bipartite link prediction [KDLA10] (IPMU 2010)
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Chapter 2

Networks

The central data structure used in this thesis is the network. An example of a network is
given by the World Wide Web, which consists of websites connected by hyperlinks. In this
example, websites represent nodes of the network and hyperlinks represent links between nodes.
This structure of nodes connected by links can also be found in many other domains: persons
connected by friendship, words connected by lexical relationships, users and emails sent between
them, etc. In this thesis, we will look at networks in an abstract way: We are only interested
in the network itself, not in the identity of nodes. Thus, we will not know the names of users
in a social network, or the content of websites on the Web, or the content of emails. Instead,
only the structure of the network consisting of nodes and links will be important.

Networks are used in applications such as recommender systems, rating prediction or sim-
ilarity search. As we will see, these problems can be understood as cases of link prediction,
in which a set of links is known, and new links must be predicted. For instance, being able
to predict new friendship links in a social network can be used to recommend new friends to
people. Likewise, predicting new hyperlinks in the World Wide Web network can be used to find
websites similar to a given one. These different types of applications can all be seen as special
cases of the link prediction problem: Given a network that changes over time, predict which
links will appear in the future. Thus, a major test of any network model is its applicability
for link prediction. In order to evaluate the network model introduced in this thesis, network
datasets are needed. For this purpose, we collected one hundred and eighteen large network
datasets. These datasets were collected over the course of the PhD program, and are mostly
available on the World Wide Web. One dataset was acquired during the writing of this thesis:
The Slashdot Zoo, the social network from the website slashdot.org. The Slashdot Zoo is
special in that it contains not only friendship links, but also enemy links.

This chapter has two parts. First, in Section 2.1, we define the concept of network, review
different types of networks encountered in practice, and give the necessary mathematical defini-
tions from graph theory. Then, in Section 2.2, we present the collection of network datasets used
in this thesis. This dataset collection contains one hundred and eighteen datasets of different
types.

2.1 Definitions

Networks can be observed in many areas of data mining, machine learning, recommendations
and related areas. Many datasets published both online and offline are in fact networks.

In the social sciences, graph theory has for a long time be used to study social networks. As
an early example from psychology, the term small world was made popular by Stanley Milgram
in the 1960s to describe the surprisingly low number of links needed to reach any node from
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any other node in the person–person graph [Mil67]. More recently, the World Wide Web, or
simply the Web, has emerged as the giant network of pages connected by hyperlinks. In the
last years, the Linked Data initiative has proceeded to turn the Web into a semantic network
of interconnected entities, giving rise to the Semantic Web.

Other areas of computer science too have moved to considering network data rather than
numerical data. As an example, consider machine learning, where the most recent subtopics are
concerned with network-like data structures. The topic of relational learning is by definition
concerned with relations in the mathematical sense, which are typically modeled as networks.
In probabilistic analysis, graphical models such as Bayesian networks and Markov random fields
are used to model sets of random variables that are connected by dependencies. A major class of
newer machine learning problems can be summarized as link prediction, in which links must be
predicted given known links between nodes. This formalism is for instance used in recommender
systems, where new links between users and products are predicted.

Outside computer science, networks are routinely used to model all kinds of things, from
atoms to the global economy. In chemistry, molecules are modeled as networks of connected
atoms. In quantum physics, networks consisting of particles and their interactions are aggre-
gated into Feynman diagrams as a way to compute probabilities of reactions between them. In
biology, the relations between genes and the interactions between proteins and other metabo-
lites are modeled as networks in which a path of incident edges is called a biochemical pathway.
Also in biology, a series of predator-prey relationships is called a food chain, and multiple food
chains form a food web. In neuroscience, a population of interconnected neurons is modeled as
a neural network. In epidemiology, the percolation of diseases from one organism to the other
is modeled as a network. In sociology, various types of relationships between persons, groups
and even countries are studied using network analysis. In linguistics, the relations between
words make up a lexical network. In economics, the relations between actors are modeled as
networks. Transportation and other infrastructural networks are used in operations research.
For instance, the worldwide network of airports and flights connecting them forms a network
that combines geographic and geopolitical aspects. In technology, a sensor network consists of
individual autonomous sensors connected wirelessly to other nearby sensors.

2.1.1 Network Properties

A basic network consists only of nodes and undirected links connecting them. Many real net-
works however have more structure: Links may be directed and weighted, there may be two
fundamentally different nodes types such as users and items, and links may be annotated with
link creation times. These additional network properties can be taken into account without
much change to the underlying methods we use in this thesis. We consider three basic proper-
ties:

• Edge structure: Links may be undirected, directed, or bipartite.

• Edge types: Edges may be simple, multiple, signed or weighted.

• Metadata: Edges may or may not be annotated with timestamps.

Edge Structure The simplest networks are undirected, meaning that an edge between nodes i
and j does not have a direction. In other words, we can consider the edge i → j to be equivalent
to the edge j → i. An example of an undirected network is a social network such as Facebook1,
in which a friendship between two users does not have an inherent orientation. If edges have

1facebook.com
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an orientation, then the network is directed. As an example, the fact that user i follows
user j on a social networking site such as Twitter2 does not imply that user j follows user i.
The Twitter network is thus directed. In an authorship network such as that from DBLP3,
scientific publications are connected to their authors. The DBLP network has two classes of
nodes (authors and publications), with all links connecting nodes of different types; the DBLP
authorship network is thus bipartite. In folksonomies such as Delicious4, tags are assigned to
an item by a user. Thus, tag assignments connect three classes of nodes; they form a tripartite
hypergraph.

Edge Types The simplest kind of edge is a simple edge, such as in the Facebook friendship
network. Since there can be at most one friendship link between any two users, the Facebook
social network is a simple graph. In networks with simple edges, links in the network are
persistent. In the case of Facebook, this means that a friendship link stays active forever once
it has been created5. On the other hand, in networks such as email networks, a link represents
a message written by a user to another user. Since users can write any number of emails at
different points in time, an email network may have multiple links between a given user pair.
This type of graph is called a multigraph. In networks with multiple edges, individual links
usually represent individual events between two nodes, and therefore the graph represents the
sum of past interactions. On the technology news site Slashdot6, users can not only mark other
users as friends, but also as foes. In the Slashdot Zoo, a friend link can be seen as positive and
a foe link as negative. The Slashdot Zoo thus has positive and negative links; it is a signed
graph. In the Netflix movie recommender7, users rate movies on a five star rating scale. Links
are thus weighted by a rating, and the network is weighted.

Metadata Arguably, all networks are created by a growth process, in which nodes and links
are added over time. To capture this information, links may be annotated with link creation
times. Nodes too may be annotated with creation times, but we will ignore this information
since the addition of an unconnected node does not change a network structurally—it is only
the addition of its first link that changes the structure of the network.

The resulting network properties are summarized in Table 2.1. Examples of networks of all
types are given in Figure 2.1. Directed and undirected networks as defined here have only one
node type, as opposed to bipartite networks, which have two node types. Therefore, we will
call directed and undirected networks unipartite.

2.1.2 Network Categories

Being so diverse, the networks we study fall into several common categories. In each of these
categories, nodes and links are of one particular type, such as person or document for nodes
and friendship or citation for links.

Authorship networks are unweighted bipartite networks consisting of links between authors
and their works. In some authorship networks such as that of scientific literature, works
have typically a few authors, whereas works in other authorship networks may have many
authors, as in Wikipedia articles. In an authorship network, vertices corresponding to

2twitter.com
3www.informatik.uni-trier.de/∼ley/db
4delicious.com
5We do not consider link removal, since no datasets in our collection contains such information.
6slashdot.org
7netflix.com

9

http://twitter.com/
http://www.informatik.uni-trier.de/~ley/db/
http://delicious.com/
http://slashdot.org/
http://www.netflix.com/


Table 2.1: Network properties.

Edge structure

U Undirected Edges are symmetric

D Directed Edges are asymmetric

B Bipartite Edges connect two types of nodes

T Tripartite Hyperedges connect three types of nodes

Edge types

− Simple Simple edges

= Multiple Multiple edges are possible

± Signed Positive and negative edges

E Weighted Edges are ratings

Metadata

U Time Edges have timestamps

(a) Undirected simple network, e.g.
friendship between persons

(b) Directed network, e.g. hyperlinks
between websites

(c) Bipartite network, e.g. member-
ship of persons in groups

(d) Tripartite network, e.g. tag as-
signments between users, items and
tags

(e) Multiple edges, e.g. email mes-
sages

(f) Signed edges, e.g. friendship and
enmity between persons

1 5

5 3

4

4

1

5

4

4

5

(g) Ratings, e.g. people rating each
other

t₁ t₅

t₉ t₁₁

t₄

t₂

t₈

t₁₀

t₇

t₆

t₃

(h) Edges creation times, e.g. scien-
tists writing a publication together at
a given date

Figure 2.1: Examples of the network properties we consider in this thesis. The case (a)
represents the basic network without any special properties. Properties (b–d) are exclusive and
optional, and represent the different kinds of edge structure. Properties (e–g) are exclusive and
optional, and represent possible edge types. Property (h) is optional and represents additional
edge metadata.
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works are added one by one with all their incident edges, and the link prediction problem is
not meaningful. Therefore, we also consider author-author networks of co-authorships. In
these networks, each edge represents a joint authorship, with the timestamp representing
the publication date. Example of authorship networks are the Wikipedia user–article edit
network, and the DBLP network of scientists and their publications.

Communication networks contain edges that represent single messages between persons.
Communication networks are directed and may have multiple edges. Timestamps denote
the date of a message. Examples of communication networks include emails, Facebook
wall posts and Twitter posts addressed using the “@name” notation.

Co-occurrence networks represent the simultaneous appearance of items. Co-occurrence
networks are unipartite, undirected and unweighted. Examples are the co-purchase net-
work from Amazon, and the is-similar relationship of DBpedia.

Feature networks are bipartite, and denote any kind of feature assigned to entities. This
includes user memberships in online groups, as well as player memberships in sports
clubs. Feature networks are unweighted and have edges that are not annotated with edge
creation times. Examples are the genre of songs and the clubs in which a football player
has played.

Folksonomies consist of tag assignments connecting a user, an item and a tag. For folk-
sonomies, we follow the 3-bipartite approach and consider the three possible bipartite
networks, i.e. the user–item, user–tag and item–tag networks. This allows us to apply
methods for bipartite graphs to hypergraphs, which is not possible otherwise. Examples
of folksonomies are Delicious for bookmarks, CiteULike for scientific publications and
MovieLens for movies.

Interaction networks represent collections of single events between entities. Most interaction
networks have edges with timestamps. Examples are the interaction of proteins and other
molecules in biological organisms and the Last.fm user–song listening network.

Physical networks represent physically existing network structures. This includes physical
computer networks and road networks. These networks result from an underlying two-
dimensional geographical layout. Examples are road networks and the autonomous sys-
tems of the Internet.

Rating networks consist of assessments given to entities by users, weighted by a rating value.
Most rating networks are bipartite, when users rate items. A few rating networks are
unipartite and directed, when users rate other users. Most rating networks are weighted;
others are signed, when there is an explicit neutral rating value of zero. Examples are the
Netflix movie ratings and Jester joke ratings.

Reference networks consist of citations or hyperlinks between publications, patents or web
pages. Reference networks are directed. In most reference networks, edges are created
along with nodes. Therefore, the link prediction problem cannot be applied to them.
An exception are hyperlink networks, where links can be added at any time. Examples
are hyperlinks between pages on the World Wide Web and citations between scientific
publications.

Social networks represent relations of friendship between persons. Some social networks have
negative edges, which denote enmity. All social networks have simple or signed edges,
since it is not possible to add another user multiple times to one’s friend (or foe) list. In
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social networks, timestamps denote when a link was established. Examples are Facebook
friendships, the Twitter follower relationship, and friends and foes on Slashdot.

Trust networks connect persons or entities by links of trust. Trust networks are necessarily
directed. Links may also denote distrust, in which case negative edge weights are used.
Examples are given by the sites Epinions and Advogato.

To study all these kinds of networks, we need a common mathematical framework that
allows us to generalize from an actual network to an abstract mathematical structure. At the
same time, our mathematical framework must be flexible enough to represent each of these
network types. As we will show, this mathematical framework is given by graph theory.

2.1.3 Graph Theory

A network is represented mathematically by a graph, in which nodes are called vertices and
links are called edges. The simplest type of graph is undirected and unweighted. More complex
structure is given by directed, bipartite, weighted and signed graphs. As a general rule in this
thesis, we will mean a simple, undirected, unweighted graph whenever we speak of a graph, and
use the attributes directed, bipartite, weighted, multiple and signed when needed.

We denote a simple, undirected and unweighted graph G = (V,E), where V is the set of
vertices (nodes), and E ⊆ {{i, j} | i, j ∈ V } is the set of edges. If i, j ∈ V are two vertices,
{i, j} denotes the edge connecting them. Two vertices are called adjacent if they are connected
by an edge. When two vertices i and j are adjacent, we write i ∼ j. These types of graphs
are simple because only one edge may connect a given vertex pair, undirected because edges do
not have an orientation, and unweighted because edges do not have weights. We do not exclude
loops, i.e. an edge between a node and itself. An example of a loop is an email sent from one
person to themselves in a communication network. Other types of networks are free of loops,
such as friendship networks.

A directed graph D = (V,A) consists of a set of vertices V and a set of arcs A ∈ V ×V . An
arc a = (i, j) ∈ A is directed, and is said to point from i to j. Directed graphs are also called
digraphs.

A graph is bipartite if its vertices can be partitioned into two sets such that all edges connect
vertices from different partitions. In other words, a graph G = (V,E) is bipartite if there is
a partition V = V1 ∪̇ V2 such that E ⊆ {{i, j} | i ∈ V1, j ∈ V2}. Bipartite networks arise for
instance when modeling the interaction between users and items. Another example of common
bipartite networks are collections of text documents: Documents and words can be modeled as
the two vertex sets, with an edge connecting a document with a word if the word is contained
in the document.

A graph may allow multiple edges between any vertex pair. We will call the number of edges
between i and j the multiplicity of {i, j}, and denote it m(i, j). The corresponding graph is
G = (V,E,m). We define a weighted graph as G = (V,E,w), where w(i, j) is defined as the
weight of the edge {i, j}. We do not consider the case of weighted multigraphs, since we did
not encounter any network dataset of this form. Analogously, a directed graph with multiple
edges is denoted D = (V,A,m) and a weighted directed graph is denoted D = (V,A,w).

A signed graph is a weighted graph in which two kind of edges are distinguished: positive
and negative edges [Zas82]. In other words, the weights w(i, j) of a signed graph can be positive
or negative. If w(i, j) is always positive for all edges {i, j}, the graph is unsigned. In a strict
sense, a signed graph only has the possible edge weights +1 and −1. Indeed, many of the signed
graphs we study only contain the weights {±1}. Other signed graphs however may have other
possible weight values. We will not differentiate between the two cases.
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A hypergraph is a generalization of a graph in which edges are replaced by hyperedges that
can connect any number of vertices. A hypergraph can be written as H = (V, Y ), where V
is the vertex set and Y ⊆ P(V ) is the hyperedge set. Here, P(V ) is the power set of V , i.e.
the set of all subsets of V . In our collection of network datasets, only folksonomies such as
Delicious are hypergraphs, and they have a special structure: The vertex set can be partitioned
into users, items and tags as V = Vu ∪̇ Vi ∪̇ Vt, and all hyperedges are of the form {i, j, k},
with i ∈ Vu, j ∈ Vi and k ∈ Vt. In other words, hyperedges of folksonomies have cardinality
three and connect a user, an item and a tag. Therefore, folksonomies are called tripartite
or 3-regular hypergraphs. In order to apply matrix decompositions to them, we break down
hypergraphs into three bipartite components, each of which is generated by forgetting one of the
three vertex types. Thus, the user–item bipartite component of a folksonomy is the bipartite
graph with multiple edges Gui = (V,E,m) consisting of the vertices V = Vu ∪̇ Vi and the edge
set E = {{i, j} | ∃k : {i, j, k} ∈ Y } with m(i, j) = |{k | {i, j, k} ∈ Y }|. This construction results
in the three bipartite graphs Gui, Gut and Git.

Example The small synthetic graph Gs in Figure 2.2 will serve as a running example through-
out the text. This graph is unweighted, undirected and has nine vertices and eleven edges.
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Figure 2.2: A small synthetic graph Gs with nine vertices (1–9) and eleven edges.

2.1.4 Linear Algebra

Linear algebra is the branch of mathematics that is concerned with matrices and vectors. Ma-
trices and vectors can be used to represent many different kinds of objects and structures. In
this thesis, we will use matrices to represent networks. Therefore, we introduce basic notions of
linear algebra here. Note that we only give the necessary definitions needed in this thesis. Most
definitions can be stated in more general ways. This section is not a general introduction to
linear algebra. Instead, it is meant as a reminder of the basic notions of linear algebra needed
in this thesis for readers that already have a basic grasp of linear algebra.

A vector x ∈ R
n of size n consists of n real numbers. We will write xi to denote the ith

component of x for i ∈ {1, . . . , n}. Vectors will have bold lowercase names such as u, v, etc.
The norm of a vector x ∈ R

n is defined as

‖x‖ =

√

√

√

√

n
∑

i=1

x2
i . (2.1)

If ‖x‖ = 1, then x is said to be a unit vector. The dot product of two vectors x,y ∈ R
n is

defined as

x · y =

n
∑

i=1

xiyi. (2.2)
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If x · y = 0, then x and y are said to be orthogonal.

A matrix X ∈ R
m×n of size m × n consists of mn real numbers arranged using indexes

i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. The component in the ith row and jth column of X is written
Xij . Matrices will have bold uppercase names such as A, B, etc. A matrix is square if m = n.
The Frobenius norm of a matrix X ∈ R

m×n is defined by

‖X‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

X2
ij . (2.3)

The transpose XT of a square matrix X is defined by

(XT)ij = Xji. (2.4)

A matrix X is symmetric if X = XT. Symmetric matrices are necessarily square. A matrix
X is diagonal if Xij = 0 whenever i 6= j. The ith row of X ∈ R

m×n is a vector denoted Xi•.
The jth column of X is a vector denoted X•j . The product of two matrices X ∈ R

m×r and
Y ∈ R

r×n is defined as

(XY)ij = Xi• ·Y•j . (2.5)

Some simple matrices have special notations. The unit matrix In×n is the diagonal matrix
of size n× n defined by (In×n)ii = 1 for all i. The matrices 0m×n and 1m×n are the matrices of
all zeroes and of all ones of size m× n. We omit the indexes if they are clear from the context.

Examples

[

−0.6
0.8

]

∈ R
2 is a unit vector





1 −1 2
−1 3 0
2 0 −2



 ∈ R
3×3 is a symmetric matrix

2.1.5 Algebraic Graph Theory

In order to analyse graphs, algebraic graph theory is a common approach. In algebraic graph
theory, a graph with n vertices is represented by an n× n matrix called the adjacency matrix,
from which other matrices can be derived.

Adjacency Matrix The edge set of a graph G = (V,E) can be represented by a matrix
whose characteristics follow those of the graph. An unweighted undirected graph on n vertices
can be represented by an n× n 0/1 matrix A defined by:

Aij =

{

1 if {i, j} ∈ E
0 otherwise.

(2.6)

The matrix A is called the adjacency matrix of G. For a directed graph D, A is in the general
case not symmetric:

Aij =

{

1 if (i, j) ∈ A
0 otherwise.

(2.7)
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If G = (V,E,m) is a graph with multiple edges, the adjacency matrix is defined as

Aij =

{

m(i, j) if {i, j} ∈ E
0 otherwise.

(2.8)

For a weighted graph, we define

Aij =

{

w(i, j) if {i, j} ∈ E
0 otherwise.

(2.9)

The adjacency matrix of a directed graph with multiple edges or edge weights is defined analo-
gously.

Biadjacency Matrix In a bipartite graph G = (V1 ∪̇ V2, E), the adjacency matrix can be
written as

A =

[

0 B
BT 0

]

, (2.10)

where the |V1| × |V2| matrix B is called the biadjacency matrix. As in this study all bipartite
graphs are undirected, A is symmetric, and the analysis of A can be reduced to the analysis
of B. As a general rule, we will only use the biadjacency matrix B, and not mention its
adjacency matrix A.

Degree Matrix Degree matrices are diagonal matrices with the degree of each vertex as
diagonal values. In an unweighted undirected network with n nodes, the diagonal degree matrix
D ∈ R

n×n is defined such that Dii equals the number of vertices adjacent to the vertex i. It is
defined as

Dii =
∑

j

|Aij |. (2.11)

The absolute value in this definition is necessary when dealing with negatively weighted edges,
as explained in Chapter 5. Equivalently, the degree matrix may be defined as D = 11×n|A|,
where 11×n is the matrix of size 1 × n filled with ones, and |A| is the absolute value of A,
i.e. the matrix defined by |A|ij = |Aij |. In some works, the matrix D as defined here for
weighted graphs is called the strength matrix, and the word degree matrix is reserved for the
corresponding unweighted network [BBPSV04]. Here, we always use the weighted variant of D
if weights are available. Note that in networks with multiple edges, both concepts overlap, since
k parallel edges of weight one can be interpreted as a single edge of weight k. When talking
about the degree of a single vertex i, we will also use the notation d(i) = Dii.

If A is not symmetric, we define the diagonal outdegree matrix Dout ∈ R
|V |×|V | and the

diagonal indegree matrix Din ∈ R
|V |×|V | separately:

(Dout)ii =
∑

j

|Aij | (2.12)

(Din)ii =
∑

j

|Aji| (2.13)
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Similarly, for bipartite graphs, we define two diagonal degree matrices D1 and D2, corre-
sponding to the vertex sets V1 and V2:

D =

[

D1 0
0 D2

]

(2.14)

(D1)ii =
∑

j

|Bij | (2.15)

(D2)ii =
∑

j

|Bji| (2.16)

Normalized Adjacency Matrices The adjacency matrix A and the biadjacency matrix B
can be normalized in the following way:

N = D−1/2AD−1/2 for undirected networks (2.17)

N = D
−1/2
out AD

−1/2
in for directed networks (2.18)

M = D
−1/2
1 BD

−1/2
2 for bipartite networks (2.19)

We call N the normalized adjacency matrix and M the normalized biadjacency matrix. In
these definitions, we use the power D−1/2 of a diagonal matrix D, which is again a diagonal
matrix and can be computed entrywise using the expression (D−1/2)ii = (Dii)

−1/2. This type
of normalization effectively divides the weight of each edge {i, j} be the geometric mean of
the degrees of i and j. If G = (V,E) is an unweighted undirected graph, then its normalized
adjacency matrix is the non-normalized adjacency matrix of the weighted graph G′ = (V,E,w)
with edge weights w(i, j) =

√

d(i)d(j), where d(i) is the degree of vertex i. Therefore, the
normalized adjacency matrix N has been used when the degree distribution of the network is
very skewed for various learning tasks [GMZ03].

Laplacian Matrix The Laplacian matrix L is a characteristic matrix of a graph of the same
size as the adjacency matrix. For undirected, unipartite graphs the Laplacian matrix is defined
as

L = D−A (2.20)

The matrix L is symmetric. L is also called the combinatorial Laplacian or the Kirchhoff matrix,
due to the relation to electrical networks, as described in Section 4.2.3.

Laplacian matrices can also be defined for directed graphs. These Laplacians are either
symmetric as in [Chu05], or asymmetric as in [BRZ11]. These constructions are not used in
this thesis. Instead, we ignore edge directions when applying the Laplacian matrix to a directed
graph with asymmetric adjacency matrix A, giving

L = Dout +Din −A−AT (2.21)

In bipartite graphs, the Laplacian matrix is given by

L = D−A =

[

D1 −B
−BT D2

]

(2.22)

This bipartite Laplacian is square and symmetric. We additionally define the normalized Lapla-
cian as

Z = D−1/2LD−1/2 for unipartite graphs (2.23)

Z = (Dout +Din)
−1/2L(Dout +Din)

−1/2 for directed graphs (2.24)

Z = D−1/2LD−1/2 for bipartite graphs (2.25)
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This normalized Laplacian matrix is related to the normalized adjacency matrix N and to the
normalized biadjacency matrix M in the following way:

Z = I−N for unipartite graphs

Z = I−N−NT −D
−1/2
in (A+AT)D

−1/2
out for directed graphs

Z =

[

I M
MT I

]

for bipartite graphs

Example Here are various matrices associated to the graph Gs introduced in Figure 2.2:

A =





























0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0
1 1 0 1 1 0 0 0 0
0 1 1 0 1 1 0 0 0
0 0 1 1 0 0 1 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0





























N =































0 1/
√
6 1/

√
8 0 0 0 0 0 0

1/
√
6 0 1/

√
12 1/

√
12 0 0 0 0 0

1/
√
8 1/

√
12 0 1/4 1/

√
12 0 0 0 0

0 1/
√
12 1/4 0 1/

√
12 1/

√
8 0 0 0

0 0 1/
√
12 1/

√
12 0 0 1/

√
6 0 0

0 0 0 1/
√
8 0 0 0 1/

√
2 0

0 0 0 0 1/
√
6 0 0 0 1/

√
2

0 0 0 0 0 1/
√
2 0 0 0

0 0 0 0 0 0 1/
√
2 0 0































L =





























2 −1 −1 0 0 0 0 0 0
−1 3 −1 −1 0 0 0 0 0
−1 −1 4 −1 −1 0 0 0 0
0 −1 −1 4 −1 −1 0 0 0
0 0 −1 −1 3 0 −1 0 0
0 0 0 −1 0 2 0 −1 0
0 0 0 0 −1 0 2 0 −1
0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 −1 0 1





























2.1.6 Spectral Graph Theory

Spectral graph theory is a branch of algebraic graph theory that applies matrix decompositions
to characteristic graph matrices in order to study a graph’s properties [Chu97, CRS97]. The
word spectral refers to the spectrum of networks, which is given by the eigenvalue decomposition
of a graph’s adjacency or Laplacian matrix, as described in the following. Spectral graph theory
can be used to study graph properties such as connectivity, centrality, balance and clustering.

Let X be any m× n matrix, not necessarily symmetric or square. Then, the equation

Xu = λu (2.26)
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is called the eigenvalue equation. If the pair (λ,u) is a solution to this equation, the vector u
is called an eigenvector of X and λ is called an eigenvalue of X. The pair (λ,u) is called an
eigenpair of X. The set of all eigenvalues λ is called the spectrum of X. If u is an eigenvector of
X, then any multiple of u is also an eigenvector ofX. Therefore, the set of vectors corresponding
to an eigenvalue λ is a linear space. Its dimension is called the multiplicity of the eigenvalue λ.

Eigenvalue Decomposition A square symmetric matrix A can be written in the following
way:

A = UΛUT (2.27)

where U is an n × n orthogonal matrix, and Λ is an n × n diagonal matrix. A matrix U is
orthogonal when UUT = I, or equivalently when UTU = I. Another characterization of an
orthogonal matrix U is that its columns are pairwise orthogonal vectors and each has unit norm.
The values Λkk are the eigenvalues of A, and the columns of U are its eigenvectors. We will
designate the eigenvalues by λk = Λkk and the eigenvectors by uk = U•k for 1 ≤ k ≤ n.

The eigenvector and eigenvalue with index k form an eigenpair (λk,uk). These eigenpairs
can be used to write A as a sum of rank-one matrices:

A =
n
∑

k=1

λkuku
T
k (2.28)

Here, each outer product of eigenvectors uku
T
k results in an n × n matrix of rank one. The

corresponding eigenvalue is λk. The set of all eigenvalues {λk} of a matrix is called its spectrum.
The same eigenvalue λ may appear multiple times in Λ. Therefore, we will understand the
spectrum as a multiset. For instance, when defining a sum over all eigenvalues, we will implicitly
understand that multiple eigenvalues are summed a corresponding number of times.

The eigenvalue decomposition can be used to find the best approximation in a least-squares
sense to A. For a given r, the following optimization problem consists of finding a matrix Ã of
rank at most r that approximates the matrix A:

min
Ã

∥

∥

∥
A− Ã

∥

∥

∥

F
(2.29)

s.t. rank(Ã) ≤ r (2.30)

A solution Ã to this problem can be obtained with the eigenvalue decomposition ofA. Assuming
that the values in Λ are sorted such that |λ1| ≥ |λ2| ≥ . . . ≥ |λn|, this solution can be written
as:

Ã = U• (1...r)Λ(1...r) (1...r)U
T
• (1...r) (2.31)

In practice, only rank-reduced eigenvalue decompositions can be computed, with r much smaller
than the size n of the matrix. Typical values for r in recommender systems are not larger than
100. Values for all datasets are given in Table A.2 in Appendix A.

Singular Value Decomposition In the general case, an asymmetric square or rectangular
matrix does not have an eigenvalue decomposition. Instead, the singular value decomposition
can be computed. Let B be a m× n rectangular matrix. Then B can be written as

B = UΣVT (2.32)
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where U is an m×min(m,n) orthogonal matrix, V an n×min(m,n) orthogonal matrix, and Σ
is a min(m,n)×min(m,n) diagonal matrix. This is the singular value decomposition of B; Σ
contains the singular values of B, and the columns of U and V are the left and right singular
vectors of B, respectively. As before, the triples (σk,uk,vk) can be used to express B as a sum
of rank-one matrices:

B =

min(m,n)
∑

k=1

σkukv
T
k (2.33)

By multiplying the column U•k and the entry Σkk with −1, we arrive at an equally valid
decomposition. Therefore, we can require without loss of generality that all singular values
are nonnegative. Also without loss of generality, we require that singular values are ordered as
σ1 ≥ . . . ≥ σmin(m,n) ≥ 0.

For the same reasons as for the eigenvalue decomposition, it is only possible to compute
a rank-reduced singular value decomposition in practice, with r ≪ min(m,n). One usually
chooses an r with a typical value not larger than 100.

Decomposition of Characteristic Graph Matrices The characteristic graph matrices A,
B, N, M and L can all be decomposed using the eigenvalue decomposition when they are
symmetric or using the singular value decomposition when not. The resulting eigenvalues and
singular values are then called the spectrum of the underlying graph. Certain properties of the
decompositions of characteristic graph matrices can be derived from their definitions.

The adjacency matricesA andN of undirected graphs are symmetric. The largest eigenvalue
of A is positive, and its smallest eigenvalue has the same absolute value if and only if the graph
is bipartite. The largest eigenvalue of N is one. The smallest eigenvalue of N is −1 when the
graph is bipartite. Otherwise it is larger than −1. The sum of the eigenvalues of A is zero, i.e.
A has trace zero. The trace of N is also zero.

All eigenvalues of L are nonnegative, i.e. L is positive-semidefinite [Bol98]. In a graph G
without negatively weighted edges, the multiplicity of the eigenvalue zero of the Laplacian L
equals the number of connected components in G. If G is connected, the eigenvalue zero has
multiplicity one, and the second smallest eigenvalue is known as the algebraic connectivity of
the graph [Chu97]. The eigenvector corresponding to that second smallest eigenvalue is called
the Fiedler vector, and has been used successfully for clustering the nodes of G [DGK04]. The
special role of the Laplacian matrix in signed graphs is described in Chapter 5.

In an unweighted graph, the normalized Laplacian matrix Z = D−1/2LD−1/2 can be inter-
preted as the ordinary Laplacian of a network with normalized edges, in which each edge {i, j}
has the weight 1/

√

d(i)d(j), where d(·) gives the degree of each node. Therefore, Z has the
same properties as L, i.e. it is positive-semidefinite, and the multiplicity of the eigenvalue zero
equals the number of connected components of the graph. The relation Z = I−N can then be
used to deduce properties of N: The largest eigenvalue of N is 1, and its multiplicity equals the
number of connected components in the graph.

Table 2.2 gives all combinations of matrix decompositions we will use. This thesis will study
the behavior of U, V, Σ and Λ of networks as these grow, to find a growth pattern that can
be used to solve the link prediction problem in the corresponding networks.

Applications A certain number of interesting graph properties can be described spectrally,
such as connectivity [Moh91], centrality [BP98], conflict and balance [KSLL10], and cluster-
ing [Lux07]. As an example, Figure 2.3 shows the small synthetic graph Gs from Figure 2.2
(page 13) annotated with the dominant eigenvector of the matrices A, N and L.
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Table 2.2: Graph characteristic matrices and their decompositions.

Non-normalized Normalized Laplacian

Undirected A = UΛUT N = D−1/2AD−1/2 = UΛUT L = D−A = UΛUT

Directed A = UΣVT N = D
−1/2
out AD

−1/2
in = UΣVT L = Dout +Din −A−AT = UΛUT

Bipartite B = UΣVT M = D
−1/2
1 BD

−1/2
2 = UΣVT L =

[

D1 −B
−BT D2

]

= UΛUT

For A and N, we show the eigenvector with highest absolute eigenvalue. These eigenvectors
are nonnegative when the graph does not have edges with negative weights, as explained by
the Perron–Frobenius theorem, which states that the dominant eigenvector of any matrix with
nonnegative entries is nonnegative [Per07]. The dominant eigenvectors of A and N can be
interpreted as a measure of centrality that is related but not equivalent to PageRank [Bon87],
and is called eigenvector centrality. In signed networks, the dominant eigenvector of A can be
used to cluster nodes into groups consistent with edge signs [BL04].

For L, we show the eigenvector with smallest nonzero eigenvalue, which is also known as the
Fiedler vector [Fie73]. The Fiedler vector gives a simple clustering of the nodes of the network.
By separating nodes with positive and negative values in the Fiedler vector, the network is split
into two parts connected by few edges and each containing many internal edges [Lux07]. The
eigenvalue corresponding to the Fiedler vector is called the algebraic connectivity of the graph.
This value is high when the graph is well-connected. If the graph is unconnected, this value is
zero. In graphs with negatively weighted edges, the smallest eigenvalue of L and Z = I−N are
not always zero, and characterize the amount of conflict present in the graph. This is described
in detail in Chapter 5.

After this introduction of the basic definition from graph theory, the next section introduces
the collection of large network datasets used in this thesis.

2.2 The Network Collection

Experiments in this thesis are done on a collection of one hundred and eighteen large network
datasets. These datasets are either unipartite (such as social networks) or bipartite (such as
user–item rating networks). Some networks have edge weights, e.g. ratings or trust/distrust
links, in which case the link prediction problem also consists of predicting the weight of edges.
Edge weights admit negative values in some datasets. The networks include social networks,
citation graphs, hyperlink graphs, trust networks, rating graphs (i.e. user–item graphs), com-
munication graphs and others. Many of these graphs are used in previous literature in various
machine learning and data mining subfields. Edges in some datasets are annotated with time-
stamps. Figure 2.4 gives an overview of the networks by their size. The full list of datasets is
given in Appendix A.

The largest dataset is the Twitter social network with 42 million nodes and 1.5 billion edges,
and the dataset with the least number of edges is the metabolic network of Caenorhabditis

elegans, with 453 nodes and 4,596 edges. From a statistical point of view, larger networks not
only contain more data to analyse but are also more regular and thus better suited for statistical
analyses. The networks in our collection fall into several common categories, as summarized in
Table 2.3. The network categories given in that table are not absolute. Other classifications are
possible, and some networks may fit into several categories.

Several types of datasets are specifically not covered here. We exclude networks such as
person-birthplace networks, since each person has only one birthplace essentially resulting in a
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Table 2.3: Network categories with their properties and typical application domains. For the
properties, see Table 2.1.

Links Nodes Properties Applications Count

Authorship (Co-)authorship Authors, works U B −= U Topic analysis 43

Communication Message Persons, items UDB −= U Link prediction 9

Co-occurrence Co-occurrence Items D − Classification, clustering 2

Features Has-feature Objects, features B −= Classification 15

Folksonomy Tag assignment Users, tags, items T −= U Trend analysis 6

Interaction Event Entities UDB = U Link prediction 5

Physical Connection Nodes UD −= U Routing 6

Ratings Rating Users, items DB ±EU Recommendation 9

Reference Citation, hyperlink Documents D − U Ranking 11

Social Friendship Persons UD − ± U Communities 9

Trust Trust Persons D −=± U Security 3

Total 118
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(a) Eigenvector centrality (adjacency matrix A)
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0.07

VVVVVVVVVVVVV 0.37

VVVVVVVVVVVVVV

0.06

iiiiiiiiiiii

UUUUUUUUUUUU 0.10

hhhhhhhhhhhhhh

0.53

0.03

hhhhhhhhhhhhh

VVVVVVVVVVVV −0.43

VVVVVVVVVVVV

−0.11

hhhhhhhhhhhh −0.61
(c) Fiedler vector (Laplacian matrix L)

Figure 2.3: The dominant eigenvectors of characteristic graph matrices. In these graphs, each
node i is labeled with the component ui of the dominant eigenvector of one characteristic graph
matrix of the network. In the cases (a) and (b), the eigenvectors are nonnegative due to the
Perron–Frobenius theorem, as explained in the text, and represent the eigenvector centrality of
nodes. The vector shown in (c) is also known as the Fiedler vector.
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feature vector, making link prediction, degree distributions and other applications impossible
or trivial. Also, dense complete networks are excluded for similar reasons, and because they
are usually very small. Similarly, we exclude trees and forests8, since their simply-connected
structure makes all path-based statistics trivial. All networks we consider are connected or
almost connected, meaning that most nodes can be reached from any node by following a path
along edges. Disconnected networks are usually uninteresting, since the properties of each
connected component can be studied separately, and many of the typical applications such as
link prediction are not sensible for them.

2.2.1 Overview

Because of the large number of datasets used, we give each dataset a short two- or three-letter
code, such as LJ for the LiveJournal social network or NX for the Netflix rating network. The
complete list of datasets and their codes is given in Table A.1 in Appendix A. Due to the special
structure of folksonomies, we use a different naming scheme for them. Each folksonomy such
as Delicious or BibSonomy has a one-letter code such as D for Delicious and B for BibSonomy.
A folksonomy consists of users, tags and items. Each edge in a folksonomy is a hyperedge con-
necting one user, one tag and one item. For hypergraphs, we only consider the three underlying
bipartite subgraphs consisting of users and tags, users and items or tags and items. These
subgraphs are denoted with the indexes ut, ui and ti. For instance, the user–item subgraph of
Delicious is denoted Dui. Mathematically, we will call the set of all networks in the collection
G, with |G| = 118.

Figure 2.4(a) shows all 118 datasets arranged by number of nodes and edges. As in all
subsequent scatter plots, each network is represented by its two-letter code given in Table A.1.
This plot shows that in general, the number of edges grows linearly with the number of nodes.
In other words, the mean number of neighbors is not related to network size. The mean number
of neighbors in a network is called the density, and as we will see later, can be observed to
grow over time in most networks. The independence of the density to the network size shows
that this is a strictly local phenomenon, i.e. only valid for a single network at different times.
This also implies that the proportion of existing vertices to all possible vertices is inversely
proportional to the network size. Therefore, larger networks are more and more sparse in the
sense that the amount of present edges is much less than the number of possible edges, which
grows quadratically with the node count.

Figure 2.4(b) shows all bipartite datasets arranged by the count of both vertex types. The
most skewed bipartite networks are Jester (JE) and the French Wiktionary (mfr) with few items
for many users, and last.fm (Ls, Lb), Delicious (D), Twitter (W) and BibSonomy (B), with many
items for few users.

2.2.2 Network Models

In this section, we present a brief survey of common network models applied to our network
collection. Properties of networks can be summarized by characteristic numbers, each one
describing a specific aspect of the network. In the literature, characteristic numbers have often
been used to validate network models, i.e. patterns of network growth that lead to specific values
for these characteristic numbers. Using characteristic numbers, networks can be identified as
scale-free networks, small-world networks and evolving networks. We review these three models
in turn.

8Forests are graphs without cycles. Trees are connected forests.
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Figure 2.4: An overview of the size of all datasets. (a) All networks by the number of nodes
and the density, defined as the mean number of neighbors for each node. (b) All bipartite
networks and bipartite subgraphs of folksonomies by the two node counts.

Scale-free Networks

Real-world networks are far from being random. A random graph as defined by Erdős and
Rényi [ER59] is a graph in which it is assumed that each edge is present with a given probability
independently of the presence of other edges. In random graphs, the number of neighbors of a
vertex follows a binomial distribution. However, the degree distributions of actual networks have
been observed to not follow a binomial distribution, making the Erdős–Rényi model unsuitable
for the modeling of real networks. Instead, many networks were observed by Barabási and Albert
to follow power-law degree distributions [BA99]. Such networks are called scale-free networks.
In this section, we verify whether the networks under study can be qualified as scale-free.

The random graph and scale-free network models both arise from a network growth process:
Random graphs can be generated by postulating that every edge is present with probability p,
and scale-free networks by assuming that the probability of an edge being formed is proportional
to the degree of the two connected nodes, given a degree distribution.

Two distributions are typically studied: the distribution of vertex degrees, and the distri-
bution of edge multiplicities. The degree distribution in a scale-free network can be described
by a power law, stating that the number of nodes with n neighbors is proportional to n−γ . The
constant γ is usually considered to characterize the preferential attachment observed in a net-
work, and represents an important graph characteristic. Figure 2.5 shows degree distributions
for many networks, customarily drawn on a double logarithmic scale, such that an exact power
law is represented by a line. We observe a simple power law in many cases, but other cases
are more complex. In certain networks, a power law is only observed for a certain range of the
distribution.

Some degree distributions seem to follow the discrete Gaussian exponential (DGX) model,
which corresponds to a discretized lognormal distribution, and is represented by an apparent
squared dependency on degree distribution plots [BFK01]. In some networks, the degree dis-
tribution seems to follow more complex patterns, which we conjecture could be modeled as
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BibSonomy (Bt) arXiv hep-ph (PH) Ĺıb́ımseti.cz (LI) LiveJournal (LG)

(a) Power law (b) Lognormal (c) Mixtures (d) Limits

Figure 2.5: Diversity of degree distributions observed in various networks. The number of
nodes C(n) having exactly n neighbors is plotted against n, on a double logarithmic scale. The
parameter γ was estimated to fit C(n) ∼ n−γ using the method from [New06b]. (a) Power-
law degree distributions. (b) Lognormal degree distributions. (c) Mixed degree distributions.
(d) Degree distributions with lower and upper limits.

mixtures of DGX distributions. We also observe that passive degree distributions are more
likely to follow power laws than active degree distributions. In a user–item rating network for
instance, the user degree distribution is active in the sense that the user himself is active in giv-
ing ratings, and the item degree distribution is passive. We attribute this to the fact that active
distributions are more dependent on the behavior of the specific case. A unipartite example for
this are citation networks: In the DBLP citation dataset (Pi) for instance, the distribution of
the number of references peaks at 10, whereas the number of citations received by publications
is scale-free. Some degree distributions also contain artifacts of sampling, pruning methods or
limits in the number of allowed neighbors.

If a degree distribution follows a power law, its exponent γ can be easily estimated [CSN09].
In Figure 2.6, we plot the estimated power law exponent γ against the number of nodes for all
unipartite networks. We observe that the exponent γ does not correlate with network size. This
makes the parameter γ a scale-free network characteristic. Additionally, we observe that most
values of γ lie between 1.0 and 2.0. This is surprising since a simple preferential attachment
model is characterized by a value of γ = 3.0, and most extended preferential attachment models
predict a value in the interval [2.0, 3.0]. Most published values for γ are also in this range, see
for instance Table I in [New06b]. On the other end of the scale, the listings of Prosper.com (PW)
have numbers of members that watch them following a power-law with exponent γ = 10.7. In
other words, only very few listing are watched by many members and the very large majority
of listings is watched by only a few members.

Figure 2.7 shows the distribution of edge multiplicities. For unweighted networks with
multiple edges between node pairs, we observe edge multiplicity distributions to follow power
laws closely, although some variations are apparent. In datasets with weighted edges (of which
none has multiple edges), the distribution of edge weights is much less regular. Although
weighted edges can be related to multiple edges by interpreting the number of parallel edges as
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Figure 2.6: The datasets arranged by power law exponent γ. Each bipartite dataset is
represented twice, once for each node type. For object nodes in the second node set of bipartite
networks, an apostrophe is appended to the name. For folksonomies, the three exponents are
marked with an index u, t or i. The image on the right shows the plot restricted to 1.0 ≤ γ ≤ 3.0.
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Figure 2.7: Examples of edge multiplicity distributions. In these plots, the number of edges
having multiplicity C(n) is plotted against n, on a double logarithmic scale. The parameter γ
was estimated to fit C(n) ∼ n−γ using the method from [New06b].

an edge weight, networks with natively weighted edges apparently do not follow any consistent
weight distribution.

Small-world Networks

In the previous section, we measured the degree distribution in order to characterize a network.
The degree distribution is however only a local metric, capturing single nodes and their neigh-
borhood. Most processes in networks are however global, such as routing, link prediction, flow
and diffusion. To study these phenomena, we must look at global properties of networks.

Routing, flow and diffusion can be modeled as information being passed from one node to
the next along edges in the network. To study their behavior on a network-wide scale thus
requires us to look at paths through the network. We can thus consider two properties of
paths: Their length when they span the whole network, and the probability of them being
present. The typical length of paths across a network is made precise by the network diameter,
which is defined as the maximum length of all shortest paths connecting any two nodes. The
probability of an edge appearing between two nodes with a common neighbor is called the
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clustering coefficient.
In 1998, Watts and Strogatz [WS98] inspected the characteristic path length and clustering

coefficient of several networks and made a surprising observation: The characteristic path length
is much lower than predicted, whereas the clustering coefficient is much higher than predicted.
This contradicted several previous random graph models, in particular those where edges are
randomly distributed and those that are completely regular, forming a lattice. By starting
with a regular lattice and randomly rewiring edges to connect random vertices, they were
able to reproduce networks with low characteristic path lengths (due to rewiring) and high
clustering coefficients (due to the initial lattice). This model became known as the small-world
network model. The small-world phenomenon is most famously illustrated by the six degrees of

separation, made famous in 1967 by social psychologist Stanley Milgram [Mil67, TM69]. Since
then, six degrees of separation have been consistently reported in newer studies for even the
largest social networks [LH08].

We can now estimate to what extent our datasets are small-world networks by comparing
their characteristic path lengths and clustering coefficients. Definitions of both measures vary
slightly in the literature. Here, we use the following definitions:

Effective Diameter To indicate the characteristic path length, we use the 90-percentile
effective diameter δ0.9, which denotes in how many steps one can reach, on average, 90% of all
other nodes, and interpolating between adjacent path length values. The effective diameter can
be considered a robust extension of the actual diameter, which suffers from being skewed by
long chains [LKF07]. As an alternative, the mean shortest path length between any two nodes
is sometimes used.

Clustering Coefficient The clustering coefficient of a network is the probability that two
adjacent edges in that network are completed by a third edge to form a triangle. Let G = (V,E)
be an unweighted, undirected graph. Then the clustering coefficient is defined as:

c =
|{(i, j, k) | {i, j} ∈ E, {j, k} ∈ E, {i, k} ∈ E}|

|{(i, j, k) | {i, j} ∈ E, {j, k} ∈ E}| (2.34)

Instead of the clustering coefficient c, we use the relative clustering coefficient crel, equal to the
clustering coefficient divided by the fill of the network. The fill of the network is the proportion
of possible edges that are present, and corresponds to the expected value of the clustering
coefficient when edges are distributed randomly as in the Erdős–Rényi model.

crel =
1

|E|/|V |2 c (2.35)

As a result, crel is larger than 1.0 when the clustering coefficient is larger than expected in a
random graph. Due to the division by the fill, the relative clustering coefficients of different
networks can be compared even if the networks have different sizes.

The resulting scatter plot is shown in Figure 2.8, where the more small-world networks
are at the top-left. The plot shows that almost all datasets are small-world networks, but
some more than others. This is the case for instance for the Wikipedia talk network (WK).
On the other hand, the Gnutella (GN) and Pretty Good Privacy (PG) networks are much less
small-world networks. One network though is not a small-world network: the California road
network (RO). Since a road network is physically a mesh, its diameter is very high (492), and
the network is thus not a small world. The second largest effective diameter is found in the
DBpedia similarity network (SI), and is about 16.0. Then, the Berkeley/Stanford hyperlink
dataset (BS) has diameter around 10.5. Generally, we find hyperlink networks to have high
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diameters, in accordance with Albert et al. [AJB99], where a value of 11.2 is reported for a
network of 800 million web pages. The collaboration networks of arXiv (PH, TH) have a small
diameter, but also a small clustering coefficient. In accordance with the well-known six degrees

of separation observation, the diameter of the social networks varies in the range [5.0, 7.0] except
for Advogato (AD) and the English Wikipedia (EL), which have lower diameter. We can also
read from the plot that Ĺıb́ımseti.cz (LI) and the metabolic network (PM) have small-world
characteristics near to a random graph, and that the two hyperlink networks (BS, WT) are
more lattice-like.
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Figure 2.8: Verifying the small-world hypothesis: The datasets arranged by diameter and
relative clustering coefficient. The California road network (RO) is outside of the main plot; its
effective diameter δ0.9 is about 492.

Evolving Networks

Most networks are the result of an evolution process. It is therefore interesting to study the
change of network characteristics over time. In addition to the rate of edge creation, several
non-trivial patterns have been observed in several types of networks, in particular that the
network density increases and the diameter decreases [LKF07]. Only for a subset of all datasets
the edge creation times are known; Table A.1 gives the complete list.

Network dynamics is an important aspect in network analysis because it directly leads to
link prediction algorithms in the following way: If a certain pattern is observed in the temporal
dynamic of the networks, extrapolating this pattern into the future directly gives a prediction
for the future appearance of edges. Being able to predict links in a network then allows one to
implement virtually all types of recommender systems.

In [LKF07], Leskovec et al. studied the evolution of network characteristics over time and
made the following observations: The diameter of graphs seems to shrink and the density to
grow. This result is surprising, since a scale-free model would indicate at least the diameter to
increase with network size. We verify this behavior for our datasets in Figures 2.9 and 2.10. The
behavior of the density and the diameter in our datasets is generally as predicted in [LKF07],
where it is derived from a graph growth model called forest fire. We observe the Netflix (NX),
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Figure 2.9: Evolution of network characteristics over time. For two networks, we show, in
function of the number of edges |E| in the network, the network’s density d and the effective
diameter δ0.9.

Digg (DG), YouTube (YT), Internet topology (TO), Facebook (OI) and Last.fm (Ls, Lb) networks
to clearly show shrinking diameters in conjunction with increasing density. On the other hand,
Enron (EN) and BibSonomy (B) display the opposite behavior. We therefore observe that the
forest fire model is less universal than the scale-free and small-world models. We also note that
there is no discernible correlation between the temporal evolution of the diameter and density.
On another level, we confirm that shrinking diameters and increasing density are also observed
for bipartite networks.
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Figure 2.10: The evolution of the diameter δ0.9 and density d over time. This plot compares
the ratio of the diameter and density of the complete networks ((δ0.9)b and db) and of the network
containing half of all edges ((δ0.9)a and da). Only networks with timestamps are shown.

2.2.3 The Slashdot Zoo

In addition to the numerous publically available network datasets listed in Appendix A, one
network dataset was extracted during the course of writing this thesis: the Slashdot Zoo (SZ).
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Slashdot9 is a technology news website founded in 1997. It publishes stories written by editors
or submitted by users and allows users to comment on them. In 2002, the site added the Zoo

feature, which lets users tag other users as friends and foes. In contrast to most popular social
networking services, Slashdot is one of the few sites that also allows users to rate other users
negatively. The Slashdot Zoo dataset is available online10.

The Slashdot Zoo network we extracted contains 77,985 users and 510,157 links. Each
link consists of a user who gave an endorsement and a user who received the endorsement.
Endorsements can be either positive (friend) or negative (foe). Apart from this distinction, no
other information is available; in particular, the creation date of endorsements is not known. In
addition to the terms friend and foe, Slashdot also uses the terms fan and freak : A user is always
the fan of his friends and the freak of his foes. Figure 2.11 summarizes these relationships.

Friend Foe

Fan Freak
Figure 2.11: The two types of links allowed in the Slashdot Zoo (friend and foe) give rise to
four kinds of relationships: friends, fans, foes and freaks. A user is the fan of his friends and
the freak of his foes.

Figure 2.12 is a graphical representation of the Slashdot Zoo network. The sign of an edge
is represented by its color, with green representing the friend relationship and red representing
the foe relationship. The graph is centered at user CmdrTaco, founder of Slashdot and active
editor. While most social network modeling approaches allow for weighted edges, the weights
are usually restricted to positive values. However, some relationships such as distrust and dislike
are inherently negative. In such cases, the social network contains negative edge weights. This
is the case for the Slashdot Zoo, and will be described in Chapter 5.

The dataset was crawled from slashdot.org between May and October 2008, and the dataset
does not represent a true snapshot of the network, and may exhibit anomalies. For instance,
because the Slashdot website does not indicate when a friend or foe was added, some users
in our dataset may have more than 400 friends or foes, although Slashdot generally limits the
number of friends and foes to 200 users and to 400 users for subscribers.

Slashdot is known for both having very popular and prominent users on the one hand, and
rather unpopular users on the other hand. Prominent and popular users of Slashdot include
CmdrTaco (Rob Malda, the founder of Slashdot and a popular editor), John Carmack (promi-
nent computer game programmer), Bruce Perens (prominent computer programmer and open
source advocate) and CleverNickName (Wil Wheaton, Star Trek actor). In addition, Slashdot
is well known for having a tradition of trolling, i.e. the posting of disruptive, false or offensive
information to fool and provoke readers. The high number of such trolls may explain why the
foe feature is useful on Slashdot. It allows for tagging known trolls and reducing their visibility.

Table 2.4 displays basic statistics of the dataset. All distances were calculated without
taking into account the edge directions and signs. The measured average distance is less than
the average distance in a random graph, confirming that the Slashdot Zoo is a small-world
network. Figure 2.13 shows the degree distributions in the Slashdot Zoo. As expected, the
degree distribution in the Slashdot Zoo follows a power law.

9slashdot.org
10dai-labor.de/IRML/datasets
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Figure 2.12: The Slashdot Zoo network rep-
resented as a graph, where nodes represent
users and edges indicate relationships. The
network contains 79,120 nodes and 515,581
edges. friend relationships are shown in green
edges and foe relationships in red; the orien-
tation of edges is not shown. The graph is
centered at user CmdrTaco.

Table 2.4: Statistics about the Slashdot Zoo. The mean friend count and mean fan count
are necessarily equal, as do the mean foe and freak counts. The sign and direction of edges
was ignored in the calculation of the diameter and radius. In parentheses, we show the average
distance in a random graph, as defined by Watts and Strogatz [WS98].

Users 79,120

Links 515,581
Friend links 392,326
Foe links 123,255

Fill 0.000083884

Diameter 6
Radius 3

Mean link count 6.542
Mean friend/fan count 4.978
Mean foe/freak count 1.564

Median links 3
Median friend count 1
Median foe count 0
Median fans count 1
Median freaks count 1
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Figure 2.13: Double logarithmic plot of the degree distributions in the Slashdot Zoo, showing
that they follow a power law. The limit of 200 friends and foes is visible for the outdegree
plot (a).

2.3 Summary

Data from many diverse application areas can be modeled as networks. Whether they are
unipartite, bipartite, weighted, signed, directed or undirected, graphs play a fundamental role
in many disciplines because they can model many real-world interactions. We use as a testing
ground in this thesis a collection of one hundred and eighteen network datasets. One of these
networks, the Slashdot Zoo, was specifically extracted for this thesis. The Slashdot Zoo is a
social network with positive and negative links, and will be the basis for the analysis of signed
networks in Chapter 5.
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Chapter 3

The Spectral Evolution Model

This chapter describes the spectral evolution model, which constitutes the main statement in
this thesis. The spectral evolution model characterizes the change of a network in terms of the
eigenvalue decomposition of its adjacency matrix. It states that over time, eigenvalues change,
while eigenvectors stay constant. The spectral evolution model is stated and verified empirically
in this chapter for unweighted undirected unipartite networks. The spectral evolution model
serves as the basis for the two new link prediction algorithms described in the next chapter. The
case of weighted networks is described in Chapter 5 and that of bipartite and directed networks
in Chapter 6. In the examples of this chapter, we will also use directed networks, but always
ignore edge orientations for them.

We begin this chapter in Section 3.1 by deriving the spectral evolution model from a simple
link prediction model, the matrix exponential kernel. Then, in Section 3.2, we verify the spectral
evolution model empirically using our collection of network datasets. After establishing that
the spectral evolution model can be observed in many networks, we show that it can be derived
from multiple models of graph growth in Section 3.3, in particular from many known graph
kernels and from a generalization of the preferential model attachment. These models will give
intuitive and mathematical explanations for the spectral evolution model. In Section 3.4, we
finally present two control tests to make sure that the spectral evolution model is specifically not
implied by random graph models, making the spectral evolution model a non-trivial property
of real networks.

3.1 Overview

Many machine learning problems on networks can be described as link prediction: finding movies
a user might like, recommending friends, or finding related topics in a collaboration graph. In
all these cases, a given network is assumed to grow over time and the task is to predict where
new edges will appear and, in some cases, to also predict their weight. On the other hand,
any given link prediction algorithm can be interpreted as a model of graph growth by assuming
that networks actually grow as the algorithm predicts. In this work, we are concerned with
those link prediction algorithms that have an algebraic description. We show that they imply a
network growth model that we call spectral evolution. Our hypothesis states that in terms of the
eigenvalue decomposition of a network’s adjacency matrixA = UΛUT, growth can be described
as a transformation of the spectrum Λ, without significant change in the eigenvectors U.

Each algebraic link prediction algorithm, including most graph kernels, represents a spe-
cific assumption about network growth, leading to a different spectral transformation function.
Each of these link prediction functions can be applied in different situations, depending on
the assumptions made about the network. Despite this, all algebraic link prediction algo-
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rithms are of the same form: a change of the eigenvalues following a specific function, without
change in the eigenvectors. Therefore, they are all generalized by the spectral evolution model.
Starting with a network’s adjacency matrix A, we first compute its eigenvalue decomposition
A = UΛUT. It can then be shown that many common link prediction algorithms can be ex-
pressed as UF (Λ)UT, where F is a function that applies a real function f(λ) to each diagonal
element of Λ.

Consider the following example: The matrix exponential of the adjacency matrix A is
sometimes used as a link prediction function [KL02]. The matrix exponential is defined as
exp(A) =

∑∞
k=0A

k/k!, and can be interpreted in the following way: exp(A)ij equals a weighted
sum over all paths from the node i to the node j in the network, where paths are weighted by
the inverse of the factorial of their length. This description shows why the exponential of the
adjacency matrix is a suitable link prediction function:

• The link prediction score is higher when there are many paths between i and j, because
the powers of A count the number of paths.

• The link prediction score is higher when these paths are short, because the weights 1/k!
are decreasing.

The matrix exponential can also be written in terms of the eigenvalue decomposition A =
UΛUT as

exp(UΛUT) = U exp(Λ)UT,

where exp(Λ) can be computed by applying the real exponential function to Λ’s diagonal
elements. This shows that the matrix exponential is a spectral transformation of the adjacency
matrix A. We will see later that several other link prediction functions can be expressed as
spectral transformations in an analogous way. First however, we state the spectral evolution
model.

Definition 1 (Spectral evolution model). A network that changes over time is said to follow

the spectral evolution model when its spectrum evolves while its eigenvectors stay approximately

constant.

This definition is not mathematically strict. Whether a network conforms to the spectral
evolution model depends on the interpretation of when an eigenvectors stays approximately

constant. This fuzziness will be made precise in Section 3.4. For now, we will interpret the
definition loosely, taking eigenvectors as approximately constant when their change is small.
The spectral evolution model is visualized schematically in Figure 3.1: In this simplified picture,
a small network to which edges are added consecutively has three different spectra at three
different times, but the same set of eigenvectors at all times.

To examine the validity of the spectral evolution model, we take three steps. First, we verify
it empirically in our collection of datasets. Then, we review existing link prediction functions
that imply the spectral evolution model and finally, we present control tests to verify that the
spectral evolution model does not arise from other processes, such as random graph growth.

3.2 Empirical Verification

Which network model does accurately describe the growth of real networks? Given a network,
which link prediction function does best model its growth? To answer these questions, we
examine the spectra of large, real-world networks and observe their temporal evolution. In the
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Figure 3.1: Illustration of the spectral evolution model. As edges appear in a network, the
eigenvalues of the network’s adjacency matrix change, while the eigenvectors stay constant.

following sections, we look at the evolution of the eigenvalue decomposition of the networks
given in Table A.1 in Appendix A.

For each network, we split the set of edges into T = 75 bins by edge creation time. For each
bin, we take the network as it was after the arrival of that bin’s edges, and compute the first
r eigenvalues of the resulting adjacency matrix. In the networks we study in this chapter, the
creation times of edges are known. r is chosen in function of network size to give reasonable
runtimes. We denote byAt the adjacency matrix of all edges present after time t. ThusAT = A
is the full adjacency matrix.

Two representative datasets are used throughout this section:

• The English Wikipedia hyperlink network, containing links between articles (WP).

• The Facebook user–user network of wall posts (Ow).

These two networks are unipartite, unweighted, undirected, and link creation times are known
for them. The Facebook wall post network has parallel edges, and the English Wikipedia
hyperlink network does not. In other words, multiple edges may connect the same vertex pair
only in the Facebook graph.

3.2.1 Spectral Evolution

Figure 3.2 shows the spectra of the two networks as functions of time. For each network, the
plot shows the top-r eigenvalues λk by absolute value in function of time. The value r was
chosen in function of the network size to give acceptable runtimes. The list of values by dataset
is given in Appendix A.

A first inspection of these plots suggests that the eigenvalues and singular values grow over
time. The observed spectral growth of these networks is sometimes regular, as in the case
of Wikipedia, or irregular, as in the case of Facebook. By regular growth, we mean that all
eigenvalues grow roughly with the same speed. If growth is irregular as for the Facebook dataset,
eigenvalues may overtake each other. In many datasets, the observed irregularity is only partial:
Growth of eigenvalues as a whole does not seem to follow a specific pattern, although the growth
of each individual eigenvalue is smooth. This is a first indication of the irregularity of network
growth, and will be a justification later on for extrapolating the eigenvalue growth into the
future.
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Figure 3.2: The spectral evolution of large real-world networks in function of time. At each
time, the graphs shows the r dominant eigenvalues of the network.

We cannot however know at this point that two consecutive eigenvalues with similar value
are related to the same eigenvector. In fact, any continuous or small change to a matrix can
lead to a small change in its spectrum. For the spectral evolution model to be valid, spectra
must not only grow, but eigenvectors corresponding to individual eigenvalues must be stable.
This is inspected in the next test.

3.2.2 Eigenvector Evolution

To verify whether the spectral evolution model describes the growth of large, real networks, we
compare for each time t the eigenvectors of At = Ut Λt U

T
t with the eigenvectors of AT =

UTΛTU
T
T in Figure 3.3. In these plots, we rely on the eigenvectors to be ordered by their

corresponding eigenvalue. The plots show one curve for each latent dimension k, showing the
number of edges |E| on the X axis and the absolute dot product of the kth eigenvectors at times
t and T on the Y axis. The similarity between eigenvectors is computed as the cosine similarity
in the following way:

sim(k, l) = |(UT )•k · (Ut)•l| (3.1)

The figure shows, for each k, the curve of sim(k, k) in function of t. Eigenvectors corresponding
to large eigenvalues are shown in bright colors and those corresponding to smaller eigenvalues
in light colors.

The eigenvector evolution plots suggest the following interpretation. The general trend
leaves the eigenvector similarity as measured by the dot product near one for the lifetime of
the network, with similarity being higher for those eigenvectors with larger eigenvalues. In the
Facebook network, the similarity of eigenvectors suddenly drops to zero at specific points in
time. As we will see next, this is due to eigenvectors changing places in the decomposition, or
in other words, the eigenvalues changing order. The next test will inspect these permutations.

3.2.3 Eigenvector Stability

How stable are eigenvectors over time? To answer this question we compare the eigenvectors at
an intermediary time t with the eigenvectors at the last known time T . In this test, we choose
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Figure 3.3: The evolution of eigenvectors: The similarity between the eigenvectors of the
full graph and the eigenvectors of partial graphs, by increasing number of missing edges. Each
eigenpair is represented by one curve, with brighter colors for dominant latent dimensions.

t such that three quarters of all edges are present at time t. This 75% split is consistent with
the training/test split we perform in the next chapter.

We will consider At, the adjacency matrix containing all edges present up to time t and AT ,
the adjacency matrix of all edges. We consider the following eigenvalue decompositions:

At = UtΛtU
T
t

AT = UTΛTU
T
T

We then compute sim(k, l) for all pairs of eigenvector indexes (k, l). We show the resulting
matrices using white for zero and black for one, and continuous shades in between in Figure 3.4.
These plots give an indication as to what extent eigenvectors are preserved over time. If all
eigenvalues are distinct and network evolution is purely spectral, the matrices sim(k, l) are
permutation matrices. In addition, they are diagonal when the eigenvalues do not overtake
each other. The derivation from a diagonal matrix gives an indication to the monotony of the
underlying spectral transformation.

Testing the eigenvector stability in this way has one drawback. If two eigenvalues are equal,
an exchange between their eigenvectors does not change the matrix. This case can be recognized
on the eigenvector permutation plots of Figure 3.4 as sub-squares containing intermediate values
between zero and one. These sub-squares are in fact arbitrary orthogonal matrices, since any
orthogonal basis of the multidimensional eigenspace corresponding to a multiple eigenvalue can
be returned by the eigenvalue decomposition. To avoid this, the next test is designed to be
robust against such multiple eigenvalues.

3.2.4 Spectral Diagonality Test

We now present a test of the amount of change in the eigenvectors which we call the spectral
diagonality test. If

At = UtΛtU
T
t
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Figure 3.4: The absolute dot product sim(k, l) = |uk · ul| of all eigenvector pairs (uk,ul) at
two times t and T in network evolution. These plots show permutation matrices (with zero
in white and one in black) when the network evolution is purely spectral and eigenvalues are
simple. The derivation from a diagonal matrix gives an indication to the monotony of the
underlying spectral transformation.

is the eigenvalue decomposition of a network’s adjacency matrix At at an intermediate time t,
then at the final time T it is assumed to become

AT = Ut(Λt +∆)UT
t ,

where ∆ should be diagonal. Because Ut has orthogonal columns, we can compute the best fit
of ∆ in a least-squares sense by

∆ = UT
t (AT −At)Ut. (3.2)

The resulting matrix ∆ is intended to give an indication to what extent growth is spectral.
Note that in this expression, AT − At is the adjacency matrix containing all edges that have
appeared between times t and T . It is shown for the two example networks in Figure 3.5.
We can make several observations: First, the two matrices are nearly diagonal. In fact, we
make this observation for all datasets in our collection. However, the deviation from a diagonal
matrix is not equal for all datasets. For the Facebook wall posts network (Ow), the matrix is
very near to a diagonal one, and thus the growth is very nearly spectral. For the Wikipedia
hyperlink network (WP), the deviation is larger. This is a pattern that we observed in almost
our entire collection of datasets: Datasets where multiple edges are allowed mostly have better
spectral growth than those where only simple edges exist. A simple explanation can be given
for communication networks such as email networks: In these networks, an edge will appear
between already connected nodes with a certain probability, making growth more spectral.
In fact, if edges appeared exactly with a frequency proportional to the number of previously
existing edges, the adjacency matrix would simply be multiplied by a constant, and growth
would thus be spectral.
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Figure 3.5: The spectral diagonality test of spectral network evolution. If network evolution
is perfectly spectral, the plots show a clean diagonal. These plots show the matrix ∆ as defined
in Equation 3.2 for the two example datasets.

3.3 Generalizing Other Models

In the previous section, we have observed that the spectral evolution model holds in many large,
real network datasets. In this section, we will derive the spectral evolution model from other,
more specific graph growth models. As we will see, many common graph growth models implic-
itly rely on spectral growth. In other words, the spectral evolution model can be understood
as a generalization of the models presented in this section. We will look at these models and
study how they can be expressed as a change of a network’s eigenvalue decomposition.

3.3.1 Triangle Closing

Arguably, the simplest graph growth model is the triangle closing model. This model predicts
that in a graph, new edges will appear between nodes that have common neighbors, thus
forming (closing) triangles. In social networks, the triangle closing model is known as the
friend of a friend model. The triangle closing model is one of the easiest to compute nontrivial
link prediction methods, and is used in practice on very large datasets [LBKT08].

Algebraically, this model can be expressed as the square A2 of the adjacency matrix. The
matrix A2 contains, for each vertex pair (i, j), the number of common neighbors of i and j:

(A2)ij =
∑

k

AikAjk (3.3)

The triangle closing model will thus predict those links that complete the highest number of
triangles. The square A2 can be expressed using the eigenvalue decomposition A = UΛUT as

A2 = UΛUTUΛUT

= UΛ2UT.

Here, we use the fact that U is orthogonal and thus UTU = I. As we see, the eigenvalues Λ
are replaced by their squares Λ2. The triangle closing model is thus a spectral transformation.
Note that this is also true when using the reduced eigenvalue decomposition of A. Since Λ is
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diagonal, its square can be computed by squaring each of its diagonal element. This equation
shows that the triangle closing model A2 is a spectral transformation that corresponds to the
real function f(λ) = λ2.

3.3.2 Path Counting

The triangle closing model states that edges will appear between nodes separated by a path of
length two. In real networks however, we also may expect edges to connect two vertices that
are more than two edges apart. We will thus suppose that new edges complete cycles of any
length, but give lower weight to longer cycles [LJZ09]. The number of paths of a given length k
between any two vertices of a graph can be expressed by the kth power of its adjacency matrix
A. By the same argument as for A2, we can derive that Ak is a spectral transformation of
A = UΛUT:

Ak = UΛkUT

Thus, the kth power of the adjacency matrix corresponds to the spectral transformation f(λ) =
λk. Because matrix multiplication is distributive, a linear combination of powers of A is also a
spectral transformation. In general, every power series p(A) is a spectral transformation:

p(A) = Up(Λ)UT (3.4)

αA2 + βA3 + γA4 + . . . = U(αΛ2 + βΛ3 + γΛ4 + . . .)UT

In particular, a power series p(A) can be used as a graph growth model whenever its coefficients
are nonnegative and decreasing, i.e. if α > β > γ > . . . ≥ 0. Power series of this form have two
desirable properties of link prediction functions:

• Vertices connected by more paths are more likely to connect in the future (positivity of
the coefficients).

• Vertices connected by shorter paths are more likely to connect in the future (ordering of
the coefficients).

Note that we do not consider the zeroth and first powers of A: They only contribute to an
additive constant for all node pairs.

3.3.3 Graph Kernels

A kernel is a symmetric and positive-semidefinite function of two variables that denotes a
similarity or proximity between objects. A graph kernel is defined for a given graph, and denotes
the similarity between any two vertices of that graph. Many graph kernels exist, most being
derived from specific graph models and typically applied to different applications [ISKM05,
FYPS06, SK03, KL02]. Since they denote a form of similarity between two vertices, graph
kernels can be used for link prediction.

Note that the null space of a matrix A, i.e. the set of vectors x such that Ax = 0, is also
called the kernel of A. This meaning of the word kernel is not used in this text. The phrase
graph kernel may also refer to a measure of similarity between individual graphs. This meaning
too is not used here.

Many graph kernels are spectral transformations. Each of these graph kernels can be de-
scribed by a symmetric positive-definite matrix K(A) of the same size as the graph’s adjacency
matrix A = UΛUT, and that can be written as K(A) = UF (Λ)UT for various functions F (Λ)
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which apply a real function f(λ) to each eigenvalue in Λ. In addition to being spectral trans-
formations, these graph kernels’ functions f(λ) are convex, which implies that large eigenvalues
grow quicker than smaller eigenvalues. By construction, these graph kernels can be computed
from the eigenvalue decomposition of A. Because the graph kernels we describe here are based
on the adjacency matrix A, we will call them adjacency kernels. Graph kernels based on other
matrices are introduced later in the next chapter.

Exponential Kernel The matrix exponential of the adjacency matrix is a graph kernel that
can be used as a link prediction function [KL02]. A scale parameter α is typically inserted, to
balance the relative weight of short and long paths.

KEXP(A) = exp(αA) =
∞
∑

k=0

αk

k!
Ak (3.5)

It corresponds to the spectral transformation f(λ) = eαλ. When written as a power series, we
see that paths are weighted by the inverse factorial of their length. The matrix exponential
has nonnegative decreasing coefficients, and is therefore suited to link prediction. The matrix
exponential is also called the exponential diffusion kernel.

Neumann Kernel The Neumann kernel is given by

KNEU(A) = (I− αA)−1 =

∞
∑

k=0

αkAk, (3.6)

where α is chosen such that α−1 > |λ1|, |λ1| beingA’s largest absolute eigenvalue, or equivalently
the graph’s spectral norm [KSTC02]. The resulting spectral transformation is f(λ) = 1/(1 −
αλ). As the matrix exponential, the Neumann kernel can be written as a power series with
nonnegative decreasing coefficients, and is therefore a suitable link prediction function. The
Neumann kernel takes its name from the Neumann series I+A+A2+ . . . = (I−A)−1 [Mey00],
itself named after the German mathematician Carl Gottfried Neumann. In many scientific
publications, the Neumann kernel is called the von Neumann kernel. We are not aware of how
the particle von was introduced into this name, and use the name without von in this work.
The Neumann kernel is sometimes called the Neumann diffusion kernel [FYPS06]. The link
prediction function resulting from the Neumann kernel is also called the Katz index [Kat53].

Example Using the small synthetic graph from Figure 2.2, the following Figure 3.6 shows the
exponential and Neumann graph kernels. For each kernel X ∈ {EXP,NEU}, each vertex i is
annotated with the value KX(1, i), i.e. with the kernel’s similarity values between each vertex
and vertex 1, the leftmost vertex on the graph’s representation.

Other Graph Kernels Some graph kernels such as the commute-time kernel are the spectral
transformation of other characteristic graph matrices, such as the graph Laplacian L or the
normalized adjacency matrix N. These kernels are however better suited for spectral clustering
and less for link prediction [RLH09]. We will come back to Laplacian graph kernels in the next
chapter, when applying them to signed graphs.

3.3.4 Rank Reduction

For large graphs, the eigenvalue and singular value decompositions can only be computed up
to a small rank r, in practice not larger than about 100. The result is an approximation to the
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Figure 3.6: The exponential and Neumann kernels applied to the small synthetic example
network. The values are the similarity scores of each node to the leftmost node (node number 1).
The parameters are α = 1 for the exponential kernel and α = 0.25 for the Neumann kernel.

adjacency matrix A that uses only the r dominant eigenpairs.

Rr(A) = U• (1...r)Λ(1...r) (1...r)U
T
• (1...r) (3.7)

where U• (1...r) and Λ(1...r) (1...r) are the corresponding eigenvector and eigenvalue matrices re-
duced to the largest r eigenvectors by absolute value, assuming that the diagonal elements
λk = Λkk are in decreasing order by absolute value, i.e. that |λ1| ≥ . . . ≥ |λn|. This is the best
rank-r approximation of A in a least-squares sense.

Reduction to a rank r can be interpreted as the spectral transformation

f(λ) =

{

λ if |λ| ≥ |λr|
0 otherwise

A theoretical ambiguity arises when several eigenvalues have absolute value |λr|, which is usually
ignored by ordering corresponding eigenvectors arbitrarily. In practice, the size of networks and
the small value of r make that case very unlikely. The values r we used in experiments for
the various datasets are given in Table A.2 in Appendix A. This r is chosen to yield a similar,
reasonable runtime for each dataset. As a result, r is larger for smaller datasets.

Although rank reduction appears to be a necessary but unwanted approximation when
doing link prediction using spectral methods, some studies have used rank reduction itself
as the link prediction method, showing that a lower rank may result in more accurate link
prediction [SKKR00, HZC07]. To see how this is possible, consider the entry (i, j) in the
adjacency matrix A, which is zero if i and j are not connected. In the matrix Rr(A) however,
this entry is not zero, and can be used as a link prediction score for the edge {i, j}. In methods
such as latent Dirichlet allocation [BNJL03] and nonnegative matrix factorization [LS00] where
a latent model is considered, rank reduction is also implicit. In Chapter 6, we will apply rank
reduction to bipartite networks and show that it is equivalent to latent semantic analysis (LSA)
for text datasets.
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3.3.5 Latent Preferential Attachment

Preferential attachment is a simple link prediction model based on the idea that the probability
of a new link being formed is proportional to the degrees of the nodes it connects. This idea
can be extended to the decomposition of a graph’s adjacency matrix, resulting in the latent
preferential attachment model, which we describe here. In this section, we show that the latent
preferential attachment model is equivalent to the spectral evolution model.

In a graph with adjacency matrix A, the number of neighbors of a node i is called the
degree of i and can be written as d(i) =

∑

j Aij . In the preferential attachment model, the
probability of an edge appearing between the vertices i and j is proportional to both d(i)
and d(j). In other words, links are formed with preference to nodes that already have a high
number of neighbors. The preferential attachment model leads to networks were few nodes
have many neighbors and many nodes have few neighbors. The distributions of node degrees
in such networks can be described by power laws, meaning that the probability that a node has
n neighbors is proportional to n−γ for a constant γ > 1. Typical values for γ are in the range
[2.0, 3.0], although many other values larger than 1.0 are observed in practice. Such networks
are called scale-free networks [BA99] and, as we established in Section 2.2.2, most real-world
networks are of this form.

Now let us consider the eigenvalue decomposition of the adjacency matrix A = UΛUT.
This decomposition can be used to write A as a sum of rank-one matrices:

A ≈
r
∑

k=1

λkuku
T
k

where r is the rank of the decomposition, λk = Λkk are the eigenvalues and uk = U•k are
the eigenvectors of A. The usual interpretation of a matrix factorization is that each latent
dimension k represents a topic in the network. Then Uik represents the importance of vertex i
in topic k, and λk represents the overall importance of topic k. Each rank-one matrix A(k) =
λkuku

T
k can now be interpreted as the adjacency matrix of a weighted graph. This graph Gk

will be the complete graph on n vertices, since uk is typically not sparse when the network
is connected. Therefore, all information about this graph is contained in the weight of the
edges. Now, assume that preferential attachment is happening in the network, but restricted
to the subgraph Gk. Then the probability of the edge {i, j} appearing will be proportional to
dk(i)dk(j), where dk(i) is the degree of node i in the graph Gk. This degree can be written as
the sum over edge weights in Gk:

dk(i) =
∑

l

A
(k)
il =

∑

l

λkUikUlk = Uikλk

∑

l

Ulk ∼ Uik

In other words, dk(i) is proportional to Uik only, since λk
∑

l Ulk is independent of i. Therefore,
the preferential attachment value is proportional to the corresponding entry in A(k):

dk(i)dk(j) ∼ UikUjk

These values can be aggregated into a matrix P(k) giving the preferential attachment values for
all pairs (i, j):

P(k) ∼ uku
T
k

If we now assume that preferential attachment is happening for each subgraph Gk separately,
with a weight εk depending on the topic k, then the overall preferential attachment prediction
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can be written as:

P =
∑

k

εkuku
T
k

Here, we replace proportionality by equality since the proportionally constants are absorbed by
the constants εk. The matrix P can then be written in the following form, giving its eigenvalue
decomposition:

P = UEUT

Where E is the diagonal matrix containing the individual topic weights Ekk = εk. This predic-
tion matrix is a spectral transformation of the adjacency matrix A. Under this model, network
growth can be interpreted as the replacement of the eigenvalues Λ by Λ+E:

A+P = U(Λ+E)UT

Since the values E are not modeled by the latent preferential attachment model, every
spectral transformation can be interpreted as latent preferential attachment, and thus the latent
preferential attachment model is equivalent to the spectral evolution model.

3.3.6 Irregular Growth

We have seen that the spectral evolution model is a generalization of several graph growth
models such as graph kernels. If these existing graph growth models already describe the growth
of graphs, why do we need to generalize them? The answer to that question is that most graph
kernels and other growth models are only valid to a certain extent. By inspecting the growth
of actual networks, we can see why these graph kernels cannot be universally applied for link
prediction. Several cases of observed irregular spectral evolution are shown in Figure 3.7.

In these plots, we see that every eigenvalue grows at its own speed. As a result, the spectral
transformation function f(λ) that gives new eigenvalues as a function of old ones is not regular.
This kind of spectral growth cannot be well described by a function f that is monotonous like
a graph kernel. Instead, each eigenvalue is observed to grow at a specific speed. Despite this,
the evolution of these networks is still spectral. It is only the spectral transformation that is
irregular.

From this and other examples, we observe different possible behaviors of eigenvalue evolu-
tion. Some eigenvalues grow linearly, and others do not grow. In the same network, different
eigenvalues may grow at different speeds. However, we did not encounter any case of an eigen-
value shrinking over time. This behavior may have many explanations, which are usually hard
to guess. In most network datasets, nodes are not labeled, and so we cannot inspect the eigen-
vectors in question to see which vertices have the highest value in them. We may however
conjecture that stagnating latent dimensions correspond to communities that die out, or other
aspects of the network that do not grow anymore, for whatever reason. Although the reason for
each eigenvalue’s growth is unknown, it can still be learned, as we will do later in this chapter.
In fact, these properties make link prediction algorithms based on spectral transformations more
universal, since they do not rely on domain-specific knowledge of the network.

3.3.7 Avoided Crossings

As observed in several examples, an eigenvalue can overtake another. In these cases, our model
predicts crossings in the spectral plot. Looking at actual spectra, we however observe something
slightly different: The smaller, growing eigenvalue slows down growth before it reaches the larger
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Figure 3.7: Example of irregular but spectral network evolution in the Twitter user–user
“@name” mention network (Ws). (a) The evolution of the network’s eigenvalues over time,
(b) The spectral diagonality test applied to a 75%/25% split of the network. Although the
spectral diagonality tests show that growth is spectral in this case, this spectral growth is
irregular. The growth of this network can thus not be well described by any of the common
graph kernels.
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Figure 3.8: An avoided crossing as observed in the growth of the Wikipedia hyperlink net-
work’s (WP) two dominant eigenvalues and eigenvectors in (a), and in a rank-one model in (b).
The red and green color components of the points denote the cosine distance of eigenvectors to
initial eigenvectors.

eigenvalue, and the larger eigenvalue starts growing at about the same rate. We observe this
behavior in the Wikipedia link network (WP), as shown in Figure 3.8(a).

This phenomenon is called an avoided crossing and can be explained as follows [Lax84, 8.5].
To simplify the example, we will assume that certain matrices have rank one, since we are only
interested in individual eigenvalues. However, the example can be trivially extended to larger
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ranks. Assume that at a time t0, the adjacency matrix of a network is A. Now, assume that
the growth of the network around time t0 can be described by a linear function. Then there
is a matrix B such that at time t near t0, the adjacency matrix of the network at time t is
At = A+ (t− t0)B. In the case that A and B have rank one, the eigenvalues of At display an
avoided crossing behavior in most cases.

Let A = αaaT and B = βbbT. The matrices A and B have as only eigenvectors of
nonzero eigenvalue a and b, respectively. Then, a and b are also eigenvectors of At = A +
(t− t0)B when a and b are collinear or orthogonal. Otherwise, At has other eigenvectors and
an avoided crossing is observed as in Figure 3.8(b). Thus, an avoided crossing indicates that
a decomposition into outer products of orthogonal vectors is not the natural representation
for some networks. If the true decomposition using a and b is used, the crossing would be
unavoided. Alternatively, an avoided crossing may result from a perturbation of orthogonal
eigenvectors in the same manner.

3.4 Control Tests

We have seen in the previous sections that spectral growth is observed in actual networks, and
that it can be explained by several common graph growth models. To make sure that the
validity of the spectral evolution model is in itself a nontrivial property of real networks, we
have to verify that it does not follow from other, random processes. We will verify this for
two fundamental random processes: The random addition of edges, and the random sampling
of edges. To show that the spectral evolution model is not trivial, it must not be observed
in these trivial models. Note that the property of nontriviality is not observed for all graph
characteristics. Some advanced characteristics such as the modularity, a measure of the goodness
of a node clustering, can be observed in the simplest of random graph models, the Erdős–Rényi
model [GSPA04].

Another control tests concerns the choice of the characteristic graph matrix. Until now, we
have analysed a graph’s adjacency matrix. However, we could equally compute the eigenvalue
decomposition of the Laplacian matrix, and ask whether its eigenvectors are stable. As we will
see, this is not the case. The spectral evolution model is only observed for the adjacency matrix.
This result does not make the Laplacian matrix useless. As we will see in the next chapter, the
Laplacian matrix can be used to predict links, by learning a mapping from it to the adjacency
matrix.

3.4.1 Random Graph Growth

The first random growth model we investigate consists of adding edges randomly to a given
graph. Let At = UΛUT be the adjacency matrix of a network, and At+1 = At+E a perturba-
tion of At where ‖E‖F = ε is small and E can be thought of as an edge of infinitesimal weight
added to the network. The eigenvalue decomposition of At+1 = ŨΛ̃ŨT then has bounds of the
following order:

∥

∥

∥
Λ− Λ̃

∥

∥

∥

F
= O(ε2) (3.8)

∣

∣

∣U•k · Ũ•k

∣

∣

∣ = O(ε) (3.9)

These results can be shown by a perturbation argument [Ste90], and ultimately can be derived
from theorems by Weyl [Wey12] and Wedin [Wed72]. As a result, eigenvectors are expected to
change faster than eigenvalues for random additions to the adjacency matrix.
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We verify these theoretical results experimentally using our collection of datasets. We use
the following methodology: For each dataset, we consider the network at time t, where 75% of
edges are present. Then, we add edges randomly until the network has many edges as the actual
network at the final known time T . This gives a new timeline where the graph grows from 75%
to 100% of edges. The actual evolution and the new, artificial evolution is then compared. The
results are shown in Figure 3.9.

Observations The first two tests compare the actual and artificial evolution of the network’s
eigenvalue and eigenvectors, as done in Sections 3.2.1 and 3.2.2 on actual networks. We ob-
serve that in the artificial timeline, neither eigenvalues nor eigenvectors change significantly
(plots 3.9(a) and 3.9(b)). The fact that eigenvalues do not change is explained by the fact that
adding edges randomly will, over long times, only change the eigenvalue with eigenvector 1, i.e.
the vector containing only ones. This means that the dominant eigenvectors are almost orthog-
onal to the constant vector, which is known to be true in high dimensions [Ham97]. The only
exception is for the dominant eigenvector of unsigned networks, which is nonnegative due to
the Perron-Frobenius theorem, and therefore has positive dot product with the vector 1. Addi-
tionally, we perform the spectral diagonality test of Section 3.2.4 in the plots 3.9(c) and 3.9(d).
The spectral diagonality tests shows a non-diagonal matrix, implying that artificial growth is
not spectral. We conclude that spectral growth of networks is not a consequence of random
graph growth, but an inherent property of actual network growth.

3.4.2 Random Sampling

In this test, we generate an Erdős–Rényi random graph, and split its edges randomly into two
sets. We then test how well a spectral transformation maps one edge set to the other.

We use the following setup: Let G = (V,E) be a randomly generated graph with |V | = 1000,
and the probability of each possible existing edge is chosen thus that each vertex has on average
three neighbors. In other words, each edge {i, j} is present in the graph with a probability of
3/(|V | − 1). We make a 75%/25% random split into vertex sets Ea and Eb represented by the
adjacency matrices Aa and Ab. These proportions correspond to the training/test split used
in the experiments later in this thesis. We then compute the reduced eigenvalue decomposition
Aa = UΛUT of rank 100.

Figure 3.10 shows the spectral diagonality test of Section 3.2.4 applied to the random graph
G and to the Facebook wall posts network (Ow). The plots show the matrix UTAbU.

Observations In the spectral diagonality test matrix of the random graph (a), there is clearly
only one eigenvalue with a significant nonzero value. This single eigenpair can be interpreted as
a form of preferential attachment (see Section 3.3.5), and is explained by the fact that choosing
edges at random will return edges adjacent to a node i with probability proportional to the
degree of i. Apart from that, no structure of the original network is preserved spectrally. By
contrast, the spectral diagonality test for the Facebook wall post network (b) is clearly diagonal.
See also Figure 3.5 for more examples of spectral diagonality tests applied to actual networks.
We conclude that a spectral transformation of rank greater than one is a nontrivial emergent
property of actual network growth, and cannot be explained by the Erdős–Rényi random graph
model.

3.4.3 Laplacian Spectral Evolution

We observed previously that the eigenvalue decomposition of a network’s adjacency matrix A
changes over time in a specific way: the eigenvalues grow, and the eigenvectors stay approxi-
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Figure 3.9: Comparing actual and artificial graph growth. These plots compare the actual
growth of the Enron email dataset (EN) with a random graph growth model starting at the
moment where 75% of edges are present in the dataset.

mately constant. Having defined other characteristic graph matrices such as the Laplacian L
and the normalized adjacency matrix N, we can ask the question whether the spectral evolution
model can be applied to them.

Given an unweighted undirected graph G = (V,E) with adjacency matrix A, we recall that
its normalized adjacency matrix N and its Laplacian L are given by

N = D−1/2AD−1/2

L = D−A

where D is the diagonal degree matrix in which Dii is the degree of vertex i. Due to the
relation I − N = D−1/2LD−1/2, the matrix N is a spectral transformation of the normalized
Laplacian Z = D−1/2LD−1/2. For this reason, what we will say about N will also be true for
the normalized Laplacian Z.

Figure 3.11 shows the spectral and eigenvector evolution of the matrices N and L. In these
plots, we consider the eigenvalue decompositions of the matrices Nt and Lt at time t, for all
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Figure 3.10: The spectral diagonality test of Section 3.2.4 applied to (a) a random sampling
from an Erdős–Rényi graph and (b) the Facebook wall posts network (Ow). In these tests
a diagonal matrix corresponds to a spectral transformation implying that only the Facebook
network yields a spectral transformation.

times t:

Nt = UtΛtU
T
t (3.10)

Lt = UtΛtU
T
t (3.11)

For N, we compute the top-r eigenvalues and corresponding eigenvectors. For L, we compute
the smallest r eigenvalues and corresponding eigenvectors. This is necessary because the matrix
L is usually inverted when used (see e.g. Section 4.2.3). The value r depends on the dataset
and is chosen to give reasonable runtimes. Values for r are listed in Appendix A. We show two
kinds of plots: the spectral evolution as described in Section 3.2.1 and the eigenvector evolution
as described in Section 3.2.2.

Observations We observe that for both N and L, the eigenvalues are constant most of the
time, and, rarely, they change abruptly. The corresponding eigenvectors are not stable, and also
change abruptly to completely different values, indicated by a similarity of zero. We conclude
that the spectral evolution of N and L is not smooth, and that the spectral evolution model
does not apply to them. Even though the matrices N and L do not change smoothly, they
can be used for link prediction, by applying graph kernels to them. This will be explained in
Section 4.2.

There is also an algebraic reason why the normalized adjacency and Laplacian matrices do
not grow spectrally. Consider the Laplacian L of an unweighted, undirected graph G = (V,E).
Now consider the graph G′ = (V,E ∪̇ {i, j}), i.e. the graph G to which an edge {i, j} has been
added. The Laplacian L′ of G′ is given by

L′ = L+E,

where E is the matrix defined by Eij = Eji = −1, Eii = Ejj = 1 and all other entries of E are
zero. The matrix E can be written as

E = xxT
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where the vector x is defined by xi = +1, xj = −1 and xk = 0 for k 6= i, j. Due to a well-
known theorem (see e.g. [Wil65, p. 97]), adding αxxT to a symmetric matrix will have the
following effect on the spectrum of the matrix: If α > 0, then the eigenvalues can only increase;
if α < 0, the eigenvalues can only decrease. Therefore, going from L to L′ can only increase the
eigenvalues, not decrease them. However, known link prediction methods using the Laplacian
as will be described in Section 4.2.3 increase the inverse of the Laplacian eigenvalues and thus
would decrease the smallest Laplacian eigenvalue. Therefore, these kernels are not consistent
with a spectral evolution of the Laplacian spectrum. The same argument is valid for Z, making
a spectral evolution of N = I− Z unrealistic.
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Figure 3.11: The spectral evolution in the EU institution email network (EU). (1) the nor-
malized adjacency matrix N, (2) the Laplacian matrix L. Two experiments are shown: (a) the
spectral evolution as defined in Section 3.2.1, (b) the eigenvector evolution as defined in Sec-
tion 3.2.2. In both cases, we observe that the largest eigenvalues of N and smallest eigenvalues
of L stay constant.

3.5 Summary: The Spectral Evolution Model

The spectral evolution model states that in many real-world networks, growth can be described
by a change of the spectrum, while the corresponding eigenvectors remain constant. This
assumption is true to a large extent in most networks we analysed, based on the observation
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of the change in eigenvalues and eigenvectors of networks over time. A more sophisticated test
of the spectral evolution model is what we have called the spectral diagonality test. This test
measures to what extent a snapshot of the network at one point can be diagonalized by the
eigenvectors of the same network at another time. The result is a matrix that is diagonal exactly
when growth is perfectly spectral. When growth is not spectral, this matrix is not diagonal. The
degree to which this matrix is diagonal can therefore be used as an indicator of the spectrality
of a network’s growth. This matrix will be used again in the context of link prediction in the
next chapter, where we will use it to learn a spectral transformation.

The fact that the spectral evolution model can be observed in many networks is not in
contradiction to previous results in the literature. In fact, a certain number of known link
prediction methods result in network growth that can be described by spectral transformations.
This class of link prediction functions includes the triangle closing model, the weighted path
counting model, graph kernels based on adjacency matrix and rank reduction approaches. An-
other explanation of the spectral evolution model is given by an extension to the preferential
attachment model, which we call the latent preferential attachment model. As we showed, the
latent preferential attachment model is equivalent to the spectral evolution model, under the
assumption that a preferential attachment process happens for each eigenpair separately.

To make sure that spectral evolution is a characteristic of real networks and not an artifact
of sampling any network randomly, we performed two control tests. By adding edges randomly
to an existing network and by sampling a random network, we could not observe any spectral
growth. This indicates that the spectral evolution model is indeed a nontrivial property of
real-world networks.

Having confirmed that the spectral evolution model applies to many real networks, we can
now exploit it to predict links in these networks. In the next chapter, we will thus present two
new link prediction methods based on the spectral evolution model.
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Chapter 4

Learning Spectral Transformations

In the last chapter, we have observed network growth to follow the spectral evolution model.
The spectral evolution model that we introduced explained the growth of networks using the
eigenvalue decomposition of their adjacency matrix, stating that only the eigenvalues of a net-
work change over time, while their eigenvectors stay constant. In this chapter, this observation
is exploited to solve the problem of link prediction: Since only the eigenvalues of a network
change over time and not the eigenvectors, it suffices to predict new values for the eigenvalues.
We introduce two different methods for doing this. One uses curve fitting to learn a function
mapping old to new eigenvalues; the other uses extrapolation of eigenvalues.

The link prediction problem is fundamental in that it applies to virtually all types of net-
works, and can be used to implement recommender systems and similar applications. In a social
network for instance, the task of recommending new friends can be viewed, from the point of
view of the recommender system, as the problem of predicting which edges will appear in the
network’s future evolution, and recommending them immediately. In the physical network of
connections between Internet hosts, the prediction of new connections is crucial for planning
and optimization. Similar examples exist for all networks in our collection, and justify the
choice of the link prediction problem as the main application of the spectral evolution model in
this thesis.

The main idea for link prediction under the spectral evolution model consists in predicting
future values of a network’s eigenvalues, and retaining its eigenvectors. The first method we
present takes the approach that graph kernels are correct descriptions of network growth, and
learns the parameters of these graph kernels using curve fitting. The second method assumes
that the growth of eigenvalues does not follow any specific pattern, and therefore known link
prediction functions cannot give accurate link prediction results. Instead, the second method
extrapolates the change of eigenvalues into the future for each eigenvalue separately. This
chapter describes both methods for unweighted, undirected, unipartite networks. The case of
signed, directed and bipartite networks is described in the two following chapters.

We begin the chapter in Section 4.1 by introducing the link prediction problem formally.
Then, the two new spectral link prediction methods based on curve fitting and spectral ex-
trapolation are described in Sections 4.2 and 4.3. Experimental results for both methods are
given in Section 4.4, along with a discussion of the relative performance of the different graph
kernels and of the different characteristic graph matrices. Finally, Section 4.5 reviews similar
but unrelated methods used in other areas of data mining on graphs.
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4.1 Link Prediction

An important class of applications using networks are recommender systems. In recommender
systems, the task can usually be formulated as a problem of link prediction. In a general
sense, link prediction denotes the problem of predicting links in a network. In a broad sense,
link prediction is a very general type of problem that can be formulated on networks, and is
typically hard to solve. As examples, recommender systems in the scope of this work are found
in many data mining applications:

• A search engine finds documents matching a query. By modeling documents and the
words they contain as a bipartite network, matching documents to a query corresponds
to finding highly-scored links between the query words and documents.

• A recommender system can be modeled as a network containing both users and items.
Recommendations are then found by predicting links from users to items. The recom-
mender network may connect users and items directly such as with ratings, or indirectly,
e.g. through topics, categories, user history, sensors, etc.

• Context-aware recommender systems additionally include a context for each query, which
can be modeled as links between the query and the contextual elements. The task is then
to find links between the query and entities to recommend.

• Rating prediction is a special case of link prediction, where edges are weighted. An
important application is collaborative filtering, with users rating items.

• Finding related items can be achieved by predicting links between items connected to a
network, even if there are no direct links between the items.

• To recommend new friends in a social network, some recommender systems must find
similar nodes in the network. In this case edges are unweighted, and the links to be
predicted describe the similarity between nodes.

• To predict whether a user will like a given movie or not, a recommender system must
predict edge weights. In this case the network is a bipartite rating graph, and missing
links in the network have to be predicted.

• To predict future interactions, for instance emails or scientific coauthorship, link prediction
must be performed in a network with multiple edges.

For all these problems, there is a network optionally weighted by real numbers, and the problem
consists of predicting future edges. In particular, we can distinguish the following types of link
prediction:

• Given a network, predict which edges will appear (link detection or link completion [GKK03]).

• Given a network and a specific node, predict to which other nodes it will connect (recom-
mendation [HCC04]).

• Given a network and a pair of unconnected nodes, determine whether it will be connected
(link prediction proper [LNK03]).

• Given a weighted network and two unconnected nodes, determine the weight of an edge
connecting them, knowing that an edge will appear between them (collaborative filter-
ing [BHK98], predicting trust [GKRT04], link sign prediction [KLB09]).
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These problems can be solved by considering link prediction functions: functions of node
pairs returning a numerical score. The different machine learning problems given above can
then be distinguished by the way these numbers are interpreted, and how they are compared to
the actual networks. Computed scores for a node pair can be used as prediction values directly,
or be used to find a ranking, which is then compared with the actual known ranking.

4.1.1 Local Link Prediction Methods

This section describes several simple link prediction methods that do not make use of spectral
graph theory. Due to their simplicity, these methods are very widely used, and will serve as a
baseline against which complex link prediction methods are evaluated. These link prediction
functions compute a link prediction score for a node pair using only information about the
immediate neighborhood of the two nodes. We will therefore call these functions local link
prediction functions. All these link prediction functions can be found in [LNK03].

Let i and j be two nodes in the graph for which a link prediction score is to be computed. To
compute a link prediction score for the edge {i, j}, local link prediction functions depend only
on the neighbors of i and j. In contrast to this, the spectral link prediction methods described
in the main part of this work take into account the whole network. In other words, they are
global.

Common Neighbors The number of common neighbors can be used in itself as a link pre-
diction function [LNK03]. In the example of social recommendations in a user-user network,
this implements the friend of a friend principle, and is equivalent to recommending non-friends
that have the highest number of common friends:

pCN(i, j) = |{k | k ∼ i ∧ k ∼ j}| (4.1)

The number of common neighbors is a spectral transformation. It is equivalent to the
triangle closing model described in Section 3.3.1.

Preferential Attachment Taking only the degree of i and j into account for link prediction
leads to the preferential attachment model [BA99], which can be used as a model for more
complex methods such as modularity kernels [ZM08, New06a]. If d(i) is the number of neighbors
of node i, the preferential attachment model gives a prediction for an edge between i and j of

pPA(i, j) =
1

2|E|d(i)d(j). (4.2)

The factor 1/(2|E|) normalizes the sum of predictions for a vertex to its degree. As we saw
in 3.3.5, a generalization of the preferential attachment model is equivalent to the spectral
evolution model.

Jaccard The Jaccard coefficient measures the amount of common neighbors divided by the
number of neighbors of either vertex [LNK03]:

pJAC(i, j) =
|{k | k ∼ i ∧ k ∼ j}|
|{k | k ∼ i ∨ k ∼ j}| (4.3)

The Jaccard coefficient too can be considered a weighted variant of the common neighbors
model. In networks with multiple edges, the Jaccard coefficient can be extended by using
multisets in the definition, containing a node k multiple times when it is connected to i or j
multiple times.
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Adamic–Adar The measure of Adamic and Adar [AA01] counts the number of neighbors,
weighted by the inverse logarithm of each neighbor k’s degree d(k):

pAA(i, j) =
∑

k∼i∧k∼j

1

log(d(k))
(4.4)

This can be interpreted as a weighted variant of the common neighbors model.

4.1.2 Normalization

Both local and global link prediction algorithms usually benefit from normalization. Normal-
ization consists of applying a transformation to the data before applying a link prediction
algorithm. A typical example of normalization is performed for rating prediction: The overall
mean rating is subtracted from all ratings. After predictions have been computed, the over-
all mean is then added to all predicted ratings. We will call this type of procedure additive

normalization.

In Section 2.1.5, we showed that the adjacency matrix A can be replaced by D−1/2AD−1/2

to alleviate the effects of skewed degree distributions. This amounts to replacing each entry
Aij = 1 by 1/

√

d(i)d(j). We will call this procedure multiplicative normalization. Both types
of normalization can be applied to almost all link prediction algorithms. In fact, they can even
be applied to the trivial link prediction algorithm that always predicts 1 or to the trivial rating
prediction algorithm that always predicts 0:

• Always predicting 1 in combination with multiplicative normalization leads to the prefer-
ential attachment model: Predict d(i)d(j) for the edge {i, j}.

• Always predicting 0 in combination with additive normalization leads to the global mean
prediction: Always predict the global mean rating.

In this work, additive normalization is always used implicitly for all weighted networks.
Multiplicative normalization is explicitly used by using the normalized matrices N and M
instead of A and B.

4.1.3 Evaluating Link Prediction Methods

To evaluate a link prediction algorithm, we must know which links actually appeared in a
network and compare them to the links that were predicted. In networks where we know the
time at which each edge has appeared, we can split the set of edges by creation time. We can
then apply a given link prediction algorithm on the training set, use it to predict links, and
compare the predicted links with the test set.

Each of the link prediction algorithms that we introduce in this work is based on a spectral
transformation. This spectral transformation is specific to each dataset, and therefore it has to
be learned separately for each dataset. Thus, we split the training set again by edge creation
time, and use this split to learn a spectral transformation, which is then applied to the whole
test set. Finally, the predicted edges are compared with the edges in the test set. Figure 4.1
gives a summary of the method we use.

The split is performed in the following way. First, the training/test split is made, using
75% of all edges in the training set and 25% of all edges in the test set. This split is done by
edge creation times: Every edge in the training set is older than every edge in the test set. At
the time where the split occurs, the network contains all edges in the training set, and nothing
more. The training set is then split into a source and target set, also of sizes 75% and 25%.
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Training set Ea ∪ Eb Test set Ec

Source set Ea Target set Eb

All edges E

Learn

Apply

Edge creation time

˙

Figure 4.1: The three-way split used in all experiments. The dataset is first split into a
training and test set by edge creation time. Then, the training set is a again split into a source
and target set of edges. Then, a spectral transformation is learned from the source to the target
set. This spectral transformation is then applied to the training set. Finally, the predicted
edges are compared with the edges in the test set.

Then, the giant connected component is found in the source set, and all vertices not in the
giant component are removed in the source, target and test sets. The rationale here is the
following: If an edge in the test or target set connects two vertices that are not connected by a
path in the source set, then there is no point in trying to learn this edge. By only keeping the
giant connected component in the source set, we make sure that edges in the test and target
sets are indirectly connected in the source set. This pruning however results in splits that are
not exactly of size 75%/25% for all datasets. If a dataset does not have a connected component
in the source set of at least 10% of all edges, then we exclude the dataset from our collection.

We use the following notation to denote the source, target and test sets. In the graph
G = (V,E), the set of edges is partitioned as E = Ea ∪̇Eb ∪̇Ec, where Ea is the source set, Eb

is the target set and Ec is the test set. Together, Ea and Eb are the training set. The adjacency
matrix A is then decomposed as A = Aa + Ab + Ac, where the indexes a, b, c represent the
source, target and test set respectively.

4.1.4 Measuring Link Prediction Accuracy

To compare the experimental results of link prediction algorithms, a measure of link prediction
accuracy has to be used. Several such measures are used in the literature, of which we only
mention the mean average precision (MAP) [NZT07], the area under the curve (AUC) [Bra97]
and the normalized discounted cumulated gain (NDCG) [JK02]. These measures of accuracy
are similar to each other, and our tests indicate that they are interchangeable for our purpose.
Therefore, we will only report prediction accuracy using a single one of these measures, the
mean average precision, which we now define.

The mean average precision is based on the ranking implied by link prediction scores. In
other words, given predicted scores for all edges, we find the actual edges among them and then
their ranking determines a mean average precision value. Since the total number of possible
edges is quadratic in the vertex count, this cannot be computed in practice. Instead, we generate
a zero test set, i.e. a set of edges of the same size as the test set, containing only edges not
contained in the original networks. We call this zero test set Ec̄.

Let Ecc̄ = Ec ∪̇ Ec̄ be the total test set of edges with |Ecc̄| = s. For each test edge e ∈ Ecc̄,
Ae = (Ac)e is the actual edge weight in the test set, and pe the computed link prediction value.
The average precision is then defined in terms of rankings: Edges are ranked by their predicted
weight, and evaluated by their actual weight. For each edge in Ec, we compute the precision
of the results up to that edge. The average of these precision values then gives the average
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precision. The average precision is therefore in the range [0, 1], and the value 1 denotes perfect
prediction.

Let R(k) be the edge of rank k defined such that pR(k) ≤ pR(l) if k < l. Then the average
precision is defined as

ap(p) =

(

s
∑

k=1

[

AR(k)

]1

0

)−1 s
∑

k=1

(

[

AR(k)

]1

0

1

k

k
∑

l=1

[

AR(l)

]1

0

)

, (4.5)

where [x]10 = 1 if x > 1/2 and [x]10 = 0 otherwise.
The mean average precision is then given by the mean of average precision values computed

over each node separately [MRS08]. Let api(p) be the average precision computed only over all
edges adjacent to vertex i. Then the mean average precision is given by

map(p) =
1

|V |
∑

i∈V

api(p). (4.6)

In information retrieval, the average precision is averaged over all queries. Here, we consider
each vertex in the test set a query, and consider the prediction of its incident edges a query.
Both definitions are equivalent.

4.2 Learning by Curve Fitting

We now describe a general learning technique for estimating the parameters of any graph kernel
or other link prediction function that can be expressed as a spectral transformation. This
method works by reducing the learning problem to a one-dimensional curve-fitting problem. As
mentioned in Section 3.3, a certain number of graph kernels and other link prediction methods
can be expressed as spectral transformations, confirming the spectral evolution model. Our
contribution in this section is a method for learning the parameters of these link prediction
functions by reducing the resulting high-dimensional parameter learning problem to a one-
dimensional curve fitting problem, which can be solved efficiently. The runtime of this method
only depends on the chosen reduced rank, and is independent of the original network size.

We show that this generalization is possible under the assumption that the chosen training
and test sets are simultaneously diagonalizable, an assumption which, as described in Sec-
tion 3.3, is implicit in the spectral evolution model. The method presented in this section
can be used to learn the parameters of these kinds of link prediction functions. This includes
not only the parameters of graph kernels such as the matrix exponential, but also the reduced
rank in rank reduction methods and weights used for individual path lengths in path-counting
methods. Since we reduce the parameter estimation problem to a one-dimensional curve fitting
problem that can be plotted and inspected visually to compare the different prediction algo-
rithms, an informed choice can be made about them without having to evaluate each algorithm
on a test set separately.

Let A be the adjacency matrix of an undirected, unweighted, unipartite graph, and A =
UΛUT its eigenvalue decomposition. Then the spectral evolution model states that new links
can be predicted by computing a spectral transformation F (A) = UF (Λ)UT. As described
in Section 3.3, several link prediction functions are of this form, in particular all graph kernels
based on the adjacency matrix such as the matrix exponential F (A) = exp(αA). Most of
these graph kernels have parameters, for instance α for the matrix exponential. This section
will describe a way to learn these parameters, and at the same time give a simple method for
comparing different graph kernels in more depth than simply comparing their performances at
link prediction.
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Other graph kernels than those presented in the last chapter are not spectral transforma-
tions of the adjacency matrix A, but of the Laplacian matrix L, or the normalized adjacency
matrix N. The method described in this section can also be applied to these graph kernels, as
we will show.

4.2.1 Link Prediction as an Optimization Problem

Given a graph G = (V,E), we want to find a spectral transformation F that performs well
at link prediction for this particular graph. To that end, we divide the set of edges E into a
training set Ea and a test set Eb, and then look for a function F that maps the training set to
the test set with minimal error.

Formally, let Aa and Ab be the adjacency matrices of the source and target set respectively,
such that Aa +Ab is the complete known adjacency matrix of G. In other words, we know Aa

and want to find a function that maps Aa to Ab. We will call Aa the source matrix and Ab the
target matrix. Let S be the set of all spectral transformations from R

|V |×|V | to R
|V |×|V |. The

solution to the following optimization problem then gives the optimal spectral transformation
for the task of predicting the edges in the test set.

Problem 1. Let Aa,Ab ∈ R
|V |×|V | be two symmetric adjacency matrices over the same vertex

set V . A spectral transformation that maps Aa to Ab with minimal error is given by a solution

to

min
F

‖F (Aa)−Ab‖F (4.7)

s.t. F ∈ S

The Frobenius norm ‖ · ‖F corresponds to the root mean squared error (RMSE) of the
mapping from Aa to Ab. While the root mean squared error is common in link prediction
problems, other error measures exist, but give more complex solutions to our problem, making
it impossible to solve the resulting problem efficiently. We will therefore restrict ourselves to
the Frobenius norm in the rest of the section.

Problem 1 can be solved by computing the eigenvalue decompositionAa = UΛUT and using
the fact that the Frobenius norm is invariant under multiplication by an orthogonal matrix.

∥

∥F (Aa)−Ab

∥

∥

F
(4.8)

=
∥

∥UF (Λ)UT −Ab

∥

∥

F

=
∥

∥F (Λ)−UTAbU
∥

∥

F

The Frobenius norm in Expression (4.8) can be decomposed into the sum of squares of off-
diagonal entries of F (Λ)−UTAbU, which is independent of F , and into the sum of squares of
its diagonal entries. This leads to the following least-squares problem equivalent to Problem 1:

Problem 2. If UΛUT is the eigenvalue decomposition of Aa, then the solution to Problem 1

is given by F (Λ)kk = f(Λkk), where f(λ) is a solution to the following minimization problem.

min
f

∑

k

(

f(Λkk)−UT
•kAbU•k

)2
(4.9)

This is a one-dimensional least-squares curve fitting problem of size n. Since each function
F (Aa) corresponds to a function f(λ), we can choose a link prediction function F and learn its
parameters by inspecting the corresponding curve fitting problem. As an example, Figure 4.2
shows a plot of λk = Λkk against f(λk) = UT

•kAbU•k for the University Rovira i Virgili email
dataset (A@).
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Figure 4.2: The one-dimensional least-squares problem used to learn spectral transformations
by curve fitting. The values λk = Λkk plotted against f(λk) = UT

•kAbU•k for the University
Rovira i Virgili email dataset (A@).

4.2.2 Curve Fitting

We have reduced the general matrix regression problem (4.7) to a one-dimensional least-squares
curve fitting problem of size n. In practice, computing the full eigenvalue decomposition A =
UΛUT is not possible, first because the decomposition has runtime O(n3), but also because
the dense n × n matrix U would take too much memory to store, i.e. O(n2). Instead, the
rank-reduced eigenvalue decomposition A ≈ ŨΛ̃ŨT of rank r can be computed. The result
is that in Equation (4.9), the curve fitting problem goes only over r points. Since r is usually
much smaller than n (see Table A.2 in Appendix A for values), this curve fitting problem is
computationally very easy to solve.

We now take each spectral link prediction function F (A) described in Section 3.3 and, for
each one, derive its underlying real function f(λ) that applies to every eigenvalue separately.
Most of the link prediction functions have parameters, e.g. the parameter α in the exponential
kernel exp(αA). These parameters are kept in the real function. Additionally, we insert a
multiplicative parameter β > 0 into every real function f(λ), giving βf(λ), that is to be learned
along with the other parameters. Although this parameter will not change the relative link
prediction scores and therefore has no influence on the final link prediction accuracy, including
it allows the learned curves to better fit the observed eigenvalues, and thus results in more
sensible values for the other parameters. The resulting functions are summarized in Table 4.1.

Table 4.1: Link prediction functions based on the adjacency matrix and their corresponding
real functions. The outer multiplicative coefficient β (see explanation in the text) is not shown,
for clarity.

Method Matrix function Real function

Triangle closing A2 f(λ) = λ2 Eq. 3.3
Path counting p(A) =

∑∞
k=0 αkA

k f(λ) =
∑∞

k=0 αkλ
k Eq. 3.4

Exponential kernel KEXP(A) = exp(αA) f(λ) = eαλ Eq. 3.5
Neumann kernel KNEU(A) = (I− αA)−1 f(λ) = 1/(1− αλ) Eq. 3.6

Rank reduction Rr(A) = U• (1...r)Λ(1...r) (1...r)U
T
• (1...r) f(λ) =

{

λ if |λ| ≥ |λr|
0 otherwise

Eq. 3.7
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Since both Λ andUTAbU are available after having computed the eigenvalue decomposition
of Aa, the main computational part of our method lies in the rank-reduced eigenvalue decom-
position of Aa. Additionally, the computation of UTAbU has runtime complexity O(r|E|)
and the curve fitting runtime is only dependent on r. By rank reduction, the final least-squares
problem has only size r, and the runtime complexity of computing UTAbU is O(rn2). Since the
rank-reduced eigenvalue decomposition of Aa is computed anyway for spectral link prediction
methods and because r ≪ n ≪ n2 since Ab is sparse, it follows that this curve fitting method
has only negligible overhead.

A related idea is to use Aa +Ab instead of Ab as the target matrix for optimization, in the
assumption that a link prediction algorithm should return high values for known edges. With
this modification, we compute UT(Aa +Ab)U instead of UTAbU. Our tests showed that this
variant gave worse results in almost all cases. We therefore do not consider this idea any further.

Finally, we must consider the problem of scaling of eigenvalues. The function F is trained on
the source matrix Aa and applied on the target matrix Ab. Since the target adjacency matrix
describes more edges than the source matrix, the corresponding spectra of the two matrices
will be different: The eigenvalues of Ab are larger than those of Aa. Therefore, we propose to
scale the function F in a way that makes it independent of the largest eigenvalue of the target
matrix. Let λa be the largest absolute eigenvalue of Aa and λb the largest absolute eigenvalue
of Ab. Then the normalized spectral transformation F ′ is given by

F ′(Λ) = F

( |λa|
|λb|

Λ

)

. (4.10)

Figure 4.3 shows our curve fitting method applied to individual combinations of base matri-
ces and graph kernels for the University Rovira i Virgili email (A@). In this example, a look at
the fitted curves suggests that path counting fits the data well; the matrix exponential fits less
well; and the Neumann kernel and rank reduction fit badly. We will test in Section 4.4 whether
this behavior correlates with high and low prediction accuracy as we would expect.

4.2.3 Normalized and Laplacian Kernels

The method of learning a link prediction kernel by curve fitting also applies to the Laplacian
and normalized adjacency matrices. Instead of using the non-normalized adjacency matrix A
as the source matrix, we use the normalized adjacency matrix N, the Laplacian L, or the
normalized Laplacian Z as the source matrix. Here, the matrices N, L and Z are understood
to be computed over the source edge set Ea.

Normalized Kernels The exponential and Neumann graph kernels as presented in Sec-
tion 3.3.3 are spectral transformations of the non-normalized adjacency matrix A. If instead we
use the normalized adjacency matrix N = D−1/2AD−1/2, we arrive at the normalized adjacency
graph kernels:

KEXP(N) = exp(αN) =
∞
∑

k=0

αk

k!
Nk (4.11)

KNEU(N) = (I− αN)−1 =
∞
∑

k=0

αkNk (4.12)

For the normalized exponential kernel, any positive value can be used for the parameter α > 0.
For the normalized Neumann kernel, the constraint on the parameter is 0 < α < 1, because the
largest eigenvalue of N is one. As shown in the next section, the two normalized graph kernels
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(b) Nonnegative path counting
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(e) Rank reduction

Figure 4.3: Curve fitting with individual functions of the adjacency matrix A, using the
University Rovira i Virgili email network (A@).

are both equivalent to graph kernels over the normalized Laplacian matrix Z = D−1/2LD−1/2 =
I−N.

Similarly to the non-normalized case, we can consider path counts on the graph with nor-
malized edge weights. The result are power series of the matrix N:

p(N) =

∞
∑

k=0

αkN
k (4.13)

A power series of the normalized adjacency matrix N in an unweighted network can be inter-
preted as the same power series of the non-normalized adjacency matrix of the weighted network
in which each edge {i, j} is given the weight 1/

√

d(i)d(j), with d(i) being the degree of node i.
As in the non-normalized case, good link prediction functions are expected when the coefficients
are nonnegative and decreasing, i.e. α0 ≥ α1 ≥ . . . ≥ 0.

Laplacian Kernels Instead of adjacency matrices, we can also use Laplacian matrices to
define graph kernels. L = D − A is the non-normalized Laplacian of the graph, and Z =
I−N = D−1/2LD−1/2 is the normalized Laplacian. The Laplacian matrices are symmetric and
positive-semidefinite. When the network is unweighted, the multiplicity of eigenvalue zero of L
and Z equals the number of connected components in the network. The Laplacian matrices are
thus singular for nonempty networks. The eigenvalues of the normalized Laplacian matrix Z lie
in the interval [0, 2].
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Using the eigenvalue decomposition of the Laplacian, several Laplacian graph kernels can
be computed. These Laplacian graph kernels are known in the literature and have also be used
for link prediction [SK03]. Spectral transformations of the Laplacian matrix have been used
for semi-supervised learning [CWS03], where they are called transfer functions. In this setting,
the labels of unlabeled nodes are learned in a graph where only few nodes are labeled. In these
studies, only polynomials and stepwise linear transfer functions are considered. These graph
kernels are all spectral transformations of the Laplacian, and therefore they can be learned
using curve fitting.

Moore–Penrose Pseudoinverse Before we introduce commute-time kernels, we first need
to introduce the Moore–Penrose pseudoinverse. The Moore–Penrose pseudoinverse (or simply
pseudoinverse) is a generalization of the matrix inverse which applies also to matrices that do
not have a regular inverse, including rectangular matrices. We will only need the Moore–Penrose
pseudoinverse for square symmetric matrices, and will therefore only give a definition for these
kinds of matrices. Recall that a square matrix A is invertible when there is a matrix A−1 such
that

AA−1 = I.

If such an A−1 exists, then we have AA−1 = A−1A = I. Matrices that do not have an inverse
are called singular. While singular matrices do not have an inverse, we can define a weaker
form of inverse called the Moore–Penrose pseudoinverse. For any matrix A, there is a unique
A+ such that

AA+A = A.

Such anA+ always exists and is called the Moore–Penrose pseudoinverse ofA. IfA is invertible,
then A+ = A−1. If A is square and symmetric, then A+ can be expressed as a spectral
transformation of A as

A = UΛUT

A+ = UΛ+UT

where Λ+ is the diagonal matrix defined by

(Λ+)ii =

{

Λ−1
ii if Λii 6= 0

0 if Λii = 0

In other words, the Moore–Penrose pseudoinverse is the spectral transformation that inverts
all nonzero eigenvalues and keeps all zero eigenvalues. As an example, the Moore–Penrose
pseudoinverses of the zero matrix 0 and of the identity matrix I are

0+ = 0,

I+ = I−1 = I.
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As another example, the Moore–Penrose of the following symmetric 2× 2 matrix is given by its
eigenvalue decomposition:

[

1.6 1.2
1.2 0.9

]

=

[

0.8 −0.6
0.6 0.8

] [

2.5 0
0 0

] [

0.8 −0.6
0.6 0.8

]T

[

1.6 1.2
1.2 0.9

]+

=

[

0.8 −0.6
0.6 0.8

] [

2.5 0
0 0

]+ [
0.8 −0.6
0.6 0.8

]T

=

[

0.8 −0.6
0.6 0.8

] [

0.4 0
0 0

] [

0.8 −0.6
0.6 0.8

]T

=

[

0.256 0.192
0.192 0.144

]

Commute-time Kernels Since the Laplacian matrix is positive-semidefinite, its Moore–
Penrose pseudoinverse is also positive-semidefinite and can be used as a graph kernel [FPRS04].
The commute-time kernel can be applied to both the non-normalized Laplacian L = D−A and
to the normalized Laplacian Z = D−1/2LD−1/2:

KCOM(L) = L+ (4.14)

KCOM(Z) = Z+ (4.15)

This kernel is sensible because the most significant eigenvectors of the Laplacian matrices are
those with smallest nonzero eigenvalue, which are mapped to the largest eigenvalues in the
Moore–Penrose pseudoinverse. The eigenvalue zero however remains at zero with the Moore–
Penrose pseudoinverse. This is what we want, since the corresponding eigenvector is the constant
vector and would contribute only a constant term to the link prediction values.

The pseudoinverse L+ can be used to derive a metric:

d(i, j) = (L+)ii + (L+)jj − (L+)ij − (L+)ji (4.16)

This metric has two interpretations. If the network is interpreted as an electrical network where
each edge is a resistor, this metric gives the equivalent resistance between any two nodes [KR93].
The kernel L+ is thus known as the resistance distance kernel and L as the Kirchhoff matrix.
When considering a random walk on the graph G, the average commute time between any two
node equals the resistance distance. The equivalence between the two formalisms is studied
in [DS84]. Note that the resistance defined in Equation 4.16 can be interpreted as a squared
Euclidean distance in the following way: If L = UΛUT is the eigenvalue decomposition of the
matrix L, then let W = U(Λ+)1/2. Then, interpret each row Wi• of W as the coordinate of
vertex i in a space of dimension n. Then, the squared Euclidean distance between vertices in
this spaces equals the resistance distance. For every pair (i, j), we have:

(Wi• −Wj•)
2 = Wi•W

T
i• +Wj•W

T
j• −Wi•W

T
j• −Wj•W

T
i•

= Ui•Λ
+UT

i• +Uj•Λ
+UT

j• −Ui•Λ
+UT

j• −Uj•Λ
+UT

i•

= (L+)ii + (L+)jj − (L+)ij − (L+)ji

= d(i, j)

To impose smoothness on Laplacian graph kernels, they can be regularized by adjusting
specific spectral transformations to them [SK03]. In particular, we will call the following kernels
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the regularized Laplacian kernels:

KREG(L) = (I+ αL)−1 =

∞
∑

k=0

(−α)kLk (4.17)

KREG(Z) = (I+ αZ)−1 =

∞
∑

k=0

(−α)kZk (4.18)

The parameter α must be larger than zero in both cases. For the infinite series representation
to be defined, α must be less than the inverted largest eigenvalue of L and Z, i.e. α < 1/2 for
Z. Otherwise, the kernel is still defined, but does not have a series expansion. The regularized
Laplacian kernels characterize the proximity of two vertices by the number of ways they can be
connected by random forests [CS97]. For this reason, they are also called random forest kernels.
The normalized regularized Laplacian is equivalent to the normalized Neumann kernel by noting
that (I + αZ)−1 = (1 + α)(I − αN)−1. This is true because we have Z = D−1/2LD−1/2 =
D−1/2(D−A)D−1/2 = I−N.

Heat Diffusion By considering a process of heat diffusion on the network, a Laplacian heat
diffusion kernel can be derived [ISKM05]:

KHEAT(L) = exp(−αL) (4.19)

KHEAT(Z) = exp(−αZ) (4.20)

The normalized heat diffusion kernel is equivalent to the normalized exponential kernel given
by exp(−αZ) = e−α exp(αN) [SK03]. The heat diffusion kernel is also known as the Laplacian
exponential diffusion kernel [FYPS06].

The normalized Laplacian can be derived from the normalized adjacency matrix by the
spectral transformation Z = F (N) = I − N corresponding to the real function f(λ) = 1 − λ.
Thus, the normalized commute-time kernel reduces to the normalized Neumann kernel and the
heat diffusion kernel reduces to the normalized exponential kernel.

Generalized Laplacian Kernels The Laplacian graph kernels described above are all spec-
tral transformations of L or Z. This can be generalized to any inverted power series p(λ):

KGEN(L) = p(L)+ =

(

∞
∑

k=0

αkL
k

)+

(4.21)

KGEN(Z) = p(I− Z) =
∞
∑

k=0

αk(I− Z)k (4.22)

(4.23)

As shown in Section 3.3.2, power series are spectral transformations and therefore the generalized
Laplacian kernels are spectral transformations of L and Z. We represent generalized Laplacian
kernels as inverted Laplacians because it allows us to formulate two requirements: the spectral
transformation must have nonnegative eigenvalues for the kernel to be positive-semidefinite, and
the spectral transformation function should be decreasing, because eigenvectors with smaller
eigenvalues should have more weight in the resulting kernel. These two requirements can be
achieved by using inverted power series with nonnegative coefficients. Therefore, we require
that αk ≥ 0 for all k. These kernels generalize the previously defined Laplacian graph kernels,
because their respective inverse spectral transformations can be represented as Taylor series.
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Table 4.2: Normalized and Laplacian link prediction functions and their corresponding real
functions. The methods marked with †, ‡ and ⋄ represent classes of graph kernels that are
equivalent up to a shift and scaling of eigenvalues, as described in the text.

Method Matrix function Real function

Normalized
exponential kernel † KEXP(N) = exp(αN) f(λ) = eαλ Eq. 4.11

Normalized
Neumann kernel ‡ KNEU(N) = (I− αN)−1 f(λ) = 1/(1− αλ) Eq. 4.12

Normalized path
counting ⋄ p(N) =

∑∞
k=0 αkN

k f(λ) =
∑∞

k=0 αkλ
k Eq. 4.13

Commute-time kernel KCOM(L) = L+ f(λ) =

{

λ−1 if λ > 0
0 otherwise

Eq. 4.14

Normalized
commute-time kernel

KCOM(Z) = Z+ f(λ) =

{

λ−1 if λ > 0
0 otherwise

Eq. 4.15

Regularized
Laplacian kernel

KREG(L) = (I+ αL)−1 f(λ) = 1/(1 + αλ) Eq. 4.17

Normalized regularized
Laplacian kernel ‡ KREG(Z) = (I+ αZ)−1 f(λ) = 1/(1 + αλ) Eq. 4.18

Heat diffusion KHEAT(L) = exp(−αL) f(λ) = e−αλ Eq. 4.19
Normalized heat
diffusion † KHEAT(Z) = exp(−αZ) f(λ) = e−αλ Eq. 4.20

Generalized Laplacian
kernel

p(L)+ =
(
∑∞

k=0 αkL
k
)+

f(λ) =
(
∑∞

k=0 αkλ
k
)−1

Eq. 4.21

Generalized normalized
Laplacian kernel ⋄ p(I− Z) =

∑∞
k=0 αk(I− Z)k f(λ) =

∑∞
k=0 αk(1− λ)k Eq. 4.22

The generalized normalized Laplacian kernel can be written as a spectral transformation of a
power series of the normalized adjacency matrix N due to the equality Z = I−N:

p(I− Z) = p(N)

Therefore, the generalized normalized Laplacian kernel is equivalent to path counting with
normalized edge weights.

Summary Table 4.2 shows the underlying real functions for the normalized and Laplacian
graph kernels. A larger set of Laplacian kernels is described in [FYPS06], most of which contain
additional parameters. Note that the Laplacian kernels are all decreasing spectral transfor-
mations f(λ) of the Laplacian matrices L and Z. As a result, the dominant eigenvectors of
Laplacian graph kernels are the eigenvectors of the smallest nonzero eigenvalue of L or Z. Since
we compute only r eigenvectors and eigenvalues of the Laplacian matrices, we have to make sure
that we find the smallest r eigenvalues and their eigenvectors. This is possible with standard
linear algebra packages, as described in Appendix C.

4.3 Learning by Spectral Extrapolation

We now derive another method for link prediction based on the spectral evolution model. Ac-
cording to the spectral evolution model established in the previous chapter, the spectrum of a
network evolves over time, while the eigenvectors remain constant. We saw that this assumption
is true to a certain point in large real-world networks and used it in the last section to reduce
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the link prediction problem to a simple curve-fitting problem. To do this, we chose a time in the
past and learned a mapping from the network’s structure in the past to the network’s structure
in the present. Instead, we will now consider infinitesimal changes in the present network, and
extrapolate them into the future.

According to the spectral evolution model, only the eigenvalues of a network change sig-
nificantly over time. Therefore, we will look at the change in eigenvalues of a network and
extrapolate it into the future. Because we consider each eigenvalue separately, this method is
suitable for cases where eigenvalues of a single network grow at very different speeds. In such
a case, graph kernels as learned in the previous section are not accurate, since they assume all
eigenvalues to grow according to a single real function, the spectral transformation function.
The method presented here can therefore be considered as an extension of graph kernels to
irregular growth patterns, while still being conformant to the spectral evolution model.

Link prediction functions such as the matrix exponential assume there is a real function
f(λ) that applies to all eigenvalues. In the link prediction functions described in Section 3.3,
this function is very regular, i.e. it is positive and grows monotonically. Observed spectral
transformations such as the one in Figure 4.4(b) are however irregular, and no simple function
solves the curve fitting problem well. This is explained by the fact that eigenvalues may cross
each other, indicating that a non-monotonous function is needed. Note that the irregularity
here is only observed in the growth of eigenvalues. The overall growth is still spectral, and
eigenvectors are nearly constant.
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Figure 4.4: Examples of (a) regular and (b) irregular spectral growth. In the first case, the
eigenvalues grow regularly, and a graph kernel can be used to model network evolution. In
the second case, spectral growth is irregular and graph kernels are not suitable. In both cases,
growth is spectral. (a) Internet topology (TO), (b) Twitter user–user “@name” mentions (Wa).

For these reasons, we must consider the growth of each eigenpair separately. If we knew
that eigenvalues did not cross each other, we could compare the kth eigenvalue at two points
in time and extrapolate a third value. But because eigenvalues pass each other, we must first
learn the relation between new and old eigenvalues.

4.3.1 Method

Given the set of edges sorted by creation time, we define the following timestamps: ta is the
time of split between the source and target sets, and tb is the time of split between the training
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and the test set.
Let Aa be the adjacency matrix containing all edges in the source set and Ab the adjacency

matrix containing all edges in the target set. The adjacency matrix of the training set is then
Aa +Ab. We now compute the eigenvalue decompositions of the adjacency matrices at times
ta and tb:

Aa = Ua Λa U
T
a

Aa +Ab = UbΛbU
T
b

To find out which eigenpair k at time ta corresponds to eigenpair l at time tb, we compute
a mean of eigenvalues at time ta, weighted by the similarity between the two eigenpairs at
time ta and at time tb. As a similarity measure, we use the absolute dot product between the
corresponding normalized eigenvectors of index k and l at times ta and tb, as used previously in
Equation 3.1. Additionally, we also try out the square of that dot product as another similarity
measure. This gives two similarity measures:

simabs(k, l) = |(Ua)•k · (Ub)•l| (4.24)

simsqu(k, l) = ((Ua)•k · (Ub)•l)
2 (4.25)

Thus if (Λb)ll is an eigenvalue of Aa +Ab at time tb, its conjectured previous value at time ta
is given by

(Λ̂a)ll =

(

∑

k

sim(k, l)

)−1
∑

k

sim(k, l)(Λa)kk,

where (Λa)kk is the kth eigenvalue at time ta. Note that this expression only depends on the
eigenvectors at time ta and not on the eigenvalues at time tb. This is because we estimate
the value of the lth eigenvalue at time ta, and the eigenvectors at time tb are only used for
the extrapolation itself in the next step. We then perform linear extrapolation to predict an
eigenvalue (Λ̂c)ll in the future, i.e. at a time tc = 2tb − ta.

(Λ̂c)ll = 2(Λb)ll − (Λ̂a)ll (4.26)

Using the matrix Λ̂c, the predicted edge weights are then UbΛ̂cU
T
b . Note that the computed

eigenvalues (Λ̂c)ll are not necessarily ordered, which is not a problem for link prediction scores.
The extrapolation defined in this way is linear, i.e. we only use a linear approximation to

the observed growth to predict future eigenvalues. A simple extension of this method takes
into account higher-order terms. For instance, we could observe the change in the growth itself
instead of just growth in the eigenvalues and extrapolate that into the future. Our observations
however indicate that this will not make the predictions more accurate. Instead, it would make
the predictions less accurate because of overfitting. The linear extrapolation method itself is
already susceptible to learn growth patterns that are not present in the data, due to the high
number of parameters it contains (one for each latent dimension). Higher-order extrapolation
methods have more parameters and would therefore be even less well-behaved.

4.4 Experiments

We will now compare both new link prediction methods experimentally with each other, and
against baseline algorithms. First, we recall the basic differences in the two methods in the
following table.
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Table 4.3: Comparison of the two learning methods.

Curve fitting Extrapolation

Uses any characteristic matrices Uses only the adjacency matrix
Considers only two timepoints Considers all timepoints
Works well when growth is regular Works well when growth is irregular

To evaluate the performance of the two link predictions methods, we use the unipartite,
unweighted networks of Table A.1 in Appendix A, and compute the link prediction accuracy
using the mean average precision as defined in Section 4.1.4.

All decompositions are computed only up to a rank r which depends on the dataset. Values
for all datasets are given in Table A.2 in Appendix A. We apply the curve fitting methods
and spectral extrapolation methods described in the previous sections to the source and target
edge sets of each network, learning several link prediction functions. We then apply these link
prediction functions to the training set of each network to compute predictions for the edges
in the test set. Since the networks in these experiments are unweighted, the test set contains
edges and non-edges, representing the zero test set as described in Section 4.1.3. As a baseline,
we use the local link prediction functions described in Section 4.1.1.

The complete list of link prediction methods is given in Table 4.4. In comparison to the
previous, theoretical definitions of the graph kernels, this table gives the actual variants we
used for evaluation. They differ in that we chose a maximal path length in the path counting
method, resulting in a polynomial of the corresponding degree. We also implement nonnegative
polynomials. Also, the triangle closing method is augmented with a constant and a linear
term, giving a polynomial of degree two. The Laplacian graph kernels from Equations 4.18,
4.20 and 4.22 are equivalent to normalized graph kernels (N-NEU, N-EXP) and normalized
path counting (N-POLY) as noted in Table 4.2, and are only given once, using their name as
normalized kernels. The common neighbors measure from Equation 4.1 is subsumed by triangle
closing (A-TRI), and is therefore omitted.

Best Performing Link Prediction Methods The best performing link prediction methods
for a selection of unipartite, undirected, unweighted datasets are shown in Table 4.5. Whenever
the best-performing method is a spectral transformation learned by curve fitting or spectral
extrapolation, we give the best transformation used, along with the method. The full list of best-
fitting curves is given in Appendix B. From the list of best-performing link prediction methods
in this table and in the appendix, we conclude that there is no overall best link prediction
method, but that a certain number of link prediction methods are best for different datasets.
All these link prediction functions are best for at least one dataset: (normalized) (nonnegative)
path counting (A-POLY, A-POLYN, N-POLY, N-POLYN), the matrix exponential (A-EXP)
and the normalized commute-time kernel (N-COM).

Spectral Extrapolation Figure 4.5 shows the extrapolation method applied to the English
Wikipedia hyperlink graph (WP).

Comparison of Methods The mean average precision is given for six unipartite, undirected,
unweighted datasets in Figures 4.6, 4.7 and 4.8. The mean average precision for one represen-
tative algorithm from each category is given for the same datasets in Figure 4.9. The complete
results for four datasets are given in Figure 4.10.
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Table 4.4: The complete list of link prediction methods used in the evaluation. All parameters
α, β, γ are required to be positive, except for path counting and the generalized Laplacian kernel.

Method Definition

Local link prediction methods
P-PA Preferential attachment pPA(i, j) Eq. 4.2
P-JAC Jaccard pJAC(i, j) Eq. 4.3
P-AA Adamic–Adar pAA(i, j) Eq. 4.4

Curve fitting with A
A-TRI Triangle closing αI+ βA+ γA2 Eq. 3.3

A-POLY Path counting
∑4

k=1 αkA
k Eq. 3.4

A-POLYN Nonnegative path counting
∑7

k=1 αkA
k, αk ≥ 0 Eq. 3.4

A-EXP Exponential kernel β exp(αA) Eq. 3.5
A-NEU Neumann kernel β(I− αA)−1 Eq. 3.6
A-RR Rank reduction βRr(A) Eq. 3.7

Curve fitting with N

N-POLY Normalized path counting
∑4

k=0 αkN
k Eq. 4.13

N-POLYN Normalized nonnegative path counting
∑7

k=0 αkN
k, αk ≥ 0 Eq. 4.13

N-EXP Normalized exponential kernel β exp(αN) Eq. 4.11
N-NEU Normalized Neumann kernel β(I− αN)−1 Eq. 4.12
N-COM Normalized commute-time kernel β(I−N)+ Eq. 4.15

Curve fitting with L
L-COM Commute-time kernel βL+ Eq. 4.14
L-REG Regularized Laplacian kernel β(I+ αL)−1 Eq. 4.17
L-HEAT Heat diffusion β exp(−αL) Eq. 4.19

L-POLY Generalized Laplacian kernel
(
∑∞

k=0 αkL
k
)−1

Eq. 4.21

Spectral extrapolation
X-ABS Absolute similarity weights |(Ua)•k · (Ub)•l| Eq. 4.24

X-SQU Squared similarity weights ((Ua)•k · (Ub)•l)
2 Eq. 4.25
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Table 4.5: The best performing spectral transformation for a sample of datasets. For each
dataset, we show the source and target matrices, the curve fitting model and the link prediction
method that performs best.

Dataset Best transformation Best method MAP

Haggle (CO) Aa +AT
a → Ab +AT

b A-NEU 0.738
arXiv astro-ph (AP) Aa +AT

a → Ab +AT
b A-POLY 0.690

Pretty Good Privacy (PG) La → Ab L-REG 0.990
Caenorhabditis elegans (PM) Na +NT

a → Ab +AT
b A-TRI 0.940

CAIDA (IN) Na +NT
a → Ab +AT

b N-COM 0.984
Route Views (AS) La → Aa +Ab L-COM 0.954
U. Rovira i Virgili (A@) Aa +AT

a → Ab +AT
b A-POLYN 0.972
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Figure 4.5: The result of applying spectral extrapolation to the Flickr (FL) and Facebook (Ow)
networks. Spectral extrapolation is computed using only the decompositions at the split points
between the source, target and test sets. Individual dots denote actual growth, whereas the
dashed lines represent the predicted growth of the eigenvalues.

To find out which link prediction method has the better overall prediction accuracy, we
perform pairwise statistical comparisons between individual methods. For a given pair of link
prediction methods, we compare their mean average precisions on all network datasets. We use
Student’s t-test to determine whether a link prediction method performs significantly better than
another one. For instance, we find that the exponential kernel A-EXP performs significantly
better than the Neumann kernel A-NEU. Student’s t-test works as follows: Let mapG(pX) be
the mean average precision of the link prediction algorithm X on the network dataset G. Say,
we want to compare the link prediction accuracy of the link prediction methods X and Y, and
let G be the set of all network datasets. Then, we define the mean difference µXY and standard
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Figure 4.6: The mean average precision for curve fitting methods based on the adjacency
matrix A evaluated on six unipartite, unweighted, undirected datasets.
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Figure 4.7: The mean average precision for curve fitting methods based on the normalized
adjacency matrix N evaluated on six unweighted, undirected datasets.

deviation of differences σXY of MAP values as

∆XY(G) = mapG(pX)−mapG(pY) (4.27)

µXY =
1

|G|
∑

G∈G

∆XY(G) (4.28)

σXY =

√

1

|G| − 1

∑

G∈G

(∆XY(G)− µXY)2 (4.29)
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Figure 4.8: The mean average precision for curve fitting methods based on the Laplacian
matrix L evaluated on six unweighted, undirected datasets.
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Figure 4.9: A comparison of one link prediction function from each category (local methods,
curve fitting with the adjacency matrix, curve fitting with the normalized adjacency matrix,
curve fitting with the Laplacian, extrapolation).

Then, we compute the t value as

tXY = µXY

√

|G|
σXY

(4.30)

We consider method X to be statistically better performing than method Y when tXY is larger
than the 95th percentile of Student’s t-distribution with degree-of-freedom parameter equal to
|G| − 1. We show individual scatter plots of link prediction method pairings in Figure 4.11. In
these plots, each dataset is represented as one point, drawn at the coordinates of the performance
of two link prediction methods on it.
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(a) Caenorhabditis elegans (PM)
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(b) CAIDA (IN)
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(c) Route Views (AS)
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Figure 4.10: All evaluation results for four unipartite, unweighted, undirected networks.

Observations We make the following observations:

• Among the functions of the adjacency matrix A, nonnegative path counting (A-POLYN)
has the best prediction accuracy, closely followed by the exponential kernel (A-EXP) and
path counting (A-POLY). Triangle closing (A-TRI), the Neumann kernel (A-NEU) and
rank reduction (A-RR) all have significantly worse prediction accuracy.

• The best functions of the normalized adjacency matrix N are normalized path counting
(N-POLY and N-POLYN) and the normalized commute-time kernel (N-COM). The nor-
malized exponential kernel and the normalized Neumann kernel have significantly worse
prediction accuracy.

• The best function of the adjacency matrix (A-POLYN) and the best function of the
normalized adjacency matrix (N-COM) have comparable link prediction accuracy.

• Spectral transformations of the Laplacian L have significantly worse link prediction accu-
racy than functions of A and N. This result is consistent with the absence of Laplacian
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Figure 4.11: Pairwise comparisons of link prediction methods by their mean average precision
on all datasets. We show only comparisons in which one method is significantly more accurate
than the other.

spectral evolution observed in Section 3.4.3, and also with the result from [RLH09] that
the resistance distance (which is based on the matrix L) is meaningless for large ran-
dom geometric graphs. Among functions of L, the regularized Laplacian kernel (L-REG)
performs best, but not significantly.

• The spectral extrapolation methods (X-ABS and X-SQU) perform worse than the curve
fitting methods.

• Among local link prediction functions, the Jaccard coefficient (P-JAC) and the Adamic–
Adar measure (P-AA) correlate to a high degree. They both have a prediction accuracy
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comparable to that of preferential attachment (P-PA). All local link prediction methods
perform significantly worse than the best curve fitting methods.

As an overall conclusion, we recommend using curve fitting to learn nonnegative path count-
ing (A-POLYN) and the normalized commute-time kernel (N-COM) as candidates for link pre-
diction applications. However, we recommend to generate the curve fitting plot described in
Section 4.2.2 in any case to catch eventual new spectral transformations patterns. Also, we
recommend to perform the spectral diagonality test described in Section 3.2.4 beforehand, to
catch those datasets where spectral transformations do not work.

4.5 Related Learning Methods

Several previous attempts have been made at learning spectral transformations. These attempts
have been restricted to specific datasets and problem types, and did not consider the validity
of the spectral evolution model.

Joint Diagonalization Simultaneously diagonalizable matrices have been considered in the
context of joint diagonalization, where given a set of matrices {Ai}, a matrix U is searched
that makes the matrices {UAiU

T} as diagonal as possible according to a given matrix norm,
as described e.g. in [WS97]. Joint diagonalization methods have been used for link predic-
tion before [STF06]. By construction, the predicted network evolution is spectral, since the
same eigenvector matrix U is used at each timepoint. However, a high number of timepoints
must be considered, whereas both methods we have introduced only need to consider two time-
points. Equivalently, this can be described as the decomposition of the vertex-vertex-time ten-
sor [SCAK11]. In fact, our spectral evolution model provides a justification for these advanced
methods, since joint diagonalization implies constant or near-constant eigenvectors.

Linear and Quadratic Programming In [ZKGL05] and [ZKLG06], spectral transforma-
tions of the Laplacian matrix are considered, where they are called spectral transforms. The
spectral transformations in that work are learned using quadratically constrained quadratic
programming (QCQP). A similar technique is used in [LJD09]. In [LQCL09], a spectral trans-
formation of the Laplacian matrix is learned using linear programming.

4.6 Summary: Learning Spectral Transformations

We have presented two methods for learning link prediction functions in large networks. The first
method uses spectral curve fitting and the second one spectral extrapolation. Both methods
make different assumptions: The curve fitting method learns a spectral mapping from one
matrix to another, and therefore can also be applied to matrices other than the adjacency
matrix, such as the Laplacian matrix. The spectral extrapolation method on the other hand
considers infinitesimal changes in the adjacency matrix’s spectrum. It is therefore suited for
network datasets where exact edge creation times are known. However, it cannot be applied to
the Laplacian matrix or other characteristic graph matrices other than the adjacency matrix,
since it presupposes spectral evolution, which we did not observe for Laplacian matrices.

The spectral extrapolation method suffers from the case where eigenvalues are very near
each other. In practice, this is not common, but can be observed in very decentral networks,
i.e. networks without a clear core component, such as road networks.

We also found that if a dataset is so big that only few eigenvectors and -values can be
computed, the resulting points are not numerous enough to make a meaningful distinction
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between the performance of the different curve fitting models. This can be interpreted as a
case of overfitting: Using only two or three eigenpairs, a linear function of the spectrum is
probably the best prediction we can make. By comparing the results with various types of
network datasets, we found that the various link prediction methods in current use are justified
in specific cases. We hope that the methods presented here can help make an informed choice
as to the right method. The advantage of the curve fitting method lies in the fact that we do
not have to rely on the mean average precision of a link prediction function. Instead, we can
look at its curve fitting plot and come up with new spectral transformations, if necessary.

Our link prediction experiments on one hundred and eighteen datasets showed that a con-
sistently high prediction accuracy is achieved by our curve fitting method based on the non-
normalized and normalized adjacency matrices (A and N). In particular, we recommend non-
negative path counting (A-POLYN) and the normalized commute-time kernel (N-COM).

In the networks we tested, the spectral extrapolation method provides more accurate link
prediction in many cases, in particular in networks with irregular—but still spectral—growth.
For networks with very regular growth, regular graph kernels perform better however. Across
all datasets, the performance of our methods is better than any single link prediction method.
Our new extrapolation method is also parameter free: Not only are there no parameters, as
in various graph kernels, but our methods make the choice of a specific spectral growth model
unnecessary.
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Chapter 5

Signed Networks

As we saw in previous chapters, many graph-theoretic data mining problems can be solved
by spectral methods which consider matrices associated with a given network and compute
their eigenvalues and eigenvectors. Common examples are spectral clustering, graph drawing
and graph kernels used for link prediction and link weight prediction. In the usual setting,
only graphs with unweighted or positively weighted edges are supported. Some data mining
problems however apply to signed graphs, i.e. graphs that contain positively and negatively
weighted edges. In this chapter, we extend our spectral machine learning methods to the signed
case using specially-defined characteristic matrices.

Intuitively, a positive edge in a graph denotes proximity or similarity. Analogously, a neg-
ative edge may denote dissimilarity or distance. Negative edges are found in many types of
networks: social networks may contain not just friend but also foe links, and connections be-
tween users and products may denote like and dislike. In other cases, negative edges may be
introduced explicitly, as in the case of constrained clustering, where some pairs of points must

or must not be in the same cluster. These problems can all be modeled with signed graphs. In
order to do this, we define variants of the Laplacian and related matrices that result in signed
variants of spectral clustering, prediction and visualization methods.

A main contribution in this chapter is the definition of the Laplacian matrix for signed
networks, and therefore this chapter puts a larger emphasis on the Laplacian matrix than other
chapters. The second contribution of this chapter is a verification of the multiplication rule
summarized as The enemy of my enemy is my friend, which amounts to multiplying weights
of adjacent edges. As we will see, using both the adjacency and the Laplacian matrix of
signed graphs assumes this multiplication rule. In this chapter, we will consider only undirected
signed graphs. Directed and bipartite signed graphs are introduced in the next chapter. Other
contributions in this chapter are a new spectral graph drawing algorithm for signed graphs,
the definition of the algebraic conflict ξ, the introduction of signed spectral clustering, the
application of Laplacian graph kernels to link sign prediction and the signed resistance distance.

We begin by a short review of related work in Section 5.1. Then, we introduce the Laplacian
matrix of signed graphs by considering the problem of graph drawing in Section 5.2. Section 5.3
then gives precise mathematical definitions related to signed graphs. A theoretical analysis of
the spectrum of the Laplacian matrix of signed graphs is given in Section 5.4. The related
problem of spectral clustering in signed graphs is described in Section 5.5. Section 5.6 then
reviews link prediction functions for signed networks, and presents experimental results of the
methods presented in the previous chapter for signed graphs. Section 5.7 then introduces the
concepts of conflict and centrality in signed networks. Section 5.8 gives alternative derivations
of the Laplacian matrix for signed graphs. Finally, Section 5.9 reviews related approaches that
are not otherwise covered in the chapter.
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5.1 Background

Negative edges can be found in many types of networks. Applications use unipartite signed
graphs to model either enmity in addition to friendship, distrust in addition to trust, or positive
and negative ratings between users. Early uses of signed graphs can be found in anthropology,
where negative edges have been used to denote antagonistic relationships between tribes [HH83].
In this context, the sociological notion of balance is defined as the absence of negative cycles,
i.e. the absence of cycles with an odd number of negative edges [Har53, DM96]. Other so-
ciological applications of signed networks include student relationships [HJD+04] and voting
processes [LHK10a].

Recent studies [HWSB08] describe the social network extracted from Essembly, an ideolog-
ical discussion site that allows users to mark other users as friends, allies and nemeses, and
discuss the semantics of the three relation types. These works model the different types of edges
by means of three subgraphs. Other recent work considers the task of discovering communities
from social networks with negative edges [YCL07].

In trust networks, nodes represent persons or other entities, and links represent trust re-
lationships. To model distrust, negative edges are then used. Work in that field has mostly
focused on defining global trust measures using path lengths or adapting PageRank [KD08,
GKRT04, KSGM03, TB06, MH05].

In applications where users can rate each other, we can model ratings as like and dislike,
giving rise to positive and negative edges. In practice, ratings are given on a scale with more
than two levels, and signed edge weights are derived by subtracting the overall mean rating from
each edge weight, i.e. by additive normalization. As an example, consider the the Ĺıb́ımseti.cz
dating site, where users can rate each other on a scale from 1 to 10. By subtracting the mean
rating 5.9 from every rating, all ratings in the range {1, . . . , 5} result in negative edge weights.

Mathematically, a signed graph can be defined as G = (V,E, σ), where V is the vertex set,
E is the edge set, and σ : E → {+,−} is the sign function [Zas08]. The sign function σ assigns a
positive or negative sign to each edge. In this work, we will identify a signed graph G = (V,E, σ)
with a weighted graph G = (V,E,w) in which the weight function is given by w(i, j) = +1 when
σ({i, j}) = + and w(i, j) = −1 when σ({i, j}) = −. In fact, we can model weighted signed
graphs as weighted graphs in which we allow any real value for the weight w(i, j). In the rest of
this chapter, all networks will therefore be considered to be weighted and signed. A synthetic
example of a signed network is given in Figure 5.1. In all drawings of signed graphs, we will
show positive edges as solid green lines and negative edges as dashed red lines.

As for unsigned graphs, the adjacency matrix A is defined using Aij = w(i, j) when {i, j} ∈
E and Aij = 0 otherwise. A is symmetric. The diagonal degree matrix D for a signed graph
is defined using Dii =

∑

j |Aij |, i.e. as the sum of the absolute weights of incident edges. If
all edge weights are in {+1,−1}, Dii is simply the number of nodes adjacent to the node i,
regardless of edge signs. The Laplacian matrix of a signed graph is then defined as L = D−A.
The reason for using the absolute value in the definition of D will be made clear in the next
section, when we will derive the signed Laplacian matrix L = D − A in the context of graph
drawing.

The spectrum of the signed Laplacian matrix L = D−A is studied in [Hou05], where it is
established that the signed Laplacian is positive-definite when each connected component of a
graph contains a cycle with an odd number of negative edges. Basic properties of the Laplacian
matrix for signed graphs are given in [HLP03].
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Figure 5.1: An example of an undirected signed graph, with positive edges represented as solid
green lines and negative edges represented as dashed red lines. All signed networks considered
in this chapter are undirected such as this one.

5.2 Signed Graph Drawing

To motivate signed spectral graph theory, we consider the problem of drawing signed graphs,
and show how it naturally leads to the signed normalized Laplacian. Complete definitions of all
terms are given in the next section. We will begin by showing how the signed Laplacian matrix
arises naturally in the task of drawing graphs with negative edges when one tries to place each
node near to its positive neighbors and opposite to its negative neighbors, extending a standard
method of graph drawing in the presence of only positive edges.

The Laplacian matrix turns up in graph drawing when we try to find an embedding of a graph
into a plane in a way that adjacent nodes are drawn near to each other [BN02]. In the literature,
signed graphs have been drawn using eigenvectors of the signed adjacency matrix [BFL06].
Instead, our approach consists of using the Laplacian to draw signed graphs, in analogy with
the unsigned case. To do this, we will stipulate that negative edges should be drawn as far
from each other as possible. First however, we review the derivation of the Laplacian matrix of
unsigned graphs using the problem of graph drawing.

5.2.1 Unsigned Graphs

We now describe the general method for generating an embedding of the nodes of an unsigned
graph into the plane using the Laplacian matrix. Let G = (V,E) be a connected unsigned
graph with adjacency matrix A. We want to find a two-dimensional drawing of G in which
each vertex is drawn near to its neighbors. This requirement gives rise to the following vertex
equation, which states that every vertex is placed at the mean of its neighbors’ coordinates,
weighted by the weight of the connecting edges. Let X ∈ R

n×2 be a matrix whose columns are
the coordinates of all nodes in the drawing, then we have for each node i:

Xi• =





∑

{i,j}∈E

Aij





−1
∑

{i,j}∈E

AijXj• (5.1)

Rearranging and aggregating the equation for all i we arrive at

DX = AX (5.2)

⇔ LX = 0
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where D is the diagonal matrix defined by Dii =
∑

j Aij and L = D−A is the non-normalized

Laplacian of G. In other words, the columns of X should belong to the null space1 of L, which
leads to the degenerate solution of Xi• = 1 for all i, i.e. each Xi• having all components equal, as
1 is an eigenvector of L with eigenvalue zero. To exclude that solution, we require additionally
that the columns X be orthogonal to the all-ones vector 1. Additionally, to avoid the degenerate
solution Xi• = Xj• for i 6= j, and require that all columns of X be orthogonal. This leads to
Xi• being the eigenvectors associated with the two smallest eigenvalues of L different from zero.
This solution results in a well-known satisfactory embedding of positively weighted graphs. Such
an embedding is related to the resistance distance (or commute-time distance) between nodes
of the graph [BN02].

Note that Equation (5.2) can also be transformed to X = D−1AX, leading to the eigenvec-
tors of the asymmetric matrix D−1A. This alternative derivation is not investigated here.

5.2.2 Signed Graphs

We now extend the graph drawing method described in the previous section to graphs with
positive and negative edge weights. To adapt Expression (5.1) to negative edge weights, we
interpret a negative edge as an indication that two vertices should be placed on opposite sides
of the drawing. Therefore, we take the opposite coordinates −Xj• of vertices j adjacent to i
through a negative edge, and use the absolute value of edge weights to compute the mean, as
pictured in Figure 5.2. We will call this construction antipodal proximity.

(a) Unsigned graph (b) Signed graph

Figure 5.2: Drawing the vertex i at the mean coordinates of its neighbors j1, j2, j3 by proximity
and antipodal proximity. (a) In unsigned graphs, a vertex i is placed at the mean of its neighbors
j1, j2, j3. (b) In signed graphs, a vertex i is placed at the mean of its positive neighbors j1, j2
and antipodal points −j3 of its negative neighbors.

This leads to the vertex equation

Xi• =





∑

{i,j}∈E

|Aij |





−1
∑

{i,j}∈E

AijXj• (5.3)

resulting in a signed Laplacian matrix L = D−A in which we define Dii =
∑

j |Aij |:

DX = AX (5.4)

⇔ LX = 0

1The null space of L, i.e. the set of vectors x such that Lx = 0, is also called the kernel of L. In this work,
we however use the word kernel only to refer to positive-semidefinite functions of two variables.
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This definition of the degree matrix D for signed graphs reduces to the definition without the
absolute value for unsigned graphs. As we will see in the next section, L is always positive-
semidefinite, and is positive-definite for graphs that are unbalanced, i.e. graphs that contain
cycles with an odd number of negative edges. To obtain a graph drawing from L, we can thus
distinguish three cases, assuming that G is connected:

• If all edges are positive, then L has one eigenvalue zero, and the eigenvectors of the two
smallest nonzero eigenvalues can be used for graph drawing.

• If the graph is unbalanced, L is positive-definite and we can use the eigenvectors of the
two smallest eigenvalues as coordinates.

• If the graph is balanced, its spectrum is equivalent to that of the corresponding unsigned
Laplacian matrix, up to signs of the eigenvector components. Using the eigenvectors of
the two smallest eigenvalues (including zero), we arrive at a graph drawing with all points
being placed on two parallel lines, reflecting the perfect 2-clustering present in the graph.

5.2.3 Synthetic Examples

Figure 5.3 shows four small synthetic signed graphs drawn using the eigenvectors of three
characteristic graph matrices. For each synthetic signed graph, let A be its signed adjacency
matrix, L = D − A its signed Laplacian matrix, and L̄ = D̄ − Ā the Laplacian matrix of
the corresponding unsigned graph Ḡ = |G|, i.e. the same graph as G, only that all edges are
positive. For A, we use the eigenvectors corresponding to the two largest absolute eigenvalues.
For L and L̄, we use the eigenvectors of the two smallest nonzero eigenvalues. These small
synthetic examples are chosen to display the basic spectral properties of these three matrices.
All edges have weight ±1, and all graphs contain cycles with an odd number of negative edges.
Column (a) shows all graphs drawn using the eigenvectors of the two largest eigenvalues of
the adjacency matrix A. The eigenvectors of largest absolute eigenvalues are taken of A in
analogy with graph kernels based on A, where the largest eigenvalue is mapped to the largest
value. Column (b) shows the unsigned Laplacian embedding of the graphs by setting all edge
weights to +1. Column (c) shows the signed Laplacian embedding. The embedding given by
the eigenvectors of A is clearly not satisfactory for graph drawing. As expected, the graphs
drawn using the ordinary Laplacian matrix place nodes connected by a negative edge near to
each other. The signed Laplacian matrix produces a graph embedding where negative links
span large distances across the drawing, as required.

5.3 Definitions

In this section, we give the definition of the combinatorial and normalized signed Laplacian
matrices of a graph and derive their basic properties. The combinatorial Laplacian matrix of a
signed graph with edge weights restricted to ±1 is described in [Hou05] where it is called the
Kirchhoff matrix (of a signed graph).

Let G = (V,E,w) be an undirected graph with vertex set V , edge set E, and nonzero edge
weights w described by the adjacency matrix A ∈ R

|V |×|V |. If {i, j} is not an edge of the graph,
we set Aij = 0. Otherwise, Aij > 0 denotes a positive edge and Aij < 0 denotes a negative
edge. Unless otherwise noted, we assume G to be connected.

Unsigned Laplacian Matrix Given a graph G with only positively weighted edges, its
ordinary Laplacian matrix is a symmetric |V | × |V | matrix that, in a general sense, captures
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(1)

(2)

(3)

(4)

(a) A (b) L̄ (c) L

Figure 5.3: Four small synthetic signed graphs [(1)–(4)] drawn using the eigenvectors of three
graph matrices. (a) the adjacency matrix A, (b) the Laplacian L̄ = D̄ − Ā of the underlying
unsigned graph Ḡ, (c) the Laplacian D − A. All graphs shown contain negative cycles, and
their signed Laplacian matrices are positive-definite. Edges with weights +1 are shown as solid
green lines and those with weight −1 as red dashed lines.
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relations between individual nodes of the graph. The Laplacian matrix is positive-semidefinite,
and its Moore–Penrose pseudoinverse as defined in Section 4.2.3 can be interpreted as a forest
count [CS98] and can be used to compute the resistance distance between any two nodes [KR93].

Definition 2. The Laplacian matrix L ∈ R
|V |×|V | of a graph G with nonnegative adjacency

matrix A is given by

L = D−A, (5.5)

with the diagonal degree matrix D ∈ R
|V |×|V | given by

Dii =
∑

{i,j}∈E

Aij . (5.6)

This definition is only valid for graph without negatively weighted edges. If negatively
weighted edges are present, this definition must be extended.

Signed Laplacian Matrix If applied to signed graphs, the Laplacian as defined in Equa-
tion (5.5) results in an indefinite matrix, and thus cannot be used as the basis for graph ker-
nels [LW00]. Therefore, we use a modified degree matrix D containing the sum of absolute edge
weights [Hou05].

Definition 3. The Laplacian matrix L ∈ R
|V |×|V | of a signed graph G with adjacency matrix

A is given by

L = D−A, (5.7)

where the signed degree matrix D ∈ R
|V |×|V | is the diagonal matrix given by

Dii =
∑

{i,j}∈E

|Aij |. (5.8)

We prove in Section 5.4 that the signed Laplacian matrix is positive-semidefinite. Note that
for unsigned graphs, the two definitions are equivalent.

Normalized Laplacians Two different matrices are usually called the normalized Laplacian,
and both can be extended to signed graphs. One is the matrix Z = D−1/2LD−1/2 as used in the
rest of this thesis; the other one is D−1A. The normalized Laplacian matrix Z = D−1/2LD−1/2

as defined previously in Equation 2.23 is related to the normalized adjacency matrix N by
Z = I−N. Alternatively, one can use the random walk Laplacian as defined in [Lux07]. When
modeling random walks on an unsigned graph G, the transition probability between node i to j
is given by entries of the stochastic matrix D−1A. This matrix also arises from Equation (5.2)
as the eigenvalue equation u = D−1Au. The matrix I − D−1A is called the random walk
Laplacian and is positive-semidefinite. The random walk normalized Laplacian arises when
considering random walks [DS84], but also when drawing graphs and when clustering using
normalized cuts, as explained in Section 5.5.

The normalized Laplacian matrices can be used instead of the combinatorial Laplacian
matrices in most settings, with good results reported for graphs with very skewed degree dis-
tributions [GMZ03].
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5.4 Signed Spectral Analysis

For an unsigned graph, the Laplacian L is positive-semidefinite, i.e. it has only nonnegative
eigenvalues. It can therefore be used as a kernel. To use the Laplacian L as a kernel when
a graph has negative edges, we have to show that it is positive-semidefinite, too. In this
section, we prove that the Laplacian matrix L of a signed graph is indeed positive-semidefinite,
characterize the graphs for which it is positive-definite, and give the relationship between the
eigenvalue decomposition of the signed Laplacian matrix and the eigenvalue decomposition of
the corresponding unsigned Laplacian matrix. Our characterization of the smallest eigenvalue
of L in terms of graph balance is based on [Hou05].

5.4.1 Positive-semidefiniteness

Theorem 1. The Laplacian matrix L = D−A of a signed graph G is positive-semidefinite.

Proof. We write the Laplacian matrix as a sum over the edges of G:

L =
∑

{i,j}∈E

L{i,j} (5.9)

where L{i,j} ∈ R
|V |×|V | contains the four following nonzero entries:

L
{i,j}
ii = L

{i,j}
jj = |Aij | (5.10)

L
{i,j}
ij = L

{i,j}
ji = −Aij

Let x ∈ R
|V | be a vertex vector. By considering the bilinear form xTL{i,j}x, we see that L{i,j}

is positive-semidefinite:

xTL{i,j}x = |Aij |x2
i + |Aij |x2

j − 2Aijxixj

= |Aij |(xi − sgn(Aij)xj)
2

≥ 0 (5.11)

We now consider the bilinear form xTLx:

xTLx =
∑

{i,j}∈E

xTL{i,j}x ≥ 0

It follows that L is positive-semidefinite.

Another way to prove that L is positive-semidefinite consists of expressing it using the
incidence matrix of G. Assume that for each edge {i, j} an arbitrary orientation is chosen.
Then we define the incidence matrix H ∈ R

|V |×|E| of G as

Hi{i,j} = +
√

|Aij | (5.12)

Hj{i,j} = −sgn(Aij)
√

|Aij |. (5.13)

Here, the letter H is the uppercase greek letter Eta, as used in e.g. [GHKZ11]. We now consider
the product HHT ∈ R

|V |×|V |:

(HHT)ii =
∑

{i,j}∈E

|Aij |

(HHT)ij = −Aij

for diagonal and off-diagonal entries, respectively. Therefore HHT = L, and it follows that L
is positive-semidefinite. This result is independent of the orientation chosen for H.
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5.4.2 Positive-definiteness

We now show that, unlike the ordinary Laplacian matrix, the signed Laplacian matrix is strictly
positive-definite for some graphs, including most real-world networks. The theorem presented
here can be found in [HLP03], and also follows directly from an earlier result in [Zas82].

As with the ordinary Laplacian matrix, the spectrum of the signed Laplacian matrix of a
disconnected graph is the union of the spectra of its connected components. This can be seen by
noting that the Laplacian matrix of an unconnected graph has block-diagonal form, with each
diagonal entry being the Laplacian matrix of a single component. Therefore, we will restrict
ourselves to connected graphs. We begin the analysis by defining the balance of a graph.

Definition 4 (Harary [Har53]). A connected graph with nonzero signed edge weights is balanced

when its vertices can be partitioned into two groups such that all positive edges connect vertices

within the same group, and all negative edges connect vertices of the two different groups.

Figure 5.4 shows a balanced graph partitioned into two vertex sets. Equivalently, unbalanced
graphs can be defined as those graphs containing a cycle with an odd number of negative edges,
as shown in Figure 5.5. To prove that the balanced graphs are exactly those that do not contain
cycles with an odd number of edges, consider that any cycle in a balanced graph has to cross
sides an even number of times. On the other hand, any balanced graph can be partitioned into
two vertex sets by depth-first traversal while assigning each vertex to a partition such that the
balance property is fulfilled. Any inconsistency that arises during such a labeling leads to a
cycle with an odd number of negative edges.

Figure 5.4: The nodes of a graph without negative cycles can be partitioned into two sets such
that all edges inside of each group are positive and all edges between the two groups are negative.
We call such a graph balanced, and the eigenvalue decomposition of its signed Laplacian matrix
L can be expressed as the modified eigenvalue decomposition of the corresponding unsigned
graph’s Laplacian L̄.

Using this definition, we can characterize the graphs for which the signed Laplacian matrix
is positive-definite.

Theorem 2. The signed Laplacian matrix of an unbalanced graph is positive-definite.

Proof. We show that if the bilinear form xTLx is zero for some vector x 6= 0, then a bipartition
of the vertices as described above exists.
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Figure 5.5: An unbalanced graph contains a cycle with an odd number of negatively weighted
edges. Negatively weighted edges are shown as dashed red lines, positively weighted edges are
shown as solid green lines, and edges that are not part of the cycle in black. The presence of
such cycles results in a positive-definite Laplacian matrix L.

Let xTLx = 0. We have seen that for every L{i,j} as defined in Equation 5.10 and any x,
xTL{i,j}x ≥ 0. Therefore, we have for every edge {i, j}:

xTL{i,j}x = 0

⇔ |Aij |(xi − sgn(Aij)xj)
2 = 0

⇔ xi = sgn(Aij)xj

In other words, two components of x are equal if the corresponding vertices are connected by
a positive edge, and opposite to each other if the corresponding vertices are connected by a
negative edge. Because the graph is connected, it follows that all |xi| must be equal. We can
exclude the solution xi = 0 for all i because x is not the zero vector. Without loss of generality,
we assume that |xi| = 1 for all i.

Therefore, x gives a bipartition into vertices with xi = +1 and vertices with xi = −1, with
the property that two vertices with the same value of xi are in the same partition and two vertices
with opposite sign of xi are in different partitions, and therefore G is balanced. Equivalently,
the signed Laplacian matrix L of a connected unbalanced signed graph is positive-definite.

For a general signed graph that need not be connected, we can therefore make the following
statement: The multiplicity of the eigenvalue zero equals the number of balanced connected
components in G [GHKZ11].

5.4.3 Balanced Graphs

We now show how the spectrum and eigenvectors of the signed Laplacian of a balanced graph
arise from the spectrum and the eigenvalues of the corresponding unsigned graph by multipli-
cation of eigenvector components with ±1.

Let G = (V,E,w) be a balanced graph with positive and negative edge weights and Ḡ =
(V,E, w̄) the corresponding graph with positive edge weights given by w̄(e) = |w(e)| for all
edges e ∈ E. Let A and Ā be the adjacency matrices of G and Ḡ. Since G is balanced, there
is a vector x ∈ {−1,+1}|V | such that for all edges {i, j}, sgn(Aij) = xixj .
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Theorem 3. If L is the signed Laplacian matrix of the balanced graph G with bipartition x
and eigenvalue decomposition L = UΛUT, then the eigenvalue decomposition of the Laplacian

matrix L̄ of Ḡ of the corresponding unsigned graph Ḡ of G is given by L̄ = ŪΛŪT where

Ūik = xiUik. (5.14)

Proof. To see that L̄ = ŪΛŪT, note that for diagonal elements, we have Ūi•ΛŪT
i• = x2

iUi•ΛUT
i• =

Ui•ΛUT
i• = Lii = L̄ii. For off-diagonal elements, we have Ūi•ΛŪT

j• = xixjUi•ΛUT
j• =

sgn(Aij)Lij = −sgn(Aij)Aij = −|Aij | = −Āij = L̄ij .
We now show that ŪΛŪT is an eigenvalue decomposition of L̄ by showing that Ū is or-

thogonal. To see that the columns of Ū are indeed orthogonal, note that for any two column
indexes k 6= l, we have ŪT

•kŪ•l =
∑

i∈V ŪikŪil =
∑

i∈V x2
iUikUil = UT

•kU•l = 0 because U is
orthogonal. Changing signs in U does not change the norm of each column vector, and thus
L̄ = ŪΛŪT is the eigenvalue decomposition of L̄.

As shown in Section 5.4.2, the Laplacian matrix of an unbalanced graph is positive-definite
and therefore its spectrum is different from that of the corresponding unsigned graph. Aggre-
gating Theorems 2 and 3, we arrive at our main result.

Theorem 4. The signed Laplacian matrix of a connected graph is positive-definite if and only

if the graph is unbalanced.

Proof. From Theorem 2 we know that every unbalanced connected graph has a positive-definite
Laplacian matrix. Theorem 3 implies that every balanced graph has the same Laplacian spec-
trum as its corresponding unsigned graph. Since the unsigned Laplacian is always singular, the
signed Laplacian of a balanced graph is also singular. Together, these imply that the signed
Laplacian matrix of a connected graph is positive-definite if and only if the graph is unbal-
anced.

The spectra of several large unipartite signed networks are plotted in Figure 5.6.

5.4.4 Algebraic Conflict

The smallest eigenvalue of the Laplacian L of a signed graph characterizes the amount of conflict
present in the graph. We will call this number the algebraic conflict of the graph and denote
it ξ.

Let G = (V,E,w) be a connected signed graph with adjacency matrix A, degree matrix D
and Laplacian L = D − A. Let λ1 ≤ λ2 ≤ . . . ≤ λ|V | be the eigenvalues of L. Because L is
positive-semidefinite (Theorem 1), we have λ1 ≥ 0. According to Theorem 2, λ1 is zero exactly
when G is balanced. Therefore, the value λ1 can be used as an invariant of signed graphs that
characterizes the conflict due to unbalanced cycles, i.e. cycles with an odd number of negative
edges. We will call ξ = λ1 the algebraic conflict of the network. The algebraic conflict is
discussed in [Hou05] and [KSLL10], without being given a specific name.

The algebraic conflict ξ for several signed network datasets is compared in Table 5.1. All
these large networks are unbalanced, and we can for instance observe that the social networks
of the Slashdot Zoo (SZ) and Epinions (EP) are more balanced than the vote network on the
English Wikipedia (EL).

Figure 5.7 plots the algebraic conflict of the signed networks against the network size, includ-
ing signed bipartite networks. The number of signed datasets is small, and we cannot make out
a correlation between ξ and network size, indicating that the algebraic conflict is a meaningful
measure of conflict and does not have to be normalized. This conclusion is however not very
strong due to the fact that only seven signed networks were available to us.
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Figure 5.6: The Laplacian spectra of three signed networks. These plots show the eigenvalues
λ1 ≤ λ2 ≤ . . . of the matrix L = D−A.

From the definition of the algebraic conflict ξ, we can derive a simple theorem stating that
adding an edge of any weight to a signed graph can only increase the algebraic conflict, not
decrease it.

Theorem 5. Let G = (V,E,w) be an undirected weighted signed graph and i, j ∈ V two

vertices such that {i, j} /∈ E, and λ1 the smallest eigenvalue of the Laplacian matrix L of G.

Furthermore, let G′ = (V,E ∪ {i, j}, w′) with w′(e) = w(e) when e ∈ E and w({i, j}) = w
otherwise be the graph G to which an edge with weight w has been added. Then, let λ′

1 be the

smallest eigenvalue of the Laplacian matrix L′ of G′. Then, λ1 ≤ λ′
1.

Proof. We make use of a theorem stated e.g. in [Wil65, p. 97]. This theorem states that
when adding a positive-semidefinite matrix E of rank one to a given symmetric matrix A with
eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn, the new matrix A′ = A+E has eigenvalues λ′

1 ≤ λ′
2 ≤ . . . ≤ λ′

n

which interlace the eigenvalues of A:

λ1 ≤ λ′
1 ≤ λ2 ≤ λ′

2 ≤ . . . ≤ λn ≤ λ′
n
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Table 5.1: The algebraic conflict ξ for several signed unipartite networks. Smaller values
indicate a more balanced network; larger values indicate more conflict.

Network ξ

English Wikipedia (EL) 0.008318 Conflict
Slashdot Zoo (SZ) 0.006183 l
Epinions (EP) 0.004438 Balance
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Figure 5.7: The algebraic conflict ξ, i.e. the smallest eigenvalues of the matrix L = D−A in
signed networks. This plot shows the algebraic conflict and the size of signed networks.

The Laplacian L′ of G′ can be written as L′ = L + E, where E ∈ R
|V |×|V | is the matrix

defined by Eii = Ejj = |w| and Eij = Eji = −w, and Eij = 0 for all other entries. Then
let e ∈ R

|V | be the vector defined by ei =
√

|w|, ej = −sgn(w)
√

|w| and ek = 0 for all other
entries. We have E = eeT, and therefore E is positive-semidefinite.

Now, due to the interlacing theorem mentioned above, adding a positive-semidefinite matrix
to a given symmetric matrix can only increase each eigenvalue, but not decrease it. Therefore,
λ1 ≤ λ′

1.

5.4.5 Practical Considerations

An eigenvalue of zero may or may not be useful depending on the application. When choosing
two eigenvalues of L to draw a signed graph for instance, we can distinguish two cases depending
on the balance of the network:

• Case 1: If the graph is balanced, the smallest eigenvalue of L is zero. Unlike unsigned
graphs however, the corresponding eigenvector is not constant but contains values {±1}
describing the split into two partitions. If we use that eigenvector to draw the graph,
the resulting drawing will place all vertices on two lines. Such an embedding may be
satisfactory in cases where the perfect balance of the graph is to be visualized. If however
positive edges among each partition’s vertices are also to be visible, the eigenvector cor-
responding to the third smallest eigenvalue can be added with a small weight to the first
eigenvector, resulting in a two-dimensional representation of a 3-dimensional embedding.
The resulting three methods are illustrated in Figure 5.8.
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• Case 2: If the graph is unbalanced, all eigenvalues are strictly positive, and the eigen-
vectors corresponding to the two smallest eigenvalues give an adequate two-dimensional
embedding.

(a) (λ1, λ2) (b) (λ2, λ3) (c) (λ1 + 0.3λ3, λ2)

Figure 5.8: Three methods for drawing a balanced signed graph, using a small artificial
example network. (a) Using the eigenvector corresponding to the smallest eigenvalue λ1 = 0,
intra-cluster structure is lost. (b) Ignoring the first eigenvalue misses important information
about the clustering. (c) Using a linear combination of both methods gives a good compromise.

In practice, large graphs are almost always unbalanced as shown in Figure 5.6 and Table 5.1,
and the two smallest eigenvalues give a satisfactory embedding. Figure 5.9 shows large signed
networks drawn using the two eigenvectors of the smallest eigenvalues of the Laplacian matrix
L for three signed networks.
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Figure 5.9: Signed spectral embedding of large networks. For each network, every node is
represented as a point whose coordinates are the corresponding values in the eigenvectors of the
signed Laplacian L corresponding to the two smallest eigenvalues.

5.5 Signed Spectral Clustering

One of the main application areas of the graph Laplacian are clustering problems. In spectral
clustering, the eigenvectors of matrices associated with a graph are used to partition the vertices
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of the graph into well-connected groups. In this section, we show that in a graph with nega-
tively weighted edges, spectral clustering algorithms correspond to finding clusters of vertices
connected by positive edges, but not connected by negative edges.

Spectral clustering algorithms are usually derived by formulating a minimum cut problem
which is then relaxed [MS01, DGK04, Lux07, SM00, NJW01]. The choice of the cut function
results in different spectral clustering algorithms. In all cases, the vertices of a given graph are
mapped into the space spanned by the eigenvectors of a matrix associated with the graph.

In this section we derive a signed extension of the ratio cut, which leads to clustering with
the signed Laplacian L. Analogous derivations are possible for the normalized Laplacians. We
restrict our proofs to the case of clustering vertices into two groups. Higher-order clusterings
can be derived analogously.

5.5.1 Unsigned Graphs

We first review the derivation of the ratio cut in unsigned graphs, which leads to a clustering
based on the eigenvectors of L. Let G = (V,E) be an unsigned graph with adjacency matrix
A. A cut of G is a partition of the vertices V into the nonempty sets V1 and V2, whose weight
is given by

Cut(V1, V2) =
∑

i∈V1,j∈V2

Aij . (5.15)

The cut measures how well the two clusters are connected. Since we want to find two distinct
groups of vertices, the cut must be minimized. Minimizing Cut(V1, V2) however leads in most
cases to solutions separating very few vertices from the rest of the graph. Therefore, the cut is
usually divided by the size of the clusters, giving the ratio cut:

RatioCut(V1, V2) =

(

1

|V1|
+

1

|V2|

)

Cut(V1, V2) (5.16)

To get a clustering, we then solve the following optimization problem:

min
V1⊂V

RatioCut(V1, V \ V1) (5.17)

Let V2 = V \V1. Then this problem can be solved by expressing it in terms of the characteristic
vector u ∈ R

|V | of V1 defined by:

ui =

{

+
√

|V2|/|V1| if i ∈ V1

−
√

|V1|/|V2| if i ∈ V2
(5.18)

We observe that uLuT = 2|V | · RatioCut(V1, V2), and that
∑

i ui = 0, i.e. u is orthogonal to
the constant vector. Denoting by U the vectors u of the form given in Equation (5.18) we have

min
u∈R|V |

uLuT (5.19)

s.t. u · 1 = 0,u ∈ U

This can be relaxed by removing the constraint u ∈ U , giving as solution the eigenvector of L
having the smallest nonzero eigenvalue [Lux07].
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5.5.2 Signed Graphs

We now give a derivation of the ratio cut for signed graphs. Let G = (V,E,w) be a signed graph
with adjacency matrix A. We write A⊕ and A⊖ for the adjacency matrices containing only the
weights of positive and negative edges. In other words, A⊕

ij = max(0,Aij), A
⊖
ij = max(0,−Aij)

and A = A⊕ −A⊖.
For convenience we define positive and negative cuts that only count positive and negative

edges respectively:

Cut⊕(V1, V2) =
∑

i∈V1,j∈V2

A⊕
ij (5.20)

Cut⊖(V1, V2) =
∑

i∈V1,j∈V2

A⊖
ij (5.21)

In these definitions, we allow V1 and V2 to be overlapping. For a vector u ∈ R
|V |, we consider

the bilinear form uTLu. As shown in Equation (5.11), this can be written in the following way:

uTLu =
∑

{i,j}∈E

|Aij |(ui − sgn(Aij)uj)
2

For a given partition V = V1 ∪̇ V2, let u ∈ R
|V | be the following vector:

ui =







+1
2

(√

|V1|
|V2|

+
√

|V2|
|V1|

)

if i ∈ V1

−1
2

(√

|V1|
|V2|

+
√

|V2|
|V1|

)

if i ∈ V2

(5.22)

The corresponding bilinear form then becomes:

uTLu =
∑

{i,j}∈E

|Aij | (ui − sgn(Aij)uj)
2

= |V |
(

1

|V1|
+

1

|V2|

)

(

2 · Cut⊕(V1, V2) + Cut⊖(V1, V1) + Cut⊖(V2, V2)
)

This leads us to define the following signed cut of (V1, V2):

SignedCut(V1, V2) = 2 · Cut⊕(V1, V2) + Cut⊖(V1, V1) + Cut⊖(V2, V2) (5.23)

and to define the signed ratio cut as follows:

SignedRatioCut(V1, V2) =

(

1

|V1|
+

1

|V2|

)

SignedCut(V1, V2) (5.24)

Therefore, the following minimization problem solves the signed clustering problem:

min
V1⊂V

SignedRatioCut(V1, V \ V1) (5.25)

We can now express this minimization problem using the signed Laplacian, where U denotes
the set of vectors of the form given in Equation (5.22):

min
u∈R|V |

uLuT (5.26)

s.t. u ∈ U
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Note that we lose the orthogonality of u to the constant vector. This can be explained by the
fact that if G contains negative edges, the smallest eigenvector can always be used for clustering:
If G is balanced, the smallest eigenvalue is zero and its eigenvector equals (±1) and gives the
two clusters separated by negative edges. If G is unbalanced, then the smallest eigenvalue of L
is larger than zero by Theorem 2, and the constant vector is not an eigenvalue.

The signed cut SignedCut(V1, V2) counts the number of positive edges that connect the two
groups V1 and V2, and the number of negative edges that remain in each of these groups. Thus,
minimizing the signed cut leads to clusterings where two groups are connected by few positive
edges and contain few negative edges inside each group. This signed ratio cut generalizes the
ratio cut of unsigned graphs and justifies the use of the signed Laplacian L for spectral clustering
of signed graphs.

5.5.3 Signed Clustering using Other Matrices

When instead of normalizing with the number of vertices |V1| we normalize with the number of
edges vol(V1), the result is a spectral clustering algorithm based on the eigenvectors of D−1A
introduced by Shi and Malik [SM00]. The cuts normalized by vol(V1) are called normalized
cuts. In the signed case, the eigenvectors of D−1A lead to the signed normalized cut:

SignedNormalizedCut(V1, V2) =

(

1

vol(V1)
+

1

vol(V2)

)

SignedCut(V1, V2) (5.27)

A similar derivation can be made for normalized cuts based on N = D−1/2AD−1/2, gen-
eralizing the spectral clustering method of Ng, Jordan and Weiss [NJW01]. The dominant
eigenvector of the signed adjacency matrix A can also be used for signed clustering [BL04]. As
in the unsigned case, this method is not suited for very sparse graphs, and does not have an
interpretation in terms of cuts. The following section gives an example of clustering a small,
signed graph.

5.5.4 Anthropological Example

As an application of signed spectral clustering to real-world data, we show the dataset of [Rea54].
This dataset describes the relations between sixteen tribal groups of the Eastern Central High-
lands of New Guinea [HH83]. Relations between tribal groups in the Gahuku–Gama alliance
structure can be friendly (rova) or antagonistic (hina). We model the dataset as a graph with
edge weights +1 for friendship and −1 for enmity.

The resulting graph contains cycles with an odd number of negative edges, and therefore
its signed Laplacian matrix is positive-definite. We use the eigenvectors of the two smallest
eigenvalues (λ1 = 1.04 and λ2 = 2.10) to embed the graph into the plane. The result is shown
in Figure 5.10. We observe that indeed the positive (green) edges are short, and the negative
(red) edges are long. Looking at only the positive edges, the drawing makes the two connected
components easy to see. Looking at only the negative edges, we recognize that the tribal groups
can be clustered into three groups, with no negative edges inside any group. These three groups
correspond indeed to a higher-order grouping in the Gahuku–Gama society [HH83]. An example
on a larger network is shown in the next section, using the genre of movies in a user–item graph
with positive and negative ratings.

5.6 Link Sign Prediction

In this section, we introduce the link sign prediction problem, and show how it can be solved
using the signed adjacency matrix A and the signed Laplacian matrix L. Since a signed network
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Figure 5.10: The tribal groups of the Eastern Central Highlands of New Guinea from the
study of Read [Rea54] drawn using signed Laplacian graph embedding. Individual tribes are
shown as vertices of the graphs, with friendly relations shown as green edges and antagonistic
relations shown as red edges. The three higher-order groups as described by Hage & Harary
in [HH83] are linearly separable.

contains two types of edges, we will not look at the problem of link prediction, but at the problem
of link sign prediction. In the link sign prediction problem, a network of signed edges is given,
along with a set of edges for which the sign must be predicted. Thus, the task is not to predict
which edge is going to appear in a network, but what kind of edge will appear between two
given nodes.

The adjacency kernels defined in Section 3.3.3 and the Laplacian kernels defined in Sec-
tion 4.2.3 were introduced there for unsigned graphs. We will now extend these to signed
graphs.

5.6.1 Functions of the Signed Adjacency Matrix

The signed adjacency matrix A ∈ R
|V |×|V | can be used to define link sign prediction functions.

The interpretation is then similar to that of the unsigned case: a weighted sum over all paths
between two nodes. However, in the signed case, paths are additionally weighted by their sign,
defined as the product of edge weights.

We will first define the weight of a path as the product of its edge weights. The weight
of a n-path p = (i1, i2, . . . , in+1) is w(p) =

∏n
k=1Aikik+1

. Since edge weights are positive and
negative, the weight of a path can be positive or negative in accordance with the multiplication
rule described at the beginning of this chapter. Consider the square A2. Its entries are given
by

(A2)ij =
∑

k

AikAkj
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In other words, (A2)ij contains a sum over 2-paths between i and j, weighted by their path
weight. In the simple case of edge weights in {−1,+1}, (A2)ij equals the number of positive
2-paths minus the number of negative 2-paths between i and j. This extends the triangle closing
model as a link prediction method to signed networks.

Analogously, the power Ak contains the sum of all k-paths between any node pair, weighted
by path weights. Since the spectral transformations of A that we consider can be expressed
as a power sum over A, they can be interpreted as a sum of all paths between any two nodes,
weighted by the product of their path weight and a function of their length. This extends path
counting as a link prediction method to signed networks. As in the unsigned case, it follows that
any power series with nonnegative and nonincreasing coefficients is a suitable link prediction
function. We present two special cases:

Signed Exponential Kernel As for unsigned graphs, the matrix exponential is a special
case of path counting, and can be used as a graph kernel.

KEXP(A) = exp(αA) =

∞
∑

k=0

αk

k!
Ak (5.28)

α > 0 is a parameter that has to be learned using the curve-fitting method described in Sec-
tion 4.2.

Signed Neumann Kernel The Neumann kernel is defined analogously to the unsigned case:

KNEU(A) = (I− αA)−1 =

∞
∑

k=0

αkAk (5.29)

As in the exponential kernel, α is a parameter that can be learned by curve fitting. For the
Neumann kernel to be well-defined we must require α−1 > |λ1|, where |λ1| is the largest absolute
eigenvalue of A. Otherwise, the underlying spectral transformation function 1/(1− αλ) would
result in negative values for the largest eigenvalues.

5.6.2 Functions of the Normalized Adjacency Matrix

Analogously, all functions of the normalized adjacency matrix N given in Section 3.3 can be
applied to signed networks. The normalized version of the signed exponential and Neumann
kernels are given by:

KEXP(N) = exp(αN) =
∞
∑

k=0

αk

k!
Nk (5.30)

KNEU(N) = (I− αN)−1 =
∞
∑

k=0

αkNk (5.31)

A power series of N corresponds to normalized path counting:

p(N) =

∞
∑

k=0

αkN
k (5.32)
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5.6.3 Signed Laplacian Kernels

We can apply the Laplacian kernels as defined in Section 4.2.3 to signed graphs, giving signed
Laplacian kernels. These kernels are all functions of the Laplacian matrix L and extend readily
to signed graphs by using the signed Laplacian matrix L as given in Definition 3. The normalized
versions of these kernels also exist, and are based on the matrix Z. As shown in Section 5.4.1,
the signed Laplacian matrix L is positive-definite and can therefore be used as the basis of
kernels.

KCOM(L) = L+ (5.33)

KCOM(Z) = Z+ (5.34)

As noted in Section 5.4, L is positive-definite for unbalanced signed graphs, in which case the
pseudoinverse reduces to the ordinary matrix inverse, because all eigenvalues of L are then
different from zero. The signed Laplacian graph kernel L+ can also be interpreted as the signed
resistance distance kernel [KSB+08]. A separate derivation of the signed resistance distance
kernel is given in the next section.

By regularization of the commute-time kernels we arrive at the signed regularized Laplacian
kernels:

KREG(L) = (I+ αL)−1 =

∞
∑

k=0

(−α)kLk (5.35)

KREG(Z) = (I+ αZ)−1 =

∞
∑

k=0

(−α)kZk (5.36)

We extend the heat diffusion kernel to signed graphs giving

KHEAT(L) = exp(−αL) =
∞
∑

k=0

(−α)k

k!
Lk (5.37)

KHEAT(Z) = exp(−αZ) =
∞
∑

k=0

(−α)k

k!
Zk (5.38)

By considering power series of L+ and I−Z, we arrive and the signed generalized Laplacian
kernels:

KGEN(L) = p(L)+ =

(

∞
∑

k=0

αkL
k

)−1

(5.39)

KGEN(Z) = p(I− Z) =

∞
∑

k=0

αk(I− Z)k (5.40)

5.6.4 Experiments

The signed graph kernels can be used for link prediction analogously to the unsigned kernels,
implementing the multiplication rule for edge weights. To evaluate their performance at link
prediction, we use the signed unipartite networks in our network collection. Four networks in
our collection are signed and unipartite:

• The Slashdot Zoo (SZ) is a social network consisting of the relationships friend and foe.
These relations are directed and their opposites are called fan and freak [KLB09].
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• Epinions (EP) is a signed trust network, containing directed trust and distrust links [MA05].

• Ĺıb́ımseti.cz (LI) is a dating community where users can rate each other’s profile. Ratings
range from 1 to 10. We subtract the overall mean rating giving positive and negative
ratings [BP07].

• The English Wikipedia (EL) votes consists of users that vote for and against each other
in administration votes [LHK10a].

As the task for evaluation, we choose the prediction of link sign. The setup is the same as
in the unsigned case described in Section 4.1.3, with the difference that we do not try to predict
whether a node is present in the test set, but only its weight. In previous evaluations using
unsigned networks, we used a test set of edges known to be present in the network and a zero

test set of node pairs known to not correspond to any edges. These can also be called non-edges.
Scores are then computed for all edges and non-edges in the test and zero test sets. The mean
average precision is then used to compare the computed scores to each edge’s or non-edge’s
membership in the test set and zero test set. Because in the signed case edges are already
weighted, we do not need a zero test set of non-edges. Instead, we split the test set of edges into
positive and negative edges by their weight, and use the mean average precision to compare the
computed scores to each test edge’s original sign. In networks with weighted edges that do not
assume negative values such as the ten point rating scale ({1, . . . , 10}) of Ĺıb́ımseti.cz (LI), we
count an edge as positive when its weight is above or equal to the overall mean edge weight,
and as negative otherwise. As link prediction functions, we use the adjacency and Laplacian
kernels described in Table 4.4, using the signed variants of the graph characteristic matrices A,
N, L and Z.

Figure 5.11 gives an example of the curve fitting method for signed graphs. The evaluation
results are summarized in Figure 5.12, and full evaluation results are given in Appendix B. The
best performing spectral transformations for all unipartite signed network datasets is given in
Table 5.2.
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Figure 5.11: Curve fitting in networks with signed edge weights. The plot represents the
curve fitting problem described in Section 4.2.2, applied to the signed network of the Slashdot
Zoo (SZ) using the adjacency matrix A.

Observations Due to the small number of signed unipartite networks available in this study,
we cannot make any statistically significant statement about which link sign prediction performs
best. However, an examination of the results of Figure 5.12 suggests that the various link
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Table 5.2: The best performing link prediction functions for the signed unipartite datasets.
For each dataset, we show the source and target matrices, the curve fitting model and the link
prediction method that performs best.

Dataset Best transformation Best method MAP

Slashdot Zoo (SZ) Aa +AT
a → Ab +AT

b A-POLYN 0.397
Epinions (EP) Aa +AT

a → Ab +AT
b A-POLY 0.305

Ĺıb́ımseti.cz (LI) Aa +AT
a → Ab +AT

b A-POLY 0.636
English Wikipedia (EL) Aa +AT

a → Ab +AT
b A-EXP 0.828

0 0.2 0.4 0.6 0.8 1

English Wikipedia (EL)

Libimseti.cz (LI)

Slashdot Zoo (SZ)

Epinions (EP)

Mean average precision

 

 
P−AA

A−POLYN

N−COM

L−REG

X−ABS

Figure 5.12: The mean average precision of link signed prediction methods on unipartite,
signed networks. This figure shows a selection of link sign prediction methods, one representative
method for each group.

prediction methods applied to unweighted networks perform similarly at the task of link sign
prediction in signed networks.

5.7 Interpretation of Conflict and Centrality

In this section, we argue that a signed spectral drawing confers information about the conflict
as well as about the centrality of a network, and propose a method to visualize the conflict
information independently of the centrality information.

In unsigned networks, spectral drawings show the centrality of nodes: Vertices connected
to many other vertices by short paths are placed centrally, whereas badly connected nodes
are placed near the edge of the drawing. On the other hand, conflict networks often contain
clusters of users connected by negative edges. In order to separate these clusters visually, they
should be placed at a certain distance from each other, as illustrated in Figure 5.13. These
two requirements are in opposition to each other when we consider users that could be called
extreme, i.e. those that have many negative incident edges: They should be placed centrally
according to the first requirement, and decentrally according to the second requirement.
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Observing the actual embedding produced by using the signed Laplacian L in Figure 5.13,
we see that both requirements are implemented by our signed spectral graph drawing method:
The decentral node i is drawn at the edge of the plot, and two antagonistic groups of users
A and B are visible. However, the two groups are placed more centrally than i, being better
connected with the graph as a whole. If our goal is to visualize the conflict, these two clusters
should be placed further from the center of the drawing. For these reasons, we propose to
project all points onto the unit circle, discarding the centrality information, and only retaining
the conflict information. The resulting drawings are shown in Figure 5.14. We observe some
graphs to have two, three, four or no main clusters in conflict with each other.

(a) Centrality (b) Conflict (c) Combination

Figure 5.13: Two conflicting requirements leading to suboptimal drawings: (a) Badly-
connected vertices placed at the periphery of the drawing (artificial network), using eigenvectors
of the Laplacian L̄ of the underlying unweighted graph Ḡ. (b) Large distance between main
conflict cluster (artificial network), using eigenvectors of the Laplacian L. (c) Result: Distance
between conflict clusters is less than between outliers (Collaboration network of Wikipedia ar-
ticle Toilets in Japan [BKLR09]), using eigenvectors of the Laplacian L. This last network
contains only negative edges.
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(c) Criticism of Prem Rawat

Figure 5.14: Drawing signed graphs by projecting points on the unit circle, showing networks
with (a) two, (b) three and (c) four conflict clusters. Each plots shows the collaboration network
of a single article of the English Wikipedia, as described in [BKLR09].
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5.8 Alternative Derivations

This section presents two alternative derivations of the signed Laplacian matrix, using electrical
networks and Markov random fields. The purpose of these derivations is to demonstrate that
the Laplacian L of a signed graph arises naturally in multiple independent ways.

5.8.1 Signed Resistance Distance

The unsigned resistance distance and heat diffusion kernels are justified by physical interpre-
tations. In the presence of signed edge weights, these interpretations are still valid using the
following formalism, which we describe in terms of electrical resistance networks.

A positive electrical resistance indicates that the potentials of two connected nodes will
tend to each other: The smaller the resistance, the more both potentials approach each other.
Therefore, an edge with positive weight w can be represented as a resistor with a resistance
value of 1/w. If the edge has negative weight −w, we can interpret the connection as consisting
of a resistor of the corresponding positive weight 1/w in series with an inverting amplifier that
guarantees its ends to have opposite voltage, as depicted in Figure 5.15. In other words, two
nodes connected by a negative edge will tend to opposite voltages.

1/w

1/w
+w

−w

Figure 5.15: An edge with a negative weight is interpreted as a positive resistor in series with
an inverting component.

Thus, a positive edge with weight +w is modeled by a resistor of resistance 1/w and a
negative edge with weight −w is modeled by a resistor of resistance 1/w in series with a (hypo-
thetical) electrical component that assures its ends have opposite electrical potential. Electrical
networks with such edges can be analysed in the following way: In an electrical network with
adjacency matrix A, let ui be the electric potential of node i. For each i, we can write ui as a
mean of the potentials of i’s neighbors, weighted by edge weights.

ui =





∑

{i,j}∈E

Aij





−1
∑

{i,j}∈E

Aijuj

If edges have negative weights, the inversion of potentials results in the following equation:

ui =





∑

{i,j}∈E

|Aij |





−1
∑

{i,j}∈E

Aijuj

Thus, electrical networks give the equation Du = Au and the matrices D−1A and D − A.
Because such an inverting amplifier needs the definition of a specific value of zero voltage, the
resulting model loses one degree of freedom, explaining that in the general case the Laplacian L
has rank one greater than the Laplacian L̄ of the underlying unsigned graph. This is reflected
in the fact that zero is not an eigenvalue of L for signed graphs in general.
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5.8.2 Markov Random Fields

It is possible to derive the signed Laplacian matrix by considering Markov random fields
over bipartite, signed graphs. A Markov random field is a network of random variables with
the property that each random variable is directly dependent only on its immediate neigh-
bors [Roz83, Pea88]. Markov random fields are used for instance in computer graphics for
image segmentation, image enhancement and reconstruction of missing image parts [CJ93].

In general, Markov random fields can be used whenever a graph or network is given and
a prediction has to be made for missing values. The graph underlying a Markov random field
is called a Markov network. Let X = {X1, . . . , Xn} be a set of random variables. A Markov
random field is given by:

• A graph G = (X,E) where the vertices are the random variables and edges represent
dependencies between the random variables.

• The set C of all cliques of maximal size in G. A clique in G is a subset of X with an edge
between all pairs of vertices. A clique is maximal if no vertex can be added retaining the
clique property.

• For each maximal clique c ∈ C, a potential function ϕc only dependent on the random
variables corresponding to the vertices in c. ϕc is an indicator of the coherence of the
global state: A global state is more likely if the potential functions have high values.

The global joint probability distribution of the Markov random field is given by:

P (X = x) =

(

∑

y

exp
∑

c∈C

ϕc(y)

)−1

exp
∑

c∈C

ϕc(x) (5.41)

An alternative definition moves the exponential inside the sum turning it into a product.
The potentials ϕc may take on negative values. A set of random variables whose joint probability
can be expressed in this way is a Markov random field. The corresponding graph is the Markov
network. In the typical prediction scenario, some nodes have known values, and the values of
others must be predicted. Finding a global optimum for the assignments of the variables X
is hard, and one therefore resorts to stochastic relaxation [Roz83, Pea88]. Correspondingly,
the search for an optimal assignment of unknown ratings is done using an iterative algorithm:
At each step, the value of each variable is updated to maximize the joint probability of the
global assignment. The iteration stops once the assigned values reach a stable state where no
single-node update can increase the joint probability.

Algorithm 1 described below represents the basic method used to find a global state having
high probability. The algorithm will stop when the joint probability cannot be increased by
local changes to single node states.

The Markov Network of Ratings

As an application of Markov random fields, assume a signed, bipartite graph of ratings between
users and items. In this section, we will depart from the notational conventions used elsewhere
in this thesis and use the notation that is usual for random variables. We define two sets of
random variables, those corresponding to users and those corresponding to items:

X = {U1, . . . , Um, I1, . . . , In} (5.42)

Given a starting user U1, we let each variable Xi ∈ X represent the agreement between user
U1’s taste and Xi. If Xi is a user vertex, the state of Xi represents the correlation between U1’s
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Input: a graph G = (X,E) with given clique potentials
Output: an assignment x of states to nodes in X

initialize all xi for all random variables Xi

repeat
for all unknown nodes xi do
Update xi in function of adjacent node states and of incident clique potential functions

end for
until x converges

Algorithm 1: An iterative algorithm used to find a probable global state of a Markov network.

and Xi’s tastes. For an item Ij , the value of the corresponding random variable represents the
rating U1 would give to Ij .

Ratings in collaborative filtering databases are usually constrained to a set of numbers with
the highest value representing a good rating and the smallest value represents a bad rating.
We will assume the ratings are scaled to the range [−1,+1]. From this interval, a finite set
K ⊂ [−1,+1] of values is chosen as possible states of the random variables. We first perform
the calculation as if the variables were continuous in [−1,+1] and then show how to map values
back to discrete states. The random variable corresponding to U1 is assigned the fixed value of
+1, representing maximal agreement.

In a bipartite rating graph, the set of maximum cliques corresponds exactly to the set of
edges. Each maximal clique contains two adjacent vertices. For each edge {i, j}, a potential
function ϕ{i,j} must be given. The potential function is an indicator of the probability for
adjacent vertices of taking specific values in function of the edge rating. If users would not only
rate items but also other users, we could analyse known rating patterns probabilistically and
design a potential function that models available data accurately. However, because user ratings
of other users are not available, we will formulate a list of requirements a potential function
must fulfill and then find a suitable function.

• The potential must only depend on the edge it covers and the two random variables whose
vertices are incident to the edge. The edge will be represented here only by its rating value.

• The potential should be proportional to the absolute value of the rating. Extremal ratings
of value +1 and −1 are considered stronger than neutral or near-neutral ratings.

• The potential should decrease with the absolute value of the node differences if the rating
is positive and increase with it if the rating is negative.

Let w be the rating of an edge, and a and b the value of the two adjacent random variables. If
w = 1, then a suitable potential function is given by the negated square difference −(a − b)2.
If w = −1, taking the sum instead of the difference gives the compliant expression −(a + b)2.
Both cases can be merged into the potential function − (a− sgn(w) · b)2. Considering the second
requirement, we finally arrive at a form that also covers the case w = 0:

ϕw(a, b) = −|w| (a− sgn(w) · b)2 (5.43)

Note that ϕw(a, b) = ϕw(b, a). As we will see below, taking the square will simplify later
calculations. At each iteration, we search an assignment x′i to the random variable Xi that
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maximizes the joint probability of X.

x′i = argmaxxi
P (X = x)

= argmaxxi

(

∑

y

exp
∑

c∈C

ϕc(y)

)−1

exp
∑

c∈C

ϕc(x)

= argmaxxi

∑

c∈C

ϕc(x)

= argmaxxi

∑

j

−|wij |(xi − sgn(wij) · xj)2

= argminxi
x2i
∑

j

|wij | − 2xi
∑

j

wijxj + |wij |
∑

j

x2j

This is a polynomial of the form ax2i +bxi +c. Its coefficient a is only zero if all ratings attached
to xi are neutral, in which case the node cannot be part of the calculation. Otherwise, a is
strictly positive, and the polynomial takes its global minimum at −b/2a, which gives

x′i =

∑

j wijxj
∑

j |wij |
. (5.44)

This expression corresponds to a weighted sum of the values xj , with weights wij . This weighted
sum includes negative weights wij for some pairs {i, j}, and uses the sum of absolute weights
in the denominator. As a result, Equation (5.44) corresponds to multiplication of x with the
matrix D−1A, since D itself is defined using the sums of absolute edge weights. Therefore this
algorithm converges to the dominant eigenvector of D−1A. This result justifies the definition
of the degree matrix D using the sum of absolute edge weights.

5.9 Related Work

The degree matrix D of a signed graph is defined in this chapter using Dii =
∑

j |Aij |. In some
contexts, an alternative degree matrix Dalt is defined without the absolute value:

(Dalt)ii =
∑

j

Aij (5.45)

The leads to an alternative Laplacian matrix Lalt = Dalt − A for signed graphs that is not
positive-semidefinite. This Laplacian is used in the context of knot theory [LW00], to draw
graphs with negative edge weights [KCH02], and to implement constrained clustering, i.e. clus-
tering with must-link and must-not-link edges [Dav09]. Since Lalt is not positive-semidefinite
in the general case, it cannot be used as a kernel.

If all edges of a graph have negative weights, the matrix D + A may be considered, and
corresponds to the Laplacian of the underlying unsigned graph [DR94]. However, all large real-
world networks contain both positive and negative edges, making this approach only suitable for
small isolated networks such as the revert network of individual Wikipedia articles [BKLR09].

Expressions of the form (
∑

i |wi|)−1
∑

iwixi appeared several times in the preceding sec-
tions. These types of expressions represent a weighted mean of the values xi, supporting neg-
ative values of the weights wi. In fact, these expressions have been used for some time in the
collaborative filtering literature without being connected to the signed Laplacian [SKKR01].
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5.10 Summary: Signed Graphs

In this chapter, we have introduced the Laplacian matrix L for signed graphs and used it for
building graph kernels, for solving the signed spectral clustering problem, and for drawing signed
graphs. We have shown that the signed Laplacian arises naturally in multiple unrelated areas,
justifying its importance.

The various applications presented in this chapter show that signed graphs appear in many
diverse spectral graph mining applications, and that they can be approached by defining the
Laplacian matrix L for signed graphs. This signed Laplacian does not only exist for the com-
binatorial Laplacian L but also for the normalized Laplacian matrix Z = D−1/2LD−1/2.

We used the signed Laplacian to derive a new drawing algorithm for signed graphs, in which
negative edges are interpreted to denote antipodal proximity, i.e. the proximity of one node
to the opposite position of the other node. We also showed that spectral clustering of signed
graphs is possible using the intuitive measure of cut which counts positive edges between two
clusters and negative edges inside each cluster. As for unsigned spectral clustering, the different
Laplacian matrices correspond to ratio cuts and normalized cuts. For link prediction, we saw
that the signed Laplacians can be used as kernels (since they are positive-semidefinite), and
can replace graph kernels based on the adjacency matrix. This is especially true if the sign of
edges is to be predicted. Finally, we have derived that in the signed Laplacian L = D−A, D
must be defined using the sum of absolute edge weights. We showed that this definition of D
and L is natural since it arises in signed graph drawing, signed spectral clustering, the signed
resistance distance and Markov random fields used for link sign prediction. These derivations
should confirm that this definition of D and L is to be preferred over one that omits the absolute
value.

In all cases, we observed that if a graph is not balanced, zero is not an eigenvalue of its
Laplacian matrix and thus its eigenvectors can be used directly unlike the unsigned case if the
eigenvector of least eigenvalue is trivial and can be ignored. For graph drawing, this results in
the loss of translational invariance of the drawing, i.e. the drawing is placed relative to a point
zero.

All these various applications of algebraic graph theory to signed graph are a justification
of the multiplication rule The enemy of my enemy is my friend, since they are all based on it.
We conclude that this rule is valid in general, even though it is not universal, as shown e.g.
in [LHK10b].
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Chapter 6

Bipartite and Directed Networks

The previous chapters described networks that are unipartite and undirected. In this chapter,
the spectral evolution model is applied to the special cases of bipartite and directed networks.
These two cases lead to asymmetry in the data, which can be handled by replacing the eigenvalue
decomposition with the singular value decomposition. As we will show, the spectral evolution
model can then be used analogously.

While at first bipartite networks and directed networks seem to be two completely different
classes of networks, there is a relation between them: Both types of network are asymmetric.
In directed networks, the links themselves are asymmetric, resulting in directed arcs instead
of edges. In bipartite networks, the global structure of the network is asymmetric, containing
two node types. Both types of asymmetry are related: For instance, Twitter was described
as news media rather than a social network due to the strong asymmetry of the follow rela-
tion [KLPM10], which would indicate that users of Twitter can be partitioned into news writing
users and news reading users. In other words, the directed network of follow relations is nearly
bipartite. On the other hand, every bipartite network can be made directed simply by orienting
each edge from the first vertex partition to the second.

Table 6.1 gives an overview of the network types considered in this thesis. The network types
described in this chapter are shown in the middle and right columns, whereas the first column
covers the networks used in the previous chapters. Note that this classification is independent
of edge weights, and therefore we also cover signed bipartite and signed directed networks in
this chapter.

Table 6.1: Network types considered in this work by structure of the edges, independently of
edge weights. This chapter describes the columns labeled Directed and Bipartite.

Undirected Directed Bipartite

Graph type
Unipartite Bipartite

Undirected Directed Undirected

Matrix type
Square Rectangular

Symmetric Asymmetric

Our contributions in this chapter are the definition of the hyperbolic sine and odd Neu-
mann pseudokernels. The chapter is structured by the type of networks considered: We begin
by extending the spectral evolution model to bipartite networks (Section 6.1), then to signed
bipartite networks in which the link prediction problem corresponds to the problem of collabora-
tive filtering (Section 6.2) and finally to directed networks (Section 6.3). Section 6.4 introduces
a spectral method for detecting networks that are nearly bipartite.
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6.1 Bipartite Networks

Many networks contain edges between two types of entities, for instance item rating graphs,
authorship graphs and document–feature networks. These graphs are called bipartite [HLEK03,
SLZZ10]. An example is drawn in Figure 6.1: the bipartite network of musical artists and their
genres from DBpedia (GE).

The Beatles

The Rolling Stones

Elvis Presley

Michael Jackson

Bob Dylan Gospel

Country

Folk Rock

Folk

Blues

Rockabilly

Rock and roll

Rock

Rhythm and blues

Blues rock

Pop

Dance

Figure 6.1: A small extract of the DBpedia entity–genre dataset (GE). This network is
unweighted, unsigned, undirected and bipartite. It contains musical artists and genres, and
each edge connects one artist with one genre. The data was retrieved from the DBpedia
project [ABK+08], which in turn extracted it from articles in the English Wikipedia. In draw-
ings of bipartite networks such as this one, each group of nodes is typically placed on one side
of the plot.

Although bipartite graphs are a special case of general graphs, link prediction methods
cannot be applied to them. As we show in Section 6.1.1, this is the case for all link prediction
functions based on the triangle closing model, as well as all positive-semidefinite graph kernels.
Instead, we will see that odd spectral transformations must be used on them in Section 6.1.2.
For each spectral transformation defined in Section 3.3, we derive the corresponding odd spectral
transformation. One example is the exponential graph kernel exp(αA). Its odd component is
sinh(αA), the hyperbolic sine. We also introduce the bipartite Neumann pseudokernel, and
study the bipartite versions of power series with only odd powers. We show experimentally (in
Section 6.1.4) how these odd pseudokernels perform on the task of link prediction in bipartite
networks in comparison to their positive counterparts, and give an overview of their relative
performances.

Given an undirected graphG = (V,E) with vertex set V and edge set E, its adjacency matrix
A ∈ R

|V |×|V | is defined as Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise. For a bipartite graph
G = (V1 ∪̇ V2, E), the adjacency matrix can be written as A=

[

0B;BT 0
]

, where B ∈ R
|V1|×|V2|

is the biadjacency matrix of G.

6.1.1 Bipartite Link Prediction

The link prediction problem is usually defined on unipartite graphs, where common link pre-
diction algorithms make several assumptions [LBKT08]:
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• Triangle closing: New edges tend to form triangles.

• Clustering: Nodes tend to form well-connected clusters in the graph.

In bipartite graphs these assumptions are not true, since triangles and larger cliques cannot
appear. Other assumptions have therefore to be used. While a unipartite link prediction
algorithm technically applies to bipartite graphs, it will not perform well. Methods based on
common neighbors of two vertices will for instance not be able to predict anything in bipartite
graphs, since two vertices that would be connected (from different clusters) do not have any
common neighbors. Note however that preferential attachment as defined in Equation 4.2 can
be used as a link prediction function even in bipartite graphs.

Several important classes of networks are bipartite: authorship networks, group membership
networks, rating networks, features such as country of origin and genre, and many more. Many
unipartite networks (such as coauthorship networks) can be reinterpreted as bipartite networks
when edges or cliques are modeled as vertices. In these cases, special bipartite link prediction
algorithms are necessary.

(a) Unipartite network (b) Bipartite network

Figure 6.2: A sketch of link prediction methods in unipartite and bipartite networks. The
brightness of blue nodes indicates a possible link prediction score between that node and the
yellow node. In the unipartite case, all paths are used. In the bipartite case, only paths of
odd length need to be considered. In both cases, the weight of paths is weighted in inverse
proportion to path length.

6.1.2 Odd Spectral Transformations

In Section 3.3, we saw that many link prediction functions are power series of the adjacency
matrix A and can be expressed as a sum over all paths between two nodes, weighted by a
function of the path length. As a result, these link prediction functions take into account paths
of all lengths. In the case of bipartite networks however, a new edge can only appear between
two vertices of different partitions, which themselves can only be connected by paths of odd
lengths because a path of even length can only connect vertices of the same partition. Therefore,
only odd powers of A are relevant, and we can restrict the link prediction functions to odd power
series of A, i.e. power series with only odd powers.

The resulting spectral transformation is then an odd function and except in the trivial and
undesired case of a constant zero function, will be negative at some point. Therefore, such a
spectral transformation does not result in positive-semidefinite matrices and therefore cannot
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be used to define graph kernels. Instead, we will use pseudokernels, which we define to be
equivalent to kernels without the positive-semidefiniteness.

Odd Path Counting When using power series of the adjacency matrices A or N to predict
links in bipartite networks, we are in fact interested only in paths of odd length and therefore
we will use power series with only odd coefficients. Such power series are always odd functions:

pO(A) = αA+ βA3 + γA5 + . . . (6.1)

pO(N) = αN+ βN3 + γN5 + . . . (6.2)

Hyperbolic Sine In unipartite networks, a basic link prediction function is given by the
matrix exponential of the adjacency matrix [ISKM05, WC04, KSTC02]. The matrix exponential
can be derived by considering the sum

exp(αA) =

∞
∑

k=0

αk

k!
Ak = I+ αA+

1

2
α2A2 +

1

6
α3A3 + . . .

where coefficients are decreasing with path length. Keeping only the terms containing odd
powers, we arrive at the matrix hyperbolic sine [HJ94, Chapter 6].

KSINH(A) = sinh(αA) =
∞
∑

k=0

α1+2k

(1 + 2k)!
A1+2k = αA+

1

6
α3A3 +

1

120
α5A5 + . . . (6.3)

Figure 6.3 shows the hyperbolic sine applied to the (positive) spectrum of the bipartite
English Wikipedia user–article edit network.
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Figure 6.3: The curve fitting plot of the bipartite English Wikipedia edit network (en), using
the method described in Section 4.2.2. In this curve fitting plot, the hyperbolic sine is a good
match, indicating that the hyperbolic sine pseudokernel performs well.
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Odd Neumann Pseudokernel The Neumann kernel for unipartite graphs is given by the
following expression [ISKM05]:

KNEU(A) = (I− αA)−1 =

∞
∑

k=0

αkAk = I+ αA+ α2A2 + α3A3 + . . .

Keeping only the terms containing odd powers ofA, we arrive at the odd Neumann pseudokernel:

KNEU-O(A) = αA(I− α2A2)−1 =
∞
∑

k=0

α1+2kA1+2k = αA+ α3A3 + α5A5 + . . . (6.4)

The hyperbolic sine and Neumann pseudokernels are compared in Figure 6.4, based on
the path weights they produce. Since these two kernels contain only the odd powers of the
corresponding non-odd graph kernels, they can be expressed in the following way:

KNEU-O(A) =
1

2
(KNEU(A)−KNEU(−A)) (6.5)

KSINH(A) =
1

2
(KEXP(A)−KEXP(−A)) (6.6)
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Figure 6.4: Comparison of the hyperbolic sine and the odd Neumann pseudokernels. For
each possible path length, the graph shows the relative weight for paths of this lengths for the
exponential and Neumann kernels using two parametrizations. These weights correspond to the
factors in the Taylor series expansions of these functions.

Odd Normalized Pseudokernels The normalized adjacency matrix N can be used for
link prediction, too. The odd normalized exponential and Neumann pseudokernels are defined
analogously to the unnormalized ones:

KSINH(N) = sinh(αN) =

∞
∑

k=0

α1+2k

(1 + 2k)!
N1+2k (6.7)

KNEU-O(N) = αN(I− α2N2)−1 =
∞
∑

k=0

α1+2kN1+2k (6.8)

The normalized odd commute-time pseudokernel is defined as follows:

KCOM-O(N) = N(I−N2)+ (6.9)
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Again, these odd pseudokernels can be derived from the corresponding kernels by the ex-
pression

KX-O(N) =
1

2
(KX(N)−KX(−N))

for X ∈ {EXP,NEU,COM}, by considering EXP-O = SINH. The kernels based on the Lapla-
cian L cannot be extended to odd pseudokernels because the Moore–Penrose pseudoinverse is
already an odd spectral transformation.

6.1.3 Decomposition of the Biadjacency Matrix

Bipartite graphs have adjacency matrices of the form

A =

[

0 B
BT 0

]

, (6.10)

where B is called the biadjacency matrix of the graph. This form can be exploited to reduce
the eigenvalue decomposition of A to the equivalent singular value decomposition of B [MF10].
Given the singular value decomposition B = UΣVT, the eigenvalue decomposition of A is given
by

A =

[

Ū Ū
V̄ −V̄

] [

+Σ 0
0 −Σ

] [

Ū Ū
V̄ −V̄

]T

(6.11)

with Ū = U/
√
2 and V̄ = V/

√
2. In this decomposition, each singular value σ corresponds to

the eigenvalue pair {±σ}. Odd powers of A then have the form

A2k+1 =

[

0 (BBT)kB
(BTB)kBT 0

]

,

where the alternating power (BBT)kB can be explained by the fact that in the bipartite network,
a path will follow edges from one vertex set to the other in alternating directions, corresponding
to the alternating transpositions of B.

The same is true in the normalized case: The eigenvalue decomposition of the normalized
adjacency matrix N can be computed using the singular value decomposition of the normalized
biadjacency matrix M. Note that there is no corresponding expression relating the decom-
position of the bipartite Laplacian matrix [D1 −B;−BT D2] and the decomposition of the
biadjacency matrix B.

6.1.4 Experiments

As experiments, we run all link prediction algorithms on all unsigned bipartite networks, as given
in Table A.1 in Appendix A. The methodology used in the bipartite link prediction experiments
is the same as the one described for unipartite networks in Section 4.4. We use all the unipartite
link prediction methods from Table 4.4, and the additional bipartite link prediction methods
from Table 6.2. The evaluation results are summarized in Figure 6.5, and full evaluation results
are given in Table B.3 in Appendix B. The best performing spectral transformation for a sample
of signed network datasets is given in Table 6.3.

The two learning methods from Sections 4.2 and 4.3 can be applied to bipartite networks
using the singular value decomposition of the biadjacency matrix instead of the eigenvalue
decomposition of the adjacency matrix. We show examples of this techniques in Figures 6.6
and 6.7. The main difference to the unipartite case is that all singular values are positive.
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Table 6.2: The complete list of bipartite link prediction methods used in the evaluation. The
methods given here complete those given in Table 4.4.

Method Definition

Curve fitting with A

A-POLY-O Odd path counting
∑4

k=1 αkA
2k−1 Eq. 6.1

A-POLYN-O Odd nonnegative path counting
∑7

k=1 αkA
2k−1, αk ≥ 0 Eq. 6.1

A-SINH Hyperbolic sine pseudokernel β sinh(αA) Eq. 6.3
A-NEU-O Odd Neumann pseudokernel βαA(I− α2A2)−1 Eq. 6.4
Curve fitting with N

N-POLY-O Odd normalized path counting
∑4

k=0 αkN
2k−1 Eq. 6.2

N-POLYN-O Odd normalized nonnegative path counting
∑7

k=0 αkN
2k−1, αk ≥ 0 Eq. 6.2

N-SINH Normalized hyperbolic sine pseudokernel β sinh(αN) Eq. 6.7
N-NEU-O Odd normalized Neumann pseudokernel βαN(I− α2N2)−1 Eq. 6.8
N-COM-O Odd normalized commute-time pseudokernel βN(I−N2)+ Eq. 6.9

Table 6.3: The best performing spectral transformation for a sample of unsigned bipartite
datasets. For each dataset, we show the source and target matrices, the curve fitting model and
the link prediction method that performs best.

Dataset Best transformation Best method MAP

German Wikipedia (de) Ba → Ba +BT
a +Bb +BT

b X-ABS 0.718
French Wikipedia (fr) Ba → Ba +BT

a +Bb +BT
b A-SINH 0.752

Github (GH) Ma → Ba +BT
a +Bb +BT

b N-COM-O 0.688
Movies (ST) Ma → Bb +BT

b A-SINH 0.682
Filmtipset (Fc) Ba → Bb +BT

b A-POLY-O 0.681
English Wikipedia (WC) Ma → Ba +BT

a +Bb +BT
b N-NEU-O 0.688

BibSonomy (Bti) Ba → Bb +BT
b A-POLY-O 0.962

CiteULike (Cui) La → Aa +Ab L-HEAT 0.873
MovieLens (Mti) Ma → Ba +BT

a +Bb +BT
b N-COM-O 0.874

Twitter (Wui) Ba → Ba +BT
a +Bb +BT

b A-POLYN-O 0.754
vi.sualize.us (Vut) Ma → Ba +BT

a +Bb +BT
b N-COM-O 0.876

Last.fm (Ls) Ba → Ba +BT
a +Bb +BT

b X-ABS 0.851
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Figure 6.5: Extract of experiment results for bipartite networks. See the text for a description
of the datasets and link prediction methods. The full evaluation results are given in Appendix B.
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Figure 6.6: Learning an odd spectral transformation that matches an observed spectral
transformation in the English Wikipedia edit network (en).

Observations We observe that in most cases, using the unnormalized biadjacency matrix
gives better results than using the normalized biadjacency matrix. This is in contrast to the
unipartite case, where both variants appear as the best method for specific datasets. The
choice of the best graph kernel or spectral transformation function however is different for every
dataset.

6.1.5 The Split-complex Numbers

In this section, we present an alternative way of modeling bipartite graphs, using the split-
complex numbers. The split-complex numbers are an extension of the real numbers similar to
the complex numbers [Ros97]. Instead of including an imaginary number i such that i2 = −1,
the split-complex numbers include an imaginary number  such that 2 = +1. In contrast to
the complex numbers, the split-complex numbers are not a field, since they include nonzero
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Figure 6.7: The spectral extrapolation method applied to the bipartite Spanish Wikipedia
edit network (es). Instead of using eigenvalues, the method uses singular values for bipartite
graphs.

elements that are not invertible. However, the split-complex numbers can be used to model
bipartite relationships.

Imagine a dating site such as Ĺıb́ımseti.cz [BP07] where persons can rate each other’s profile.
We assume, for the sake of the argument, that men will only be interested in women and women
only in men. A rating can therefore only exist between a man and a woman and therefore, the
rating network is bipartite. Also, we will assume that ratings are always reciprocal, i.e. that
rating edges are undirected. However, we may still be interested in links between persons of the
same gender as a measure of similarity. For instance, two women are similar if they have rated
the same men similarly. Therefore, we really need two kinds of relationships in this network: like
and is-similar. Let us represent these two possible values by elike and eis-similar. Now, remember
that in the triangle closing model of Section 3.3.1, we multiply the weights of two adjacent edges
to generate a new edge. In the case of a dating site, we can formulate the following natural
triangle closing rules:

• Two persons that like the same person are similar.

• Two persons that are similar to the same person are similar.

• A person similar to a person that likes a third person will like that third person.

These rules can be expressed mathematically in the following way:

elike · elike = eis-similar

eis-similar · eis-similar = eis-similar

elike · eis-similar = elike

We thus have to find values of elike and eis-similar that solve these equations, and in which both
constants are nonzero. A trivial solution is given by elike = eis-similar = 1. However, this trivial
solution is not satisfactory, since we want the relationships like and is-similar to be different.
From the second and third equations, we can derive that eis-similar = 1. Therefore, elike is a
number different from zero and from 1 that squares to 1. Since no real number has these
properties, we have to use a non-real value for elike such that e2like = 1. This construction
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corresponds to the split-complex numbers, where the imaginary unit  squares to one:

elike = 

eis-similar = 1

Our three requirements then correspond to the identities  ·  = 1, 1 ·1 = 1 and  ·1 =  that hold
in the split-complex numbers. Thus, the split-complex numbers can be used to model bipartite
relationships.

The split-complex numbers were introduced by Clifford in 1873 [Cli73]. They can be defined
formally as the set Cs = {a + b | a, b ∈ R}. Note that there is no established notation for the
set of split-complex numbers. In this text we will use Cs. The defining identity of split-complex
numbers is 2 = +1. From this, other results can be derived. Unlike the complex numbers, Cs

is not a field. Instead, Cs is a commutative ring, i.e. all field axioms are valid except for the
existence of the multiplicative inverse, which does not exist for numbers of the form a±a. As a
result, products of two nonzero numbers can be zero, e.g. (1+)(1−) = 0. Due to these defects,
the split-complex are used much less than complex numbers. Split-complex numbers are also
called hyperbolic complex numbers because they can represent hyperbolic angles [Huc93]. In
the context of special relativity for instance, numbers of the form a + b with a2 − b2 = 1 are
used to model Lorentz boosts. Other applications of hyperbolic angles are squeeze mappings in
geometry, giving them the alternative name hyperbolic numbers [Sob95].

Let G = (V,E) be a unipartite, unweighted and undirected network. Instead of giving an
explicit partition of the vertices V into V = V1 ∪̇ V2, we will model bipartite edges explicitly

as having weight . Thus, the split-complex adjacency matrix of G is As ∈ C
|V |×|V |
s , with

(As)ij =  if {i, j} ∈ E and (As)ij = 0 otherwise. Due to the multiplication rules of split-
complex numbers, a power Ak

s contains, for each pair (i, j), the number of paths between i and
j, separated into paths with an even number of like edges in the real part and paths with an
odd number of like edges in the imaginary part. This is due to the fact that k = 1 when k is
even and k =  when k is odd. Equivalently, a split-complex number a+ b can be represented
by the 2× 2 matrix

a+ b =

[

a b
b a

]

.

In this representation, the addition and multiplication of split-complex numbers corresponds to
the addition and multiplication of 2× 2 matrices. The units 1 and  then correspond to

1 =

[

1 0
0 1

]

,

 =

[

0 1
1 0

]

.

Using this representation, the split-complex adjacency matrix As ∈ C
|V |×|V |
s can be reordered

to give the matrix

As =

[

0 A
AT 0

]

in which A is the ordinary adjacency matrix of the network. This is equivalent to considering
As as the biadjacency matrix of the bipartite double cover of the original graph, as explained
in Section 6.3.1.
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6.2 Collaborative Filtering

Some networks are signed and bipartite at the same time. This combination appears in col-
laborative filtering, where in the rating graph, all edges connect users with items, and denote
ratings which can be positive (like) and negative (dislike).

All eight signed bipartite networks in our collection are rating networks. Note that a single
rating network, Ĺıb́ımseti.cz (LI), is unipartite since it contains ratings of users by users. It can
therefore not be used for collaborative filtering. Our collaborative filtering networks contain
ratings given by users to movies (MovieLens (M1, M2, M3), Netflix (NX), Filmtipset (Fr)),
books (BookCrossing (BX)), products (Epinions (ER)) and jokes (Jester (JE)). A summary of
all collaborative filtering datasets is given in Table 6.4.

Table 6.4: The list of collaborative filtering datasets used in this thesis. All datasets are
bipartite and have weighted edges connecting users with various kinds of items.

Code Dataset Items Rating scale Users |V1| Items |V2| Ratings |E|
BX BookCrossing Books {1, . . . , 10} 105,283 340,532 1,149,742
ER Epinions Products {1, 2, 3, 4, 5} 120,492 755,760 13,668,320
Fr Filmtipset Movies {1, 2, 3, 4, 5} 80,482 64,189 19,554,219
JE Jester Jokes [−1,+1] 24,938 100 616,912
M1 MovieLens 100k Movies {1, 2, 3, 4, 5} 943 1,682 100,000
M2 MovieLens 1M Movies {1, 2, 3, 4, 5} 6,040 3,706 1,000,209
M3 MovieLens 10M Movies {0.5, 1.0, . . . , 5.0} 71,567 65,133 10,000,054
NX Netflix Movies {1, 2, 3, 4, 5} 480,189 17,770 100,480,507

Let G = (V1 ∪̇ V2, E, w) be the weighted bipartite rating graph of a collaborative filtering
dataset, in which V1 is the set if users and V2 is the set of items. As described in Section 4.1.2,
we normalize the data additively in the following way. Let µ be the overall mean rating given
by

µ =
1

|E|
∑

{i,j}∈E

w(i, j).

Then the nonzero entries of the biadjacency matrix B are given by

Bij = w(i, j)− µ

for every {i, j} ∈ E. Note that B corresponds to the rating matrix.
For link prediction in signed bipartite networks, we can use all the bipartite link prediction

methods introduced in the previous section. Just as in the unipartite case, link prediction
methods for unsigned networks generalize to signed networks by allowing negative values in
the biadjacency matrix B and defining the two degree matrices D1 and D2 using the sum of
absolute edge weights:

D =

[

D1 0
0 D2

]

(6.12)

(D1)ii =
∑

j

|Bij | (6.13)

(D2)ii =
∑

j

|Bji| (6.14)
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6.2.1 Experiments

We use the experimental methodology of link sign prediction described in Section 4.4. In
collaborative filtering, the corresponding problem is usually called rating prediction. We show
the experimental results in Table 6.5 and in Figure 6.8. Due to the small number of signed
bipartite networks available, we cannot make general statements about the accuracy of different
methods, although the odd normalized commute-time kernel (N-COM-O) stands out for three
datasets (M1, M2 and NX), and that the extrapolation methods (X-ABS and X-SQU) seem to
work better for collaborative filtering than for other types of datasets.

Table 6.5: The best performing collaborative filtering algorithms for the signed bipartite
datasets. For each dataset, we show the source and target matrices, the curve fitting model and
the link prediction method that performs best.

Dataset Best transformation Best method MAP

BookCrossing (BX) Ma → Bb +BT
b N-POLYN-O 0.278

Epinions (ER) Ba → Bb +BT
b A-POLYN-O 0.461

Filmtipset (Fr) Ba → Ba +BT
a +Bb +BT

b X-SQU 0.655
Jester (JE) Ma → Ba +BT

a +Bb +BT
b X-SQU 0.590

MovieLens 10M (M3) Ba → Ba +BT
a +Bb +BT

b X-SQU 0.614
Netflix (NX) Ba → Ba +BT

a +Bb +BT
b X-ABS 0.568
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Figure 6.8: The mean average precision for a selection of link sign prediction methods applied
to signed bipartite networks.

6.2.2 Bipartite Algebraic Conflict

The algebraic conflict ξ defined in Section 5.4.4 can be applied to signed bipartite networks
to denote the amount of conflict present in the network. The algebraic conflict ξ is defined
as the smallest eigenvalue λ1 of the Laplacian matrix L of a signed network. As we showed
for unipartite networks, L is positive-semidefinite and its smallest eigenvalue is zero exactly
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when the graph is balanced, i.e. when all its cycles contain an even number of negative edges.
Table 6.6 shows the algebraic conflict ξ for the signed bipartite networks in our collection.

Table 6.6: The algebraic conflict ξ for several large signed networks. Smaller values indicate
a more balanced network.

Network ξ

Jester (JE) 0.6725 Conflict
MovieLens 10M (M3) 0.02302
MovieLens 100k (M1) 0.005807
MovieLens 1M (M2) 0.005564 Balance

6.3 Directed Networks

In the previous sections, we assumed that relations between entities were symmetric. In practice,
many relations are asymmetric: For instance, links between webpages are generally unidirec-
tional. The fact that webpage i links to webpage j does not imply that webpage j links to
webpage i. An example of such an asymmetric hyperlink network is shown in Figure 6.9.

Berlin Brandenburg

Germany

Koblenz

Havel

Spandau

River Rhine

Figure 6.9: A small extract of the hyperlink network of the English Wikipedia (DL). This
network is directed, unweighted and unsigned. It contains articles of the English Wikipedia,
and each arc represents one hyperlink between two articles. The data was retrieved from the
DBpedia project [ABK+08], which in turn extracted it from articles in the English Wikipedia.

The corresponding graph is directed, and its edges are called arcs. Directed graphs (or
digraphs) are denoted D = (V,A), where V is the set of edges and A is the set of arcs. An arc
a ∈ A is denoted as a = (i, j) if it goes from vertex i to vertex j. We allow self-loops, i.e. arcs
of the form a = (i, i). Self-loops may arise for instance in email networks, when a users sends
an email to himself.

Like an undirected graph, a directed graph has an adjacency matrix. Unlike undirected
graphs, the adjacency matrix of a directed graph is asymmetric in the general case. When
building the adjacency matrix A of a directed graph, we set Aij = 1 if there is a directed edge
from vertex i to vertex j, and Aij = 0 otherwise. The matrix A is thus square and, in general,
asymmetric.

In a directed graph D = (V,A) with multiple arcs, the set of arcs A is a multiset, and m(i, j)
denotes the number of arcs between the vertices i and j. The adjacency matrix of a directed
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graph with multiple arcs is defined as Aij = m(i, j). Directed graphs may also be weighted.
A weighted directed graph is denoted by D = (V,A,w), where w(i, j) is a function giving the
weight of the arc (i, j). The adjacency matrix of a weighted directed graph is then defined as
Aij = w(i, j) when (i, j) ∈ A and Aij = 0 otherwise.

Not a single network in the network collection is bipartite and directed at the same time.
Therefore, we can assume that all directed graphs are unipartite.

6.3.1 Spectral Analysis

Since the matrix A is asymmetric, its eigenvalue decomposition is generally undefined. Instead,
we can do one of the following:

• (sym) Ignore arc orientations and apply the eigenvalue decomposition to A+AT

• (asym) Apply the singular value decomposition to A

• (back) Apply the singular value decomposition to A+ αAT, where 0 < α < 1

The first case (sym) is trivial as it views the network as undirected, and therefore reduces
to the symmetric case which was described in Chapters 2 to 4.

The second solution (asym) is more interesting. It is equivalent to considering a bipartite
network, where each original node i has two equivalent nodes iin and iout, and each original arc
(i, j) is mapped to a bipartite edge {iout, jin}. The resulting graph is also known as the bipartite
double cover of G [DM58]. This makes it impossible to follow chains of incident directed arcs,
and only allows following alternating paths, i.e. paths of arcs in alternating directions. It is
useful if the network is almost bipartite. The second solution also arises by considering a
directed clustering problem as shown in [MP07].

The third solution (back) allows us to retain the orientation of arcs and to follow chains of
incident arcs at the same time. The method is used in [GKRT04] where it is called transpose

trust and is applied to trust prediction in directed trust networks.

The spectral evolution model applies to all three methods. The first case reduces to com-
puting the eigenvalue decomposition as described in Chapters 2 to 4. The second and third
reduce to computing the singular value decomposition as described in Section 6.1.

Directed Laplacian There is no known way of defining an asymmetric Laplacian matrix.
However, certain definitions of the Laplacian matrix for directed graphs exist, all being sym-
metric [Chu05, Maj06, MYC+10]. These Laplacian matrices are not studied here.

6.3.2 Experiments

We use the experimental setup described in Section 4.4 and apply it to the directed unipartite
networks in our collection. The best performing spectral transformations for a selection of
directed datasets is given in Table 6.7. Figure 6.10 compares the performance of the three
decomposition types for directed networks. For the third method (back), we use the value
α = 0.2. The full evaluation results are given in Table B.2 in Appendix B.

Observations While the spectral evolution model can be observed in all types of networks,
not all types of networks follow it equally well. By comparing the experimental results in this
chapter with the experimental results in Chapter 4, we observe two effects. First, bipartite
networks seem to follow the spectral evolution model better than unipartite networks. Second,
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Table 6.7: The best performing spectral transformations for a selection of directed datasets.
For each dataset, we show the source and target matrices, the curve fitting model and the link
prediction method that performs best.

Dataset Best transformation Best method MAP

Slashdot Zoo (SZ) Aa +AT
a → Ab +AT

b A-POLYN 0.397
English Wikipedia (WK) Aa +AT

a → Ab +AT
b A-NEU-O 0.693

Ĺıb́ımseti.cz (LI) Aa → Ab A-NEU-O 0.639
CiteSeer (CS) Aa +AT

a → Aa +AT
a +Ab +AT

b A-EXP 0.684
English Wikipedia (WP) Na +NT

a → Ab +AT
b N-EXP 0.664

Google (GO) Na + αNT
a → Aa +Ab N-NEU-O 0.685

US patents (PC) Aa → Aa +Ab X-ABS 0.665
World Wide Web (W3) Na + αNT

a → Ab N-NEU-O 0.692
English Wikipedia (EL) Aa +AT

a → Ab +AT
b A-EXP 0.828
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Figure 6.10: The evaluation results for link prediction on directed networks. See the text
for a description of the datasets and link prediction methods. (sym) Using the eigenvalue
decomposition of A + AT (asym) Using the singular value decomposition of A (back) Using
the singular value decomposition of A+ αAT.

networks with parallel arcs follow the model better than networks where only simple arcs are
allowed.

None of the three methods sym, asym and back is significantly better than the other two.
The most accurate prediction is achieved by the sym method, but not by a wide margin.

6.4 Detecting Near-bipartite Networks

Some networks are not bipartite, but nearly so. An example would be a network of fan re-
lationships between persons where there are clear hubs and authorities, i.e. popular persons
and multiple fans. While these networks are not strictly bipartite, they are mostly bipartite
in a sense that has to be made precise. Measures for the level of bipartivity exist in several
forms [HLEK03, ERV05], and the curve fitting method described in this thesis offers another
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method. Using the link prediction method described in Section 4.2.2, nearly bipartite graphs
can be recognized by the centrally symmetric shape of the learned curve fitting function. This
is true because if the shape of the curve is centrally symmetric, then the corresponding spectral
transformation is an odd function, which contains only odd powers. Therefore, only paths of
odd length will be useful to predict new edges in such a network, making the network (almost)
bipartite.

Figure 6.11 shows the method applied to two unipartite networks: the Advogato trust
network (AD) and the Twitter social network (Ws). The curves indicate that the Advogato
trust network is not bipartite, while the Twitter social network network is nearly so. This
result about Twitter confirms the characterization of Twitter as news media of [KLPM10],
since the set of Twitter users can be divided into users reading news and users writing news,
with most links from the first to the second group.
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(a) Advogato trust network (AD) (b) Twitter following network (Ws)

Figure 6.11: Detecting near-bipartite and non-bipartite networks: If the hyperbolic sine
fits, the network is nearly bipartite; if the exponential fits, the network is not nearly bipartite.
These graphs show the learned transformation of a graph’s eigenvalues; see the text for a detailed
description.

6.5 Summary: Bipartite and Directed Networks

While technically the link prediction problem in bipartite graphs is a subproblem of the general
link prediction problem, the special structure of bipartite graphs makes common link prediction
algorithms ineffective. In particular, none of the methods based on the triangle closing model
can work in the bipartite case. Of the simple local link prediction methods, only the preferential
attachment model can be used in bipartite networks.

Algebraic link prediction methods can be used instead, by restricting spectral transforma-
tions to odd functions, leading to odd power series, the matrix hyperbolic sine and an odd
variant of the Neumann kernel as link prediction functions. As in the unipartite case, no single
link prediction method is best for all datasets.

For directed networks, we conclude that the best matrix decomposition depends on the type
of network. If the network has a high clustering coefficient, then edge directions can be ignored
and the eigenvalue decomposition can be used. Otherwise, the network is likely to be nearly
bipartite, and the singular value decomposition will lead to accurate prediction.

122



Chapter 7

Conclusion

This thesis has analysed the link prediction problem in large networks algebraically, and came
to the conclusion that network growth follows a spectral evolution model. The link prediction
problem is a general problem that generalizes the prediction of social links, the prediction of rat-
ings, the prediction of link signs, and many other prediction problems encountered in networks.
We showed that all these types of problems can be modeled by the spectral evolution model.
While the spectral evolution model is based on the eigenvalue decomposition of a network’s
adjacency matrix, we could show that it is in fact much more universal than its definition using
spectral graph theory suggests. For instance, it can be derived from a preferential attachment
model restricted to individual subnetworks of a given set of networks. Other approaches that
give rise to the spectral evolution model include diffusion in networks, sums over paths, rank
reduction approaches, common graph kernels such as the matrix exponential and the Neumann
kernel, and methods as simple as triangle closing. Given these findings, we suspect that many
more derivations exist, and can state that the spectral evolution model plays a fundamental
role for the link prediction problem.

To make sure however that the spectral evolution model is an actual feature of real-world
networks, we had to make sure that it is specifically not implied by random graph growth
models. Indeed, we found that the spectral evolution model does not hold in random graphs.
Given these observations, we can state that spectral growth is a fundamental feature of the
dynamics of real networks.

To prove the universality of the spectral evolution model, we also had to make sure it is
observed in many networks. By studying a collection of one hundred and eighteen network
datasets, we could confirm that the spectral evolution model is indeed universal. The spectral
evolution model was shown to hold for networks of many types: weighted, unweighted, signed,
unipartite, bipartite, directed and undirected networks. These networks types encompass almost
all networks present on the Web and elsewhere, confirming the universality of the spectral
evolution model.

7.1 Findings

The main result of this thesis is the spectral evolution model, which was found to hold for almost
all real-world networks. Beyond this result, this thesis includes a certain number of additional
novel ideas.

New Datasets The experiments in this thesis were performed on one hundred and eighteen
large network datasets. This corpus of network datasets presents a valuable study in itself.
In Chapter 2, we were able to confirm a certain number of known network properties on this
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dataset collection, making this thesis one of the largest study of this kind that we know of. In
particular, we introduced the Slashdot Zoo dataset, a large signed social network of friends and
foes of the technology site Slashdot. This dataset is available publicly online1.

Spectral Evolution Model We introduced the spectral evolution model, which states that
the temporal evolution of real-world networks can be described by the change in the eigenvalue
decomposition of their adjacency matrix. We validated this model empirically in over hundred
datasets, as well as theoretically by showing that it generalizes a certain number of link predic-
tion methods such as graph kernels, rank reduction, path counting and triangle closing. We also
showed how it applies to bipartite and directed networks using the singular value decomposition.
We also introduced the latent preferential attachment model and showed it to be equivalent to
the spectral evolution model.

New Link Prediction Methods By systematically applying spectral transformations to dif-
ferent network types we were able to identify several as yet unknown link prediction methods.
Of note are the signed Laplacian graph kernels, which apply to networks with positive and neg-
ative edges, and the hyperbolic sine and odd Neumann pseudokernels, which apply to bipartite
networks. All three methods perform competitively on the respective task of link prediction.

Learning Spectral Transformations The spectral evolution model describes growth as a
spectral transformation, but does not predict any graph kernel in particular. Based on this ob-
servation, we developed two new link prediction methods, both assuming the spectral evolution
model and learning a spectral transformation using historical data. The first method is based
on the reduction of the link prediction function learning problem to a one-dimensional curve
fitting problem that can be solved efficiently, the second uses extrapolation of the spectrum to
learn new eigenvalues. The methods differ by additional assumptions they make about graph
growth: The curve fitting method needs a graph kernel to be chosen and learns its parameters,
while the extrapolation method does not assume any specific graph kernel, and can also learn
irregular graph growth. We observed graph growth to be sometimes regular and sometimes ir-
regular, and therefore both methods have their justification, and indeed their relative accuracy
depends on the dataset chosen.

Signed Laplacian Matrix While the Laplacian matrix of signed graphs was known before
in the mathematics literature, we gave, to our knowledge, the first application of it to network
analysis. Based on this, we introduced a new drawing algorithm for signed graphs, defined the
algebraic conflict which characterizes the amount of conflict present in signed graphs, introduced
signed cuts to solve the signed clustering problem, introduced signed Laplacian graph kernels
and introduced the signed resistance distance.

7.2 Outlook

Nonorthogonal and Nondiagonal Decompositions In this thesis we have only looked at
the eigenvalue and singular value decompositions. Both decompositions result in a product of
orthogonal and diagonal matrices. As an alternative, other matrix decompositions exist, and
are sometimes applied to adjacency matrices.

1dai-labor.de/IRML/datasets
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Of particular note are nonnegative decompositions, where orthogonal matrices are replaced
by nonnegative matrices, and square asymmetric decompositions such as the Schur decom-
position. In both cases, one loses the equivalence between power sums of the original matrix
corresponding to power sums of the diagonal matrix, which is the basis for the spectral evolution
model described in this thesis.

However, these alternative decompositions also have their advantages. A nonnegative factor-
ization is usually justified by the fact that negative weights (which are inevitable in orthogonal
matrices) are hard to interpret as weights in an eigenpair. As mentioned in Section 3.3.5, in-
dividual eigenvector components can be interpreted as degrees, making a case for nonnegative
factors in a decomposition, at least on a conceptual level. In light of the equivalence between
the joint diagonalization of matrices and tensor decomposition (see Section 4.5), an obvious
open question is whether nonnegative tensor factorization can be applied to unweighted link
prediction.

As for nondiagonal decompositions such as the Schur decomposition, they still allow a power
sum of the adjacency matrix to be mapped to a power sum of the central matrix in the decom-
position, but powers of this matrix are then harder to compute. The Schur decomposition is
by its nature applicable to directed, unipartite networks, and an open task is to generalize the
kernel learning methods of Chapter 4 to nondiagonal decompositions.

Link Prediction Algebra The work in this thesis applies to unipartite and bipartite net-
works, unweighted or weighted by real numbers. Implicitly, all algebraic link prediction functions
can be understood to apply the operations of real addition and multiplication to edge weights,
using the following meaning: The weight of adjacent edges is multiplied to compute the weight
of paths, and the weights of parallel paths is then added. A conceptually simple but computa-
tionally nontrivial extension consists in using more complex operations instead of addition and
multiplication. This results in link prediction functions that are not based on the eigenvalue
decomposition. For instance, shortest paths in networks can be understood algebraically by
taking powers of the adjacency matrix under the min-plus algebra [GM08].

Semantic Networks A recent trend in network mining is the labeling of edges with relation-
ship types, giving multirelational or semantic networks. The algebraic approach described in
this thesis can be applied to such networks provided that a mapping from relationship types to
edge weights can be found. This represents a learning problem in itself, which is related to the
previous approach, since the question of which algebraic structure to use is still open in this
case.
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Appendix A

List of Datasets

This is the complete list of network datasets used in this thesis. The dataset names are linked
with the associated websites. The Prop. column refers to the network properties given in
Table 2.1.

Table A.1: The list of all one hundred and eighteen datasets.

Ref. Prop. Code Dataset Node and edge types |V | |E| or |A|
Authorship
[Wik10] B=U ar Arabic Wikipedia User–article edit 45,796 + 749,714 4,578,676
[LKF07] U− AP arXiv astro-ph Author–author collaboration 18,772 396,160
[LKF07] U−U PH arXiv hep-ph Author–author collaboration 28,093 12,730,098
[LKF07] U−U TH arXiv hep-th Author–author collaboration 22,908 11,209,368
[Wik10] B=U eu Basque Wikipedia User–article edit 4,163 + 129,814 1,572,704
[Wik10] B=U bn Bengali Wikipedia User–article edit 2,313 + 107,110 667,265
[Wik10] B=U br Breton Wikipedia User–article edit 2,018 + 77,915 744,824
[Wik10] B=U ca Catalan Wikipedia User–article edit 21,807 + 655,913 5,401,060
[Wik10] B=U zh Chinese Wikipedia User–article edit 113,194 + 1,095,945 11,645,429
[Ley02] B− Pa DBLP Author–publication authorship 849,449 + 2,275,386 4,600,857
[Ley02] U=U Pc DBLP Author–author collaboration 801,474 9,510,516
[Wik10] B=U nl Dutch Wikipedia User–article edit 112,771 + 1,518,053 18,930,176
[Wik10] B=U ben English Wikibooks User–article edit 32,583 + 134,942 1,164,576
[Wik10] B=U nen English Wikinews User–article edit 10,764 + 163,008 901,416
[Wik10] B=U en English Wikipedia User–article edit 3,819,691 + 21,504,191 266,769,613
[Wik10] B=U qen English Wikiquote User–article edit 21,607 + 94,756 549,210
[Wik10] B=U men English Wiktionary User–article edit 29,348 + 2,104,544 8,998,641
[Wik10] B=U eo Esperanto Wikipedia User–article edit 7,211 + 296,542 2,849,624
[Wik10] B=U bfr French Wikibooks User–article edit 2,884 + 28,113 201,727
[Wik10] B=U nfr French Wikinews User–article edit 1,408 + 25,138 193,618
[Wik10] B=U fr French Wikipedia User–article edit 288,275 + 4,022,276 46,168,355
[Wik10] B=U mfr French Wiktionary User–article edit 5,017 + 1,907,247 7,399,298
[Wik10] B=U gl Galician Wikipedia User–article edit 5,200 + 138,647 1,497,798
[Wik10] B=U de German Wikipedia User–article edit 425,842 + 3,195,148 57,323,775
[Wik10] B=U mde German Wiktionary User–article edit 5,824 + 146,158 1,229,501
[Cha09] B− GH Github User–project membership 56,519 + 120,867 440,237
[Wik10] B=U el Greek Wikipedia User–article edit 13,029 + 136,875 1,837,141
[Wik10] B=U ht Haitian Wikipedia User–article edit 934 + 59,020 373,818
[Wik10] B=U it Italian Wikipedia User–article edit 137,693 + 2,255,875 26,241,217
[Wik10] B=U ja Japanese Wikipedia User–article edit 190,752 + 1,865,207 20,411,185
[Wik10] B=U lv Latvian Wikipedia User–article edit 4,099 + 107,416 946,173
[Wik10] B=U nds Low German Wikipedia User–article edit 1,692 + 34,074 394,632

[ABK+08] B− ST Movies Movie–actor starring 54,803 + 69,819 210,591
[Wik10] B=U oc Occitan Wikipedia User–article edit 1,605 + 58,276 714,503
[Wik10] B=U pl Polish Wikipedia User–article edit 106,116 + 1,306,026 17,959,638
[Wik10] B=U pt Portuguese Wikipedia User–article edit 147,287 + 2,346,137 16,082,508
[Wik10] B=U ru Russian Wikipedia User–article edit 135,409 + 2,069,952 21,374,632
[Wik10] B=U sr Serbian Wikipedia User–article edit 11,794 + 388,830 3,243,236
[Wik10] B=U sk Slovak Wikipedia User–article edit 12,166 + 266,816 2,812,157
[Wik10] B=U es Spanish Wikipedia User–article edit 335,344 + 2,953,054 27,011,506
[Wik10] B=U sv Swedish Wikipedia User–article edit 71,516 + 970,835 10,084,464
[Wik10] B=U vi Vietnamese Wikipedia User–article edit 24,153 + 447,280 2,756,694
[Wik10] B=U cy Welsh Wikipedia User–article edit 2,419 + 70,287 819,482
Communication
[CSJS09] D=U DG Digg User–user reply 30,398 87,627
[LHK10a] D− WK English Wikipedia User–user userpage message 2,394,385 5,021,410
[KY04] D=U EN Enron User–user email 87,365 1,149,884
[LKF07] D− EU EU institution User–user email 265,214 420,045
[VMCG09] D=U Ow Facebook New Orleans User–user wall post 63,891 876,993
[SDLA10] B=U Fc Filmtipset User–movie comment 29,530 + 45,830 1,266,753
[BPSDGA04] U= PG Pretty Good Privacy User–user interaction 10,680 24,340

[CLS+10] D=U Wa Twitter User–user “@name” mention 2,919,613 12,887,063

[GDDG+03] D− A@ U. Rovira i Virgili User–user email 1,133 10,902
Co-occurrence
[LAH07] U− AM Amazon Item–item co-purchase 403,394 3,387,388

[ABK+08] U− SI Similarity Entity–entity similarity 1,944 3,050
Features

[ABK+08] B− CN Countries Entity–country location/origin 357,872 + 2,411 383,891
[Wik10] B= EX English Wikipedia Excellent article–word frequency 2,780 + 273,959 2,941,902
[Wik10] B− WC English Wikipedia Article–category membership 1,853,493 + 182,947 3,795,796

[MMG+07] B− FG Flickr User–group membership 395,979 + 103,631 8,545,307

[ABK+08] B− GE Genre Entity–genre style 227,040 + 10,970 378,380

[MMG+07] B− LG LiveJournal User–group membership 3,201,203 + 7,489,073 112,307,385

[MMG+07] B− OG Orkut User–group membership 2,783,196 + 8,730,857 327,037,487
Continued on next page
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Ref. Prop. Code Dataset Node and edge types |V | |E| or |A|
[Pro10] B− PS Prosper.com Member–group support 6,582 + 1,013 21,017
[Pro10] B− PW Prosper.com Member–listing watch 1,732 + 22,233 35,377

[ABK+08] B− RL Record labels Artist–record label membership 140,446 + 18,767 191,558
[LYRL04] B= R2 Reuters-21578 Article–word frequency 21,557 + 38,677 978,446
[LYRL04] B= RE Reuters Message–word inclusion 781,265 + 283,911 60,569,726

[ABK+08] B− TM Teams Athlete–team membership 97,469 + 29,640 401,494
[Nat10] B= TR TREC (disks 4–5) Document–word frequency 556,077 + 1,173,225 83,629,405
[Mis09] B− YG YouTube User–group membership 94,238 + 30,087 293,360
Folksonomy
[HJSS06] T−U B BibSonomy User–tag–publication assignment 5,794 + 204,673 + 771,290 2,555,080
[EC07] T=U C CiteULike User–tag–publication assignment 22,715 + 153,277 + 731,769 2,411,819
[WZB08] T=U D Delicious User–tag–URL assignment 833,081 + 4,512,303 + 33,778,416 301,187,709
[Gro06] T=U M MovieLens User–tag–movie assignment 4,009 + 16,528 + 7,601 95,580

[CLS+10] T=U W Twitter User–hashtag–URL usage 175,214 + 530,418 + 9,129,669 4,664,605
[NO10] T= V vi.sualize.us User–tag–picture assignment 17,122 + 82,035 + 495,402 2,298,816
Interaction

[CHC+07] U=U CO Haggle Person–person contact 274 28,244
[DA05] U= PM Caenorhabditis elegans Metabolite–metabolite interaction 453 4,596
[Cel10] B=U Lb Last.fm User–band listening event 992 + 174,077 19,150,868
[Cel10] B=U Ls Last.fm User–song listening event 992 + 1,084,620 19,150,868
[ESP06] U=U RM Reality Mining Person–person proximity 96 1,086,404
Physical
[LKF07] U− IN CAIDA AS–AS connection 26,475 106,762
[LLDM08] U− RO California Road network 1,965,206 5,533,214
[RFI02] D− GN Gnutella Host–host connection 62,586 147,892
[ZLMZ05] U=U TO Internet topology AS–AS connection 34,761 171,403
[LKF07] U− AS Route Views AS–AS connection 6,474 13,895
[LKF07] U− SK Skitter AS–AS connection 1,696,415 11,095,298
Ratings
[ZMKL05] BE BX BookCrossing User–book rating 105,283 + 340,532 1,149,742
[MA05] BEU ER Epinions User–product rating 120,492 + 755,760 13,668,320
[SDLA10] BEU Fr Filmtipset User–movie rating 80,482 + 64,189 19,554,219
[GRGP01] B± JE Jester User–joke rating 24,938 + 100 616,912
[BP07] DE LI Ĺıb́ımseti.cz User–user profile rating 220,970 17,359,346
[Gro06] BEU M1 MovieLens 100k User–movie rating 943 + 1,682 100,000
[Gro06] BEU M3 MovieLens 10M User–movie rating 71,567 + 65,133 10,000,054
[Gro06] BEU M2 MovieLens 1M User–movie rating 6,040 + 3,706 1,000,209
[BL07] BEU NX Netflix User–movie rating 480,189 + 17,770 100,480,507
Reference
[GGK03] D− th arXiv hep-th Publication–publication citation 27,770 352,807
[LLDM08] D− BS Berkeley/Stanford Webpage–webpage hyperlink 685,230 7,600,595
[BLG98] D− CS CiteSeer Publication–publication citation 723,131 1,764,929
[Ley02] D− Pi DBLP Publication–publication citation 12,591 49,793
[Mis09] D−U WP English Wikipedia Article–article link 1,870,709 39,953,145

[ABK+08] D− DL English Wikipedia Article–article link 15,172,739 130,166,251
[LLDM08] D− GO Google Webpage–webpage hyperlink 875,713 5,105,039

[PFP+07] D− GC Google.com internal Webpage–webpage hyperlink 15,763 171,206
[BCH03] D− WT TREC WT10g Webpage–webpage hyperlink 1,601,787 8,063,026
[HJT01] D− PC US patents Patent–patent citation 3,774,768 16,522,438
[AJB99] D− W3 World Wide Web Webpage–webpage hyperlink 325,729 1,497,135
Social
[VMCG09] U−U Ol Facebook New Orleans User–user friendship 63,731 1,545,686
[SDLA10] D− Ff Filmtipset User–user friendship 39,199 143,310

[MKG+08] D−U FL Flickr User–user friendship 2,302,925 33,140,018
[LLDM08] D− LJ LiveJournal User–user friendship 4,847,571 68,993,773

[MMG+07] D− OR Orkut User–user link 3,072,441 223,534,301
[KLB09] D± SZ Slashdot Zoo User–user friend/foe 79,120 515,581
[KLPM10] D− TW Twitter User–user following 41,652,230 1,468,365,182

[CLS+10] D− Ws Twitter User–user following 465,017 835,423
[Mis09] D−U YT YouTube User–user friendship 3,223,643 18,524,095
Trust
[Ste05] D= AD Advogato User–user trust 6,535 51,397
[LHK10a] D±U EL English Wikipedia Editor–editor vote 8,297 107,071
[MA05] D±U EP Epinions User–user trust/distrust 131,828 841,372
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Table A.2 below gives basic statistics for all datasets. The individual statistics are defined in
Section 2.2.2. Statistics that cannot be computed for the dataset are marked with a dash (—),
for instance the clustering coefficient cannot be computed for bipartite graphs. In that table, the
rank r is the rank used for all matrix decompositions of each network. The effective diameter δ0.9
is defined in Section 2.2.2. The density d is defined in Section 2.2.1. The clustering coefficient is
defined in Equation 2.34, and only exists for unipartite networks. For signed networks, we give
the signed clustering coefficient as defined in [KLB09]. The power-law exponent γ is defined in
Section 2.2.2. For directed network, we give the outdegree and indegree power-law exponents
separately. For bipartite networks, we give the power-law exponents of the two vertex sets
separately. The largest connected component (CC) and largest strongly connected component
(SCC) are given relatively to the total number of vertices. The strongly connected component
is only defined for directed networks.

Table A.2: Statistics for all one hundred and eighteen datasets.

Dat. Rank (r) Eff. diam. (δ0.9) Density (d) Clust. coeff. (c) Power-law (γ) Largest CC Largest SCC
Authorship
Arabic Wikipedia (ar) 49 4.0 100.0, 6.1 — 1.7, 2.5 0.984 —
arXiv astro-ph (AP) 73 5.5 42.2 0.39 2.0 0.954 —
arXiv hep-ph (PH) 49 3.7 906.3 0.29 1.4 0.998 —
arXiv hep-th (TH) 49 3.7 978.6 0.28 1.4 0.992 —
Basque Wikipedia (eu) 49 3.9 377.8, 12.3 — 1.5, 2.7 0.983 —
Bengali Wikipedia (bn) 49 4.2 288.5, 6.2 — 1.5, 1.8 0.991 —
Breton Wikipedia (br) 49 4.4 369.1, 9.6 — 1.5, 3.0 0.988 —
Catalan Wikipedia (ca) 49 4.2 247.7, 8.3 — 1.6, 2.3 0.989 —
Chinese Wikipedia (zh) 49 4.7 102.9, 10.7 — 1.6, 2.3 0.990 —
DBLP (Pa) 49 15.1 5.4, 2.0 — 2.2, 5.2 0.853 —
DBLP (Pc) 49 7.7 23.7 0.11 2.2 0.857 —
Dutch Wikipedia (nl) 49 4.1 167.9, 12.5 — 1.7, 2.4 0.991 —
English Wikibooks (ben) 49 5.2 35.7, 8.8 — 1.9, 2.3 0.952 —
English Wikinews (nen) 49 5.1 83.7, 5.6 — 1.7, 2.7 0.963 —
English Wikipedia (en) 49 4.5 69.8, 12.5 — 1.8, 1.9 0.977 —
English Wikiquote (qen) 49 4.1 25.4, 5.9 — 1.9, 2.3 0.953 —
English Wiktionary (men) 49 4.0 306.6, 4.3 — 1.6, 2.5 0.993 —
Esperanto Wikipedia (eo) 49 4.0 395.2, 9.8 — 1.5, 2.4 0.981 —
French Wikibooks (bfr) 102 5.1 69.9, 7.3 — 1.8, 2.5 0.967 —
French Wikinews (nfr) 123 4.5 137.5, 7.7 — 1.6, 3.4 0.980 —
French Wikipedia (fr) 49 4.5 160.2, 11.6 — 1.7, 1.8 0.984 —
French Wiktionary (mfr) 49 4.0 1474.8, 3.9 — 1.5, 3.4 0.999 —
Galician Wikipedia (gl) 49 4.0 288.0, 11.0 — 1.5, 2.4 0.979 —
German Wikipedia (de) 49 5.1 134.6, 18.4 — 1.6, 1.7 0.963 —
German Wiktionary (mde) 49 4.0 211.1, 8.5 — 1.6, 3.4 0.987 —
Github (GH) 49 6.1 7.8, 3.6 — 1.8, 2.0 0.788 —
Greek Wikipedia (el) 49 4.0 141.0, 13.5 — 1.6, 2.6 0.983 —
Haitian Wikipedia (ht) 66 4.5 400.2, 6.7 — 1.5, 2.1 0.944 —
Italian Wikipedia (it) 49 4.2 190.6, 11.8 — 1.6, 2.3 0.983 —
Japanese Wikipedia (ja) 49 5.1 107.0, 11.6 — 1.6, 2.4 0.942 —
Latvian Wikipedia (lv) 49 4.0 230.8, 8.8 — 1.5, 2.8 0.989 —
Low German Wikipedia (nds) 91 4.8 233.2, 11.7 — 1.6, 2.1 0.975 —
Movies (ST) 49 11.5 3.8, 3.0 — 5.2, 2.0 0.835 —
Occitan Wikipedia (oc) 59 3.9 445.2, 12.3 — 1.5, 1.9 0.991 —
Polish Wikipedia (pl) 49 4.7 169.2, 14.0 — 1.6, 2.4 0.975 —
Portuguese Wikipedia (pt) 49 4.3 109.2, 6.9 — 1.7, 2.5 0.986 —
Russian Wikipedia (ru) 49 4.8 157.9, 10.5 — 1.6, 2.3 0.980 —
Serbian Wikipedia (sr) 49 4.0 275.0, 8.4 — 1.6, 2.6 0.991 —
Slovak Wikipedia (sk) 49 4.0 231.1, 10.6 — 1.6, 2.8 0.991 —
Spanish Wikipedia (es) 49 4.0 80.5, 9.3 — 1.7, 2.3 0.973 —
Swedish Wikipedia (sv) 49 4.7 141.0, 10.5 — 1.7, 2.6 0.982 —
Vietnamese Wikipedia (vi) 49 4.3 114.1, 6.3 — 1.7, 2.0 0.971 —
Welsh Wikipedia (cy) 49 4.0 338.8, 11.7 — 1.5, 2.8 0.989 —
Communication
Digg (DG) 58 5.8 5.8 0.009 2.8, 3.0 0.975 0.222
English Wikipedia (WK) 9 3.9 4.2 0.02 1.6, 2.5 0.998 0.047
Enron (EN) 49 5.8 26.3 0.089 1.5, 1.7 0.967 0.105
EU institution (EU) 49 5.0 3.2 0.23 3.0, 2.7 0.848 0.129
Facebook New Orleans (Ow) 49 7.5 37.4 0.096 2.1, 2.1 0.688 0.000
Filmtipset (Fc) 49 3.8 42.9, 27.6 — 1.8, 1.6 0.998 —
Pretty Good Privacy (PG) 155 10.0 4.6 0.41 2.2 1.000 —
Twitter (Wa) 49 5.9 8.8 0.026 1.9, 1.9 0.991 0.000
U. Rovira i Virgili (A@) 700 4.6 19.2 0.17 4.1, 4.1 1.000 1.000
Co-occurrence
Amazon (AM) 49 7.7 16.8 0.37 3.9 1.000 —
Similarity (SI) 100 14.3 3.1 0.46 3.9 0.568 —
Features
Countries (CN) 49 5.8 1.1, 159.2 — 4.4, 1.5 0.971 —
English Wikipedia (EX) 49 1.8 1058.2, 10.7 — 7.2, 1.6 1.000 —
English Wikipedia (WC) 49 13.8 2.0, 20.7 — 7.1, 2.1 0.930 —
Flickr (FG) 49 5.3 21.6, 82.5 — 1.5, 1.7 0.941 —
Genre (GE) 49 7.3 1.7, 34.5 — 5.8, 1.6 0.954 —
LiveJournal (LG) 49 3.8 35.1, 15.0 — 1.4, 3.1 0.982 —
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Dat. Rank (r) Eff. diam. (δ0.9) Density (d) Clust. coeff. (c) Power-law (γ) Largest CC Largest SCC
Orkut (OG) 49 3.9 117.5, 37.5 — 1.3, 1.6 0.999 —
Prosper.com (PS) 395 3.9 3.2, 20.7 — 2.0, 1.6 0.965 —
Prosper.com (PW) 155 6.4 20.4, 1.6 — 1.5, 10.7 0.903 —
Record labels (RL) 49 7.0 1.4, 10.2 — 6.0, 1.8 0.876 —
Reuters-21578 (R2) 49 1.9 49.5, 25.3 — 2.0, 1.6 0.970 —
Reuters (RE) 49 2.1 77.5, 213.3 — 1.3, 1.6 1.000 —
Teams (TM) 49 7.9 4.1, 13.5 — 9.0, 1.6 0.913 —
TREC (disks 4–5) (TR) 49 1.9 151.6, 71.3 — 1.2, 2.2 0.998 —
YouTube (YG) 49 5.7 3.1, 9.8 — 2.8, 2.2 0.913 —
Folksonomy
BibSonomy (But) 49 3.9 441.0, 12.5, 3.3 — 1.4, 1.8, 3.5 0.995 —
CiteULike (Cut) 49 3.8 106.2, 15.7, 3.3 — 1.4, 1.7, 2.6 0.989 —
Delicious (Dut) 49 3.6 361.5, 66.7, 8.9 — 1.2, 2.2, 2.0 0.999 —
MovieLens (Mut) 146 5.3 23.8, 5.8, 12.6 — 1.7, 1.9, 2.6 0.958 —
Twitter (Wut) 49 4.8 26.6, 8.8, 1.4 — 2.2, 1.8, 2.3 0.979 —
vi.sualize.us (Vut) 49 3.6 134.3, 28.0, 4.6 — 1.7, 1.8, 3.1 0.993 —
Interaction
Haggle (CO) 5 3.6 206.2 0.74 1.4 1.000 —
Caenorhabditis elegans (PM) 150 3.7 20.3 0.077 2.2 1.000 —
Last.fm (Lb) 49 1.8 19305.3, 110.0 — 1.2, 1.6 1.000 —
Last.fm (Ls) 49 1.8 19305.3, 17.7 — 1.2, 2.0 1.000 —
Reality Mining (RM) 96 1.8 22633.4 0.75 1.1 1.000 —
Physical
CAIDA (IN) 63 5.0 8.1 0.42 2.1 1.000 —
California (RO) 15 495.8 5.6 0.06 7.0 0.996 —
Gnutella (GN) 49 7.3 4.7 0 4.3, 5.6 1.000 0.226
Internet topology (TO) 49 4.6 9.9 0.086 1.9 1.000 —
Route Views (AS) 247 5.0 4.3 0.077 2.1 1.000 —
Skitter (SK) 49 5.9 13.1 0.059 1.6 0.999 —
Ratings
BookCrossing (BX) 49 6.4 10.9, 3.4 — 1.8, 2.1 0.942 —
Epinions (ER) 49 5.4 113.4, 18.1 — 1.6, 2.0 0.999 —
Filmtipset (Fr) 49 2.0 243.0, 304.6 — 1.5, 1.5 1.000 —
Jester (JE) 100 1.8 24.7, 6169.1 — 5.4, 1.1 1.000 —
Ĺıb́ımseti.cz (LI) 19 3.7 157.1 -0.00028 1.8, 1.7 1.000 0.367
MovieLens 100k (M1) 100 1.9 106.0, 59.5 — 1.8, 1.8 1.000 —
MovieLens 10M (M3) 49 2.0 143.1, 936.6 — 1.8, 1.4 0.589 —
MovieLens 1M (M2) 100 1.9 165.6, 269.9 — 1.7, 1.5 1.000 —
Netflix (NX) 49 2.4 209.3, 5654.5 — 1.2, 1.2 1.000 —
Reference
arXiv hep-th (th) 75 5.7 25.4 0.27 3.5, 2.4 0.987 0.269
Berkeley/Stanford (BS) 49 10.2 22.2 0.81 2.7, 2.0 0.956 0.038
CiteSeer (CS) 75 8.1 9.2 0.16 4.0, 2.5 0.505 0.022
DBLP (Pi) 126 5.6 7.9 0.16 3.6, 2.7 0.992 0.000
English Wikipedia (DL) 49 5.7 17.2 0.031 1.8, 2.1 0.995 0.312
English Wikipedia (WP) 49 3.9 42.7 0.021 1.4, 1.6 1.000 0.871
Google.com internal (GC) 92 3.5 21.7 0.56 3.2, 2.0 1.000 0.784
Google (GO) 49 7.9 11.7 0.39 3.9, 2.5 0.977 0.497
TREC WT10g (WT) 9 10.8 10.1 0.067 2.1, 2.7 0.910 0.294
US patents (PC) 49 9.6 8.8 0.11 3.4, 3.7 0.997 0.000
World Wide Web (W3) 75 9.8 9.2 0.72 2.1, 2.0 1.000 0.039
Social
Facebook New Orleans (Ol) 70 5.5 48.5 0.15 1.9 0.995 —
Filmtipset (Ff) 49 7.5 7.3 0.24 3.8, 3.7 0.931 0.697
Flickr (FL) 49 7.1 28.8 0.15 2.1, 2.2 0.944 0.697
LiveJournal (LJ) 49 6.9 28.5 0.17 1.6, 1.6 0.999 0.790
Orkut (OR) 49 5.4 145.5 0.061 1.3, 1.3 1.000 0.976
Slashdot Zoo (SZ) 60 5.3 13.0 0.02 1.9, 2.2 1.000 0.341
Twitter (TW) 49 70.5 —
Twitter (Ws) 49 5.6 3.6 0.0089 1.4, 2.5 1.000 0.000
YouTube (YT) 49 6.0 11.5 0.016 2.2, 2.2 0.998 0.983
Trust
Advogato (AD) 150 3.9 15.7 0.1 2.9, 2.9 0.771 0.482
English Wikipedia (EL) 164 3.8 30.1 0.084 1.5, 2.2 0.852 0.157
Epinions (EP) 70 5.5 12.8 0.1 1.7, 1.7 0.904 0.314
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Appendix B

Complete Experimental Results

The following tables give evaluation results for all datasets. Values indicate the mean average
precision. The first two tables B.1 and B.2 shows unipartite networks; Table B.2 shows addi-
tional link prediction methods for directed networks; and Table B.3 shows bipartite networks.
Datasets are referred to by their code given in Table A.1. The best performing link prediction
methods are highlighted in each line. All experiments were run on a 64-bit Linux machine
with 16 cores (Intel Xeon X5550, 2.67GHz) and 72GiB of RAM. Despite the large amount
of memory and processing power available, it was not possible to compute the eigenvalue or
singular value decomposition of all networks. Therefore, some combinations are left out in the
table. In general, it took more runtime to decompose the normalized adjacency matrix than
the non-normalized adjacency matrix, and it took more memory to decompose the Laplacian
matrix than it took to decompose either normalized or non-normalized adjacency matrix.

Table B.1: Evaluation results for all square datasets (default methods).

Dat. P-AA A-POLYN A-EXP A-NEU N-POLYN N-EXP N-NEU N-COM L-COM L-REG L-HEAT X-SQU
Authorship
AP 0.693 0.690 0.690 0.690 0.672 0.673 0.481 0.673 0.578 0.580 0.579 0.690
PH 0.765 0.728 0.726 0.714 0.752 0.752 0.639 0.751 — — — 0.730
TH 0.766 0.720 0.712 0.691 0.751 0.751 0.648 0.752 — — — 0.720
Pc — 0.758 0.759 0.758 — — — — — — — 0.758
Communication
DG 0.771 0.793 0.811 0.804 0.837 0.842 0.767 0.843 0.696 0.697 0.697 0.795
WK 0.640 0.665 0.673 0.673 0.684 0.676 0.142 0.671 — — — 0.661
EN 0.872 0.779 0.775 0.741 0.875 0.875 0.711 0.875 0.727 0.729 0.729 0.777
EU 0.671 0.663 0.672 0.665 0.692 0.693 0.093 0.693 0.556 0.561 0.561 0.661
Ow 0.795 0.783 0.786 0.784 0.795 0.795 0.599 0.794 — — — 0.785
PG 0.965 0.944 0.967 0.963 0.964 0.979 0.766 0.982 0.967 0.970 0.968 0.937
Wa — 0.765 0.768 0.769 — — — — — — — 0.764
A@ 0.866 0.952 0.961 0.901 0.959 0.969 0.644 0.964 0.970 0.924 0.926 0.933
Co-occurrence
AM 0.686 0.672 0.673 0.672 0.660 0.660 0.627 0.660 — — — 0.672
SI 0.893 0.880 0.937 0.910 0.957 0.968 0.779 0.982 0.964 0.995 0.995 0.879
Interaction
CO 0.726 0.727 0.737 0.737 0.653 0.671 0.552 0.693 0.406 0.406 0.406 0.727
PM 0.938 0.889 0.926 0.887 0.917 0.938 0.615 0.939 0.862 0.858 0.856 0.873
RM 0.287 0.324 0.293 0.296 0.275 0.259 0.172 0.268 — — — 0.330
Physical
IN 0.811 0.966 0.963 0.943 0.982 0.982 0.569 0.984 0.837 0.844 0.844 0.963
RO 0.532 0.614 0.614 0.614 — — — — — — — 0.614
GN 0.507 0.580 0.615 0.637 0.581 0.583 0.468 0.585 0.475 0.475 0.475 0.580
TO 0.728 0.683 0.723 0.721 0.711 0.711 0.248 0.717 0.575 0.579 0.579 0.672
AS 0.905 0.814 0.900 0.885 0.867 0.923 0.799 0.930 0.954 0.936 0.939 0.794
SK — 0.683 0.684 0.678 — — — — — — — 0.683
Ratings
LI 0.507 0.635 0.628 0.623 0.556 0.542 0.441 0.543 — — — 0.635
Reference
th 0.690 0.682 0.685 0.681 0.667 0.667 0.460 0.668 0.608 0.610 0.609 0.680
BS — 0.686 0.682 0.681 — — — — — — — 0.683
CS 0.643 0.682 0.684 0.684 0.673 0.673 0.423 0.674 — — — 0.681
Pi 0.908 0.955 0.959 0.941 0.950 0.949 0.760 0.949 0.910 0.913 0.913 0.954
WP — 0.641 0.663 0.660 0.664 0.664 0.402 0.662 — — — 0.639
GC 0.688 0.682 0.680 0.671 0.665 0.669 0.342 0.681 0.581 0.604 0.604 0.675
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Dat. P-AA A-POLYN A-EXP A-NEU N-POLYN N-EXP N-NEU N-COM L-COM L-REG L-HEAT X-SQU
GO 0.689 0.660 0.658 0.657 0.684 0.684 0.429 0.683 — — — 0.658
WT — 0.604 0.596 0.594 — — — — — — — 0.603
PC — 0.636 0.646 0.644 — — — — — — — 0.636
W3 0.687 0.674 0.674 0.671 0.692 0.692 0.510 0.692 — — — 0.664
Social
Ol 0.671 0.667 0.667 0.664 0.656 0.656 0.472 0.656 — — — 0.668
Ff 0.675 0.675 0.679 0.679 0.663 0.664 0.435 0.664 0.644 0.644 0.644 0.675
FL — 0.630 0.621 0.584 — — — — — — — 0.631
SZ 0.356 0.384 0.385 0.380 0.371 0.375 0.199 0.376 0.362 0.361 0.361 0.382
Ws 0.525 0.612 0.638 0.643 0.672 0.691 0.016 0.691 — — — 0.603
YT — 0.544 0.624 0.628 — — — — — — — 0.536
Trust
AD 0.929 0.903 0.927 0.916 0.806 0.857 0.686 0.853 0.677 0.681 0.681 0.895
EL 0.800 0.798 0.816 0.813 0.791 0.782 0.768 0.785 0.792 0.793 0.793 0.799
EP 0.287 0.281 0.295 0.293 0.286 0.294 0.200 0.291 0.280 0.280 0.279 0.283

Table B.2: Evaluation results for all square datasets (directed methods from Sec-
tion 6.3).

asym back
Dat. A-POLY-O A-POLYN-O A-SINH A-NEU-O A-RR X-SQU A-POLY-O A-POLYN-O A-SINH A-NEU-O A-RR X-SQU
Authorship
AP 0.687 0.687 0.687 0.687 0.499 0.687 0.690 0.690 0.690 0.690 0.499 0.689
PH 0.727 0.730 0.730 0.730 0.606 0.725 0.727 0.730 0.730 0.730 0.606 0.725
TH 0.719 0.720 0.720 0.720 0.600 0.715 0.719 0.719 0.720 0.719 0.600 0.715
Pc 0.758 0.758 0.758 0.758 0.619 0.754 0.757 0.757 0.757 0.757 0.619 0.753
Communication
DG 0.784 0.784 0.784 0.784 0.762 0.802 0.787 0.786 0.786 0.786 0.762 0.813
WK 0.667 0.663 0.663 0.663 0.500 0.663 0.654 0.649 0.649 0.649 0.500 0.666
EN 0.761 0.762 0.763 0.763 0.773 0.758 0.776 0.774 0.775 0.775 0.773 0.737
EU 0.633 0.636 0.636 0.636 0.498 0.671 0.622 0.623 0.623 0.623 0.498 0.639
Ow 0.787 0.787 0.787 0.787 0.673 0.784 0.781 0.781 0.781 0.781 0.673 0.761
PG 0.898 0.897 0.897 0.897 0.760 0.909 0.946 0.946 0.946 0.945 0.760 0.925
Wa 0.755 0.755 0.755 0.755 0.621 0.750 0.765 0.765 0.765 0.765 0.621 0.760
A@ 0.811 0.826 0.825 0.819 0.659 0.820 0.813 0.814 0.814 0.813 0.659 0.717
Co-occurrence
AM 0.663 0.663 0.663 0.663 0.500 0.664 0.668 0.668 0.668 0.668 0.500 0.667
SI 0.881 0.881 0.867 0.867 0.750 0.918 0.857 0.857 0.857 0.857 0.750 0.830
Interaction
CO 0.720 0.719 0.720 0.719 0.534 0.722 0.730 0.728 0.728 0.728 0.534 0.721
PM 0.888 0.872 0.872 0.873 0.629 0.883 0.842 0.841 0.841 0.841 0.629 0.719
RM 0.450 0.487 0.473 0.498 0.189 0.425 0.233 0.233 0.233 0.233 0.189 0.213
Physical
IN 0.839 0.838 0.835 0.836 0.709 0.838 0.801 0.797 0.788 0.788 0.709 0.825
RO 0.542 0.542 0.542 0.542 0.500 0.542 0.542 0.542 0.542 0.542 0.500 0.542
GN 0.576 0.575 0.575 0.575 0.500 0.587 0.548 0.548 0.548 0.548 0.500 0.559
TO 0.661 0.659 0.659 0.659 0.560 0.683 0.623 0.619 0.619 0.618 0.560 0.510
AS 0.776 0.777 0.777 0.776 0.766 0.756 0.880 0.880 0.880 0.880 0.766 0.852
SK 0.678 0.675 0.675 0.674 0.500 0.674 0.625 0.620 0.619 0.619 0.500 0.583
Ratings
LI 0.639 0.639 0.639 0.639 0.479 0.639 0.429 0.430 0.430 0.430 0.479 0.427
Reference
th 0.673 0.672 0.672 0.672 0.501 0.678 0.670 0.670 0.670 0.670 0.501 0.673
BS 0.687 0.686 0.686 0.685 0.500 0.563 0.664 0.659 0.659 0.658 0.500 0.558
CS 0.678 0.678 0.678 0.678 0.501 0.680 0.674 0.674 0.674 0.674 0.501 0.675
Pi 0.947 0.946 0.946 0.946 0.779 0.952 0.909 0.908 0.908 0.908 0.779 0.903
WP 0.616 0.614 0.614 0.614 0.500 0.592 0.619 0.619 0.619 0.619 0.500 0.603
GC 0.685 0.680 0.680 0.679 0.500 0.679 0.595 0.586 0.586 0.585 0.500 0.508
GO 0.679 0.679 0.679 0.679 0.500 0.678 0.672 0.672 0.672 0.672 0.500 0.670
WT 0.636 0.636 0.636 0.636 0.500 0.636 0.619 0.619 0.619 0.619 0.500 0.619
PC 0.664 0.664 0.664 0.664 0.500 0.665 0.652 0.652 0.652 0.652 0.500 0.652
W3 0.681 0.681 0.681 0.682 0.500 0.680 0.683 0.683 0.683 0.683 0.500 0.683
Social
Ol 0.657 0.657 0.657 0.657 0.501 0.658 0.662 0.662 0.662 0.662 0.501 0.664
Ff 0.631 0.633 0.633 0.633 0.504 0.629 0.667 0.667 0.667 0.667 0.504 0.667
FL 0.613 0.612 0.612 0.612 0.500 0.630 0.616 0.615 0.615 0.615 0.500 0.617
SZ 0.369 0.369 0.369 0.369 0.241 0.377 0.338 0.338 0.338 0.338 0.241 0.334
Ws 0.564 0.560 0.559 0.559 0.501 0.590 0.451 0.448 0.448 0.448 0.501 0.476
YT 0.541 0.541 0.535 0.535 0.500 0.568 0.468 0.470 0.460 0.460 0.500 0.501
Trust
AD 0.849 0.848 0.848 0.847 0.669 0.862 0.885 0.885 0.885 0.885 0.669 0.886
EL 0.788 0.788 0.788 0.788 0.790 0.801 0.807 0.807 0.807 0.807 0.790 0.775
EP 0.270 0.270 0.270 0.270 0.193 0.308 0.265 0.265 0.265 0.265 0.193 0.232
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Table B.3: Evaluation results for all bipartite datasets.

Dat. P-PA A-POLY-O A-POLYN-O A-SINH A-NEU-O A-RR N-COM-O N-NEU-O L-REG L-HEAT X-SQU
Authorship
ar 0.780 0.683 0.692 0.692 0.692 0.621 0.776 0.776 0.491 0.490 0.645
eu 0.779 0.646 0.636 0.637 0.638 0.620 0.767 0.763 0.403 0.403 0.565
bn 0.780 0.608 0.660 0.661 0.661 0.622 0.677 0.669 0.669 0.668 0.708
br 0.777 0.747 0.719 0.719 0.718 0.616 0.757 0.754 0.412 0.413 0.673
ca 0.769 0.698 0.703 0.703 0.704 0.607 0.768 0.767 0.352 0.351 0.709
zh 0.806 0.735 0.733 0.733 0.733 0.660 0.802 0.802 0.421 0.421 0.733
Pa 0.665 0.656 0.656 0.656 0.656 0.499 0.679 0.679 — — 0.642
nl 0.773 0.707 0.703 0.704 0.703 0.610 — — — — 0.717
ben 0.863 0.703 0.710 0.712 0.714 0.756 0.847 0.845 0.698 0.698 0.730
nen 0.843 0.797 0.790 0.791 0.790 0.513 0.857 0.845 0.451 0.451 0.774
qen 0.838 0.627 0.680 0.683 0.683 0.709 0.738 0.726 0.610 0.610 0.543
men 0.759 0.605 0.646 0.646 0.646 0.593 0.662 0.649 0.497 0.497 0.550
eo 0.763 0.628 0.611 0.613 0.613 0.597 0.734 0.733 0.463 0.466 0.638
bfr 0.741 0.721 0.721 0.725 0.724 0.457 0.807 0.802 0.524 0.525 0.703
nfr 0.608 0.645 0.653 0.656 0.656 0.334 0.730 0.730 0.589 0.589 0.576
mfr 0.754 0.735 0.735 0.735 0.735 0.586 0.729 0.724 0.692 0.692 0.658
gl 0.777 0.655 0.668 0.668 0.668 0.617 0.769 0.769 0.451 0.451 0.656
mde 0.736 0.597 0.608 0.607 0.605 0.558 0.703 0.701 0.492 0.492 0.423
GH 0.690 0.603 0.599 0.600 0.599 0.501 0.688 0.688 0.413 0.413 0.638
el 0.786 0.691 0.700 0.700 0.700 0.629 0.785 0.785 0.408 0.407 0.675
ht 0.773 0.705 0.773 0.773 0.773 0.612 0.574 0.572 0.736 0.736 0.620
it — 0.758 0.759 0.759 0.759 0.629 — — — — 0.711
ja — 0.753 0.754 0.754 0.754 0.619 — — — — 0.736
lv 0.780 0.698 0.712 0.712 0.711 0.619 0.762 0.758 0.317 0.317 0.638
nds 0.790 0.738 0.760 0.776 0.777 0.636 0.790 0.789 0.585 0.586 0.723
ST 0.663 0.643 0.643 0.643 0.643 0.502 0.681 0.682 0.631 0.631 0.650
oc 0.787 0.784 0.783 0.783 0.783 0.630 0.606 0.597 0.547 0.546 0.625
pl — 0.738 0.733 0.733 0.733 0.608 — — — — 0.699
pt 0.771 0.680 0.676 0.677 0.677 0.606 — — — — 0.675
ru 0.798 0.740 0.742 0.742 0.742 0.647 — — — — 0.751
sr 0.783 0.705 0.705 0.703 0.703 0.625 0.783 0.783 0.436 0.437 0.709
sk 0.767 0.665 0.614 0.614 0.614 0.602 0.760 0.760 0.386 0.384 0.608
es 0.801 0.768 0.757 0.757 0.757 0.654 — — — — 0.759
sv 0.764 0.687 0.689 0.690 0.690 0.596 — — — — 0.693
vi 0.766 0.690 0.695 0.695 0.695 0.599 0.765 0.764 0.589 0.589 0.693
cy 0.780 0.769 0.759 0.758 0.758 0.623 0.755 0.749 0.496 0.496 0.686
Communication
Fc 0.692 0.604 0.603 0.603 0.603 0.505 0.600 0.598 — — 0.644
Features
CN 0.956 0.910 0.966 0.980 0.980 0.759 0.984 0.979 0.965 0.965 0.836
EX 0.690 0.646 0.645 0.645 0.645 0.500 0.476 0.476 — — 0.661
WC 0.675 0.649 0.651 0.651 0.651 0.500 0.688 0.688 — — 0.658
FG — 0.671 0.669 0.669 0.669 0.500 — — — — 0.678
GE 0.688 0.547 0.552 0.555 0.555 0.500 0.685 0.685 0.624 0.624 0.524
PS 0.949 0.902 0.913 0.919 0.919 0.731 0.760 0.600 0.847 0.848 0.909
PW 0.697 0.732 0.736 0.735 0.735 0.597 0.838 0.788 0.792 0.793 0.809
RL 0.962 0.887 0.887 0.887 0.884 0.753 0.945 0.939 0.846 0.846 0.907
R2 0.690 0.655 0.656 0.658 0.658 0.501 0.575 0.566 — — 0.676
RE — 0.670 0.653 0.653 0.652 0.500 — — — — 0.679
TM 0.693 0.679 0.682 0.679 0.680 0.510 0.697 0.700 0.681 0.681 0.691
YG 0.687 0.598 0.607 0.607 0.607 0.500 0.661 0.660 0.551 0.551 0.629
Folksonomy
Bti 0.923 0.950 0.950 0.950 0.950 0.758 0.923 0.923 — — 0.956
Bui 0.862 0.776 0.776 0.776 0.776 0.641 0.852 0.853 — — 0.771
But 0.878 0.819 0.819 0.820 0.819 0.778 0.878 0.878 — — 0.791
Cti 0.698 0.601 0.605 0.605 0.605 0.509 0.698 0.698 0.359 0.359 0.606
Cui 0.824 0.846 0.846 0.846 0.846 0.720 0.837 0.835 0.705 0.705 0.835
Cut 0.882 0.832 0.833 0.833 0.833 0.783 0.882 0.882 0.611 0.611 0.801
Mti 0.868 0.865 0.865 0.865 0.865 0.742 0.874 0.872 0.786 0.786 0.864
Mui 0.772 0.711 0.708 0.708 0.708 0.657 0.765 0.761 0.676 0.677 0.726
Mut 0.899 0.801 0.803 0.803 0.803 0.656 0.853 0.837 0.627 0.626 0.815
Wti 0.953 0.919 0.919 0.919 0.919 0.750 0.953 0.954 — — 0.902
Wui — 0.754 0.754 0.754 0.754 0.690 — — — — 0.753
Wut — 0.786 0.784 0.784 0.785 0.688 — — — — 0.784
Vti 0.714 0.650 0.630 0.630 0.629 0.528 0.713 0.713 0.319 0.319 0.654
Vui 0.758 0.754 0.753 0.753 0.753 0.595 0.758 0.758 0.554 0.554 0.753
Vut 0.877 0.806 0.806 0.806 0.806 0.773 0.876 0.875 0.491 0.491 0.807
Interaction
Lb — 0.941 0.942 0.942 0.942 0.929 — — — — 0.939
Ls — 0.843 0.844 0.844 0.844 0.747 — — — — 0.839
Ratings
BX 0.000 0.261 0.261 0.261 0.261 0.275 0.267 0.267 — — 0.259
ER — 0.457 0.457 0.457 0.457 0.312 — — — — 0.456
Fr — 0.652 0.652 0.652 0.652 0.544 — — — — 0.655
JE 0.501 0.574 0.571 0.581 0.580 0.458 0.588 0.588 0.547 0.494 0.579
M1 0.000 0.626 0.626 0.626 0.626 0.616 0.642 0.639 0.641 0.657 0.662
M3 0.000 0.608 0.608 0.608 0.608 0.491 0.612 0.612 — — 0.614
M2 0.000 0.688 0.688 0.688 0.688 0.608 0.708 0.708 0.635 0.648 0.707
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Table B.4 gives the best performing graph kernel for each dataset. This is an extended
version of Table 4.5.

Table B.4: Best fitting curve by dataset.

Dataset Best transformation Best method MAP

Advogato (AD) Aa +AT
a → Ab +AT

b A-EXP 0.932
Amazon (AM) Aa +AT

a → Aa +AT
a +Ab +AT

b A-EXP 0.673
U. Rovira i Virgili (A@) Aa +AT

a → Ab +AT
b A-POLYN 0.972

Caenorhabditis elegans (PM) Na +NT
a → Ab +AT

b A-TRI 0.940
Pretty Good Privacy (PG) La → Ab L-REG 0.990
Route Views (AS) La → Aa +Ab L-COM 0.954
CAIDA (IN) Na +NT

a → Ab +AT
b N-COM-O 0.985

Skitter (SK) Aa +AT
a → Ab +AT

b A-POLY 0.685
BibSonomy (Bti) Ba → Bb +BT

b A-POLY-O 0.962
BibSonomy (Bui) Ma → Bb +BT

b N-POLY-O 0.854
BibSonomy (But) Ma → Ba +BT

a +Bb +BT
b N-POLY-O 0.878

BookCrossing (BX) Ma → Bb +BT
b N-POLYN-O 0.278

arXiv astro-ph (AP) Aa +AT
a → Ab +AT

b A-POLY 0.690
Google.com internal (GC) Aa +AT

a → Ab +AT
b A-POLY 0.687

CiteSeer (CS) Aa +AT
a → Aa +AT

a +Ab +AT
b A-EXP 0.684

CiteULike (Cti) Ma → Ba +BT
a +Bb +BT

b N-COM-O 0.698
CiteULike (Cui) La → Aa +Ab L-HEAT 0.873
CiteULike (Cut) Ma → Bb +BT

b N-COM-O 0.882
arXiv hep-ph (PH) Na + αNT

a → Ab N-COM-O 0.758
arXiv hep-th (TH) Na +NT

a → Aa +AT
a +Ab +AT

b N-COM-O 0.752
Haggle (CO) Aa +AT

a → Ab +AT
b A-NEU 0.738

DBLP (Pa) Ma → Bb +BT
b A-SINH 0.679

DBLP (Pi) Aa +AT
a → Ab +AT

b A-POLY 0.966
DBLP (Pc) Aa +AT

a → Aa +AT
a +Ab +AT

b A-EXP 0.759
Countries (CN) Ma → Ba +BT

a +Bb +BT
b N-COM-O 0.984

Genre (GE) Ma → Ba +BT
a +Bb +BT

b A-SINH 0.686
Record labels (RL) Ba → Bb +BT

b A-POLYN-O 0.963
Similarity (SI) La → Aa +Ab L-POLY 0.995
Movies (ST) Ma → Bb +BT

b A-SINH 0.682
Teams (TM) Ma → Ba +BT

a +Bb +BT
b N-NEU-O 0.700

Arabic Wikipedia (ar) Ma → Bb +BT
b N-POLYN-O 0.778

Bengali Wikipedia (bn) La → Aa +Ab L-REG 0.774
Breton Wikipedia (br) La → Aa +Ab L-COM 0.772
Catalan Wikipedia (ca) Ma → Ba +BT

a +Bb +BT
b N-COM-O 0.768

Welsh Wikipedia (cy) Ba → Bb +BT
b A-POLY-O 0.779

German Wiktionary (mde) Ba → Bb +BT
b A-POLYN-O 0.708

Greek Wikipedia (el) Ma → Ba +BT
a +Bb +BT

b N-COM-O 0.785
English Wikibooks (ben) Ma → Bb +BT

b N-POLY-O 0.851
English Wikinews (nen) Ma → Ba +BT

a +Bb +BT
b N-POLY-O 0.869

English Wikiquote (qen) La → Ab A-TRI 0.815
English Wiktionary (men) Ma → Ba +BT

a +Bb +BT
b N-POLY-O 0.718

Esperanto Wikipedia (eo) La → Aa +Ab L-HEAT 0.743
Spanish Wikipedia (es) Ba → Ba +BT

a +Bb +BT
b X-ABS 0.784

Basque Wikipedia (eu) Ma → Bb +BT
b N-NEU 0.771

French Wikibooks (bfr) Ma → Ba +BT
a +Bb +BT

b N-COM-O 0.807
French Wikinews (nfr) Ma → Ba +BT

a +Bb +BT
b A-SINH 0.738

French Wiktionary (mfr) Ba → Bb +BT
b A-POLYN-O 0.755

Galician Wikipedia (gl) Ma → Ba +BT
a +Bb +BT

b A-SINH 0.770
Haitian Wikipedia (ht) Ba → Bb +BT

b A-POLYN-O 0.774
Italian Wikipedia (it) Ba → Bb +BT

b A-POLYN-O 0.760
Japanese Wikipedia (ja) Ba → Ba +BT

a +Bb +BT
b X-ABS 0.764

Continued on next page
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Latvian Wikipedia (lv) Ba → Bb +BT
b A-POLYN-O 0.773

Low German Wikipedia (nds) Ma → Ba +BT
a +Bb +BT

b N-COM-O 0.790
Dutch Wikipedia (nl) Ba → Ba +BT

a +Bb +BT
b X-ABS 0.741

Occitan Wikipedia (oc) Ba → Bb +BT
b A-POLYN-O 0.787

Polish Wikipedia (pl) Ba → Bb +BT
b A-POLY-O 0.741

Portuguese Wikipedia (pt) Ba → Ba +BT
a +Bb +BT

b X-ABS 0.732
Russian Wikipedia (ru) Ba → Ba +BT

a +Bb +BT
b X-ABS 0.773

Slovak Wikipedia (sk) Ma → Bb +BT
b N-COM-O 0.760

Serbian Wikipedia (sr) Ma → Ba +BT
a +Bb +BT

b N-POLY-O 0.783
Swedish Wikipedia (sv) Ba → Ba +BT

a +Bb +BT
b X-ABS 0.731

Vietnamese Wikipedia (vi) Ma → Bb +BT
b N-COM-O 0.765

Chinese Wikipedia (zh) Ma → Ba +BT
a +Bb +BT

b N-POLY-O 0.802
English Wikipedia (EL) Aa +AT

a → Ab +AT
b A-EXP 0.828

EU institution (EU) Na +NT
a → Aa +AT

a +Ab +AT
b N-COM-O 0.693

Enron (EN) Na + αNT
a → Aa +Ab N-COM-O 0.876

Epinions (EP) Aa → Aa +Ab X-ABS 0.310
Epinions (ER) Ba → Bb +BT

b A-POLYN-O 0.461
Facebook New Orleans (Ol) Aa +AT

a → Aa +AT
a +Ab +AT

b X-ABS 0.669
Facebook New Orleans (Ow) Na + αNT

a → Ab N-POLYN-O 0.802
Filmtipset (Fc) Ba → Bb +BT

b A-POLY-O 0.681
Filmtipset (Ff) La → Ab L-REG 0.685
Filmtipset (Fr) Ba → Ba +BT

a +Bb +BT
b X-SQU 0.655

Flickr (FG) Ba → Bb +BT
b A-POLY-O 0.691

Flickr (FL) Aa +AT
a → Ab +AT

b A-POLY 0.655
Github (GH) Ma → Ba +BT

a +Bb +BT
b N-COM-O 0.688

English Wikipedia (EX) Ba → Bb +BT
b A-SINH 0.690

Reuters-21578 (R2) Ba → Bb +BT
b A-SINH 0.689

arXiv hep-th (th) Aa +AT
a → Ab +AT

b A-POLY 0.686
Jester (JE) Ma → Ba +BT

a +Bb +BT
b X-SQU 0.590

Last.fm (Lb) Ba → Ba +BT
a +Bb +BT

b X-ABS 0.953
Last.fm (Ls) Ba → Ba +BT

a +Bb +BT
b X-ABS 0.851

Ĺıb́ımseti.cz (LI) Aa → Ab A-NEU-O 0.639
Reality Mining (RM) Aa → Aa +Ab A-NEU-O 0.498
MovieLens 100k (M1) Ma → Bb +BT

b N-POLY-O 0.717
MovieLens 10M (M3) Ba → Ba +BT

a +Bb +BT
b X-SQU 0.614

MovieLens (Mti) Ma → Ba +BT
a +Bb +BT

b N-COM-O 0.874
MovieLens (Mui) Ma → Ba +BT

a +Bb +BT
b N-COM-O 0.765

MovieLens (Mut) Ma → Ba +BT
a +Bb +BT

b N-COM-O 0.853
MovieLens 1M (M2) Ba → Bb +BT

b A-POLYN-O 0.724
Digg (DG) Na +NT

a → Ab +AT
b A-TRI 0.845

Twitter (Wa) Aa +AT
a → Ab +AT

b A-EXP 0.771
Twitter (Wti) Ma → Ba +BT

a +Bb +BT
b N-POLY-O 0.955

Twitter (Wui) Ba → Ba +BT
a +Bb +BT

b A-POLYN-O 0.754
Twitter (Wut) Ba → Ba +BT

a +Bb +BT
b X-ABS 0.794

Twitter (Ws) Na +NT
a → Aa +AT

a +Ab +AT
b N-COM 0.691

Gnutella (GN) Aa +AT
a → Ab +AT

b A-NEU 0.654
US patents (PC) Aa → Aa +Ab X-ABS 0.665
vi.sualize.us (Vti) Ma → Bb +BT

b N-NEU 0.714
vi.sualize.us (Vui) Ma → Bb +BT

b N-COM-O 0.758
vi.sualize.us (Vut) Ma → Ba +BT

a +Bb +BT
b N-COM-O 0.876

Prosper.com (PS) Ba → Bb +BT
b A-POLYN-O 0.944

Prosper.com (PW) La → Ab L-HEAT 0.842
Reuters (RE) Ba → Bb +BT

b A-POLYN-O 0.691
California (RO) Aa +AT

a → Ab +AT
b A-TRI 0.615

Slashdot Zoo (SZ) Aa +AT
a → Ab +AT

b A-POLYN 0.397

Continued on next page
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Internet topology (TO) Aa +AT
a → Ab +AT

b A-EXP 0.726
TREC WT10g (WT) Aa → Aa +Ab A-POLYN-O 0.636
Berkeley/Stanford (BS) Aa +AT

a → Ab +AT
b A-POLY 0.688

Google (GO) Na + αNT
a → Aa +Ab N-NEU-O 0.685

English Wikipedia (WC) Ma → Ba +BT
a +Bb +BT

b N-NEU-O 0.688
English Wikipedia (WP) Na +NT

a → Ab +AT
b N-EXP 0.664

English Wikipedia (WK) Aa +AT
a → Ab +AT

b A-NEU-O 0.693
World Wide Web (W3) Na + αNT

a → Ab N-NEU-O 0.692
YouTube (YG) Ba → Ba +BT

a +Bb +BT
b X-ABS 0.667

YouTube (YT) Aa +AT
a → Ab +AT

b A-EXP 0.687
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Appendix C

Decomposing Large, Sparse Matrices

To compute spectral transformations, the eigenvalue and singular decompositions of large, sparse
matrices have to be computed. This section briefly reviews how to achieve this using GNU
Octave1. The methods presented here work equally well in other programming languages using
a similar syntax.

When performing a decomposition, there is a crucial difference between the adjacency and
Laplacian matrix: We are interested in the largest eigenvalue of the adjacency matrix, but in
the smallest eigenvalues of the Laplacian matrix. This difference leads to two distinct methods
for decomposition. For the normalized adjacency matrix, both methods can be used, since it is
equivalent to the normalized Laplacian up to a spectral transformation.

Adjacency Matrix The sparse symmetric n by n adjacency matrix A can be decomposed as
A = UΛUT. The number of nonzero entries in A equals the number of edges in the network,
and is usually on the order of O(n). Since the full matrix U of size n × n cannot possibly be
represented in memory, only the r eigenpairs with highest eigenvalue are computed, for a given
r. The number r is called the rank of the decomposition.

Rank-reduced decompositions of large, sparse matrices can be computed in GNU Octave
using the function eigs. By default, the largest eigenvalues and corresponding eigenvectors are
found. This is what we want when decomposing A:

[U, Lambda] = eigs(A, r);

Laplacian Matrix The Laplacian L = D−A is symmetric and positive-semidefinite. It has
eigenvalue zero if one of the graph’s connected components is balanced. We are interested in
its eigenvectors of smallest nonzero eigenvalue.

The function eigs() has a mode for finding the eigenvalues nearest to a given value. How-
ever, this value must not be an eigenvalue itself. If the Laplacian is known to not have zero as
eigenvalue, we can tell GNU Octave to find the eigenvalues nearest to zero:

[U, Lambda] = eigs(L, r, 0);

If zero is an eigenvalue, we must pass a small negative value ε:

[U, Lambda] = eigs(L, r, -1e-3);

1www.gnu.org/software/octave
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Normalized Adjacency Matrix The normalized adjacency matrix N = D1/2AD1/2 can
be decomposed in two ways: By the adjacency method or by the Laplacian method. The
eigenvalues of N are contained in the interval [−1,+1]. The adjacency method is simply:

[U, D] = eigs(N, r);

The Laplacian method works in two steps. First we compute the eigenvalues nearest to
+1 + ε and then the eigenvalues nearest to −1− ε:

[U1, D1] = eigs(N, r/2, +1+1e-3);

[U2, D2] = eigs(N, r/2, -1-1e-3);

The Laplacian method is faster but takes more memory. The normalized Laplacian Z = I−N
can be decomposed analogously.
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[BPSDGA04] Marián Boguñá, Romualdo Pastor-Satorras, Albert Dı́az-Guilera, and Alex Are-
nas. Models of social networks based on social distance attachment. Phys. Rev.

E, 70(5):056122, 2004.

[Bra97] Andrew P. Bradley. The use of the area under the ROC curve in the evaluation
of machine learning algorithms. Pattern Recognition, 30:1145–1159, 1997.

[BRZ11] Daniel Boley, Gyan Ranjan, and Zhi-Li Zhang. Commute times for a directed
graph using an asymmetric Laplacian. Linear Algebra and Applications, 435:224–
242, 2011.
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