
Alea 4, 205–222 (2008)

On the spectral gap of the Kac walk and other

binary collision processes

Pietro Caputo

Dip. Matematica, Universita’ di Roma Tre, L.go S. Murialdo 1, 00146 Roma, Italy.
E-mail address: caputo@mat.uniroma3.it

URL: www.mat.uniroma3.it/users/caputo

Abstract. We give a new and elementary computation of the spectral gap of the
Kac walk on SN . The result is obtained as a by–product of a more general obser-
vation which allows to reduce the analysis of the spectral gap of an N–component
system to that of the same system for N = 3. The method applies to a number
of random “binary collision” processes with complete–graph structure, including
non–homogeneous examples such as exclusion and colored exclusion processes with
site disorder.

1. Introduction

The following model for energy preserving binary collisions was introduced by
M. Kac in Kac (1956). Let ν denote the uniform probability measure on the sphere

SN−1 = {η ∈ R
N :

N
∑

i=1

η2
i = 1} ,

and consider the ν–reversible Markov process on SN−1 with infinitesimal generator
given by

Lf(η) =
1

2N

N
∑

i,j=1

1

2π

∫ 2π

0

[

f(Rijθ η) − f(η)
]

dθ , (1.1)

where Rijθ , i 6= j is a clockwise rotation of angle θ in the plane (ηi, ηj). As a conven-
tion, we take Riiθ = Id. In words, the associated Markov process goes as follows: we
have independent Poisson clocks of rate 1/2 at each coordinate; when coordinate i
rings we choose uniformly at random (with replacement) another coordinate j; if
j 6= i then we perform a rotation of angle θ in the plane (ηi, ηj), with θ uniform
over [0, 2π), while if i = j we do nothing.
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Note that −L is a non–negative, bounded self–adjoint operator on L2(ν). Any
constant is an eigenfunction with eigenvalue 0 and the spectral gap λ = λ(N) is
defined as

λ(N) = inf
f∈L2(ν):
ν(f)=0

ν(f(−L)f)

ν(f2)
, (1.2)

where ν(f) stands for the expectation
∫

fdν. M. Kac conjectured that λ(N) stays
bounded away from 0 as N → ∞. This conjectured was first proved by Janvresse
(2001), where a powerful recursive approach due to H.T. Yau was used. After that,
in the beautiful paper Carlen et al. (2003), Carlen, Carvalho and Loss introduced
a new recursive approach which allows to actually compute the value of λ(N) for
every N :

λ(N) =
N + 2

4N
, N > 2 . (1.3)

Around the same time, Maslen (2003) derived formulae for all eigenvalues of L by
means of harmonic analysis techniques. We refer to Carlen et al. (2003) for further
background, motivation and references on Kac’s conjecture. Our result below shows
that the proof of (1.3) can be somewhat simplified. In particular, we do not need
any recursive analysis: in one step we go from λ(N) to λ(3) and the conclusion
follows by direct computations in the case N = 3.

Theorem 1.1. For any N > 3:

λ(N) = (3λ(3) − 1)

(

1 − 2

N

)

+
1

N
. (1.4)

In particular, (1.3) follows from (1.4) with λ(3) = 5/12.

The proof uses a well known equivalent characterization of the spectral gap as
the largest constant λ such that the inequality

ν
(

(Lf)2
)

> λ ν (f(−L)f) , (1.5)

holds for all f ∈ L2(ν). The equivalence of (1.2) and (1.5) follows from elementary
spectral theory. A similar approach has been exploited recently in Boudou et al.
(2006) to obtain spectral gap bounds for a class of interacting particle systems.
A proof of Theorem 1.1 is given at the end of the introduction. In the following
sections we shall show that variants of the same method can be used to obtain
spectral gap estimates for several models sharing some of the features of the Kac
walk. The argument turns out to be especially powerful in non–homogeneous cases
where other known methods are harder to apply because of the lack of permutation
symmetry. In particular, for exclusion processes with site disorder we obtain a
remarkable simplification of a spectral gap estimate proved by the author in Caputo
(2004). The latter estimate is at the heart of recent results on the hydrodynamic
limit of disordered lattice gases, see Faggionato and Martinelli (2003); Quastel
(2006). In the last section of this work we prove a new result which extends the
spectral gap estimate to the case of colored particles.

On the other hand, we point out that for some of the physically more relevant
generalizations of the Kac walk treated in Carlen et al. (2003) our argument will
not necessarily yield sharp results. This is the case, for example, of the Kac model
with momentum and energy conserving collisions discussed in the next section.
The problem of the determination of the spectral gap for the latter model has been
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recently solved in Carlen et al. (2007), where the authors develop an interesting
extension of the recursive scheme introduced in Carlen et al. (2003).

1.1. Proof of Theroem 1.1. We start with some preliminaries. We write

Ebf(η) =
1

2π

∫ 2π

0

f(Rijθ η) dθ , b = {i, j} , (1.6)

for the binary average operator appearing in the definition of L. Note that Eb is a
projection which coincides with the ν–conditional expectation given the σ–algebra
Fb generated by variables {ηℓ, ℓ /∈ b}. Thus, we rewrite the Markov generator as
follows:

Lf(η) =
1

N

∑

b

Dbf(η) , (1.7)

where the sum runs over all
(

N
2

)

unordered pairs b and for each such pair

Db = Eb − Id , Ebf(η) = ν(f | Fb) . (1.8)

For each b, Db is a bounded self-adjoint operator in L2(ν) satisfying D2
b = −Db. In

particular,

ν (f(−L)g) =
1

N

∑

b

ν[DbfDbg] . (1.9)

On the other hand we have

ν
(

(Lf)2
)

=
1

N2

∑

b,b′

ν[DbfDb′f ] . (1.10)

We are going to use the expressions (1.9) and (1.10) in (1.5) to compute λ(N). We
start with the lower bound. We write b ∼ b′ when two unordered pairs have at
least one common vertex (including the case b = b′). Otherwise we write b 6∼ b′.
We observe that if b 6∼ b′, then Eb and Eb′ commute. Therefore, using D2

b = −Db

and self–adjointness

ν[DbfDb′f ] = −ν[(Db′Dbf)(Db′f)] = ν[(Db′Dbf)2] > 0 , b 6∼ b′ . (1.11)

It follows that

ν
(

(Lf)2
)

>
1

N2

∑

b,b′: b∼b′

ν[DbfDb′f ] . (1.12)

Unordered triples {i, j, k} of distinct vertices are denoted by T (triangles). We say
that b ∈ T if b = {i, j} and i, j ∈ T . Clearly, if b ∼ b′ and b 6= b′ there is only one
triangle T such that b, b′ ∈ T . We may therefore write

∑

b,b′ : b∼b′

ν[DbfDb′f ] =
∑

b,b′ : b∼b′ , b6=b′

ν[DbfDb′f ] +
∑

b

ν[(Dbf)2]

=
∑

T

∑

b,b′∈T

ν[DbfDb′f ] −
∑

T

∑

b∈T

ν[(Dbf)2] +
∑

b

ν[(Dbf)2] . (1.13)

Since for every b there are exactly N − 2 triangles T such that b ∈ T we see that
∑

b,b′ : b∼b′

ν[DbfDb′f ]

=
∑

T

∑

b,b′∈T

ν[DbfDb′f ] − (N − 3)
∑

b

ν[(Dbf)2] . (1.14)
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Let us now apply the inequality (1.5) to a fixed triangle T . Let FT denote the
σ–algebra generated by {ηℓ, ℓ /∈ T }. The conditional probability ν[· | FT ] coincides
with the uniform probability measure on the sphere S2(t) in R

3 with radius

t =

√

1 −
∑

ℓ/∈T

η2
ℓ .

Moreover, as noted in Carlen et al. (2003), it is not hard to show that the spectral
gap of the Kac model does not depend on the radius of the sphere on which the
walk is performed. Using (1.5) on each triangle T , we therefore have

1

3

∑

b,b′∈T

ν[DbfDb′f | FT ] > λ(3)
∑

b∈T

ν[(Dbf)2 | FT ] , (1.15)

uniformly in η ∈ SN−1. Taking ν–expectation we can remove the conditioning on
FT in (1.15). Using this in (1.14) gives

∑

b,b′ : b∼b′

ν[DbfDb′f ]

> 3λ(3) (N − 2)
∑

b

ν[(Dbf)2] − (N − 3)
∑

b

ν[(Dbf)2]

= ((3λ(3) − 1)(N − 2) + 1)
∑

b

ν[(Dbf)2] .

From (1.5) we conclude that λ(N) is larger or equal than the right hand side of
(1.4).

It remains to show that this bound is attained for a given f . To this end, take

fN (η) =

N
∑

i=1

η4
i + const. (1.16)

Let us first check that ν[DbfNDb′fN ] = 0 whenever b 6∼ b′, so that (1.12) is an
equality for f = fN . To this end, note that ν[DbfNDb′fN ] = ν[fNDbDb′fN ] = 0.
Indeed, if b = {i, j} and b′ 6∼ b, then Db′fN (η) depends on ηi, ηj only through
η2
i + η2

j = 1 − ∑

k/∈b η
2
k and therefore DbDb′fN = 0.

Next, we need that (1.15) is an equality as well. This requires checking that for

N = 3, for any value of the conservation law
∑3

i=1 η
2
i = t > 0, f3 is, up to additive

constants (that may depend on t), an eigenfunction of −L with eigenvalue λ(3).
For the solution of this 3–dimensional problem, as well as for the calculation of
λ(3) = 5/12, we refer to Carlen et al. (2003, Section 3). Once the estimates (1.12)
and (1.15) can be turned into identities we see that all our bounds are saturated
for the function (1.16). This completes the proof. �

2. Homogeneous models

The general setting can be described as follows. We consider a product space
Ω = XN , whereX , the single component space is a measurable space equipped with
a probability measure µ. On Ω we consider the product measure µN . Elements
of Ω will be denoted by η = (η1, . . . , ηN ). Next, we take a measurable function
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ξ : X → R
d, for a given d > 1, and we define the probability measure ν = νN,ω on

Ω as µN conditioned on the event

ΩN,ω :=

{

η ∈ Ω :

N
∑

i=1

ξ(ηi) = ω

}

, (2.1)

where ω ∈ R
d is a given parameter. We interpret the constraint on ΩN,ω as a

conservation law.
In all the examples considered below there are no difficulties in defining the

conditional probability ν, therefore we do not attempt here at a justification of this
setting in full generality but rather refer to the examples for full rigor. The crucial
property of ν that will be repeatedly used below is that, for any set of indices A,
conditioned on the σ–algebra FA generated by variables ηi, i /∈ A, ν becomes the
µ–product law over ηj , j ∈ A, conditioned on the event

∑

j∈A

ξ(ηj) = ω −
∑

i/∈A

ξ(ηi) .

We shall call this the non–interference property. In analogy with (1.7) we consider
the binary collision Markov process described by the infinitesimal generator

Lf =
1

N

∑

b

[ν(f | Fb) − f ] , (2.2)

where the sum runs over all
(

N
2

)

unordered pairs b = {i, j} and ν[f | Fb] is the ν–
conditional expectation of f given the variables ηℓ, ℓ /∈ b. This defines a bounded
self–adjoint operator on L2(ν). Setting, as before, Db = ν[· | Fb] − Id, we see that
D2
b = −Db and the operator L satisfies (1.9).
In principle, our arguments could be extended to more general processes. For

instance, one can consider binary “collisions” which are not given by simple averages
as in (2.2) but by other mechanisms which still preserve reversibility (see e.g. the non
uniform models considered in Carlen et al. (2003)), or one could look at “collisions”
which can involve more than two components at a time. However, we shall not
investigate such extensions.

Returning to our model (2.2), the spectral gap is defined as in (1.2). Note
that, by definition, λ(2) = 1

2 always, since for N = 2 there is only one pair b and

ν((Dbf)2) = ν(f2) for any f such that ν(f) = 0. Here we shall assume that λ(3)
is independent of the choice of ω. This is a strong assumption which holds only
for special choices of the model. However, it does hold in the examples considered
below. More general models are treated in the next section.

Theorem 2.1. Suppose λ(3) is independent of ω. Then, for any N > 2:

λ(N) > (3λ(3) − 1)

(

1 − 2

N

)

+
1

N
. (2.3)

If, in addition, there exists ϕ : X → R such that the function

f3(η1, η2, η3) =

3
∑

i=1

ϕ(ηi) , (2.4)

satisfies, for N = 3, Lf3 = −λ(3)f3 + const., regardless of the value of
∑3
i=1 ξ(ηi)

(although the constant may depend on this value), then (2.3) can be turned into an
identity for each N > 2.
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Proof: We repeat the steps of the proof of Theorem 1.1. We start from (1.10)
and arrive at (1.12) with the same commutation property used in (1.11). Indeed,
this is a simple consequence of the non–interference property. The latter property
also implies that the conditional probability ν(· | FT ) is nothing but ν3,ω′ with
ω′ = ω − ∑

ℓ/∈T ξ(ηℓ). Since λ(3) is independent of the value ω in the conservation
law we may repeat the argument leading to (1.15). This proves the lower bound
(2.3). As for the reverse direction, again the arguments given in the proof of
Theorem 1.1 can be repeated line by line. �

Next, we examine some examples to which the theorem applies.

2.1. Kac model. The model discussed in the introduction can be seen as a special
case of our general setting, so that Theorem 1.1 becomes a special case of Theorem
2.1. Here X = R, µ is the centered Gaussian measure with variance σ2 > 0 and we
take ξ(ηi) = η2

i (with d = 1). Then, for every ω > 0, νN,ω is the uniform probability
measure on the sphere of radius

√
ω. Clearly, the choice of σ2 > 0 is uninfluential in

the determination of νN,ω. As we have seen in the introduction, this model satisfies
the two main assumptions in Theorem 2.1.

2.2. “Flat” Kac model. Here X = R
+, µ is the exponential law with parameter

γ > 0. We take ξ(ηi) = ηi (with d = 1). Then, for every ω > 0, independently
of the choice of γ > 0, νN,ω is the uniform probability measure on the simplex
ΩN,ω. The binary collision process (2.2) associated to this setting does not appear
explicitly in the literature, so we shall give more details on the computation of λ(N)
in this case. Let us first check that λ(N) is independent of ω, for any N . This is
a consequence of the fact that L commutes with the unitary change of scale from
ΩN,ω to ΩN,ω′, for any ω, ω′ > 0. Indeed, νN,ω′ is the image of νN,ω under the map
T : η → ω′η/ω and if fT (η) = f(T η), then

νN,ω(fT | Fb)(η) = νN,ω′(f | Fb)(T η) , (2.5)

for all η ∈ ΩN,ω and for all pairs b.
Next, we shall prove that λ(3) = 4

9 and that the eigenfunction for N = 3 is given
by

f3(η1, η2, η3) =

3
∑

i=1

η2
i + const. (2.6)

for any value of the constraint
∑3
i=1 ηi = ω (of course, the constant will be given

by −3ν3,ω(η2
1), since we must have ν3,ω(f) = 0). From these facts and Theorem 2.1

we therefore obtain, for all N > 2:

λ(N) =
N + 1

3N
. (2.7)

To solve the 3–dimensional problem, we observe that when N = 3, then L + 1
coincides with the average operator P introduced in Carlen et al. (2003). Therefore
we can apply the general analysis of Section 2 in Carlen et al. (2003) or equivalently
that of Theorem 4.1 in Caputo (2003). The outcome is that

λ(3) >
1

3
min{2 + µ1 , 2 − 2µ2} , (2.8)



Spectral gap of binary collisions 211

where the parameters µ1, µ2 are given by

µ1 = inf
ϕ
ν(ϕ(η1)ϕ(η2)) , µ2 = sup

ϕ
ν(ϕ(η1)ϕ(η2)) (2.9)

with ϕ chosen among all functions ϕ : X → R satisfying ν(ϕ(η1)
2) = 1 and

ν(ϕ(η1)) = 0. Here ν stands for ν3,ω, but we have removed the subscripts for
simplicity. As in (2.5) one checks that the parameters µ1, µ2 do not depend on
ω. Write Kϕ(α) = ν[ϕ(η2) | η1 = α], α > 0. This defines a self–adjoint Markov
operator on L2(ν1), where ν1 is the marginal on η1 of ν. In particular, the spec-
trum Sp(K) of K contains 1 (with eigenspace given by the constants). Then µ1, µ2

are, respectively, the smallest and the largest value in Sp(K) \ {1}, as we see by
writing ν(ϕ(η1)ϕ(η2)) = ν[ϕ(η1)Kϕ(η1)]. This is now a one–dimensional problem
and µ1, µ2 can be computed as follows. To fix ideas we use the value ω = 1 for
the conservation law η1 + η2 + η3. In this case ν1 is the law on [0, 1] with density
2(1 − η1). Moreover,

Kϕ(η1) =
1

1 − η1

∫ 1−η1

0

ϕ(η2)dη2 , η1 ∈ [0, 1) .

(Kϕ(1) = ϕ(0)). In particular, ϕ1(α) = α − 1
3 is an eigenfunction of K with

eigenvalue −1/2. Moreover, K preserves the degree of polynomials so that if Qn
denotes the space of all polynomials of degree d 6 n we have KQn ⊂ Qn. By
induction we see that for each n > 1 the polynomial αn + qn−1(α), for a suitable

qn−1 ∈ Qn−1, is an eigenfunction with eigenvalue µn = (−1)n

n+1 , and it is orthogonal

to Qn−1 in L2(ν1). Since the union of Qn, n > 1, is dense in L2(ν1) this shows that
there is a complete orthonormal set of eigenfunctions ϕn, where ϕn is a polynomial
of degree n with eigenvalue µn and Sp(K) = {µn , n = 0, 1, . . . }. Therefore we can
take µ1 = − 1

2 and µ2 = 1
3 in the formula (2.8). We conclude that λ(3) > 4

9 .

To end the proof we take f = η2
1 + η2

2 + η2
3 and, using ν[η2

1 | η2] = 1
3 (η2

2 − 2η2 +1)
we compute

Lf(η) = −4

9
f(η) + const.

Thus, λ(3) = 4
9 and the eigenfunction is given by (2.6). Clearly, the unitary change

of scale T introduced above does not alter the form of the eigenfunction so that all
the hypothesis of Theorem 2.1 apply and (2.7) follows.

2.3. Momentum and energy conserving collision model. . Here X = R
3, and µ is a

centered 3–dimensional Gaussian law N(0, C) with covariance matrix C given by
a multiple of the identity. Each coordinate ηi is a 3–dimensional velocity vector
ηαi , α = 1, 2, 3. We have d = 4 conservation laws, with ξα(ηi) = ηαi , α = 1, 2, 3

(momentum conservation) and ξ4(ηi) = |ηi|2 =
∑3

α=1(η
α
i )2 (energy conservation).

For any ω = (ω1, . . . , ω4) ∈ R
4 with ω4 > 0, νN,ω is the uniform probability measure

on the manifold ΩN,ω (whenever ΩN,ω 6= ∅). We refer to Carlen et al. (2003) for an
explicit description of the probability measure and its main properties. It is still
the case that λ(3) is independent of the conservation law, see Carlen et al. (2003).
In particular, the lower bound (2.3) holds in this case. However, a computation
of λ(3) for this model shows that λ(3) = 1

3 (see (2.11) below) and therefore the

estimate becomes λ(N) > 1
N which is rather poor. Indeed, it was shown in Carlen
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et al. (2003) that the the spectral gap is bounded away from zero uniformly in N :

inf
N > 2

λ(N) > 0 . (2.10)

Recently, by a very deep analysis of the Jacobi polynomials naturally associated
to this model Carlen, Jeronimo and Loss succeeded in computing λ(N) exactly for
every N (see Carlen et al. (2007)):

λ(N) =
1

3
, N > 3 . (2.11)

This shows our approach is too rough here. As we know from Theorem 2.1 the
loss must come from the lack of the second property required in that theorem.
It was shown in Carlen et al. (2007) that the eigenspace of λ(N), for the choice
ω = (0, 0, 0, 1), is spanned by the functions

fN,α(η) =
N

∑

i=1

|ηi|2ηαi , α = 1, 2, 3 .

One cannot expect that the change of scale from ω to ω′ transforms a linear com-
bination of fN,α’s into itself (up to multiplicative and additive constants), and the
second property in Theorem 2.1 must fail here.

Let us show that our approach can nevertheless be used to prove the weaker
result (2.10) without any recursive analysis. Namely, we prove that if λ(4) > 1/4
then (2.10) holds. The choice of triangles in the proof of Theorem 1.1 and Theorem
2.1 can be replaced by the choice of larger cliques (i.e. complete subgraphs) of the
original complete graph. Namely, if in (1.13) we sum over cliques with 4 vertices
instead of triangles we shall obtain the bound, for N > 4:

λ(N) > (4λ(4) − 1)

(

1

2
− 1

N

)

+
1

N
, (2.12)

instead of (2.3). To see this, set for simplicity ab,b′ := ν[DbfDb′f ], for a given
f ∈ L2(ν), and recall that N2ν[(Lf)2] =

∑

b,b′ ab,b′ . Denote by Q the cliques of 4

vertices and note that: for every b there are 1
2 (N − 2)(N − 3) Q’s such that b ∈ Q;

for any b 6= b′ with b ∼ b′ there are (N − 3) Q’s such that b, b′ ∈ Q; for any b, b′

with b 6∼ b′ there is only one Q such that b, b′ ∈ Q. Then

∑

b,b′ : b6=b′, b∼b′

ab,b′ =
1

N − 3

∑

Q

∑

b,b′∈Q : b6=b′, b∼b′

ab,b′

=
1

N − 3

∑

Q







∑

b,b′∈Q

ab,b′ −
∑

b,b′∈Q : b6∼b′

ab,b′ −
∑

b∈Q

ab,b







>
1

N − 3

∑

Q

(4λ(4) − 1)
∑

b∈Q

ab,b −
1

N − 3

∑

Q

∑

b,b′∈Q : b6∼b′

ab,b′

=
1

2
(N − 2)(4λ(4) − 1)

∑

b

ab,b −
1

N − 3

∑

b,b′ : b6∼b′

ab,b′ .
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Therefore
∑

b,b′

ab,b′ =
∑

b6=b′ : b∼b′

ab,b′ +
∑

b,b′ : b6∼b′

ab,b′ +
∑

b

ab,b

>
1

2
[(N − 2)(4λ(4) − 1) + 2]

∑

b

ab,b +

(

1 − 1

N − 3

)

∑

b,b′ : b6∼b′

ab,b′

>
1

2
[(N − 2)(4λ(4) − 1) + 2]

∑

b

ab,b ,

where, in the last line, we have used (1.11). Since −Nν(fLf) =
∑

b ab,b, this proves
the claim (2.12). Note that this argument applies in the more general setting of
Theorem 2.1, and similar computations can in principle be carried out for any
choice of cliques of k < N vertices. Therefore, to prove (2.10) it suffices to prove
λ(4) > 1

4 . With the value λ(4) = 1
3 from (2.11) this gives λ(N) > 1

6 + 2
3N , for all

N > 4.

3. Non–homogeneous models

We generalize the setting introduced above as follows. As before we take Ω = XN

but now each copy ofX will be equipped with possibly distinct probability measures
µi, i = 1, . . . , N . Again we consider conservation laws as in (2.1), associated to a
given function ξ on X and a given parameter ω, and the probability ν given by the
product µ1 × · · · × µN conditioned on η ∈ ΩN,ω. Note that the non–interference
property still holds for this setting. The binary collision process is defined as in
(2.2). Again, −L is a non–negative self–adjoint operator on L2(ν) and we may
define its spectral gap just as in (1.2). This time, however, to keep track of the
conservation law we shall write λ(N,ω) instead of just λ(N). Note that λ(2, ω) = 1

2
always. We define

λ̄(N) = inf
ω
λ(N,ω) , (3.1)

where the infimum ranges over the set of admissible values of the parameter ω. This
set depends on the choice of the model and, as usual, we refer to the examples for
fully rigorous formulations of the results. As a convention we may set λ(N,ω) =
+∞ if ω is such that the measure ν becomes a Dirac delta. Thanks to the non–
interference property of ν there is no difficulty in repeating the previous arguments
to prove the following estimate.

Theorem 3.1. For any N > 2 and any ω:

λ̄(N) > (3 λ̄(3) − 1)

(

1 − 2

N

)

+
1

N
. (3.2)

Let us investigate some specific models.

3.1. Non–homogeneous Kac models. Consider the following non–homogeneous ver-
sion of the “flat” Kac model introduced in Section 2. Take X = R+ and µi the
probability on R+ with density

1

zi
exp (−ηi + bi(ηi)) ,

where bi are bounded measurable functions and zi =
∫ ∞

0
dx exp (−x+ bi(x)) is the

normalizing constant. We set B := supi |bi|∞. For this model, any value ω > 0 of
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the conservation law is allowed in the definition (3.1) of λ̄(N). We claim that for
every ε < 1

3 there is δ > 0 such that

lim inf
N→∞

λ̄(N) > ε , (3.3)

provided B < δ. Thanks to Theorem 3.1, to prove (3.3) it suffices to show that
λ(3, ω) > 4

9 (1 − ε(B)) with some ε(B) → 0 as B → 0, uniformly in ω > 0, the

value of the conservation law
∑3

i=1 ηi = ω. To this end we shall use a standard

perturbation argument. Let ν denote the measure µ1 × µ2 × µ3(· |
∑3
i=1 ηi = ω)

and call ν0 the same measure in the case b1 = b2 = b3 = 0. Thus, for any bounded
measurable function g we have

ν(g) =
1

Zω

∫ ω

0

dη1

∫ ω−η1

0

dη2 g(η1, η2, ω − η1 − η2)u(η1, η2) , (3.4)

where u(x, y) = e−b1(x)−b2(y)−b3(ω−x−y) and Zω =
∫ ω

0 dx
∫ ω−x

0 dy u(x, y). Using

e−3B 6 u(η1, η2) 6 e3B ,

it is easily seen that, for any bounded f we have the bound between variances

Varν(f) 6 e6BVarν0(f) . (3.5)

(Use g = (f − ν0(f))2 in (3.4) and the fact that ν(g) > Varν(f)). The same
reasoning shows that

ν(f(−L)f) > e−10B ν0(f(−L0)f) , (3.6)

where L0 is the generator corresponding to the choice bi ≡ 0. Indeed,

ν(f(−L)f) =
1

3

3
∑

i=1

ν
[

(ν[f | ηi] − f)2
]

=
1

3

3
∑

i=1

ν (Varν(f | ηi)) ,

(where Varν(f | ηi) denotes the variance of f w.r.t. ν(· | ηi)). For each i = 1, 2, 3 we
have (as above)

Varν(f | ηi) > e−4BVarν0(f | ηi) , (3.7)

uniformly in η. A further comparison gives ν (Varν(f | ηi)) > e−10Bν0 (Varν0(f | ηi))
which implies (3.6).

Recall that the spectral gap for L0 is equal to 4/9 regardless of the value of
ω > 0. The previous estimates therefore imply that

λ(3, ω) >
4

9
e−16B .

This proves our claim with ε(B) = 1 − e−16B, from which (3.3) follows.

The same argument can be used to produce uniform lower bounds on the gap
of non–homogeneous versions of the Kac walk on SN−1 and of the momentum and
energy conserving collision model, under the assumption of small perturbations.
In the latter model we need the argument in (2.12) to obtain a uniform estimate
infN λ̄(N) > 0.
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3.2. Non–uniform random permutations. We take X = {1, . . . , N} and, for each

i = 1, . . . , N we consider a probability µi on X given by µi(ηi = j) = e−bi(j)

Zi
,

where bi : X → R are bounded functions, and Zi =
∑N

j=1 e
−bi(j). To model

permutations we use N conservation laws that will force all components of η to have
distinct values: set d = N and define ξ = (ξj)Nj=1 with ξj(ηi) = 1{ηi=j}. Fixing

ω = (1, 1, . . . , 1) we see that the set ΩN,ω coincides with the set of N ! permutations
of N letters. We define the probability ν as usual by µ1 × · · ·µN (· | η ∈ ΩN,ω).
Note that if the bias functions bi are all 0 then ν is simply the uniform probability
measure over permutations.

The binary collision is now a random transposition process. Note that only the
value ω = (1, 1, . . . , 1) is considered for the conservation law so that λ̄(N) = λ(N,ω)
for this model (there is no real infimum in (3.1) here). In the uniform case (bi ≡ 0)
a simple variant of the argument of Theorem 2.1 proves that λ(N) = 1

2 for every
N > 2.

While relaxation to equilibrium for the uniform case is well known, the non–
uniform case is certainly less understood. Here we can show that if B = supi |bi|∞
is sufficiently small we have infN λ̄(N) > 0. More precisely, for every ε < 1

2 there
exists δ > 0 such that B < δ implies

lim inf
N→∞

λ̄(N) > ε ,

for all N > 2. To prove this we use exactly the same argument we have used to
prove (3.3). In particular, it suffices to show that λ̄(3) → 1

2 as B → 0. The same
perturbation argument will yield the desired estimate. To avoid repetitions we leave
the details to the reader.

3.3. Exclusion processes with site disorder. Here we consider a non–homogeneous
version of what is sometimes called the Bernoulli–Laplace process. The inhomoge-
neous distribution models site impurities or site disorder. We take X = {0, 1}, µi
is a Bernoulli law with parameter pi ∈ (0, 1), i.e. µi(ηi = 1) = pi and µi(ηi = 0) =
1− pi. The value of ηi is interpreted as the presence (ηi = 1) or absence (ηi = 0) of
a particle at the vertex i. The function ξ is given by ξ(ηi) = ηi so that for any in-
teger ω ∈ {0, 1, . . . , N}, the set ΩN,ω denotes the configurations of ω particles over
N vertices. The binary collision process (2.2) becomes nothing but the well known
exclusion process on the complete graph {1, . . . , N}. This can be seen as follows.
Given a pair b = {i, j} and a configuration η ∈ ΩN,ω, write ωij = ω − ∑

ℓ/∈b ηℓ.
Clearly, ωij ∈ {0, 1, 2}. Observe that, if ωij = 1 then ν(f | Fb)(η) is given by

pi(1 − pj)

pi(1 − pj) + pj(1 − pi)
f(η; 1, 0) +

pj(1 − pi)

pi(1 − pj) + pj(1 − pi)
f(η; 0, 1)

where, for simplicity we write explicitly the i-th and j-th entries in f(η)=f(η; ηi, ηj).
On the other hand in the case ωij ∈ {0, 2} we have ν(f | Fb)(η) = f(η). Setting

cb(η) =
pi(1 − pj)ηj(1 − ηi)

pi(1 − pj) + pj(1 − pi)
+

pj(1 − pi)ηi(1 − ηj)

pi(1 − pj) + pj(1 − pi)
, (3.8)

we therefore obtain, for any η ∈ ΩN,ω,

ν(f | Fb)(η) − f(η) = cb(η)
(

f(ηb) − f(η)
)

, (3.9)

where ηb denotes the configuration in which ηi and ηj have been exchanged. From
(3.9) wee see that L has the familiar form of the exclusion process.
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If we proceed by perturbative arguments (as in the previous two subsections) we
would be able to prove a result of the form: if pi are (uniformly) sufficiently close
to 1

2 then we have a uniform bound from below on the spectral gap. However, we
shall prove here a much stronger result. We assume there exists ε > 0 such that
the parameters pi satisfy

ε 6 pi 6 1 − ε , i = 1, . . . , N . (3.10)

The minimal spectral gap λ̄(N) is defined as usual by (3.1), where the infimum
ranges over all ω ∈ {0, 1, . . . , N}, with the convention that λ(N, 0) = λ(N,N) = ∞.
Under the same assumption the following theorem was proved in Caputo (2004)
by means of rather technical local limit theorem estimates. It is surprising that
the simple argument of Theorem 3.1 allows a straightforward proof. The uniform
spectral gap bound below is an important step in the recent works Faggionato and
Martinelli (2003); Quastel (2006) establishing hydrodynamic limits for exclusion
processes with disorder.

Theorem 3.2. Assume (3.10) for some ε > 0. Then, there exists cε > 0 such that
for all N > 2

λ̄(N) > cε . (3.11)

Proof: Thanks to Theorem 3.1, all we have to do is prove that

λ̄(3) >
1

3
+ cε , (3.12)

for some cε > 0. We fix three vertices i = 1, 2, 3, with their occupation probabilities

pi satisfying (3.10) and with
∑3

i=1 ηi = ω. We may assume that ω = 1, i.e. there
is one particle. Indeed if there are two we may look at occupied vertices as empty
and vice-versa, if there is none (or three) the measure is a Dirac delta and by
our convention (see discussion after (3.1)) the estimate λ(3, ω) > 1

3 + cε becomes
obvious. Since there is one particle we shall call x, respectively y, the probability
that the particle is at i = 1, respectively i = 2. We set z = 1 − x − y for the
probability that the particle is at i = 3. Note that, thanks to (3.10), x, y, z are all
bounded away from 0 and 1. For instance,

x =
p1(1 − p2)(1 − p3)

p1(1 − p2)(1 − p3) + (1 − p1)p2(1 − p3) + (1 − p1)(1 − p2)p3
.

It is easily checked that the process generated by L on our three sites becomes a
3–state Markov chain with the 3 × 3 transition matrix P = L + Id given by

P =
1

3





1 + x
x+y + x

x+z
y

x+y
z

x+z
x
x+y 1 + y

x+y + y
y+z

z
y+z

x
x+z

y
y+z 1 + z

x+z + z
y+z



 . (3.13)

We need to estimate the eigenvalues of P . Clearly, one eigenvalue is 1. From
(3.13) we see that Tr(P ) = 2. Therefore the other two eigenvalues must satisfy
λ1 = Tr(P ) − 1 − λ2 = 1 − λ2. Note that

λ(3, ω) = min{1 − λ1, 1 − λ2} .
To estimate λi, i = 1, 2 we compute the determinant of P . The next lemma shows
that det(P ) > 2

9 . Therefore, for both i = 1, 2 we have λi(1 − λi) >
2
9 . This implies

|λi − 1
2 | < 1

6 . In particular, it shows that λi <
2
3 . In conclusion: λ̄(3) > 1

3 as

claimed. (Note that λi = 1
2 would be the value in the homogeneous case pi ≡ 1

2 .)
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Lemma 3.3.

det(P ) =
2

9

(

1 +
xyz

(1 − x)(1 − y)(1 − z)

)

(3.14)

Proof: Set Γ = 3P . Also, set

δ =
x

x+ z
, β =

x

x+ y
, γ =

y

y + z
.

From (3.13) we compute

det(Γ) = (1 + β + δ) (6 − 3 β − 2 δ + β δ − γ δ + γ β)

+ (β − 1) (3 β − β δ − γ β − δ + γ δ)

+ (1 − δ) (β δ − γ δ + γ β − 2 δ) .

Simplifying we arrive at

det(Γ) = 6 + 3 δ − 3 β δ − 3 γ δ + 3 β γ .

Rewriting this in terms of the probabilities x, y, z we obtain

det(Γ) = 6 +
6 x y z

(1 − x) (1 − y) (1 − z)
. (3.15)

This implies (3.14). �

3.4. Colored exclusion processes with site disorder. A natural generalization of the
previous model is a system where particles can be of several different kinds - or
colors. Namely, suppose there are m colors and let each particle be painted with
one of the available colors. Configurations of colored particles are denoted by
η ∈ Ω := {0, 1, . . . ,m}N with the interpretation that ηi = 0 means that i is empty,
while ηi = k, k ∈ {1, . . . ,m} means that i is occupied by a particle with color
k. Thus, the single state space X is {0, . . . ,m}. The conservation laws are given
by ξk(ηi) = 1{ηi=k}, k = 1, . . . ,m and the vector ω = (ω1, . . . , ωm), where ωi
are non–negative integers such that

∑m
k=1 ωk 6 N . Thus, the set ΩN,ω denotes

the configurations of particles over N vertices, with ωk particles with color k. We
shall use the notation ψi = 1{ηi > 1} so that the variables ψ ∈ {0, 1}N denote the
configuration of occupied sites. Let pi , i = 1, . . .N be given parameters satisfying
(3.10). Let µi denote the probability on X such that

µi(ηi = k) =
1

Zi

(

pi1{k > 1} + (1 − pi)1{k=0}

)

,

where Zi = (m−1)pi+1 is the normalization. In particular, w.r.t. µi the occupation
variable ψi is a Bernoulli random variable with parametermpi/Zi. We call, as usual,
ν the product µ1 × · · ·µN conditioned on ΩN,ω. To avoid degenerate cases we take
1 6

∑m
k=1 ωk 6 N−1. We are interested in the following exclusion–type dynamics.

For any configuration η and any edge b = {i, j} we write ηb for the configuration
where the variables ηi, ηj have been exchanged. For every γ > 0 we define the
Markov generator by

Lγf(η) =
1

N

∑

b

cγb (η)
(

f(ηb) − f(η)
)

, (3.16)

where the rates are given, for b = (i, j), by

cγb (η) = cb(ψ) +
γ

2
1{ψi=ψj} (3.17)
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where cb are the functions defined in (3.8), but now evaluated at the occupation
variables ψ = ψ(η) defined above. It is easily checked that the rates (3.17) are
reversible w.r.t. ν: for any η and any b

ν(η)cγb (η) = ν(ηb)cγb (η
b) . (3.18)

The latter statement is equivalent to self–adjointness of Lγ in L2(ν). Moreover,

−ν(fLγf) =
1

2

∑

b

ν
[

cγb (f b − f)2
]

, (3.19)

where f b(η) := f(ηb). If 1 6
∑m
k=1 ωk 6 N − 1 the Markov chain generated by Lγ

is irreducible. We shall consider the cases γ = 0 and γ = 1. The difference between
L0 and L1 is that in L1 we have added the possibility of “stirring” between particles,
i.e. exchange of positions of particles of different colors. The case γ = 1 coincides
then with the usual binary collision dynamics given by local averages (2.2). On
the other hand, the case γ = 0 is a true exclusion process, with particles jumping
only to empty sites. The addition of stirring can result in a faster relaxation to the
equilibrium distribution ν, or equivalently in a larger spectral gap. Note, however,
that for the case m = 1 there is no difference: in this case Lγ = L0 for all γ. The
case m = 1, of course, is the one analyzed in Theorem 3.2. From now on we take
m > 1.

We denote by λγ(N,ω) the spectral gap of the generator Lγ . The following
theorem shows that in the case γ = 1 we have a uniform lower bound λ1(N,ω) > cε
as in Theorem 3.2 and, in the case γ = 0 we have λ0(N,ω) > cε(1 − ρ), where ρ is
the global density:

ρ =
1

N

m
∑

k=1

ωk . (3.20)

The slow–down in the limit ρ→ 1 is natural in view of the absence of stirring. More-
over, we shall show that, up to a constant the reverse inequality λ0(N,ω) 6 C(1−ρ)
holds as well for some choices of ω, see the remark after the end of the proof. Similar
results had been obtained in Quastel (1992) in the homogeneous case pi ≡ 1

2 .

Theorem 3.4. Assume (3.10) for some ε > 0. For m > 1, γ = 1, there exists
cε > 0 such that for any N > 2 and any ω such that 0 < ρ < 1:

λ1(N,ω) > cε . (3.21)

For m > 1, γ = 0, there exists cε > 0 such that for any N > 2 and any ω with
0 < ρ < 1:

λ0(N,ω) > cε (1 − ρ) . (3.22)

Proof: We start with some preliminary facts. Consider functions f of the occupa-
tion variables ψ = {ψi} only. Let H0 denote the space of all such functions and
observe that LγH0 ⊂ H0, i.e. H0 is invariant, for both γ = 0, 1. This follows from
the fact that the only dependence of the rates on the configuration η is through
the variables {ψi}, see (3.17). In particular, under the generator Lγ , the variables
{ψi} evolve as the Markov chain of the case m = 1. Therefore, the spectral gap
estimate of Theorem 3.2 applies to functions in H0, for both γ = 0, 1.

For any f ∈ L2(ν) we may write f = f0 + f⊥
0 , where f0 = ν(f | Fψ) ∈ H0 and

f⊥
0 = f − f0 ∈ H⊥

0 . Here Fψ denotes the σ–algebra generated by the functions
ψi and H⊥

0 is the orthogonal complement of H0, i.e. the space of f such that
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ν(fg) = 0 for all g ∈ H0. Since Lγ leaves H0 invariant, by self–adjointness it
follows that LγH⊥

0 ⊂ H⊥
0 . In conclusion

ν(fLγf) = ν(f0Lγf0) + ν(f⊥
0 Lγf⊥

0 ) .

Moreover, Varν(f) = Varν(f0) + Varν(f
⊥
0 ). From these simple observations it is

clear that the constant λγ(N,ω) satisfies

λγ(N,ω) > min{λ0
γ(N,ω), λ⊥γ (N,ω)} , (3.23)

where λ0
γ(N,ω), λ⊥γ (N,ω) are the constants obtained in the variational principle

(1.2) – applied to Lγ – by restricting to f ∈ H0 and f ∈ H⊥
0 respectively. From

Theorem 3.2 we know that

λ0
γ(N,ω) > cε , (3.24)

for some cε, for both γ = 0, 1. To prove Theorem 3.4 we thus have to estimate from
below the constant λ⊥γ (N,ω).

3.4.1. The case γ = 1. If f ∈ H⊥
0 , then we must have ν(f | Fψ) = 0. Therefore

Varν(f) = ν[Var(f | Fψ)] + Varν (ν(f | Fψ)) = ν[Var(f | Fψ)] . (3.25)

Here Var(· | Fψ) denotes variance w.r.t. ν(· | Fψ), the conditional probability given
the color–blind configuration ψ, and we have used the standard decomposition of
variance under conditioning. Let S = S(η) := {i ∈ {1, . . . , N} : ψi = 1} denote
the set of occupied sites. Clearly |S| = ρN , the total number of particles. Observe
that once ψ is known then the distribution of the variables η is given by ηi = 0 for
i /∈ S (deterministically) and ηi ∈ {1, . . . ,m} on S uniformly with the constraint
that

∑

i∈S 1{ηi=k} = ωk, k ∈ {1, . . . ,m}. In particular there is no inhomogeneity
once the set S (or, equivalently the configuration ψ) is given. Therefore Var(f | Fψ)
can be estimated for every η with the well known bound for random transpositions
without disorder (see e.g. Caputo (2004)):

Var(f | Fψ) 6
1

4 |S|
∑

i,j∈S

ν
[

(∇ijf)2 | Fψ
]

. (3.26)

Here we use the notation ∇ijf(η) = f(ηb) − f(η), b = {i, j}, for the exchange
gradient. Averaging with ν and using (3.25) we obtain (since |S| = ρN , determin-
istically)

Varν(f) 6
1

4 ρN
ν





∑

i,j∈S

(∇ijf)2



 . (3.27)

Suppose first ρ > 1
2 . Then (3.27), (3.19) and a uniform lower bound on the rates

cb imply

Varν(f) 6
1

2N

∑

i,j

ν
[

(∇ijf)2
]

6 Cε ν(f(−L1)f) ,

for some constant Cε <∞, with the sum now extending to all pairs i, j. This shows
that, with cε = 1/Cε:

λ⊥1 (N,ω) > cε , ρ >
1

2
. (3.28)

Note that here we have used γ = 1 (if γ = 0 there is no uniform lower bound on
the rates cb).
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We turn to the proof in the case ρ 6 1
2 . We rewrite (3.27) as

Varν(f) 6
1

4 ρN

∑

i,j

ν
[

(∇ijf)2 1{i∈S}1{j∈S}
]

=
1

4 ρ(1 − ρ)N2

∑

i,j,ℓ

ν
[

(∇ijf)2 1{i∈S}1{j∈S}1{ℓ/∈S}
]

, (3.29)

where we use the identity (1 − ρ)N = N − ∑m
k=1 ωk =

∑

ℓ 1{ℓ/∈S} for the number

of empty sites. Let η ∈ ΩN,ω be fixed. Pick i, j ∈ S(η) and write ηi,j for the
exchanged configuration. Observe that for any ℓ /∈ S(η) we can write

ηi,j =
(

(

ηi,ℓ
)i,j

)j,ℓ

.

Therefore

∇ijf(η) = [f(ηi,j) − f(η)]

= ∇jℓf
(

(

ηi,ℓ
)i,j

)

+ ∇ijf
(

ηi,ℓ
)

+ ∇iℓf (η) .

Each term in the sum appearing in (3.29) can then be estimated by

ν
[

(∇ijf)2 1{i∈S}1{j∈S}1{ℓ/∈S}
]

(3.30)

6 3 ν

[{

(

∇jℓf
(

(

ηi,ℓ
)i,j

))2

+
(

∇ijf
(

ηi,ℓ
))2

+ (∇iℓf)
2

}

1{i∈S}1{j∈S}1{ℓ/∈S}

]

.

Next, we claim that there exists C1 = C1(ε) <∞ such that

ν

[

(

∇jℓf
(

(

ηi,ℓ
)i,j

))2

1{i∈S}1{j∈S}1{ℓ/∈S}

]

6 C1 ν
[

(∇jℓf(η))2 1{i∈S}1{j /∈S}1{ℓ∈S}

]

. (3.31)

Note the change of the indicator functions in (3.31). To prove (3.31) we write, with
the change of variables ϕ := ηi,ℓ and β := ϕi,j

ν

[

(

∇jℓf
(

(

ηi,ℓ
)i,j

))2

1{i∈S}1{j∈S}1{ℓ/∈S}

]

=
∑

η

ν(η)
(

∇jℓf
(

(

ηi,ℓ
)i,j

))2

1{i∈S(η)}1{j∈S(η)}1{ℓ/∈S(η)}

=
∑

ϕ

ν(ϕi,ℓ)
(

∇jℓf
(

ϕi,j
))2

1{i/∈S(ϕ)}1{j∈S(ϕ)}1{ℓ∈S(ϕ)}

=
∑

β

ν((βi,j)i,ℓ) (∇jℓf (β))
2

1{i∈S(β)}1{j /∈S(β)}1{ℓ∈S(β)}

= ν
[

χi,j,ℓ (∇jℓf)
2
1{i∈S}1{j /∈S}1{ℓ∈S}

]

,

where

χi,j,ℓ(η) :=
ν((ηi,j)i,ℓ)

ν(η)
,

is the change of measure. Since the variables pi defining our measure satisfy (3.10)
it is not hard to check that χi,j,ℓ(η) 6 Cε uniformly for some constant Cε. This
proves (3.31).
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Moreover, in a similar way one proves that there is a constant C2 = C2(ε) <∞
such that

ν
[

(

∇ijf
(

ηi,ℓ
))2

1{i∈S}1{j∈S}1{ℓ/∈S}

]

6 C2 ν
[

(∇ijf(η))2 1{i/∈S}1{j∈S}1{ℓ∈S}

]

. (3.32)

From (3.29) and (3.30), using (3.31) and (3.32) we obtain for a suitable constant
C3:

Varν(f) 6
C3

ρ(1 − ρ)N2

∑

i,j,ℓ

{

ν
[

(∇jℓf)2 1{i∈S}1{j /∈S}1{ℓ∈S}
]

+ ν
[

(∇ijf)2 1{i/∈S}1{j∈S}1{ℓ∈S}
]

+ ν
[

(∇iℓf)2 1{i∈S}1{j∈S}1{ℓ/∈S}
]

}

. (3.33)

Since
∑

i 1{i∈S} = ρN , setting C4 = 3C3 we see that (3.33) can be written as

Varν(f) 6
C4

(1 − ρ)N

∑

i,j

ν
[

(∇ijf)2 1{i∈S}1{j /∈S}
]

. (3.34)

Using ρ 6 1
2 and (3.19) we see that

Varν(f) 6 C ν(f(−L1)f) ,

for some constant C = C(ε) < ∞ and for all f ∈ H⊥
0 . Therefore we have proved

that λ⊥1 (N,ω) > cε . Together with (3.23), (3.24) and (3.28) we see that λ1(N, ρ)
is uniformly bounded from below and the claim (3.21) holds. This proves Theorem
3.4 in the case γ = 1.

3.5. The case γ = 0. Here we cannot use the argument leading to (3.28) above.
However, we can use the argument giving (3.34) without modification (it never
used the fact that γ = 1). In particular, (3.34) holds for any 0 < ρ < 1 and any
f ∈ H⊥

0 . Now, observe that for any edge b = {i, j} such that i ∈ S and j /∈ S the
rate c0b defined in (3.17) is uniformly bounded away from zero with constants only
depending on the ε from (3.10) (this follows from the fact that for such cases either
ψi(1−ψj) = 1 or ψj(1−ψi) = 1). Therefore, there exists C = C(ε) <∞ such that
for any f ∈ H⊥

0 :

Varν(f) 6
C

(1 − ρ)
ν(f(−L0)f) . (3.35)

This proves that λ⊥0 (N,ω) > c (1−ρ). From (3.23) and (3.24) we see that λ0(N,ω)
satisfies the claim (3.22). This proves Theorem 3.4 in the case γ = 0. �

Let us briefly address the issue of comparable upper bounds on spectral gaps.
For example, to prove that λ0(N,ω) = O(1−ρ), as ρ→ 1 one can consider the case
of m = 2 colors, with ω1 = ω2 such that ω1 +ω2 = ρN with ρ→ 1. Then choose f
in the variational principle (1.2) as the indicator function of the event that a given
vertex i is occupied by a particle of color 1. The variance of f is of order 1. On the
other hand, since the number of empty sites that can be used to change the value
of ηi is (1 − ρ)N , it is not hard to show that ν(f(−L0)f) is of order (1 − ρ). It
follows that λ0(N,ω) = O(1 − ρ). Of course, if γ = 1 then ν(f(−L1)f) is of order
1 and the gap does not vanish as ρ→ 1 in that case.

Finally, we point out an interesting problem concerning local versions of the
exclusion dynamics described by (3.19). The local dynamics is obtained by summing
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over pairs b which are given by the edges of a small subgraph of the complete graph,
such as e.g. the box of side L ∼ N1/d in a d–dimensional grid: ΛL = [1, L]d ∩ Z

d.
In the latter cases one expects the gap to scale as L−2. In the case m = 1 there
is a nice argument in Quastel (2006, Lemma 5.1 and Lemma 5.2) which allows to
derive such an estimate from the complete–graph bound (3.11). On the other hand,
the case m > 1 with γ = 0 seems to be much more complicated and we are not
aware of any result in this direction, except for the homogeneous case considered
in Quastel (1992).
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