
Türkmen and Gökbaş Journal of Inequalities and Applications  ( 2016)  2016:65 

DOI 10.1186/s13660-016-0997-0

RESEARCH Open Access

On the spectral norm of r-circulant
matrices with the Pell and Pell-Lucas numbers
Ramazan Türkmen1* and Hasan Gökbaş2
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Abstract

Let us define A = Cr(a0,a1, . . . ,an–1) to be a n× n r-circulant matrix. The entries in the

first row of A = Cr(a0,a1 , . . . ,an–1) are ai = Pi , ai = Qi , ai = P2i or ai = Q2
i

(i = 0, 1, 2, . . . ,n – 1), where Pi and Qi are the ith Pell and Pell-Lucas numbers,

respectively. We find some bounds estimation of the spectral norm for r-Circulant

matrices with Pell and Pell-Lucas numbers.
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1 Introduction

Special matrices is a widely studied subject in matrix analysis. Especially special matrices

whose entries are well-known number sequences have become a very interesting research

subject in recent years andmany authors have obtained some good results in this area. For

example, Bahşi and Solak have studied the norms of r-circulant matrices with the hyper-

Fibonacci and Lucas numbers [], Bozkurt and Tam have obtained some results belong to

determinants and inverses of r-circulant matrices associated with a number sequence [],

Shen and Cen have made a similar study by using r-circulant matrices with the Fibonacci

and Lucas numbers [, ] and He et al. have established on the spectral norm inequalities

on r-circulant matrices with Fibonacci and Lucas numbers [].

Lots of article have been written so far, which concern estimates for spectral norms of

circulant and r-circulant matrices, which have connections with signal and image pro-

cessing, time series analysis and many other problems.

In this paper, we derive expressions of spectral norms for r-circulant matrices. We ex-

plain some preliminaries and well-known results. We thicken the identities of estimations

for spectral norms of r-circulant matrices with the Pell and Pell-Lucas numbers.

The Pell and Pell-Lucas sequences Pn and Qn are defined by the recurrence relations

P = , P = , Pn = Pn– + Pn– for n≥ 

and

Q = , Q = , Qn = Qn– +Qn– for n≥ .
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If we start from n = , then the Pell and Pell-Lucas sequence are given by

n :         · · ·
Pn :         · · ·
Qn :         · · ·

The following sum formulas for the Pell and Pell-Lucas numbers are well known [, ]:

n
∑

k=

P
k =

PnPn+



and

n
∑

k=

Q
k =

Qn+ + (–)n – 


.

A matrix C = [cij] ∈Mn,n(C) is called a r-circulant matrix if it is of the form

cij =

{

cj–i, j ≥ i,

rcn+j–i, j < i.

Obviously, the r-circulantmatrixC is determined by the parameter r and its first row el-

ements c, c, . . . , cn–, thus we denoteC = Cr(c, c, . . . , cn–). Especially, let r = , thematrix

C is called a circulant matrix [].

The Euclidean norm of the matrix A is defined as

‖A‖E =

(

n
∑

i,j=

|aij|
)/

.

The singular values of the matrix A are

σi =
√

λi

(

A∗A
)

,

where λi is an eigenvalue of A∗A and A∗ is conjugate transpose of matrix A. The square

roots of the maximum eigenvalues of A∗A are called the spectral norm of A and are in-

duced by ‖A‖.
The following inequality holds:


√
n

‖A‖E ≤ ‖A‖ ≤ ‖A‖E .

Define the maximum column length norm c, and the maximum row length norm r of

any matrix A by

r(A) = max

i

√

∑

j

|aij|
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and

c(A) = max

j

√

∑

i

|aij|,

respectively. Let A, B, and C bem× nmatrices. If A = B ◦C then

‖A‖ ≤ r(B)c(C) [].

2 Result and discussion

Theorem  Let A = Cr(P,P, . . . ,Pn–) be a r-circulant matrix, where r ∈ C.We have

(i) |r| ≥ ,

√

PnPn–


≤ ‖A‖ ≤ |r|

√

(n – )
PnPn–


,

(ii) |r| < , |r|
√

PnPn–


≤ ‖A‖ ≤

√

(n – )
PnPn–


.

Proof The matrix A is of the form

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P P . . . Pn– Pn–

rPn– P . . . Pn– Pn–

...
...

. . .
...

...

rP rP . . . P P

rP rP . . . rPn– P

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Then we have

‖A‖E =
n–
∑

i=

(n – i)P
i +

n–
∑

i=

i|r|P
i ;

hence, when |r| ≥  we obtain

‖A‖E ≥
n–
∑

i=

(n – i)P
i +

n–
∑

i=

iP
i = n

n–
∑

i=

P
i = n

PnPn–


,

that is,


√
n

‖A‖E ≥
√

PnPn–


⇒ ‖A‖ ≥

√

PnPn–


.

On the other hand, let the matrices B and C be

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P  . . .  

r P . . .  
...

...
. . .

...
...

r r . . . P 

r r . . . r P

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P P . . . Pn– Pn–

Pn– P . . . Pn– Pn–

...
...

. . .
...

...

P P . . . P P

P P . . . Pn– P

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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such that A = B ◦C. Then

r(B) = max

i

√

∑

j

|bnj| =
√

|r|(n – ) = |r|
√

(n – ) and

c(C) = max

j

√

∑

i

|cin| =

√

√

√

√

n–
∑

i=

P
i =

√

PnPn–


.

We have

‖A‖ ≤ |r|
√

(n – )
PnPn–


.

When |r| <  we also obtain

‖A‖E ≥
n–
∑

i=

(n – i)|r|P
i +

n–
∑

i=

i|r|P
i = n|r|

PnPn–


,

that is,


√
n

‖A‖E ≥ |r|
√

PnPn–


⇒ ‖A‖ ≥ |r|

√

PnPn–


.

On the other hand, let the matrices B and C be

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P  . . .  

r P . . .  
...

...
. . .

...
...

r r . . . P 

r r . . . r P

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P P . . . Pn– Pn–

Pn– P . . . Pn– Pn–

...
...

. . .
...

...

P P . . . P P

P P . . . Pn– P

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

such that A = B ◦C. Then

r(B) = max

i

√

∑

j

|bij| =

√

√

√

√

n–
∑

j=

|bnj| =
√
n –  and

c(C) = max

j

√

∑

i

|cij| =

√

√

√

√

n–
∑

i=

|cin| =

√

√

√

√

n–
∑

i=

P
i =

√

PnPn–


.

We have

‖A‖ ≤
√

(n – )
PnPn–


.

Thus, the proof is completed. �

Corollary  Let A = Cr(P

,P


 , . . . ,P


n–) be a r-circulant matrix, where r ∈ C, |r| ≥ ; we

have
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‖A‖ ≤ (n – )|r|
PnPn–


,

where ‖ · ‖ is the spectral norm and Pn denotes the nth Pell number.

Proof Since A = Cr(P

,P


 , . . . ,P


n–) is a r-circulant matrix, if the matrices B = Cr(P,P,

. . . ,Pn–) and C = C(P
,P


 , . . . ,P


n–) we get A = B ◦C; thus, we obtain

‖A‖ ≤ (n – )|r|
PnPn–


. �

Theorem  Let A = Cr(Q,Q, . . . ,Qn–) be a r-circulant matrix, where r ∈C.

(i) |r| ≥ ,

⎧

⎨

⎩

√

Qn–+


≤ ‖A‖ ≤ |r|
√

nQn–+


, n odd,
√

Qn–+


≤ ‖A‖ ≤ |r|
√

nQn–+


, n even,

(ii) |r| < ,

⎧

⎨

⎩

|r|
√

Qn–+


≤ ‖A‖ ≤
√

nQn–+


, n odd,

|r|
√

Qn–+


≤ ‖A‖ ≤
√

nQn–+


, n even.

Proof The matrix A is of the form

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Q Q . . . Qn– Qn–

rQn– Q . . . Qn– Qn–

...
...

. . .
...

...

rQ rQ . . . Q Q

rQ rQ . . . rQn– Q

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Then we have

‖A‖E =
n–
∑

i=

(n – i)Q
i +

n–
∑

i=

i|r|Q
i ;

hence, when |r| ≥  we obtain

‖A‖E ≥
n–
∑

i=

(n – i)Q
i +

n–
∑

i=

iQ
i = n

n–
∑

i=

Q
i =

⎧

⎨

⎩

√

nQn–+


, n odd,
√

nQn–+


, n even,

that is,


√
n

‖A‖E ≥ ‖A‖ ≥

⎧

⎨

⎩

√

Qn–+


, n odd,
√

Qn–+


, n even.

On the other hand, let the matrices B and C be

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

  . . .  

r  . . .  
...

...
. . .

...
...

r r . . .  

r r . . . r 

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Q Q . . . Qn– Qn–

Qn– Q . . . Qn– Qn–

...
...

. . .
...

...

Q Q . . . Q Q

Q Q . . . Qn– Q

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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such that A = B ◦C. Then

r(B) = max

i

√

∑

j

|bij| =

√

√

√

√

n–
∑

j=

|bnj| =
√

|r|(n – ) +  and

c(C) = max

j

√

∑

i

|cij| =

√

√

√

√

n–
∑

i=

|cin| =

√

√

√

√

n–
∑

i=

Q
i =

⎧

⎨

⎩

√

Qn–+


, n odd,
√

Qn–+


, n even.

We have

‖A‖ ≤

⎧

⎨

⎩

√

(|r|(n – ) + )(Qn–+


), n odd,
√

(|r|(n – ) + )(Qn–+


), n even.

When |r| <  we also obtain

‖A‖E ≥
n–
∑

i=

(n – i)|r|Q
i +

n–
∑

i=

i|r|Q
i =

⎧

⎨

⎩

|r|
√

n(Qn–+


), n odd,

|r|
√

n(Qn–+


), n even,

that is,


√
n

‖A‖E ≥ ‖A‖ ≥

⎧

⎨

⎩

|r|
√

Qn–+


, n odd,

|r|
√

Qn–+


, n even.

On the other hand, let the matrices B and C be

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

  . . .  

r  . . .  
...

...
. . .

...
...

r r . . .  

r r . . . r 

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Q Q . . . Qn– Qn–

Qn– Q . . . Qn– Qn–

...
...

. . .
...

...

Q Q . . . Q Q

Q Q . . . Qn– Q

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

such that A = B ◦C. Then

r(B) = max

i

√

∑

j

|bij| =

√

√

√

√

n–
∑

j=

|bnj| =
√
n and

c(C) = max

j

√

∑

i

|cij| =

√

√

√

√

n–
∑

i=

|cin| =

√

√

√

√

n–
∑

i=

Q
i =

⎧

⎨

⎩

√

Qn–+


, n odd,
√

Qn–+


, n even.

We have

‖A‖ ≤

⎧

⎨

⎩

√

nQn–+


, n odd,
√

nQn–+


, n even.

Thus, the proof is completed. �
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Corollary  Let A = Cr(Q

,Q


 , . . . ,Q


n–) be a r-circulant matrix, where r ∈C, |r| ≥ ,

‖A‖ ≤

{

n|r|Qn–+


, n odd,

n|r|Qn–+


, n even,

where ‖ · ‖ is the spectral norm and Qn denotes the nth Pell-Lucas number.

Proof Since A = Cr(Q

,Q


 , . . . ,Q


n–) is a r-circulant matrix, if the matrices B = Cr(Q,Q,

. . . ,Qn–) and C = C(Q
,Q


 , . . . ,Q


n–) we get A = B ◦C; thus, we obtain

‖A‖ ≤

{

n|r|Qn–+


, n odd,

n|r|Qn–+


, n even. �
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1. Bahşi, M, Solak, S: On the norms of r-circulant matrices with the hyper-Fibonacci and Lucas numbers. J. Math. Inequal.

8(4), 693-705 (2014)

2. Bozkurt, D, Tam, TY: Determinants and inverses of r-circulant matrices associated with a number sequence. Linear

Multilinear Algebra (2014). doi:10.1080/03081087.2014.941291

3. Shen, S, Cen, J: On the bounds for the norms of r-circulant matrices with the Fibonacci and Lucas numbers. Appl.

Math. Comput. 216, 2891-2897 (2010)

4. Shen, S, Cen, J: On the spectral norms of r-circulant matrices with the k-Fibonacci and k-Lucas numbers. Int.

J. Contemp. Math. Sci. 5(12), 569-578 (2010)

5. He, C, Ma, J, Zhang, K, Wang, Z: The upper bound estimation on the spectral norm r-circulant matrices with the

Fibonacci and Lucas numbers. J. Inequal. Appl. (2015). doi:10.1186/s13660-015-0596-5

6. Halici, S: On some inequalities and Hankel matrices involving Pell, Pell-Lucas numbers. Math. Rep. 65(15), 1-10 (2013)

7. Koshy, T: Pell and Pell-Lucas Numbers with Applications. Springer, Berlin (2014)

8. Horn, RA, Johnson, CR: Topics in Matrix Analysis, pp. 333-335. Cambridge University Press, Cambridge (1991)

http://dx.doi.org/10.1080/03081087.2014.941291
http://dx.doi.org/10.1186/s13660-015-0596-5

	On the spectral norm of r-circulant matrices with the Pell and Pell-Lucas numbers
	Abstract
	Keywords

	Introduction
	Result and discussion
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


