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Abstract. Spectroastrometry is a technique which has the potential to resolve flux distributions on scales of milliarcseconds.
In this study, we examine the application of spectroastrometry to binary point sources which are spatially unresolved due to
the observational point spread function convolution. The technique uses measurements with sub-pixel accuracy of the position
centroid of high signal-to-noise long-slit spectrum observations. With the objects in the binary contributing fractionally more or
less at different wavelengths (particularly across spectral lines), the variation of the position centroid with wavelength provides
some information on the spatial distribution of the flux. We examine the width of the flux distribution in the spatial direction,
and present its relation to the ratio of the fluxes of the two components of the binary. Measurement of three observables
(total flux, position centroid and flux distribution width) at each wavelength allows a unique separation of the total flux into its
component parts even though the angular separation of the binary is smaller than the observations’ point-spread function. This is
because we have three relevant observables for three unknowns (the two fluxes, and the angular separation of the binary), which
therefore generates a closed problem. This is a wholly different technique than conventional deconvolution methods, which
produce information on angular sizes of the sampling scale. Spectroastrometry can produce information on smaller scales than
conventional deconvolution, and is successful in separating fluxes in a binary object with a separation of less than one pixel. We
present an analysis of the errors involved in making binary object spectroastrometric measurements and the separation method,
and highlight necessary observing methodology.
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1. Introduction

A telescope is limited by its resolution: traditionally, the
smallest resolvable feature will typically be the size of the
point-spread function (PSF). There are several contributions
to the PSF including the Earth’s atmosphere (via seeing) for
ground based telescopes, and the telescope itself (via its op-
tics). Conventionally, if the physical size of the flux distribution
is smaller than the PSF, then all the information on that scale is
blended and hence cannot be retrieved. For the special case of
a binary object, there have been several techniques which have
been proposed to extract the individual binary star spectra from
the composite spectrum, involving single value decomposition
(Simon & Sturm 1994), Fourier methods (e.g. Hadrava 1995),
or Doppler tomography (Bagnuolo et al. 1992).

The technique of spectroastrometry allows the observer to
gain some information on the distribution of flux on a spa-
tial scale smaller than the PSF. It was originally discussed in
the 1980s by Beckers (1982), and Christy et al. (1983) with
more recent studies by Bailey (1998a,b), Garcia et al. (1999),

Takami et al. (2001, 2003). Given that the technique has the
potential to provide information about the flux distribution on
milliarcsecond scales, it is surprising that it has not been more
widely exploited.

Conceptually, spectroastrometry is easy to grasp: it in-
volves taking a long slit spectrum, and relies on the observer
being able to determine the centroid of a flux distribution to a
fraction of a pixel. The exact spatial centre of a flux distribu-
tion may vary with wavelength if the components making up
that distribution contribute differing fractions of the total flux
at a given wavelength. For example, a pair of objects in a binary
system contribute different amounts of flux at different wave-
lengths. Where one object has an emission line, the position
centroid of the flux will move toward that object across that
line before returning to the continuum position. For an absorp-
tion line, the opposite occurs. If the centroid position can be
located accurately enough, then the relative contribution of the
two objects may be calculated. Any astronomical source with
a flux distribution which is asymmetric with respect to wave-
length may be subject to the technique, such as binary stars
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(e.g. Bailey 1998a,b), or outflows and discs (e.g. Takami et al.
2003).

More familiar techniques of deconvolution of long slit
spectra have been presented by Courbin et al. (2000). Courbin
et al. produce final results which are sampled at the Nyquist fre-
quency of the observation (determined by the CCD chip pixels,
see the discussion in Sect. 2 of Magain et al. 1998). Therefore,
these techniques provide a method of producing a higher reso-
lution than the observations, although they cannot provide any
information on scales smaller than the Nyquist scale.

Lucy & Walsh (2003, and references therein) produce an
iterative technique, which is applied to the extraction of stel-
lar spectra from a (crowded) convolved image. This is able to
separate fluxes from objects with overlapping PSF by nominat-
ing a priori the objects which are point sources. This procedure
performs well in crowded fields, but is not sensitive to objects
so close that their separation is smaller than the PSF.

Here, we concentrate on a method of the separation of a
“discrete” flux distribution – a binary object – into its compo-
nents. Our aim is to produce a method which is able to extract
the two fluxes from a binary object which is separated by less
than a pixel, (an achievement impossible with previously pub-
lished methods) whilst remaining competitive for larger sepa-
rations when compared to more traditional deconvolution tech-
niques.

The current observational technique of spectroastrometry
(photocentre displacement) is supplemented by an investiga-
tion into the width of the flux distribution and this provides
the raison d’être of this study: the addition of the information
provided by the flux distribution’s width closes the set of ob-
servables (total flux, photocentre position, and width of flux
distribution) and unknowns (the two spectra and their separa-
tion) and thereby enables an unique separation of the compos-
ite spectrum into its component parts. We leave the problem
of continuous flux distributions (e.g. a disc) until a later study
(spectroastrometry of a continuous flux distribution will yield
the sub-pixel scale kinematics of the source).

In Sect. 2 the binary object flux distribution its statistical
properties are examined, before illustrating the flux separation
technique in Sect. 3. To provide a practical guide for this tech-
nique, a discussion of errors is provided in Sect. 4 and optimal
observing strategies are given in Sect. 5. Discussion and con-
clusions are given in Sects. 6 and 7 respectively.

2. Observational statistics of the flux distribution
of a convolved binary object

The positional distribution of flux from any source is labelled
as Fλ(x), where λ is wavelength and x is the position along the
slit. If the source is now assumed to be a binary object with a
separation of many times the radius of either object, then the
positional distribution of the flux is approximately

Fλ(x) = f1,λδx,x1 + f2,λδx,x2 , (1)

where f1,λ and f2,λ are the fluxes of the two objects located at
positions x1 and x2 respectively and δa,b is the Kronecka delta
function.

We imagine that the flux is observed with a spectrometer
and detected with a CCD detector with dimensions n × m pix-
els. The flux is sampled at discrete positions and wavelength:
the pixel number in the spatial direction is labelled with index i,
with i = 0 corresponding to the bottom of the CCD frame and
i = n corresponding to the top of the frame. Likewise the pix-
els in the dispersion (wavelength) direction are labelled with
index j with 0 ≤ j ≤ m. The flux in each CCD pixel is la-
belled Fi, j.

During an observation, the flux distribution Fλ(x) is first
convolved with a function taking into account the seeing profile
(for ground based telescopes), and telescope optics. We label
this intrinsic “seeing” function S λ(x). The flux is then binned
into pixels as it is detected by the CCD. The measured distri-
bution Fi, j is then

Fi, j = discretize [Fλ(x) ⊗ S λ(x)] . (2)

We label the intrinsic width of the seeing function as σS, which
in the case of a Gaussian function is equivalent to the stan-
dard deviation. If the separation between the objects |x1 − x2|
is less than σS, then the two objects are formally not resolved.
Conventionally, separation of the individual spectra cannot be
achieved.

Observations have two main sources of noise (i) photon
counting errors, characterised by Poisson statistics of the num-
ber of photons in each pixel, and (ii) read noise generated in
the process of charge transfer in the CCD during the read out
stage. The relative contribution of these two error sources is
dependent on the exposure time and brightness of the source
observed, as well as the spectrometer itself. First we consider
the case of zero noise to develop the fundamental principles
and technique, and we return to the effects of noise later.

The three simple observables which may be measured from
the flux distribution on the CCD are the total flux, the mean
position of the flux, and the width of the flux distribution. In
order to make the discussion as general as possible, henceforth
we work with units of pixels.

2.1. Total flux

At a given wavelength λ, corresponding to pixels (i = 1 · · ·n, j)
the flux is distributed in position according to Eq. (1) and sam-
pled onto pixel row i of the CCD. The “extracted” total flux
is the sum over all pixels in the spatial direction of the flux in
each pixel:

∑n
i=0 Fi, j ≡ ftot, j = f1, j + f2, j. In traditional spectro-

graphic work, this total extracted flux ftot, j (the spectrum) is the
sole quantity gleaned from the observation.

2.2. Position centroid

The position of a distribution is often measured by the mean
of the distribution – the 1st moment. However, it is often the
case that the mean is not particularly robust for non-Gaussian
distributions (especially when noise is present, see e.g. Beers
et al. 1990), and so a more sophisticated approach is war-
ranted. Good choices are the M-estimators such as Tukey’s bi-
weight, or Andrew’s Sine (or wave) estimators (Goodall 1983;
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Press et al. 1986). These have a weighting function which
penalises outliers from the distribution, which in this context
translates to estimating the width over a specific pixel region.
This will then avoid problems with extended wings of seeing
profiles (and also cosmic ray hits, and noise-generated errors).

We denote the position centroid of the distribution (how-
ever it is measured) as µ j: note that it can be measured to frac-
tions of a pixel hence µ j is a real number and not an integer.
How does the centroid µ j vary as the ratio of the flux of the two
objects varies? This is the aspect of spectroastrometry which
has received the most attention (Bailey 1998a,b; Garcia et al.
1999; Takami et al. 2001, 2003). For equal fluxes f1, j = f2, j the
centroid will lie exactly in the middle of flux distribution (at
(x2 − x1)/2).

The position centroid µ j is a direct probe of the relative
contribution of the two fluxes to the total flux. A simple relation
can be written to calculate µ j in terms of the two fluxes:

µ j ≡ f1, jδx,x1

ftot, j
+

f2, jδx,x2

ftot, j
, (3)

(e.g. Bailey 1998a) assuming that both point sources are in the
spectrometer slit.

A particularly useful spectral feature which is used in the
deconvolution technique below is an emission/absorption line.
These push the centroid toward the brighter object over a small
wavelength range – clear in the centroid spectra of Mira (Fig. 2
of Bailey 1998a) and HK Ori (Fig. 9 of Baines et al. 2004).
Any slowly varying changes in the centroid can be subtracted
out producing a centroid spectrum µ′j which is calibrated to be
zero away from the line centre (in the continuum) and may be
written as:

µ′j
d
≡ f2, j

ftot, j
− f2,cont

ftot,cont
=

r j

r j + 1
− rcont

rcont + 1
, (4)

(see Eq. (3) of Takami et al. 2003), where f2,cont and ftot,cont are
the continuum fluxes of object 2 and the total flux, and d is the
separation of the objects in pixels. The final equality in Eq. (4)
is expressed in terms of the ratio of the fluxes r j = f2, j/ f1, j and
the flux ratio in the continuum rcont = f2,cont/ f1,cont which is
used later in Sect. 3.

2.3. Width of the flux distribution

The width of a distribution may be measured using several
methods: the simplest characteristic width of the flux distribu-
tion is the mean absolute deviation, and the most commonly
used is the standard deviation. However, as with the position
above, a more robust technique is required in general.

We denote the measured width of the distribution as σ j.
This will approach the limiting value σS of the seeing func-
tion S λ(x) as either (i) the separation of the two objects tends
to zero; or (ii) the ratio of the less bright object flux to the
brighter object flux tends to zero. If either of the objects be-
comes brighter/dimmer, then the observed width will change.
The width σ j will also change with the separation of the ob-
jects. If the separation of the objects is larger than the intrin-
sic σS of the seeing, then the two objects will start to be re-
solved, and the spectroastrometric technique is not required to

separate the objects’ spectra. Hence the width σ j is a function
of (i) the separation of the two objects; (ii) the intrinsic distri-
bution’s σS; and (iii) the flux ratio of the two objects.

A slight broadening of the convolved profile, i.e. σ j > σS,
is present even in the continuum, as both stars still contribute to
the flux distribution. This is important in that the measured σ j

of the continuum cannot be used as an estimate for σS. A sep-
arate measurement for σS will be necessary (by observing a
single star), particularly as the focus of the camera can change
along the CCD producing a varying σS in the dispersion direc-
tion. It may be possible to use the minimum ofσ j as an estimate
forσS where there is a particularly strong emission line present
from one of the objects such that f1, j � f2, j, although this will
still be a slight overestimate for σS (see Appendix A.2 for an
evaluation of the errors associated with this procedure).

In order to understand the behaviour of the changes in
width of the flux distribution σ j, with flux ratio, binary object
separation and intrinsic width σS, we have performed an ex-
tensive series of numerical simulations. The flux ratio ranged
from f2, j/ f1, j = 0.0–1.0 (stepsize 0.05); the separation ranged
from d = 0–3σS (stepsize 0.1σS), and we have varied the in-
trinsic width σS from 2–10 pixels (similar to typical observa-
tions). Each realisation first convolves the binary object flux
distribution with the function S λ(x), and then maps the re-
sultant flux onto pixels. We have also performed the calcu-
lation for different functions S λ(x), including a Gaussian, a
Gaussian with boosted wings (the Gaussian function multiplied
by 1 + 0.05(x/σS)4), top-hat and triangular functions. In all
cases we have measured the width of the resultant distribu-
tion using Andrew’s sine estimator, although identical results
are obtained with a bi-weight estimator, or a standard-deviation
width.

The results of some of these calculations are displayed in
Fig. 1. We find that the behaviour of the fractional change of
the width of the distribution is almost independent of the func-
tion S λ(x) and may be approximated by a fitting function. For
objects with separations less than twice the intrinsic σS (i.e.
d < 2σS) an excellent fit to the calculations is

σ j−σS

σS
=a

(
d
σS

)b[

1 −
∣∣∣∣∣∣
1−min

{(
f2, j
f1, j

)

,

(
f1, j
f2, j

)}∣∣∣∣∣∣

c]

· (5)

The best fitting constants a, b, and c (with a search stepsize
of 0.001) in this expression are found to be slightly dependent
on the exact shape of the convolving function S λ(x). The best
fitting values are listed in Table 1.

This expression is shown in Fig. 1 for different func-
tions S λ(x). Equation (5) reproduces the numerical results
within a few per cent of the calculated value for all of the con-
volution functions S λ(x) we have used (although it is slightly
worse for the triangular function than the other functions).
The error associated with use of this fit produces a system-
atic shift in the separated fluxes (especially for the dimmer
secondary object) in the practical application of the technique
(see Sect. 3). To reduce this error, we can actually measure the
function S λ(x), again via a single object observation, and then
use it to calculate either more accurate values of a, b, and c in
Eq. (5), or a “lookup” table of values for use in flux separa-
tion. Equation (5) is important in that this representation of the
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Fig. 1. Top panel: variation of the width of the distribution with flux
ratio. The symbols are the calculated data for an intrinsic convolv-
ing function of a Gaussian (open circles, width 5.0 pixels), a Gaussian
with boosted wings (filled circles, width 6.2 pixels, see text) a top-hat
(squares, width 3.0 pixel), and a triangle (triangles, width 4.6 pixels).
The separation between the sources is 3.0 pixels. All results have been
divided by (d/σS)b (b from Eq. (5) listed in Table 1) to show the de-
pendency of the width on the flux ratio only. Bottom panel: variation
of the width with separation d between the sources for a flux ratio of
f2, j/ f1, j = 0.5. Symbols are the same as for the top panel. The solid
lines in both panels are the fit of Eq. (5).

Table 1. Best fitting parameters to Eq. (5), S λ(x) is the convolving
function – see text.

S λ(x) a b c
Gaussian 0.116 1.930 3.468
Gaussian with boosted wings 0.118 1.951 3.468
Top hat 0.110 1.858 3.466
Triangular 0.130 2.012 3.448

change in the width contains all of the convolution information
of the binary flux distribution.

3. Method of extraction of the individual spectra

The total flux ftot, j is dependent on the fluxes of the two point
sources f1, j and f2, j. The position displacement µ′j is depen-
dent on f1, j, f2, j and the separation d. Finally, the width of the
flux distribution σ j is dependent on f1, j, f2, j and d. Therefore
measurement of (i) the total flux ftot, j; (ii) the position displace-
ment µ′j; and (iii) the width of the flux distributed in the spatial
directionσ j provides three observables for three unknowns (i.e.
the fluxes of the two objects f1, j, f2, j, and their separation d).
The set of three relations may be inverted to uniquely separate
the flux distribution into its components.

Previous attempts at spectroastrometric flux separation
have used the total flux ftot, j and position displacement µ′j as
their only two observables. To be successful, prior knowledge
of the objects must be obtained (e.g. Bailey 1998a knew the
separation d of the binary). If this is not possible, then we have

three unknowns (the two fluxes and source separation) and only
the two observables. Hence flux separation may not be uniquely
achieved as we do not have a closed set: attempts to separate
the flux using only two observables may produce misleading
results.

We use the following method to deconvolve the spectra:
first for a given value of the separation d, we calculate the
flux ratio in the continuum rcont with Eq. (5) and the observed
width σcont. Then for each row in the dispersion direction j we
invert Eq. (4) using the observed centroid µ′j and continuum ra-
tio rcont to produce the flux ratio r j. Then with ftot, j = f1, j+ f2, j,
we calculate the individual spectra f1, j and f2, j. Using these
values, we predict the width of the distribution using Eq. (5),
and compare to the observed values using a simple χ2 calcu-
lation to evaluate the fit. Finally we repeat this procedure with
differing values of the separation d until a best fit is found.

We follow this procedure for two examples (see below).
This suggested method applies in the case that the width σS of
the convolving function is known1. The separation d is the in-
dependent parameter which is varied to minimise χ2 for the fit.

3.1. Example A

In order to fully test the method, a series of emission and ab-
sorption “lines” of differing contrasts and widths are imposed
on the continuum of both objects (see the top two panels in
Fig. 2). These provide parts of the spectrum which have all
combinations of the primary and secondary object brightening
and dimming over the lines: from the left (in increasing pix-
els) the features correspond to (i) object 1 emission line only;
(ii) object 2 absorption only; (iii) large emission line in ob-
ject 2 such that it is brighter than object 1; (iv) both objects ab-
sorption; (v) object 1 emission, object 2 absorption; (vi) both
objects emission; (vii) object 1 absorption, object 2 emission;
(viii) both objects absorption, but with the absorption minima
offset; (ix) both objects emission with identical contrast; and
finally (x) both objects with absorption lines of identical con-
trast. Note that the two fluxes are not meant to represent any
sort of object or binary system in particular: they are sim-
ply meant to illustrate the differing combinations of primary
and secondary flux. The continuum flux ratio is constant at all
wavelengths at rcont = 0.2.

An “observation” is then made: this consists of convolv-
ing the input with S λ(x) assumed to be a Gaussian with a
width (identical to the standard deviation in this case) of σS =

4.0 pixels. The resultant distribution is then binned into pix-
els in position and dispersion. The observables are then calcu-
lated – the total flux, the width, and position offset. To derive
the relative change in width, one of the input fluxes is set to
zero, and an “observation” taken of a single flux component,
and the width calculated. The derived observables for a source
separation of 2.0 pixels are displayed in the third-fifth panels of
Fig. 2 for a range of signal-to-noise ratios (SNR).

1 We note that this procedure may be changed if the prior infor-
mation is varied: if the separation is accurately known then a similar
method could be devised which had the width σS as the independent
parameter.
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Fig. 2. Example A: the top two panels are the input fluxes of the individual objects (the primary object’s flux is normalised to unity in the
continuum). The next three panels are the observable quantities: the total flux, the relative change in width of the distribution, and the change
in position centroid. The next two panels are the best-fit extractions of the two fluxes, and the bottom two panels are the ratio of the extracted
flux to the input fluxes from the top two panels. The separation of the binary is d = 2.0 pixels, and the convolving function is Gaussian with
width σS = 4.0 pixels.

One feature in the width distribution is particularly worthy
of note. When the fainter object in the continuum has a large
emission line – feature (iii) in Fig. 2 – the width of the flux
distribution σ j can be seen to decrease in the centre of the line,
producing a double-peaked profile. The distribution width σ j

has a maximum for a flux ratio of unity. How does the width σ j

change from the line wing of feature (iii) to line centre? In the
wing, object 2 is much less bright than object 1, and the flux ra-
tio in Eq. (5) is less than unity. As the line emission increases,
the flux ratio increases (and hence so does the width σ j) un-
til the emission from both objects is equal and the flux ratio is
unity. Here, the width of the distribution σ j reaches its max-
imum value. As the line emission increases further such that
object 2 is brighter than object 1, the width σ j decreases be-
cause σ j is dependent on the minimum of the ratios r j and 1/r j

(this is because there must be no difference in σ j whichever of
the two objects is denoted object 1).

This produces a maximum in the width σ j which is off-
set in wavelength from the maximum in emission, and hence a
double peaked profile in σ j is observed. The peaks in σ j then
correspond to a flux ratio of unity.

The bottom four panels of Fig. 2 show the results of the
separation method. Panels six and seven display the extracted
fluxes, and panels eight and nine show the extracted fluxes
divided by the input fluxes (if the extraction is perfect, then
these panels should be unity). It is clear from examination
of these four panels that the flux separation method achieves
good results even for SNR of 100, and that as SNR increases,
the accuracy of the flux separation becomes more accurate. To
find the best-fit, the distance between the components d was
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Fig. 3. Variation of mean fractional deviation per pixel of the extracted
fluxes from the input fluxes (Eq. (6)) (top panel), and best-fit sepa-
ration (bottom panel) for Example A with increasing signal-to-noise
ratio (SNR). The solid line in the top panel is the mean fractional devi-
ation per pixel expected for this example, with systematic error of 1%
see Sect. 4.

varied from 0–5 pixels with a stepsize of 0.001 pixels. This pro-
cedure yielded d = 1.956, 1.989, 1.979 and 1.986 pixels for
SNR of 100, 220, 450, and 1000 respectively.

To assess how well the flux separation was achieved we
calculate a mean fractional deviation per pixel of the extracted
flux:

m.f.d. =
1
m

j=m∑

j=0

[∣∣∣∣∣∣

f1, j,ex

f1, j,in
− 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣

f2, j,ex

f2, j,in
− 1

∣∣∣∣∣∣

]

(6)

where the subscript “ex” and “in” refer to the extracted and
input fluxes respectively. The m.f.d. per pixel for Example A
along with the best-fit separation d as a function of SNR are
shown in Fig. 3. The separation asymptotes to the input sep-
aration of 2.0 pixels, and the m.f.d. per pixel decreases with
increasing SNR. However, even for SNR > 1000, the sepa-
ration is not exact, and indeed, is not expected – this is an
empirical method, and hence will contain errors (see Sect. 4
below). The solid line on the top panel of Fig. 3 is the ex-
pected m.f.d. per pixel for this simulation as described below
in Sect. 4.

Figures 2 and 3 illustrate the performance of the method
as the SNR varies for a constant continuum flux ratio. We also
investigate the method for differing continuum flux ratios rcont

and distance between the objects d. For this we have conducted
a series of simulations for the same features in the spectra (top
two panels in Fig. 2). However, the continuum flux ratio rcont =

f2,cont/ f1,cont is varied from unity to 1/50, and the separation d of
the sources ranges from 0.1 pixels to 4.0 pixels (i.e. 0.025−1.0
of the standard deviation of the Gaussian convolving function).
For all of these simulations, the noise level is fixed to produce
SNR = 220 (similar to that in the simulations of Courbin et al.
2000 for comparison of the two methods).

Fig. 4. Map of mean fractional deviation per pixel (left) and error in
the best-fit separation (right) for a set of simulations using the input
spectra of Example A, but varying the flux ratios and the object sepa-
ration. The contours are logarithmically spaced with steps of 0.2 dex.
The bold contours correspond to an error of 0.1 (i.e. 10%). In the left
panel, the highest contour corresponds to an 4.0% error and is situated
in the top left corner. In the right panel the highest contour corresponds
to 2.6% and is in the middle-top right of the panel.

For each pair of rcont and d we calculate the m.f.d. per pixel
of the extracted fluxes and plot this as a contour map in the left
panel of Fig. 4. The contours are spaced logarithmically in in-
tervals of 0.2, and the bold contour marks the m.f.d. per pixel
of 0.1 (log(m.f.d.) = −1). We can clearly see that the technique
performs best for large separations d and for flux ratios rcont

close to unity. We also note that accurate extraction of the
fluxes can be achieved for object separations of less than one
pixel (a feature of the technique which, to our knowledge, is
unique). We have also calculated the fractional error in the best-
fit separation and show the contour map of this in the right hand
panel of Fig. 4. Again the contours are spaced in 0.2 dex, and
the bold line corresponds to a fractional error of 0.1 (i.e. 10%).
The main feature of this map is that the best-fit separation d is
not very sensitive to the continuum flux ratio, and that accuracy
of better than 10% should be possible for input separations of
larger than around one pixel.

3.2. Example B

To provide a direct comparison with previous methods, we
adopt exactly the same problem considered by Courbin et al.
(2000) for a second test. This consists of a quasar and a
star with a featureless continuum (see Courbin et al. 2000,
Sect. 3.1). The quasar spectrum used is the mean of all
objects taken from the 2QZ project2 (Croom et al. 2004).
The two point sources are separated by 2.0 pixels, and the
convolving Gaussian to provide the seeing has a width of
4.0 pixels. The relative continuum brightness ranges from
rcont = f2,cont/ f1,cont = 0.2−1 from the blue to the red end of the

2 http://www.2dfquasar.org/
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Fig. 5. Example B: the top two panels are the input fluxes of the individual objects. The next three panels are the observable quantities: the total
flux, the relative change in width of the distribution, and the change in position centroid. The next two panels are the best-fit extractions of the
two fluxes, and the bottom two panels are the ratio of the extracted flux to the input fluxes from the top two panels. The separation of the binary
is d = 2.0 pixels, and the convolving function is Gaussian with width σS = 4.0 pixels.

spectra. The mean flux ratio of the two components is larger in
this case than in Example A, and therefore we should expect
more accurate results.

Figure 5 shows the results for this test in a similar fashion as
Fig. 2, and Fig. 6 shows how the m.f.d. per pixel in the extracted
fluxes and the best-fit separation vary with SNR. As can be
seen, the extraction does indeed produce more accurate results
than for Example A. For the cases of SNR = 200−300 (exactly
the same as in Courbin et al.) the m.f.d. per pixel is ≈0.05. We
estimate that this is larger than the typical m.f.d. in the results
of Courbin et al. (from the inserts in their Fig. 3) by a factor
of ∼2. This indicates that the spectroastrometric method of ex-
tracting fluxes is not quite as efficient as Courbin et al.’s method
for this particular example – unfortunately Courbin et al. do not
discuss differing SNR simulations.

As in Example A, we examine the technique for differ-
ing values of continuum ratios and component separations (the
continuum ratio is defined by the fluxes at pixel j = 1). Figure 7
displays the contour map of m.f.d. per pixel and best-fit sep-
aration (as Fig. 4 for Example A), for variation of the con-
tinuum ratio (unity – 1/50) and component separation (d =
0.1–4.0 pixels). We have fixed the SNR at 220. Again, the most
accurate results are obtained for larger component separations
d, and for larger flux ratios.

4. Random and systematic errors

We can calculate the expected fractional deviation per pixel in
a straightforward way. At each pixel j, small variations in the
fluxes f1, j and f2, j (δ f1, j and δ f2, j respectively) produce a vari-
ation in the flux ratio δr j, where δr j/r j = δ f2, j/ f2, j − δ f1, j/ f1, j.
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Fig. 6. Variation of mean fractional deviation per pixel of the extracted
fluxes from the input fluxes (Eq. (6)) (top panel), and best-fit sepa-
ration (bottom panel) for Example B with increasing signal-to-noise
ratio (SNR). The solid line in the top panel is the m.f.d. per pixel ex-
pected for this example, with systematic error of 1% see Sect. 4.

As the sum of the two fluxes is a constant for any j, then the
small variations δ f1, j and δ f2, j are equal and opposite in sign
(δ f1, j = −δ f2, j). Hence, δr j/r j = −(1 + 1/r j)δ f1, j/ f1, j.

The mean fractional deviation per pixel (as defined in
Eq. (6)) is the sum of the absolute fractional errors:

m.f.d. =
|δ f1, j|

f1, j
+
|δ f2, j|

f2, j
=
|δ f1, j|

f1, j

(

1 +
1
r j

)

=
|δr j|
r j
· (7)

In the limit that the flux ratio r j 	 1, the expected error in r j is
calculated in Appendix A.1 to be

∣∣∣δr j

∣∣∣ ≈ 1

ac
√

2SNR

(
σS

d

)b
+ δr|syst (8)

where a, b, and c are the constants in Eq. (5), and δr|syst is the
systematic error from the fitting formula (5)

We can use this estimate to calculate the expected m.f.d. er-
ror for Examples A and B. Inserting a systematic error of
δr|syst = 0.01 (i.e. 1%), the resultant predictions for the
m.f.d. per pixel are plotted as the solid line on the top pan-
els of Figs. 3 and 6. We note that, in deriving the expressions
above, we have assumed that r j 	 1, and so our calculations
are not directly applicable to either Examples A and B, which
have mean flux ratios per pixel of 0.18 and 0.36. Therefore we
expect a closer fit to the numerical results for Example A than
for Example B, which is seen in Figs. 3 and 6. The predicted
m.f.d. per pixel are good estimates for the calculated values.

5. Observing practicalities

The method is clearly able to separate binary object fluxes if
the SNR is high enough. However, there are several practical
aspects of the technique which need to be noted. Whilst some
of these are discussed in detail in Bailey (1998a), and also in
Baines (2004) it is useful to provide a list including aspects
gleaned in the development of the method.

Fig. 7. Map of mean fractional deviation (left) and error in the best-fit
separation (right) for a set of simulations using the input spectra of
Example B, but varying the flux ratios and the object separation. The
contours are logarithmically spaced with steps of 0.2 dex. The bold
contours correspond to an error of 0.1 (i.e. 10%). In the left panel, the
highest contour corresponds to an 2.6% error and is situated in the top
left corner. In the right panel the highest contour corresponds to 2.6%
and is in the middle-top left of the panel.

1. Both components of the binary must be fully in the spec-
trograph slit else unknown fractions of the flux from one
component will be observed, and so the method will fail.
Use of a wide slit will degrade the spectral resolution of the
final observation a little, although this is a small sacrifice
as it is of paramount importance that both objects are fully
within the slit. If it is not known a priori whether the object
is a binary or not, then a wide slit should be used.

2. Full sampling of the convolved flux distribution is essential
– as already stated at least 4 pixels (or equivalent for dither-
ing patterns) must sample this function to avoid Nyquist
sampling problems.

3. For some spectrographs, it is easily possible to repeat the
observation with the instrument rotated through 180◦. This
is useful as it allows any instrumental misalignment prob-
lems to be subtracted – this point is particularly stressed in
Bailey (1998a) and is worth repeating here.

4. The flux separation method will only operate in the spatial
direction parallel to the slit axis. If the line-of-centres axis
is orientated normal to the slit axis, then no flux separation
will be possible. At intermediate angles between these two
axes then the best-fit separation will be equal to the actual
separation multiplied by the cosine of the angle between the
axes. Information on the position angle of the distribution
may be obtained by combining measurements of two ob-
servations taken with the spectrometer slit at two different
angles on the sky (e.g. see Baines et al. 2004).

5. An important aspect of the method is to observe a single ob-
ject with a similar position on the sky as the intended target
in order to measure the intrinsic width of the convolution
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function. These single object observations can also be used
to calculate series of convolutions of binary flux distribu-
tions, in order to generate a “look-up” table of values to
be used in the deconvolution, instead of using Eq. (5). In
practice, this may be difficult: the seeing can change with
time, making single star observations less useful. When
one object has a particularly strong emission line, then the
measured width of the flux distribution at line centre σ j

may be used as an estimator for the intrinsic width σS (see
Appendix A.2).

6. Discussion

Given the volume of published work dedicated to the deconvo-
lution of images, why are we investigating new techniques to
achieve the same result? As the image is sampled in discrete
intervals (the pixels), then any deconvolution method can only
increase its resolution (a result from sampling theory). The fun-
damental aspect of the spectroastrometric technique is that it
utilises changes in the flux distribution convolved with the PSF.
As this convolution takes place before the distribution is sam-
pled onto the pixels, then information on scales smaller than
the pixels can be retrieved (this is a different approach to the
problem than deconvolution methods, such as those described
in Courbin et al. 2000). This is because the information about
the binary is spread throughout the PSF. Therefore, if the PSF
itself is well sampled then extraction of point sources separated
by less than the traditional spatial Nyquist sampling interval
(pixel) is possible. Hence extraction of fluxes is possible at a
much higher spatial resolution than with previous methods. Of
course, there is a price to pay for this advantage over deconvo-
lution techniques. We have assumed a priori two point sources,
and so have imposed a criterion on the flux distribution (a fea-
ture not present in traditional deconvolution methods). Also
this is essentially an empirical method – method noise will al-
ways be present in the solution.

Spectroastrometry is likely to achieve best results for
the cases when specific known binary sources are targeted.
Serendipitous binary discovery may prove frustrating when it is
clear from the data that a binary component is present, although
little else may be derived because, for example, the secondary
component is not fully in the slit, or that the SNR is not high
enough to extract the individual fluxes reliably. The technique
is sufficiently general that any binary object may be examined
(although triple systems may cause problems!).

How powerful is the technique? For ground based tele-
scopes, the dominant contributor to the point spread function
is the seeing, which typically ranges from one-few arcsec.
With an equivalent signal to noise ratio of several hundred
(often achieved with modern instruments) and pixel sizes of
a few tenths of an arcsec (typical of spectrographs), the po-
sition centroid may be determined to ∼milliarcsecond accu-
racy. Spectroastrometry should then be a natural complemen-
tary technique to the growing optical/IR interferometry field
which operates at a similar angular scale.

Future investigations into spectroastrometry will concen-
trate on continuous flux distributions, such as discs, where the
main goal will be to measure the kinematics of the emitting

gas on sub-pixel scales. This technique is difficult, in that high
SNRs are necessary (and hence the observational aspects may
be challenging), but does promise great rewards.

7. Conclusion

We describe the technique of spectroastrometry and present
a method to separate individual binary object fluxes from the
point-spread function which is present in all observations. The
method makes use of the total flux, the position offsets and the
characteristic width of the flux distribution in the spatial direc-
tion: the three observational quantities it is possible to measure
directly from a long slit spectrograph image. The observing
technique to achieve this is not difficult for careful observers.

We have demonstrated that the performance of the tech-
nique is similar to previously published deconvolution meth-
ods which reconstructs the original flux distribution on the
sampling scale (∼pixels). Although spectroastrometry cannot
achieve this complete mapping, it is the only technique in our
knowledge, which is able to successfully separate the fluxes of
binary objects with sub-pixel separations.

The technique of spectroastrometry is a natural counterpart
to interferometry, as it provides spectral information (and hence
kinematics) at similar resolutions, which with available instru-
mentation is typically milliarcseconds.
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Appendix A: Random and systematic errors

If the width σ j of the spatial distribution of the flux is sam-
pled over at least two pixels (so the profile will extend over
at least 4 pixels), then the extent of the profile does not effect
the error estimates (essentially this is an expression of Nyquist
sampling).

The two error sources will be from photon counting statis-
tics and read-noise. Where the read-noise errors are dominant
in determining the pixel signal-to-noise ratio (SNR), it can be
justified that as long as the errors are symmetrically distributed
around zero then their net effect on the µ j and σ j should be
zero (especially when robust location and width estimators are
used).

A.1. Error in the flux ratio

When photon noise dominates, the error in the number of
photons Fi j in each pixel is simply δFi j = F1/2

i j . The
signal-to-noise ratio of the position-integrated flux is SNR j =

(
∑

i Fi j)/(
∑

i Fi j)1/2 = (
∑

i Fi j)1/2. The standard errors in the
position centroid and width (mean and standard deviation) are
the familiar expressions δµ′j = σ j/n

1/2
j and δσ j = σ j/(2n j)1/2,

where n j is the number of counts in the position-integrated pro-
file (e.g. Topping 1972). Assuming that the SNR is the same
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across the spectrum (i.e. SNR = SNRj, identical for all j) we
find

δµ′j =
σ j

SNR
and δσ j =

σ j√
2SNR

· (A.1)

The more the seeing function deviates from a Gaussian, then
these expressions for the errors δσ j and δµ′j become less accu-
rate (e.g. see Beers et al. 1990).

For a given error in the position centroid and width we can
estimate the typical error in using the technique. Let us assume
that the random error in the intrinsic width of the seeing profile
is small in comparison with δσ j, i.e. δσS 	 δσ j (see A.2 for
the consequences of incorrectly deriving σS). Furthermore, let
us assume that the random error in the separation δd is small,
and so the dominant error source in the flux ratio is via the
variation in the width σ j (our method of solution uses the sep-
aration d as the independent variable to minimise the χ2, and
hence δd is dominated by systematic errors).

Rearrangement of Eq. (5) to make the flux ratio r j =

f2, j/ f1, j the subject allows a simple error analysis to be per-
formed. This produces the random error in the flux ratio δr j of:

δr j

∣∣∣
rand
≈ 1

ac
(

d
σS

)b

(
δσ j

σS

)

, (A.2)

where we have also assumed that r j 	 1, i.e. the case for
small flux ratios. There will also be a systematic error in this
ratio δr|syst related to the inaccuracy in the fitting formula (5),
leading to the total error in the flux ratio as

δr j = δr j

∣∣∣
rand
+ δr j

∣∣∣
syst

≈ 1
ac

(
σS

d

)b
(
δσ j

σS

)

+ δr|syst

≈ 1√
2ac

(
σS

d

)b
(

1
SNR

)

+ δr|syst (A.3)

where, for the final expression, we have inserted Eq. (A.1).

A.2. Systematic errors in the intrinsic σS and its time
variation

We have assumed that the measurement error in the intrinsic
width of the flux distribution σS is zero. In practice this may
not be the case as there is no high SNR observation of a single
object or where the seeing is changing over time. An estimate
of σS could be made from the binary objects’ observations by
assuming that the smallest measured value of σ j occurs when
one of the objects completely dominates the output: this is cor-
rect in the limit f2, j/ f1, j → 0, as then σ j → σS. If this ap-
proximation is used, then σS will in general be slightly overes-
timated. What are the consequences from this assumption?

Both the best-fit separation between the components, and
the individual fluxes (notably the continuum flux ratio) will
have an associated error. From examination of Eq. (5) we see
that the fractional change in the separation caused solely by an
change in σS (δσS) is

δd
d
=
δσS

σS

[

−1
b

(
σS

σ j − σS

)

+ 1 − 1
b

]

(A.4)

Fig. A.1. Top panel: logarithm of the m.f.d. per pixel versus the sys-
tematic error in the intrinsic width of the seeing σS. Bottom panel: the
variation of the best fit separation. See text.

which assumes that there is no resultant error in the flux ratio
(strictly this is never the case, but we proceed in the spirit of
producing relatively simple error estimates). Note that an over-
estimate of σS leads to a systematic underestimate of d.

We have calculated a series of simulations for Example A in
the text with high SNR of 3000, and systematically changed the
value ofσS used in the flux separation. We take the actual value
of σS and multiply by a fraction φ ranging from 0.95–1.05 to
mimic both an underestimate and an overestimate of σS from
the data. The results are shown as the filled circles in Fig. A.1:
the top panel is the logarithm of the m.f.d. per pixel, and the
bottom panel is the best-fit separation between the components.
It is clear that φ ≈ 1 (close to unity) produces the best results by
far. This underlines the desirability for accurate measurement
of σs. When φ > 1.03, the numerical method fails, as all the
values of (σ − σS)/σS < 0.0. This produces a discontinuity in
the trends in Fig. A.1.

Plotted as a solid line on the bottom panel is our estimate
(above, with b = 1.93) for the variation in d. For each value
of φ we calculate a mean value of (σ − σS)/σ per pixel for
Eq. (A.4) (this produces the main difference between our es-
timated values from Eq. (A.4) and the numerical values). The
calculated value predicts a zero crossing in d at φ = 1.017, as
there the mean value of (σ − σS)/σS is zero.
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