ON THE SPECTRUM OF INNER DERIVATIONS IN PARTIAL JORDAN TRIPLES

L. L. STACHÓ*

1. Introduction.

Let D be a bounded balanced domain in a complex Banach space E. In contrast with the fact that the complete holomorphic classification of bounded domains of general type seems to be hopeless, Kaup-Upmeier [9] proved that for bounded balanced domains holomorphic equivalence is the same as linear equivalence. They achieved this result by a systematic study of the group G of all biholomorphic automorphisms of D, which makes it possible to give further refinements of this statement. They showed there exists a closed complex subspace E_0 and a continuous real trilinear map

$$E \times E_0 \times E \rightarrow E \quad (x, a, y) \mapsto \{xa^*y\}$$

symmetric complex bilinear in x, y and conjugate linear in a such that, regarding holomorphic vector fields as differential operators [7], for every $a \in E_0$ the vector field $(a - \{xa^*x\})\partial/\partial x$ is complete in D and that furthermore

$$\mathsf{G} = \mathsf{GL}(D) \cdot \{ \exp[(a - \{xa^*x\})\partial/\partial x] : a \in E_0 \}, \quad \mathsf{G}(0) = D \cap E_0 \}$$

where $GL(D) := \{ \alpha \in GL(E) : \alpha(D) = D \}$. It would be a remarkable step, also with a possible independent interest in theoretical physics, characterizing those triple products which arise from the biholomorphic automorphism group of some bounded balanced domain in the above way. It is well-known [4] that the triple product $\{*\}$ satisfies the following topological algebraic postulates

(J1)
$$\{E_0 E_0^* E_0\} \subset E_0$$

(J2)
$$\{ab^*\{xy^*z\}\} = \{\{ab^*x\}y^*z\} - \{x\{ba^*y\}^*z\} + \{xy^*\{ab^*z\}\}$$

 $(a, b, y \in E_0, x, z \in E)$

(J3)
$$a \square a^* \in \operatorname{Her}(E) \quad (a \in E_0)$$

where $a \Box b^*$ is the operator $x \mapsto \{ab^*x\}$ and $\operatorname{Her}(E)$ stands for the family of all E-Hermitian operators [2]. Such algebraic structures are called partial her-

^{*} Supported by the Alexander von Humboldt Foundation Received December 27, 1988; in revised form May 3, 1989

mitian Jordan triple systems or partial J*-triples (resp. J*-triples if $E=E_0$) for short in the following. We say that a partial J*-triple $(E,E_0,\{*\})$ is positive if for every $a \in E_0$ the spectrum $\operatorname{Sp}(a \square a^*)$ is non-negative and geometric if all vector fiels $(a-\{xa^*x\})\partial/\partial x$ $(a \in E_0)$ are complete in some bounded balanced domain in E. In 1983 Kaup [8] settled the case $E=E_0$ completely: A J*-triple is geometric if and only if $\inf_{\|a\|=1} \|\{aa^*a\| \neq 0 \text{ and } a^*a\| = 0$

$$(1.1) 0 \leq \operatorname{Sp}(a \square a^*) \subset \frac{1}{2}\Omega_a + \frac{1}{2}\Omega_a \quad (a \in E = E_0)$$

where $\Omega_a := \{0\} \cup \operatorname{Sp}(a \square a^* \mid C_0(a))$ and $C_0(a)$ is the smallest $a \square a^*$ -invariant subspace containing a. It was a far-reaching consequence of (1.1) that the Harish-Chandra realization of a bounded symmetric domain in a Banach space is always convex [7], [8].

The proof of (1.1) uses some properties of the quadratic representation which are not available for arbitrary geometric partial J*-triples. The aim of this paper is to develop a technique based on the ultrapower imbedding due to Dineen [5] to the study of the spectrum of the inner derivations $a \square a^*$. As main result we prove the following:

THEOREM 1.2. Every geometric partial J*-triple is positive.

The idea of the proof is the observation that a suitable ultrapower extension [5] of the abelian family $\{b \Box b^*: b \in \mathscr{C}_0(a)\}$ admits convenient joint eigenvectors and its span is linearly homeomorphic to $\mathscr{C}_0(\Omega_a)$ by a mapping which can be factorized through the tensor square of the Gelfand representation of $\mathscr{C}_0(a)$. With this method we give also a new and Jordan theoretically very simple proof for Kaup's spectral estimate (1.1) for geometric J*-triples.

The analog of (1.1) for arbitrary geometric partial J*-triples is false: To every p>0 the space C^2 endowed with the triple product $\{(\zeta_1,\xi_1)(\alpha,0)^* (\zeta_2,\xi_2)\}:=\bar{\alpha}(\zeta_1\zeta_2,(\zeta_1\xi_2+\zeta_2\xi_1)\cdot p)$ defined on $C^2\times(C\times\{0\})\times C^2$ is a geometric partial J*-triple corresponding to the 2-dimensional Reinhardt domain $\{(\zeta,\xi):|\zeta|^2+|\xi|^{2/p}<1\}$ (cf. [11], [1, p. 162]). Here we have $\Omega_{(1,0)}=\{0,1\}$ and $\mathrm{Sp}((1,0)\square(1,0)^*)=\{1,p\}$.

Joint eigenvectors of box opertors.

Throughout this section let E be a geometric partial J*-triple with triple product $\{*\}$ on $E \times E_0 \times E$ and assume that D is a bounded balanced domain in E in which the vectors fields $(b - \{zb^*z\})\partial/\partial z$ are complete for all $b \in E_0$. Let us also fix $a \in E_0$ arbitrarily. We denote by T the Gelfand representation [8], [6, Th. 10.38] of $\mathscr{C}_0(a)$, i.e. $T \mathscr{C}_0(\Omega_a) \xrightarrow{\sim} \mathscr{C}_0(a)$ is a topological isomorphism such that

$$T(\varphi \bar{\chi} \psi) = \{ T(\varphi) T(\chi)^* T(\psi) \} \quad (\varphi, \chi, \psi \in \mathscr{C}_0(\Omega_a)), \quad T(\xi) = a$$

244 L. L. STACHÓ

where $\xi(\omega)$:= $\sqrt{\omega}$ ($\omega \in \Omega_a$) and $\mathscr{C}_0(\Omega_a)$:= { $\varphi \in \mathscr{C}(\Omega_a)$: $\varphi(0) = 0$ }. Recall [8] that $\Omega_a \ge 0$ and that { $b \square b^*$: $b \in \mathscr{C}_0(a)$ } is a commutative family of bounded E-hermitian operators. Define $\mathscr{L}(a)$:= Span{ $b \square b^*$: $b \in \mathscr{C}_0(a)$ }.

LEMMA 2.1. $\mathcal{L}(a) = \mathcal{C}_0(a) \square \mathcal{C}_0(a)^*$ and there exists a linear homeomorphism $L: \mathcal{C}_0(\Omega_a) \xrightarrow{\sim} \mathcal{L}(a)$ such that

$$(2.3) L(\varphi \overline{\psi}) = T(\varphi) \square T(\psi)^* \quad (\varphi, \psi \in \mathscr{C}_0(\Omega_a)).$$

PROOF. Let $\mathscr{D} := \{ \phi \in \mathscr{C}_0(\Omega_a) : \phi \text{ vanishes in a neighbourhood of } 0 \in \Omega_a \}$. We may define $L_0(\phi) := T(\phi/\xi) \square T(\xi)^* (\phi \in \mathscr{D})$. It is well-known [4] that

$$T(p) \square T(q)^* = T(p\bar{q}/\xi) \square T(\xi)^*$$
 for $p, q \in \mathscr{P} := \{\text{odd polynomials of } \xi\}$.

Given $\varphi, \psi \in \mathcal{D}$, we can find sequences $(p_n), (q_n)$ in \mathcal{D} tending uniformly to φ/ξ^2 and ψ/ξ^2 , respectively. Then $L_0(\varphi \bar{\psi}) = T(\varphi \bar{\psi}/\xi) \square T(\xi)^* = \lim_n T(\xi^3 p_n q_n) \square T(\xi)^* = \lim_n T(\xi^2 p_n) \square T(\xi^2 q_n)^* = T(\varphi) \square T(\psi)^*$. Hence $\|L_0(\varphi)\| = \|T(\varphi^{1/2}) \square T(\varphi^{1/2})^*\| \le M \|\varphi\| (\varphi \in \mathcal{D}_+)$ where $M := \sup\{\|T(\varphi) \square T(\psi)^*\| : \|\varphi\| = \|\psi\| = 1\}$ < ∞ . Decomposing the functions of \mathcal{D} into linear combinations from \mathcal{D}_+ , it follows $\|L_0\| \le 4M$. By the density of \mathcal{D} in $\mathcal{C}_0(\Omega_a)$ there is a unique continuous linear extension $L: \mathcal{C}_0(\Omega_a) \to \mathcal{L}(a)$ of L_0 satisfying (2.3). On the other hand every $\varphi \in \mathcal{C}_0(\Omega_a)$ can be written in the form $\varphi = \varphi \bar{\psi}$ for some $\varphi, \psi \in \mathcal{C}_0(\Omega_a)$. Hence with $d:=\max\{\|T\|,\|T^{-1}\|\}$ we get

$$d \cdot ||L(\phi)|| \ge \sup_{||\chi|| = 1} ||L(\phi)T(\chi)|| =$$

$$= \sup_{||\chi|| = 1} ||T(\phi)T(\psi)^*T(\chi)|| \ge \sup_{||\chi|| = 1} \frac{1}{d} ||\phi\overline{\psi}\chi|| = \frac{1}{d} ||\phi||.$$

Thus L is a linear homeomorphism. In particular the range of L is a closed subspace of $\mathcal{L}(a)$ and $\operatorname{ran}(L) = L\{\varphi\bar{\psi}: \varphi, \psi \in \mathscr{C}_0(\Omega_a)\} = T(\mathscr{C}_0(\Omega_a)) \square T(\mathscr{C}_0(\Omega_a))^* = \mathscr{C}_0(a) \square \mathscr{C}_0(a)^*$.

The following fact seems to be known. We sketch a proof because we do not know a reference.

LEMMA 2.2. Let F be a Banach space and \mathcal{A} a separable linear subspace of $\mathcal{L}(F)$ consisting of commuting operators and let $\alpha_0 \in \mathcal{A}$. Then to every approximate eigenvalue λ_0 of α_0 there exist a sequence (x_n) in F and a continuous linear functional Λ on \mathcal{A} such that $\lambda_0 = \Lambda(\alpha_0)$ and

$$||x_n|| \to 1$$
, $||\alpha x_n - \Lambda(\alpha)x_n|| \to 0$ $(n \to \infty, \alpha \in \mathscr{A})$.

PROOF. Every $\alpha \in \mathcal{A}$ acts on $\ell^{\infty}(N, F)$ by $(x_n) \mapsto (\alpha x_n)$ and hence also on $\tilde{F} := \ell^{\infty}(N, F)/M$ where $M := \{(x_n) \in \ell^{\infty}(N, F): \lim_n x_n = 0\}$. Denote this operator by $\tilde{\alpha}$. Then $\tilde{\mathcal{A}} := \{\tilde{\alpha} : \alpha \in \mathcal{A}\}$ is a commutative subspace of $\mathcal{L}(\tilde{F})$. It suffices to

show that the operators in $\widetilde{\mathscr{A}}$ admit a joint eigenvector in the λ_0 -eigenspace of $\widetilde{\alpha}_0$. It is clear that $\widetilde{F}_0 := \{\widetilde{x} \in \widetilde{F} : \widetilde{\alpha}_0 \widetilde{x} = \lambda_0 \widetilde{x}\} \neq 0$ and that \widetilde{F}_0 is left invariant by all $\widetilde{\alpha} \in \widetilde{\mathscr{A}}$. Let (α_n) be a dense sequence in \mathscr{A} and for each $n \in \mathbb{N}$ define an $\widetilde{\mathscr{A}}$ -invariant subspace \widetilde{F}_n and $\lambda_n \in \mathbb{C}$ recursively in the following way: Let λ_n be an approximate eigenvalue of the operator $\alpha_n \mid \widetilde{F}_{n-1}$ and let $\widetilde{F}_n := \{\widetilde{x} \in \widetilde{F}_{n-1} : \widetilde{\alpha}_n \widetilde{x} = \lambda_n \widetilde{x}\}$. This is possible since the approximate point spectrum of every bounded linear operator on a Banach space is not empty [11, p. 310]. The only thing we have to verify is that

$$\bigcap_{n} \tilde{F}_{m} \neq 0.$$

First we show by induction that $\tilde{F}_n \neq 0$ (n = 0, 1, ...). Assume $\tilde{F}_{n-1} \neq 0$. By the definition of λ_n there is a sequence (\tilde{x}^k) in \tilde{F}_{n-1} with $\|\tilde{x}^k\| = 1$ $(k \in \mathbb{N})$ and $\tilde{\alpha}_n \tilde{x}^k \to 0 \ (k \to \infty)$. Since $\tilde{F}_0 \supset \ldots \supset \tilde{F}_n$, we also have $\tilde{\alpha}_j \tilde{x}^k = \lambda_j \tilde{x}^k \ (0 \le j < n)$ for all $k \in \mathbb{N}$. For any k chose a representing sequence $(y_m^k : m \in \mathbb{N})$ in F for \tilde{x}^k . It follows that for each $\ell \in \mathbb{N}$ we can find $k(\ell)$ such that, by setting $z_{n,\ell} := y_{m(\ell)}^{k(\ell)}$, we have

$$|||z_{n,\ell}|| - 1| < \ell^{-1}$$
 and $||\tilde{\alpha}_j z_{n,\ell} - \lambda_j z_{n,\ell}|| < \ell^{-1}$ $(0 \le j \le n)$.

Hence the relation $\tilde{F}_n \neq 0$ is immediate.

We complete the proof by observing that the vector $\tilde{z} \in \tilde{F}$ which is represented by the diagonal $(z_{n,n})$ of the double sequence $(z_{n,\ell})$ constructed above satisfies $\|\tilde{z}\| = 1$ and $\tilde{\alpha}_i \tilde{z} = \lambda_i \tilde{z}$ $(j \in \mathbb{N})$.

Let $\mathscr U$ be a non-trivial ultrafilter on $\mathbb N$ and $E^{\mathscr U}$ the $\mathscr U$ -ultrapower of E that is $\ell^\infty(\mathbb N,E)/N$ where $N:=\{(x_n)\in\ell^\infty(\mathbb N,E):\lim_{\mathscr U}x_n=0\}$. The elements of $E^{\mathscr U}$ are the cosets $(x_n)_{\mathscr U}:=(x_n)+N$ with the norm $\|(x_n)_{\mathscr U}\|:=\lim_{\mathscr U}\|x_n\|$ $\|(x_n)\in\ell^\infty(\mathbb N,E)\|$. We regard E as a subspace of $E^{\mathscr U}$ by the imbedding $x\mapsto (x,x,\ldots)_{\mathscr U}$. Taking $E_0^{\mathscr U}:=\{(a_n)_{\mathscr U}:(a_n)\in\ell^\infty(\mathbb N,E_0)\}$, the canonical extension

$$\{(x_n)_{\mathcal{A}}(a_n)_{\mathcal{A}}^* := (\{x_n a_n^* y_n\})_{\mathcal{A}} \quad ((x_n), (y_n) \in \ell^{\infty}(\mathbb{N}, E); \quad (a_n) \in \ell^{\infty}(\mathbb{N}, E_0)\}$$

of the triple product makes $(E^{\mathcal{U}}, E_0^{\mathcal{U}}, \{^*\}_{\mathcal{U}})$ into a partial J*-triple. We denote it also by $E^{\mathcal{U}}$ and write simply $\{^*\}$ instead of $\{^*\}_{\mathcal{U}}$. Note that the vector fields $(\tilde{b} - \{\tilde{z}\tilde{b}^*\tilde{z}\})\partial/\partial\tilde{z}$ are complete in the closed set $\tilde{D} := \{(z_n)_{\mathcal{U}}: z_1, z_2, \ldots \in D\}$ (the arguments of [5, Th. 9] apply with straightforward modifications). Since these vector fields are locally bounded it follows that they are complete also in the interior of \tilde{D} .

Since the spectrum of a hermitian operator is real [2], by [11, p. 310] it coincides with the approximate point spectrum. Therefore we can summarize the previous results as follows:

PROPOSITION 2.3. Let E be a geometric partial J*-triple and $\mathscr U$ a non-trivial ultrafilter on N. Then $E^{\mathscr U}$ is also a geometric partial J*-triple. Given $a \in E_0$ and

246 L. L. STACHÓ

 $\lambda_0 \in \operatorname{Sp}(a \square a^*)$ there exists a complex Radon measure μ of bounded variation on Ω_a and $0 \neq \tilde{x} \in E^{\mathcal{H}}$ such that

(2.4)
$$\lambda_0 = \int \omega \, d\mu(\omega)$$

(2.5)
$$\{T(\varphi)T(\psi)^*\tilde{x}\} = \int \varphi \bar{\psi} \, d\mu \cdot \tilde{x} \quad (\varphi, \psi \in \mathscr{C}_0(\Omega_a)).$$

3. Proof of Theorem 1.2.

Assume D is a bounded balanced domain in E in which the vector fields $(b - \{zb^*z\})\partial/\partial z$ are complete for all $b \in E_0$. Let us fix $a \in E_0$ arbitrarily and denote by T the Gelfand representation of $\mathscr{C}_0(a)$ (see Section 2). Let \mathscr{U} be a non-trivial ultrafilter on \mathbb{N} and regard E as a subtriple of $E^{\mathscr{U}}$. Set $\lambda_0 := \operatorname{Sp}(a \square a^*)$.

Suppose that $\lambda_0 < 0$. According to Proposition 2.3 choose $0 \neq \tilde{x} \in E^{\mathcal{H}}$ and a Radon measure μ of bounded variation on Ω_a satisfying (2.4) and (2.5).

We shall establish that in this case necessarily

$$\{\tilde{x}\mathscr{C}_0(\Omega_a)^*\tilde{x}\}=0.$$

Assuming (3.1) for the moment, we finish the proof of the theorem as follows: We may assume $\tilde{x} \in \tilde{D}$ (defined in Section 2). Then given any $\varphi \in \mathscr{C}_0(\Omega_a)$, the solution \tilde{z}_a : $\mathbb{R} \to E^{\mathscr{U}}$ of the initial value problem

$$\frac{d}{dt}\tilde{z}_{\varphi}(t) = T(\varphi) - \{\tilde{z}_{\varphi}(t)T(\varphi)^*\tilde{z}_{\varphi}\}, \quad \tilde{z}_{\varphi}(0) = \tilde{x}$$

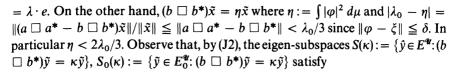
must stay in \tilde{D} for all time. One verifies directly [cf. [4]) that for $\varphi \ge 0$ we have

$$\tilde{z}_{\varphi}(t) = T(\tanh(t\varphi)) + \exp\left[-2\int \log \cosh(t\varphi) d\mu\right] \tilde{x}.$$

Since \tilde{D} is bounded, this means that $\sup \{ \exp [-2 \int \log \cosh(\psi) d\mu] : \psi \in \mathscr{C}_0(\Omega_a)_+ \} = \sup \{ \exp [-\int \phi d\mu] : \phi \in \mathscr{C}_0(\Omega_a)_+ \} < \infty$. Hence $\int \phi d\mu \ge 0 (\phi \in \mathscr{C}_0(\Omega_a)_+)$ which contradicts (2.4).

PROOF OF (3.1): Choose $\delta > 0$ such that $||T(\varphi) \square T(\varphi)^* - a \square a^*|| < -\lambda_0/3$ for all $\varphi \in \mathscr{C}_0(\Omega_a)$ with $||\varphi - \xi|| \le \delta$ where $\xi := \sqrt{\mathrm{id}}$ on Ω_a . Since $\mathscr{C}_0(\Omega_a) = \mathrm{Span}\{\psi \in \mathscr{C}_0(\Omega_a): \mathrm{diam} \operatorname{supp} \psi < \delta\}$, it suffices to see that $\{\tilde{x}T(\psi)^*\tilde{x}\} = 0$ whenever the support of $\psi \in \mathscr{C}_0(\Omega_a)$ has diameter $\le \delta$.

Let $I := (\lambda, \lambda + \delta^2) \subset \mathbb{R}_+$ be an interval of length δ^2 and $\psi \in \mathscr{C}_0(\Omega_a)$ such that supp $\psi \subset I$. Let φ denote the function $\varphi(\omega) := \operatorname{length}([0, \omega] \setminus I)^{1/2} (\omega \in \Omega_a)$ and define $b := T(\varphi), e := T(\psi)$. We have $\varphi(I) = \sqrt{\lambda}$ and hence $(b \cup b^*)e = T(\varphi^2\psi)$



$$\{S(\kappa_1)S_0(\kappa_2)^*S(\kappa_3)\}\subset S(\kappa_1-\kappa_2+\kappa_3)\quad (\kappa_1\cdot\kappa_2\cdot\kappa_3\in\mathsf{R}).$$

In particular $\{\tilde{x}e^*\tilde{x}\}\in \{S(\eta)S_0(\lambda)^*S(\eta)\}\subset (2\eta-\lambda)$. According to Sinclair's Theorem $\|a \Box a^*-v\cdot \mathrm{id}\|=\mathrm{rad}\,\mathrm{Sp}(a\Box a^*-v\cdot \mathrm{id})=v-\min\,\mathrm{Sp}(a\Box a^*)$ and similarly $\|b\Box b^*-v\cdot \mathrm{id}\|=v-\min\,\mathrm{Sp}(b\Box b^*)$ whenever $v\geq \|a\Box a^*\|$, $\|b\Box b^*\|$. By the triangle inequality it follows $|\min\,\mathrm{Sp}(a\Box a^*)-\min\,\mathrm{Sp}(b\Box b^*)|\leq \|a\Box a^*-b\Box b^*\|<-\lambda_0/3$. Hence $2\eta-\lambda<2\eta<4\lambda_0/3<\min\,\mathrm{Sp}(b\Box b^*)$. Thus $S(2\eta-\lambda)=0$ which completes the proof.

4. New proof of Kaup's spectral estimate (1.1) for geometric J*-triples

Let $E_0 = E$ be a geometric J*-triple and fix $a \in E$, $\lambda_0 \in \operatorname{Sp}(a \square a^*)$ arbitrarily. Choosing any non-trivial ultrafilter \mathscr{U} on N, from Proposition 2.3 we see that there exists a Radon measure of bounded variation on Ω_a and $0 \neq \tilde{x} \in E^{\mathscr{U}}$ satisfying (2.4) and (2.5) where T is the Gelfand representation of $\mathscr{C}_0(a)$.

Consider any $\varphi \in \mathscr{C}_0(\Omega_a)_+$ and set $e := T(\varphi)$. Since $E^{\mathcal{U}}$ equipped with the binary product $u \bullet v := \{ue^*v\}$ is a commutative Jordan algebra, by [3, p. 145. (3.3)] (or for an elementary proof see [6, Prop. 10.42])

$$\{ \{ \{ ee^*e \} e^*e \} e^* \tilde{x} \} = 3 \{ \{ ee^*e \} e^* \{ ee^* \tilde{x} \} \} - 2 (ee \square e^*)^3 \tilde{x}$$

$$\{ T(\varphi^5) T(\varphi)^* \tilde{x} \} = 3 \{ T(\varphi^3) T(\varphi)^* \{ T(\varphi) T(\varphi)^* \tilde{x} \} \} - 2 (T(\varphi) \square T(\varphi)^*)^3 \tilde{x}$$

Hence from (2.5) we obtain

$$\int \varphi^6 d\mu = 3 \int \varphi^4 d\mu \int \varphi^2 d\mu - 2 \left(\int \varphi^2 d\mu \right)^3 \quad (\varphi \in \mathscr{C}_0(\Omega_a)_+).$$

Given a compact subset $S \subset \Omega_a$, we can find a bounded sequence $\varphi_1, \varphi_2, \ldots \in \mathscr{C}_0(\Omega_a)_+$ converging pointwise to 1_S . Therefore

$$\mu(S) = 3\mu(S)^2 - 2\mu(S)^3$$

$$\mu(S) \in \{0, \frac{1}{2}, 1\} \quad (S \text{ compact } \subset \Omega_a).$$

This is possible only if the support of μ consists of at most 2 points, and hence (4.1) and (2.4) entail $\lambda_0 \in \frac{1}{2}\Omega_a + \frac{1}{2}\Omega_a$.

REFERENCES

- H. Behnke and P. Thullen, Theorie der Funktionen mehrerer komplexer Veränderlichen (Ergebnisse der Math. 51), Springer-Verlag, Berlin-Heidelberg, 1970.
- 2. F. F. Bonsall and J. Duncan, *Numerical Ranges of Operators* (London Math. Soc. Lecture Note Ser. 2), Cambridge Univ. Press, Cambridge, 1971.
- H. Braun and M. Koecher, Jordan-Algebren (Grundl. der Math. Wiss. 128), Springer-Verlag, Berlin-Heidelberg, 1966.
- 4. H. Braun, W. Kaup and H. Upmeier, On the authomorphisms of circular and Reinhardt domains in complex Banach spaces, Manuscripta Math. 25 (1978), 97-133.
- 5. S. Dineen, Complete holomorphic vector fields on the second dual of a Banach space, Math. Scand. 59 (1986), 131-142.
- J. M. Isidro and L. L. Stachó, Holomorphic Automorphism Groups in Banach Spaces, (North-Holland Math. Studies 105), Elsevier, Amserdam, 1984.
- W. Kaup, Algebraic characterization of symmetric complex Banach manifolds, Math. Ann. 228 (1977), 39-64.
- 8. W. Kaup, A Riemann mapping theorem for bounded symmetric domains in Banach spaces, Math. Z. 183 (1983), 503–529.
- 9. W. Kaup and H. Upmeier, Banach spaces with biholomorphically equivalent unit balls are isomorphic, Proc. Amer. Math. Soc. 58 (1976), 129-133.
- D. Panou, Über die Klassifikation der beschränkten bizirkularen Gebiete in Cⁿ, Dissertation Tübingen, 1988.
- H. H. Schaefer, Banach Lattices and Positive Operators, (Grundlehren der Math. 215), Springer-Verlag, Berlin-Heidelberg-New York, 1974.

BOLYAI INSTITUTE ARADI VERTANUK TERE I 6720 SZEGED HUNGARY