On the spectral norm of r-circulant matrices with the Pell and Pell-Lucas numbers

Ramazan Türkmen ${ }^{\prime *}$ and Hasan Gökbaş ${ }^{2}$

"Correspondence:
rturkmen@selcuk.edu.tr
${ }^{1}$ Science Faculty, Selcuk University, Konya, 42031, Turkey
Full list of author information is available at the end of the article

Abstract

Let us define $A=C_{r}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ to be a $n \times n r$-circulant matrix. The entries in the first row of $A=C_{r}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ are $a_{i}=P_{i}, a_{i}=Q_{i}, a_{i}=P_{i}^{2}$ or $a_{i}=Q_{i}^{2}$ ($i=0,1,2, \ldots, n-1$), where P_{i} and Q_{i} are the ith Pell and Pell-Lucas numbers, respectively. We find some bounds estimation of the spectral norm for r-Circulant matrices with Pell and Pell-Lucas numbers.

Keywords: Pell numbers; Pell-Lucas numbers; r-circulant matrix; spectral norm

1 Introduction

Special matrices is a widely studied subject in matrix analysis. Especially special matrices whose entries are well-known number sequences have become a very interesting research subject in recent years and many authors have obtained some good results in this area. For example, Bahși and Solak have studied the norms of r-circulant matrices with the hyperFibonacci and Lucas numbers [1], Bozkurt and Tam have obtained some results belong to determinants and inverses of r-circulant matrices associated with a number sequence [2], Shen and Cen have made a similar study by using r-circulant matrices with the Fibonacci and Lucas numbers $[3,4]$ and He et al. have established on the spectral norm inequalities on r-circulant matrices with Fibonacci and Lucas numbers [5].

Lots of article have been written so far, which concern estimates for spectral norms of circulant and r-circulant matrices, which have connections with signal and image processing, time series analysis and many other problems.

In this paper, we derive expressions of spectral norms for r-circulant matrices. We explain some preliminaries and well-known results. We thicken the identities of estimations for spectral norms of r-circulant matrices with the Pell and Pell-Lucas numbers.

The Pell and Pell-Lucas sequences P_{n} and Q_{n} are defined by the recurrence relations

$$
P_{0}=0, \quad P_{1}=1, \quad P_{n}=2 P_{n-1}+P_{n-2} \quad \text { for } n \geq 2
$$

and

$$
Q_{0}=2, \quad Q_{1}=2, \quad Q_{n}=2 Q_{n-1}+Q_{n-2} \quad \text { for } n \geq 2 .
$$

If we start from $n=0$, then the Pell and Pell-Lucas sequence are given by

$n:$	0	1	2	3	4	5	6	7	\ldots
$P_{n}:$	0	1	2	5	12	29	70	169	\ldots
$Q_{n}:$	2	2	6	14	34	82	198	478	\ldots

The following sum formulas for the Pell and Pell-Lucas numbers are well known [6, 7]:

$$
\sum_{k=1}^{n} P_{k}^{2}=\frac{P_{n} P_{n+1}}{2}
$$

and

$$
\sum_{k=1}^{n} Q_{k}^{2}=\frac{Q_{2 n+1}+2(-1)^{n}-4}{2}
$$

A matrix $C=\left[c_{i j}\right] \in M_{n, n}(\mathbb{C})$ is called a r-circulant matrix if it is of the form

$$
c_{i j}= \begin{cases}c_{j-i}, & j \geq i, \\ r c_{n+j-i}, & j<i .\end{cases}
$$

Obviously, the r-circulant matrix C is determined by the parameter r and its first row elements $c_{0}, c_{1}, \ldots, c_{n-1}$, thus we denote $C=C_{r}\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$. Especially, let $r=1$, the matrix C is called a circulant matrix [3].
The Euclidean norm of the matrix A is defined as

$$
\|A\|_{E}=\left(\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

The singular values of the matrix A are

$$
\sigma_{i}=\sqrt{\lambda_{i}\left(A^{*} A\right)},
$$

where λ_{i} is an eigenvalue of $A^{*} A$ and A^{*} is conjugate transpose of matrix A. The square roots of the maximum eigenvalues of $A^{*} A$ are called the spectral norm of A and are induced by $\|A\|_{2}$.

The following inequality holds:

$$
\frac{1}{\sqrt{n}}\|A\|_{E} \leq\|A\|_{2} \leq\|A\|_{E}
$$

Define the maximum column length norm c_{1}, and the maximum row length norm r_{1} of any matrix A by

$$
r_{1}(A)=\max _{i} \sqrt{\sum_{j}\left|a_{i j}\right|^{2}}
$$

and

$$
c_{1}(A)=\max _{j} \sqrt{\sum_{i}\left|a_{i j}\right|^{2}}
$$

respectively. Let A, B, and C be $m \times n$ matrices. If $A=B \circ C$ then

$$
\|A\|_{2} \leq r_{1}(B) c_{1}(C)
$$

2 Result and discussion

Theorem 1 Let $A=C_{r}\left(P_{0}, P_{1}, \ldots, P_{n-1}\right)$ be a r-circulant matrix, where $r \in \mathbb{C}$. We have
(i) $\quad|r| \geq 1, \quad \sqrt{\frac{P_{n} P_{n-1}}{2}} \leq\|A\|_{2} \leq|r| \sqrt{(n-1) \frac{P_{n} P_{n-1}}{2}}$,
(ii) $\quad|r|<1, \quad|r| \sqrt{\frac{P_{n} P_{n-1}}{2}} \leq\|A\|_{2} \leq \sqrt{(n-1) \frac{P_{n} P_{n-1}}{2}}$.

Proof The matrix A is of the form

$$
A=\left[\begin{array}{ccccc}
P_{0} & P_{1} & \ldots & P_{n-2} & P_{n-1} \\
r P_{n-1} & P_{0} & \ldots & P_{n-3} & P_{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
r P_{2} & r P_{3} & \ldots & P_{0} & P_{1} \\
r P_{1} & r P_{2} & \ldots & r P_{n-1} & P_{0}
\end{array}\right]
$$

Then we have

$$
\|A\|_{E}^{2}=\sum_{i=0}^{n-1}(n-i) P_{i}^{2}+\sum_{i=1}^{n-1} i|r|^{2} P_{i}^{2}
$$

hence, when $|r| \geq 1$ we obtain

$$
\|A\|_{E}^{2} \geq \sum_{i=0}^{n-1}(n-i) P_{i}^{2}+\sum_{i=1}^{n-1} i P_{i}^{2}=n \sum_{i=0}^{n-1} P_{i}^{2}=n \frac{P_{n} P_{n-1}}{2}
$$

that is,

$$
\frac{1}{\sqrt{n}}\|A\|_{E} \geq \sqrt{\frac{P_{n} P_{n-1}}{2}} \Rightarrow\|A\|_{2} \geq \sqrt{\frac{P_{n} P_{n-1}}{2}}
$$

On the other hand, let the matrices B and C be

$$
B=\left[\begin{array}{ccccc}
P_{0} & 1 & \ldots & 1 & 1 \\
r & P_{0} & \ldots & 1 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
r & r & \ldots & P_{0} & 1 \\
r & r & \ldots & r & P_{0}
\end{array}\right] \text { and } C=\left[\begin{array}{ccccc}
P_{0} & P_{1} & \ldots & P_{n-2} & P_{n-1} \\
P_{n-1} & P_{0} & \ldots & P_{n-3} & P_{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
P_{2} & P_{3} & \ldots & P_{0} & P_{1} \\
P_{1} & P_{2} & \ldots & P_{n-1} & P_{0}
\end{array}\right]
$$

such that $A=B \circ C$. Then

$$
\begin{aligned}
& r_{1}(B)=\max _{i} \sqrt{\sum_{j}\left|b_{n j}\right|^{2}}=\sqrt{|r|^{2}(n-1)}=|r| \sqrt{(n-1)} \text { and } \\
& c_{1}(C)=\max _{j} \sqrt{\sum_{i}\left|c_{i n}\right|^{2}}=\sqrt{\sum_{i=0}^{n-1} P_{i}^{2}}=\sqrt{\frac{P_{n} P_{n-1}}{2}} .
\end{aligned}
$$

We have

$$
\|A\|_{2} \leq|r| \sqrt{(n-1) \frac{P_{n} P_{n-1}}{2}}
$$

When $|r|<1$ we also obtain

$$
\|A\|_{E}^{2} \geq \sum_{i=0}^{n-1}(n-i)|r|^{2} P_{i}^{2}+\sum_{i=1}^{n-1} i|r|^{2} P_{i}^{2}=n|r|^{2} \frac{P_{n} P_{n-1}}{2}
$$

that is,

$$
\frac{1}{\sqrt{n}}\|A\|_{E} \geq|r| \sqrt{\frac{P_{n} P_{n-1}}{2}} \Rightarrow\|A\|_{2} \geq|r| \sqrt{\frac{P_{n} P_{n-1}}{2}}
$$

On the other hand, let the matrices B and C be

$$
B=\left[\begin{array}{ccccc}
P_{0} & 1 & \ldots & 1 & 1 \\
r & P_{0} & \ldots & 1 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
r & r & \ldots & P_{0} & 1 \\
r & r & \ldots & r & P_{0}
\end{array}\right] \text { and } C=\left[\begin{array}{ccccc}
P_{0} & P_{1} & \ldots & P_{n-2} & P_{n-1} \\
P_{n-1} & P_{0} & \ldots & P_{n-3} & P_{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
P_{2} & P_{3} & \ldots & P_{0} & P_{1} \\
P_{1} & P_{2} & \ldots & P_{n-1} & P_{0}
\end{array}\right]
$$

such that $A=B \circ C$. Then

$$
\begin{aligned}
& r_{1}(B)=\max _{i} \sqrt{\sum_{j}\left|b_{i j}\right|^{2}}=\sqrt{\sum_{j=0}^{n-1}\left|b_{n j}\right|^{2}}=\sqrt{n-1} \text { and } \\
& c_{1}(C)=\max _{j} \sqrt{\sum_{i}\left|c_{i j}\right|^{2}}=\sqrt{\sum_{i=0}^{n-1}\left|c_{i n}\right|^{2}}=\sqrt{\sum_{i=0}^{n-1} P_{i}^{2}}=\sqrt{\frac{P_{n} P_{n-1}}{2}} .
\end{aligned}
$$

We have

$$
\|A\|_{2} \leq \sqrt{(n-1) \frac{P_{n} P_{n-1}}{2}}
$$

Thus, the proof is completed.

Corollary 2 Let $A=C_{r}\left(P_{0}^{2}, P_{1}^{2}, \ldots, P_{n-1}^{2}\right)$ be a r-circulant matrix, where $r \in \mathbb{C},|r| \geq 1$; we have

$$
\|A\|_{2} \leq(n-1)|r| \frac{P_{n} P_{n-1}}{2}
$$

where $\|\cdot\|_{2}$ is the spectral norm and P_{n} denotes the nth Pell number.
Proof Since $A=C_{r}\left(P_{0}^{2}, P_{1}^{2}, \ldots, P_{n-1}^{2}\right)$ is a r-circulant matrix, if the matrices $B=C_{r}\left(P_{0}, P_{1}\right.$, $\left.\ldots, P_{n-1}\right)$ and $C=C\left(P_{0}^{2}, P_{1}^{2}, \ldots, P_{n-1}^{2}\right)$ we get $A=B \circ C$; thus, we obtain

$$
\|A\|_{2} \leq(n-1)|r| \frac{P_{n} P_{n-1}}{2}
$$

Theorem 3 Let $A=C_{r}\left(Q_{0}, Q_{1}, \ldots, Q_{n-1}\right)$ be a r-circulant matrix, where $r \in \mathbb{C}$.
(i) $\quad|r| \geq 1, \quad \begin{cases}\sqrt{\frac{Q_{2 n-1}+6}{2}} \leq\|A\|_{2} \leq|r| \sqrt{n \frac{Q_{2 n-1}+6}{2}}, & \text { n odd, } \\ \sqrt{\frac{Q_{2 n-1}+2}{2}} \leq\|A\|_{2} \leq|r| \sqrt{n \frac{Q_{2 n-1}+2}{2}}, & \text { n even, }\end{cases}$
(ii) $\quad|r|<1, \quad \begin{cases}|r| \sqrt{\frac{Q_{2 n-1}+6}{2}} \leq\|A\|_{2} \leq \sqrt{n \frac{Q_{2 n-1}+6}{2}}, & \text { n odd, } \\ |r| \sqrt{\frac{Q_{2 n-1}+2}{2}} \leq\|A\|_{2} \leq \sqrt{n \frac{Q_{2 n-1}+2}{2}}, & \text { n even. }\end{cases}$

Proof The matrix A is of the form

$$
A=\left[\begin{array}{ccccc}
Q_{0} & Q_{1} & \ldots & Q_{n-2} & Q_{n-1} \\
r Q_{n-1} & Q_{0} & \ldots & Q_{n-3} & Q_{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
r Q_{2} & r Q_{3} & \ldots & Q_{0} & Q_{1} \\
r Q_{1} & r Q_{2} & \ldots & r Q_{n-1} & Q_{0}
\end{array}\right] .
$$

Then we have

$$
\|A\|_{E}^{2}=\sum_{i=0}^{n-1}(n-i) Q_{i}^{2}+\sum_{i=1}^{n-1} i|r|^{2} Q_{i}^{2}
$$

hence, when $|r| \geq 1$ we obtain

$$
\|A\|_{E}^{2} \geq \sum_{i=0}^{n-1}(n-i) Q_{i}^{2}+\sum_{i=1}^{n-1} i Q_{i}^{2}=n \sum_{i=0}^{n-1} Q_{i}^{2}= \begin{cases}\sqrt{n \frac{Q_{2 n-1}+6}{2}}, & n \text { odd } \\ \sqrt{n \frac{Q_{2 n-1}+2}{2}}, & n \text { even }\end{cases}
$$

that is,

$$
\frac{1}{\sqrt{n}}\|A\|_{E} \geq\|A\|_{2} \geq \begin{cases}\sqrt{\frac{Q_{2 n-1}+6}{2}}, & n \text { odd } \\ \sqrt{\frac{Q_{2 n-1}+2}{2}}, & n \text { even }\end{cases}
$$

On the other hand, let the matrices B and C be

$$
B=\left[\begin{array}{ccccc}
1 & 1 & \ldots & 1 & 1 \\
r & 1 & \ldots & 1 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
r & r & \ldots & 1 & 1 \\
r & r & \ldots & r & 1
\end{array}\right] \text { and } C=\left[\begin{array}{ccccc}
Q_{0} & Q_{1} & \ldots & Q_{n-2} & Q_{n-1} \\
Q_{n-1} & Q_{0} & \ldots & Q_{n-3} & Q_{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
Q_{2} & Q_{3} & \ldots & Q_{0} & Q_{1} \\
Q_{1} & Q_{2} & \ldots & Q_{n-1} & Q_{0}
\end{array}\right]
$$

such that $A=B \circ C$. Then

$$
\begin{aligned}
& r_{1}(B)=\max _{i} \sqrt{\sum_{j}\left|b_{i j}\right|^{2}}=\sqrt{\sum_{j=0}^{n-1}\left|b_{n j}\right|^{2}}=\sqrt{|r|^{2}(n-1)+1} \text { and } \\
& c_{1}(C)=\max _{j} \sqrt{\sum_{i}\left|c_{i j}\right|^{2}}=\sqrt{\sum_{i=0}^{n-1}\left|c_{i n}\right|^{2}}=\sqrt{\sum_{i=0}^{n-1} Q_{i}^{2}}= \begin{cases}\sqrt{\frac{Q_{2 n-1}+6}{2}}, & n \text { odd } \\
\sqrt{\frac{Q_{2 n-1}+2}{2}}, & n \text { even. } .\end{cases}
\end{aligned}
$$

We have

$$
\|A\|_{2} \leq \begin{cases}\sqrt{\left(|r|^{2}(n-1)+1\right)\left(\frac{Q_{2 n-1}+6}{2}\right)}, & n \text { odd } \\ \sqrt{\left(|r|^{2}(n-1)+1\right)\left(\frac{Q_{2 n-1}+2}{2}\right)}, & n \text { even }\end{cases}
$$

When $|r|<1$ we also obtain

$$
\|A\|_{E}^{2} \geq \sum_{i=0}^{n-1}(n-i)|r|^{2} Q_{i}^{2}+\sum_{i=1}^{n-1} i|r|^{2} Q_{i}^{2}= \begin{cases}|r| \sqrt{n\left(\frac{Q_{2 n-1}+6}{2}\right)}, & n \text { odd } \\ |r| \sqrt{n\left(\frac{Q_{2 n-1}+2}{2}\right)}, & n \text { even }\end{cases}
$$

that is,

$$
\frac{1}{\sqrt{n}}\|A\|_{E} \geq\|A\|_{2} \geq \begin{cases}|r| \sqrt{\frac{Q_{2 n-1}+6}{2}}, & n \text { odd } \\ |r| \sqrt{\frac{Q_{2 n-1}+2}{2}}, & n \text { even }\end{cases}
$$

On the other hand, let the matrices B and C be

$$
B=\left[\begin{array}{ccccc}
1 & 1 & \ldots & 1 & 1 \\
r & 1 & \ldots & 1 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
r & r & \ldots & 1 & 1 \\
r & r & \ldots & r & 1
\end{array}\right] \text { and } C=\left[\begin{array}{ccccc}
Q_{0} & Q_{1} & \ldots & Q_{n-2} & Q_{n-1} \\
Q_{n-1} & Q_{0} & \ldots & Q_{n-3} & Q_{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
Q_{2} & Q_{3} & \ldots & Q_{0} & Q_{1} \\
Q_{1} & Q_{2} & \ldots & Q_{n-1} & Q_{0}
\end{array}\right]
$$

such that $A=B \circ C$. Then

$$
\begin{aligned}
& r_{1}(B)=\max _{i} \sqrt{\sum_{j}\left|b_{i j}\right|^{2}}=\sqrt{\sum_{j=0}^{n-1}\left|b_{n j}\right|^{2}}=\sqrt{n} \text { and } \\
& c_{1}(C)=\max _{j} \sqrt{\sum_{i}\left|c_{i j}\right|^{2}}=\sqrt{\sum_{i=0}^{n-1}\left|c_{i n}\right|^{2}}=\sqrt{\sum_{i=0}^{n-1} Q_{i}^{2}}= \begin{cases}\sqrt{\frac{Q_{2 n-1}+6}{2}}, & n \text { odd } \\
\sqrt{\frac{Q_{2 n-1}+2}{2}}, & n \text { even. }\end{cases}
\end{aligned}
$$

We have

$$
\|A\|_{2} \leq \begin{cases}\sqrt{n \frac{Q_{2 n-1}+6}{2}}, & n \text { odd } \\ \sqrt{n \frac{Q_{2 n-1}+2}{2}}, & n \text { even }\end{cases}
$$

Thus, the proof is completed.

Corollary 4 Let $A=C_{r}\left(Q_{0}^{2}, Q_{1}^{2}, \ldots, Q_{n-1}^{2}\right)$ be a r-circulant matrix, where $r \in \mathbb{C},|r| \geq 1$,

$$
\|A\|_{2} \leq \begin{cases}n|r| \frac{Q_{2 n-1}+6}{2}, & n \text { odd } \\ n|r| \frac{Q_{2 n-1}+2}{2}, & n \text { even }\end{cases}
$$

where $\|\cdot\|_{2}$ is the spectral norm and Q_{n} denotes the nth Pell-Lucas number.

Proof Since $A=C_{r}\left(Q_{0}^{2}, Q_{1}^{2}, \ldots, Q_{n-1}^{2}\right)$ is a r-circulant matrix, if the matrices $B=C_{r}\left(Q_{0}, Q_{1}\right.$, $\left.\ldots, Q_{n-1}\right)$ and $C=C\left(Q_{0}^{2}, Q_{1}^{2}, \ldots, Q_{n-1}^{2}\right)$ we get $A=B \circ C$; thus, we obtain

$$
\|A\|_{2} \leq \begin{cases}n|r| \frac{Q_{2 n-1}+6}{2}, & n \text { odd } \\ n|r| \frac{Q_{2 n-1}+2}{2}, & n \text { even }\end{cases}
$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details

${ }^{1}$ Science Faculty, Selcuk University, Konya, 42031, Turkey. ${ }^{2}$ Semsi Tebrizi Anatolian Religious Vocational High School, Konya, Turkey.

Acknowledgements

The authors wish to express their heartfelt thanks to the referees for their detailed and helpful suggestions for revising the manuscript.

Received: 29 September 2015 Accepted: 1 February 2016 Published online: 16 February 2016

References

1. Bahşi, M, Solak, S: On the norms of r-circulant matrices with the hyper-Fibonacci and Lucas numbers. J. Math. Inequal. 8(4), 693-705 (2014)
2. Bozkurt, D, Tam, TY: Determinants and inverses of r-circulant matrices associated with a number sequence. Linear Multilinear Algebra (2014). doi:10.1080/03081087.2014.941291
3. Shen, S, Cen, J: On the bounds for the norms of r-circulant matrices with the Fibonacci and Lucas numbers. Appl. Math. Comput. 216, 2891-2897 (2010)
4. Shen, S, Cen, J: On the spectral norms of r-circulant matrices with the k-Fibonacci and k-Lucas numbers. Int. J. Contemp. Math. Sci. 5(12), 569-578 (2010)
5. He, C, Ma, J, Zhang, K, Wang, Z: The upper bound estimation on the spectral norm r-circulant matrices with the Fibonacci and Lucas numbers. J. Inequal. Appl. (2015). doi:10.1186/s13660-015-0596-5
6. Halici, S: On some inequalities and Hankel matrices involving Pell, Pell-Lucas numbers. Math. Rep. 65(15), 1-10 (2013)
7. Koshy, T: Pell and Pell-Lucas Numbers with Applications. Springer, Berlin (2014)
8. Horn, RA, Johnson, CR: Topics in Matrix Analysis, pp. 333-335. Cambridge University Press, Cambridge (1991)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

