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Abstract

In this note we study the spectrum and give estimations for the spectral
radius of linear combinations of two projections in C∗-algebras. We also study
the commutator of two projections.
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1 Introduction and preliminaries

We denote by A a C∗-algebra with unit 1 and by A−1 the set of all invertible

elements in A. For an element a ∈ A we shall write respectively σ(a) and ρ(a) for

the spectrum and the resolvent set of a while r(a) will denote the spectral radius of

a. The term projection will be reserved for an element p of a C∗-algebra A which

is self-adjoint and idempotent, that is, p∗ = p = p2. Our proofs use algebraic and

spectral techniques in C∗-algebras.

Basic auxiliary results are summarized in the following two lemmas. The first

is the well known Akhiezer–Glazman equality (see [1] for the Hilbert space setting

and [3, Lemma 1 (i)] for a C∗-algebra formulation). The second results (parts (i) –

(v)) were obtained in [2, Lemma 2.4]. For the convenience of the reader we include

the proofs of the results.

Lemma 1.1. If p, q are projections in a C∗-algebra A, then

‖p− q‖ = max{‖p(1− q)‖, ‖q(1− p)‖}.
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Proof. Set r = max{‖p(1− q)‖, ‖q(1− p)‖}, a = p(1−q)p, b = (1−p)q(1−p). Then,

r ≤ ‖p− q‖, ‖a‖ ≤ r2, ‖b‖ ≤ r2, and a + b = (p− q)2. Because, ab = ba = 0, we have

‖p− q‖2k
= ‖(p− q)2

k‖ = ‖(a + b)2
k−1‖ = ‖a2k−1

+ b2k−1‖ ≤ 2r2k
.

Thus, ‖p− q‖ ≤ 2k√
2 · r → r(k →∞). Hence, ‖p− q‖ = r.

Lemma 1.2. Let p, q ∈ A be projections. Then the following are true.

(i) σ(pq) = σ(pqp) ⊂ [0, r(pq)] ⊂ [0, 1].

(ii) r(pq) = r(pqp) = ‖pqp‖ = ‖pq‖2.

(iii) 1− pq ∈ A−1 ⇐⇒ ‖pq‖ < 1.

(iv) σ(p− q) ⊂ [−1, 1].

(v) If λ ∈ C \ {0, 1,−1}, then λ ∈ σ(p− q) ⇐⇒ 1− λ2 ∈ σ(pq).

(vi) σ(pq) \ {0, 1} = σ((1− p)(1− q)) \ {0, 1}.

(vii) σ[(p− q)2] ∪ {0} = σ[(1− p)q(1− p)] ∪ σ[p(1− q)p] ∪ {0}.

Proof. (i) We may assume that neither of p, q is equal to 0 or 1, for otherwise

pq = pqp. For any λ ∈ C,

λ− pq =
[
p(λ− pqp)p −pq(1− p)

0 λ(1− p)

]
,

which implies that σ(pq) = σpAp(pqp)∪ {0}, where σpAp(x) stands for the spectrum

of x ∈ pAp in the algebra pAp. From the equation λ−pqp = p(λ−pqp)p+λ(1−p) we

conclude that σ(pqp) = σpAp(pqp)∪{0}, and σ(pq) = σ(pqp) follows. The rest follows

from the positivity of pqp = (pq)(pq)∗ and the inequality r(pq) ≤ ‖pq‖ ≤ ‖p‖‖q‖ = 1.

To prove (ii) we only need to observe that ‖pq‖2 = ‖(pq)(pq)∗‖ = ‖pqp‖.
Property (iii) is a consequence of (i) and (ii), and the inclusion (iv) follows from

the Akhiezer–Glazman equality (1.1).

For (v) it is enough to note that, for any λ ∈ C,

(λ− 1 + p)[(λ− (p− q)](λ + 1− q)

= [(λ− 1)(λ + q) + pq](λ + 1− q)

= (λ− 1)(λ + 1)(λ + q) + (λ + 1)pq − (λ− 1)(λ + 1)q − pq

= λ(λ2 − 1 + pq). (1.1)
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Clearly, (v) implies (vi).

To prove (vii), let us remark that (p−q)2 = (1−p)q(1−p)+p(1−q)p. Therefore

if λ ∈ C, we have [(1 − p)q(1 − p) − λ][p(1 − q)p − λ] = −λ[(p − q)2 − λ], and so

[ρ((1−p)q(1−p))∩ρ(p(1−q)p)]\{0} = [ρ((p−q)2)]\{0}. Thus we proved (vii).

Observe that Lemma 1.2 (v) guarantees that if p, q ∈ A, then σ(p−q)\{−1, 0, 1}
is symmetric with respect to 0. However, σ(p − q) is not symmetric in general.

For example, let us consider the following 2 × 2 matrices: p = diag(1, 1) and q =

diag(0, 1). It is obvious that p− q = diag(1, 0) and σ(p− q) = {0, 1}.
We remind that for every x ∈ A and f a polynomial we have f(σ(x)) = σ(f(x)).

2 Results

Now we give the main results of this note.

Theorem 2.1. Let p, q ∈ A be two projections, not both zero, and c1, c2 ∈ C \ {0}.
Let λ ∈ C,

(i) If λ ∈ C \ {0, 1}, then λ ∈ σ(pq) ⇐⇒ 1− λ ∈ σ
(
(p− q)2

)
.

(ii) 1−λ ∈ σ
(
(p− q)2

)
if and only if there exists z ∈ C such that z2 = (c1−c2)2 +

4c1c2λ and (c1 + c2 + z)/2 ∈ σ(c1p + c2q).

Proof. (i) Pick any α ∈ C such that α2 = 1 − λ. Since λ /∈ {0, 1}, we have

α /∈ {−1, 0, 1}. Now, (i) follows from Lemma 1.2, (v).

(ii) Let us remark that

[(2(c1p + c2q)− c1 − c2]2 − (c1 − c2)2

4c1c2
− λ

=
[(2(c1p + c2q)− c1 − c2]2 − (c1 − c2)2 − 4c1c2λ

4c1c2

=
4[c2

1p + c1c2(pq + qp) + c2
2q − c2

1p− c1c2p− c1c2q − c2
2q] + c2

1 + 2c1c2 + c2
2

4c1c2

+
−c2

1 + 2c1c2 − c2
2 − 4c1c2λ

4c1c2

=
4c1c2(pq + qp− p− q) + 4c1c2 − 4c1c2λ

4c1c2
= pq + qp− p− q + 1− λ

= −[(p− q)2 − 1 + λ].

Let us define x = c1p+c2q. The former computation shows that 1−λ ∈ σ
(
(p− q)2

)

if and only if λ ∈ σ
(

(2x−c1−c2)2−(c1−c2)2

4c1c2

)
, which obviously proves (ii).
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By taking c1 = c2 = 1 in the latter theorem, we get simple expressions. For

λ ∈ C, item (ii) reduces to

1− λ2 ∈ σ((p− q)2) ⇐⇒ 1 + λ ∈ σ(p + q) or 1− λ ∈ σ(p + q).

The following technical lemma will be used sometimes in the sequel.

Lemma 2.2. Let p, q ∈ A be two projections, not both zero, and c1, c2 ∈ C \ {0}.
Assume that there exist α, β ∈ R such that σ

(
(p− q)2

) ⊂ [α, β]. Then
∣∣∣∣λ−

c1 + c2

2

∣∣∣∣ ≤
1
2

max
{√

|(c1 + c2)2 − 4c1c2α|,
√
|(c1 + c2)2 − 4c1c2β|

}

for all λ ∈ σ(c1p + c2q).

Proof. If z1, z2, z3, z4 ∈ C and z4 ∈ {sz2 + (1 − s)z3 : 0 ≤ s ≤ 1}, then it is well

known that |z1 − z4| ≤ max{|z1 − z2|, |z1 − z3|}. Now, set c1 + c2 = a and c1c2 = b.

Clearly, {(c1− c2)2 + 4c1c2t : 1− t ∈ [α, β]} is a segment in C with boundary points

(c1 − c2)2 + 4c1c2(1− α) = a2 − 4bα and (c1 − c2)2 + 4c1c2(1− β) = a2 − 4bβ. Thus

|a2 − 4b(1− t)| ≤ max
{|a2 − 4bα|, |a2 − 4bβ|} , ∀t ∈ [1− β, 1− α]. (2.1)

Pick any λ ∈ σ(c1p+c2q). Let us define z = 2λ−a and µ = z2−(c1−c2)2

4b . By Theorem

2.1, item (ii), we get 1− µ ∈ σ
(
(p− q)2

) ⊂ [α, β]. By (2.1), we get

∣∣∣λ− a

2

∣∣∣ =
|z|
2

=
1
2

√
|(c1 − c2)2 + 4bµ| ≤ 1

2
max

{√
|a2 − 4bα|,

√
|a2 − 4bβ|

}
,

which proves the lemma.

Theorem 2.3. Let p, q ∈ A be two projections, not both zero, and c1, c2 ∈ C \ {0}.

(i) If λ ∈ σ(c1p + c2q), then
∣∣∣∣λ−

c1 + c2

2

∣∣∣∣ ≤
1
2

max
{
|c1 + c2|,

√
|(c1 + c2)2 − 4c1c2‖p− q‖2|

}
.

(ii) r(c1p + c2q) ≤ max{|c1 + c2|, 1
2

√
|(c1 + c2)2 − 4c1c2‖p− q‖2|}.

(iii) Let w ∈ C such that w2 = (c1 + c2)2 − 4c1c2‖p− q‖2, then

1
2

min{|c1 + c2 + w|, |c1 + c2 − w|} ≤ r(c1p + c2q).
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Proof. (i) Let us remark that σ
(
(p− q)2

) ⊂ [0, ‖p− q‖2]. Lemma 2.2 proves (i).

(ii) If λ ∈ σ(c1p + c2q) and a = c1 + c2, b = c1c2, then we have

|λ| ≤
∣∣∣λ− a

2

∣∣∣ +
|a|
2
≤ 1

2
max

{
|a|,

√
|a2 − 4b‖p− q‖2|

}
+
|a|
2

= max

{
|a|, |a|+

√
|a2 − 4b‖p− q‖2|

2

}
.

This proves (ii).

(iii) Since 1 − (1 − ‖p − q‖2) = ‖p − q‖2 ∈ σ((p − q)2), by Theorem 2.1,

item (ii), there exists z ∈ C such that z2 = (c1 − c2)2 + 4c1c2(1 − ‖p − q‖2) and

(c1 + c2 + z)/2 ∈ σ(c1p + c2q). Since z2 = w2, we obtain z = w or z = −w, and thus

(c1 + c2 + w)/2 ∈ σ(c1p + c2q) or (c1 + c2 − w)/2 ∈ σ(c1p + c2q). Hence, the proof

of (iii) is finished.

Now, in view of the Akhiezer–Glazman equality, ‖p − q‖ ≤ 1 holds: Therefore,

item (i) of Theorem 2.3 reduces to σ(p + q) ⊂ {z ∈ C : |z − 1| ≤ 1}, and item (iii)

simplifies to 1−
√

1− ‖p− q‖2 ≤ r(p + q).

In the next result we identify a region in the complex plane, that is independent

of the choice of p and q and contains all the elements of σ(c1p + c2q).

Corollary 2.4. Under the assumptions in Theorem 2.1, we have

(i) If λ ∈ σ(c1p + c2q), then
∣∣∣∣λ−

c1 + c2

2

∣∣∣∣ ≤
1
2

max {|c1 + c2|, |c1 − c2|}

(ii) r(c1p + c2q) ≤ max
{
|c1 + c2|, |c1 + c2|+ |c1 − c2|

2

}
.

Proof. By the Akhiezer–Glazman equality we get ‖p− q‖ ≤ 1. Thus, σ
(
(p− q)2

) ⊂
[0, ‖p− q‖2] ⊂ [0, 1], and the proof of (i) follows from Lemma 2.2. For the proof of

(ii), the same argument as in the proof of Theorem 2.3, item (ii) works.

Remark 2.5. The upper bounds of Corollary 2.4 cannot be improved. Consider

p 6= 1 a nonzero projection, q = p, and c1 = c2 = 1/2. Obviously σ(c1p + c2q) =

σ(p) = {0, 1}. Inequality (i) of former corollary says σ(p) ⊂ {z ∈ C : |z−1/2| ≤ 1/2}.
Evidently, σ(p) 6⊂ {z ∈ C : |z − 1/2| ≤ r} for r < 1/2. The same example is valid to

deal with the another inequality.

In case when p− q is invertible we have the following result.
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Corollary 2.6. If p− q is invertible, then under the assumptions in Theorem 2.1,

we have

(i) Let λ ∈ σ(c1p + c2q). Then
∣∣∣∣λ−

c1 + c2

2

∣∣∣∣ ≤
1
2

max
{√

|(c1 − c2)2 + 4c1c2‖pq‖2|,
√
|(c1 + c2)2 − 4c1c2‖p− q‖2|

}
.

In particular,

r(c1p + c2q) ≤ |c1 + c2|
2

+

+max

{√
|(c1 − c2)2 + 4c1c2‖pq‖2|

2
,

√
|(c1 + c2)2 − 4c1c2‖p− q‖2|

2

}
.

(ii) Let w ∈ C such that w2 = (c1 − c2)2 + 4c1c2‖pq‖2, then

1
2

min{|c1 + c2 + w|, |c1 + c2 − w|} ≤ r(c1p + c2q).

Proof. (i) Because p − q is invertible, we know that ‖pq‖ < 1, and inf{|λ| : λ ∈
σ(p − q)} =

√
1− ‖pq‖2 (proof of [2, Theorem 4.1] and Lemma 1.2 (v)). Thus

σ
(
(p− q)2

) ⊂ [1− ‖pq‖2, ‖p− q‖2], and the proof of (i) follows by Lemma 2.2.

(ii) There exists µ ∈ σ
(
(p− q)2

)
such that µ = 1 − ‖pq‖2. By item (ii) of

Theorem 2.1 we get that there exists z ∈ C such that z2 = (c1 − c2)2 + 4c2c2‖pq‖2

and (c1 + c2 + z)/2 ∈ σ(c1p + c2q). Since z2 = w2, we get z = w or z = −w. This

obviously proves (ii).

The following results are concerned with the commutator of two projections.

Theorem 2.7. Let p, q ∈ A be two nonzero projections and λ ∈ C, then the following

are equivalent:

(i) There exists z ∈ C such that z2 = 1 + 4λ2 and (1 + z)/2 ∈ σ
(
(p− q)2

)
.

(ii) There exists µ ∈ σ
(
(p− q)2

)
such that λ2 = µ2 − µ.

(iii) λ ∈ σ(pq − qp).

Proof. Denote x = (p− q)2 and let f be the polynomial defined by f(t) = t(t− 1).

(i) ⇐⇒ (ii) Since (2x− 1)2 − 1 = 4x(x− 1) = 4f(x), we get

λ2 ∈ f(σ(x)) = σ(f(x)) ⇐⇒ 4λ2 ∈ σ[(2x− 1)2 − 1].
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Let us remark that

4λ2 ∈ σ[(2x− 1)2 − 1] ⇐⇒ 4λ2 + 1 ∈ σ[(2x− 1)2] = (σ(2x− 1))2

⇐⇒ ∃z ∈ σ(2x− 1) : 4λ2 + 1 = z2

⇐⇒ ∃z ∈ C :
1 + z

2
∈ σ

(
(p− q)2

)
and 1 + 4λ2 = z2,

which proves (i) ⇐⇒ (ii).

(ii) ⇐⇒ (iii) Firstly, we shall prove (p−q)4−(p−q)2 = pqpqp+qpqp−pqp−qpq.

Observe that we have x(p− q) = (p− q)x, and thus

(p− q)4 − (p− q)2 = x2 − (p− q)2 = (x + p− q)(x− p + q)

= (p + q − pq − qp + p− q)(p + q − pq − qp− p + q)

= (2p− pq − qp)(2q − pq − qp)

= 4pq − 2pq − 2pqp− 2pq + pqpq + pqp− 2qpq + qpq + qpqp

= pqpq + qpqp− pqp− qpq.

But, it is also easy to see (pq − qp)2 = pqpq + qpqp − pqp − qpq. Therefore f(x) =

(pq − qp)2, hence σ(f(x)) = σ
(
(pq − qp)2

)
.

In order to finish the proof, it only remains to demonstrate that the spectrum

of pq − qp is symmetric about 0. In fact, if we define u = 2p− 1, then we easily get

u(pq − qp) = pq − 2pqp + qp and (pq − qp)u = 2pqp − qp − pq, hence u(pq − qp) =

−(pq−qp)u. Since u2 = 1 we have pq−qp = u−1[−(pq−qp)]u and therefore, pq−qp

has the same spectrum as −(pq − qp). This finishes the proof.

If p, q ∈ A are two projections, then (pq−qp)∗ = −(pq−qp). Hence σ(pq−qp) ⊂
iR. We can say more about σ(pq − qp) in the next corollary.

Corollary 2.8. Let p, q be two nonzero projections, then

(i) r(pq − qp) ≤ 1/2.

(ii) ‖p− q‖4 − ‖p− q‖2 ∈ σ
(
(pq − qp)2

)
.

Proof. (i) Let λ ∈ σ(pq−qp). By the previous theorem, there exists µ ∈ σ
(
(p− q)2

)

such that λ2 = µ2 − µ. By Lemma 1.2, item (iv), we have µ ∈ [0, 1] and thus

µ2 − µ ∈ [−1/4, 0]. Hence |λ| ≤ 1/2.

(ii) It follows from the former theorem and the fact ‖p− q‖2 ∈ σ
(
(p− q)2

)
.
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3 Illustrative examples

In this section we shall use software Matlab 5.2 to illustrate our results. In Figure 1,

we take c1 = 5 − 9i and c2 = −1 + 7i and in Figure 2, we take c1 = 1 − i and

c2 = 3. In all the cases p and q are arbitrary projections, not both zero. Set, as

in the proof of Theorem 2.1, the values a = c1 + c2 and b = c1c2. Also, denote

r1 = 1
2 max{|c1 + c2|, |c1 − c2|} and r2 = max{|c1 + c2|, 1

2(|c1 + c2| + |c1 − c2|)}.
We marked the points c1, c2, and a/2 with ◦, the origin with ∗, the circumferences

{z ∈ C : |z − a
2 | = r1} with a solid line, and {z ∈ C : |z| = r2} with a dashed line.

The spectrum of c1p + c2q lies on the curves symmetric with respect to a/2, and

these curves are obtained via functions

s(t) =
a±√a2 − 4bt

2
, t ∈ [0, 1].

It is interesting to test the estimation obtained from Corollary 2.4 for the spectral

radius of c1p + c2q. Observe that {z ∈ C : |z − a
2 | ≤ r1} ⊂ {z ∈ C : |z| ≤ r2}.
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Figure 1: In this figure, |c1 + c2| ≈ 4.4721 < 17.0880 ≈ |c1 − c2|.
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Figure 2: In this figure, |c1 + c2| ≈ 4.1231 > 2.2361 ≈ |c1 − c2|.
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