
ON THE SPECTRUM OF THE LAPLACIAN ON
REGULAR METRIC TREES

MICHAEL SOLOMYAK

Abstract. A metric tree is a tree whose edges are viewed as line
segments of positive length. The Laplacian ∆ on such tree is the
operator of second derivative on each edge, complemented by the
Kirchhoff matching conditions at the vertices. The spectrum of ∆
can be quite different, reflecting geometry of the tree.

We discuss a special case of trees, namely the so-called regular
trees. They possess a rich group of symmetries. This allows one to
construct an orthogonal decomposition of the space L2(Γ) which
reduces the Laplacian. Based upon this decomposition, a detailed
spectral analysis of ∆ on the regular metric trees is possible. In the
preprint a survey of the recent results on the subject are presented.

1. introduction

In the classical graph theory a graph is considered as a combinatorial
object. A function on such graph is a function defined on the set of its
vertices, and the Laplacian is a discrete operator.

Opposite to this, a metric graph G is a graph whose edges are re-
garded as non-degenerate line segments. A function on G is a fam-
ily of functions defined on its edges, and the Laplacian on G acts as
∆f = −f ′′; we include the sign “−” in the definition of the Laplacian.
Functions from its domain satisfy certain matching conditions at the
vertices. The spectral theory of the Laplacian on metric graphs is much
less developed than its counterpart for the discrete Laplacian.

Regular metric trees form an important sub-class of general metric
graphs. They possess a very rich group of symmetries. This allows one
to construct an orthogonal decomposition (the basic decomposition) of
the space L2(Γ) which reduces the Laplacian. Based upon this decom-
position, a detailed spectral analysis of the Laplacian on regular metric
trees is possible.

Date: 7.11.2002.
1991 Mathematics Subject Classification. Primary: 34L40, 47E05.
Key words and phrases. Metric trees, Laplacian, spectrum.

1



2 M. SOLOMYAK

Our goal is to present a survey of the known results on the spectrum
of the Laplacian on such trees. The paper can be considered as an ex-
panded version of the survey given in [17]. Many results are presented
here with more detail, but we often give references and informal ex-
planations rather than rigorous proofs. Among the few new results we
specially mention Theorem 5.3 and Example 6.2. On the other hand,
we do not reproduce the results of [17] concerning the Schrödinger op-
erator.

There are several papers, devoted to differential operators on regular
metric trees and to related problems. In [4] Hill’s equation on the
homogeneous trees was considered. A tree is called homogeneous if all
its edges have equal length and all its vertices are of the same degree.
In particular, the band - gap structure of the spectrum of the Laplacian
on such trees was revealed in [4].

In [10] the weighted spectral problems of the type ∆f = λV f , where
V ∈ L1(Γ) is a non-negative weight function, were investigated. In
general, the tree Γ was not assumed regular. For the regular trees, in
[10] the basic decomposition of L2(Γ) was constructed. It is reproduced
here as the formula (3.2). With its help for such trees much more
advanced results were obtained than in the general case. Let us note
that for the combinatorial trees a decomposition similar to (3.2) was
used before, see e.g. [13] and [1].

In the paper [5] the basic decomposition was rediscovered and applied
to the spectral analysis of the Laplacian and the Schrödinger operator
on the regular trees Γ of finite height. In particular, it was proved in [5]
that for such trees each operator Ak appearing in the decomposition
(3.14) is compact. Our Theorem 4.1 substantially refines this result.

In [11] a new, more detailed exposition of the results on the basic
decomposition of L2(Γ) was given. The scheme was applied to the anal-
ysis of the Hardy-type inequalities on regular trees. As a consequence,
a necessary and sufficient condition of the positive definiteness of the
Laplacian (Theorem 5.2 of the present paper) was established.

It is necessary to mention here also the papers [6], [7] and [8], though
formally they do not deal with the Laplacian on trees. In [6] the Hardy-
type integral operators on trees were introduced in connection with
the spectral analysis of the Neumann Laplacian in certain irregular
domains. There is a close relation between the approximation numbers
of the Hardy-type integral operators in L2(Γ) and the eigenvalues of the
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problem ∆f = λV f on the tree. It was the paper [6] which attracted
the author’s attention to operators on trees.

In the paper [8] a criterion on a function V ≥ 0 to be a “Hardy
weight” in Lp(Γ) was established. For p = 2 the term means that the
inequality

∫
Γ
V |f |2dx ≤ c

∫
Γ
|f ′|2dx holds for any function f for which

the integral in the right-hand side is finite. The result of [8] does not
apply to the problem of positive definiteness of the Laplacian, since the
latter requires a Hardy-type inequality on another (narrower) function
space; see [11] for a detailed discussion.

In [7] the behaviour of the approximation numbers of the Hardy-
type integral operators on trees is studied in detail, not only in L2-case
but also in the general Lp-case. When applied to the Laplacian, the
estimates obtained for p = 2 refine some results of [10].

In the paper [15] a new approach to the eigenvalue estimates for
the equation ∆f = λV f on metric graphs (not necessarily trees) was
developed. As one of applications, the Weyl-type asymptotics for this
equation was justified. Our Theorem 4.1 (ii) is a special case of this
result. Its another proof was given in [17]. The asymptotic results of
the paper [7] also can serve as a basis for obtaining this theorem.

The approach of [15] was based upon a special techniques of approx-
imation of functions from the Sobolev space H1 = W1

2 on graphs. In
[16] this approach was extended to the spaces W1

p with p 6= 2.

In [14] a detailed spectral analysis of the Laplacian and the Schrödinger
operator on the homogeneous trees was carried out. One of the results
of [14] is reproduced below as Example 6.3.

This paper was prepared when the author participated in the Pro-
gram in Partial Differential Equations and Spectral Theory at the Mit-
tag - Leffler Institute, Fall 2002. I take pleasure in expressing my
gratitude to the Institute for its hospitality.

2. Regular rooted metric trees

2.1. Geometry of a tree. Let Γ be a rooted tree with the root o, the
set of vertices V = V(Γ) and the set of edges E = E(Γ). We suppose
that #V = #E = ∞. Each edge e of a metric tree is viewed as a non-
degenerate line segment of length |e|. The distance ρ(x, y) between any
two points x, y ∈ Γ, and thus the metric topology on Γ, is introduced
in a natural way, and |x| stands for ρ(x, o). A subset E ⊂ Γ is compact
if and only if it is closed and has non-empty intersections with only a
finite number of edges.
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For any two points x, y ∈ Γ there exists a simple polygonal path in
Γ which starts at x and terminates at y. This path is unique and we
denote it by 〈x, y〉. We write x ≺ y if x ∈ 〈o, y〉 and x 6= y. The
relation ≺ defines a partial ordering on Γ.

For any vertex v its generation gen(v) is defined as

gen(v) = #{x ∈ V(Γ) : x ≺ v}.
In particular, v = o is the only vertex such that gen(v) = 0. For any
edge emanating from the vertex v (which means that e = 〈v, w〉 and
v ≺ w) we define its generation as gen(e) := gen(v).

The branching number b(v) of a vertex v is defined as the number of
edges emanating from v. We assume that gen(v) < ∞ for any v and
b(v) > 1 for v 6= o. We denote by e−v the only edge which terminates at

a vertex v 6= o, and by e1
v, . . . , e

b(v)
v the edges emanating from v ∈ V.

Definition 2.1. We call a tree Γ regular if all the vertices of the same
generation have equal branching numbers, and all the edges of the same
generation are of the same length.

Evidently, any regular tree is fully determined by specifying two
number sequences (generating sequences) {bn} = {bn(Γ)} and {tn} =
{tn(Γ)}, n = 0, 1, . . . such that

b(v) = bgen(v), |v| = tgen(v) ∀v ∈ V(Γ).

According to our assumptions, bn ≥ 2 for any n > 0. It is clear that
t0 = 0 and the sequence {tn} is strictly increasing, and we denote

h(Γ) = lim
n→∞

tn = sup
x∈Γ

|x|.(2.1)

We call h(Γ) the height of Γ. Another useful characteristics of the
regular tree is its branching function

gΓ(t) = #{x ∈ Γ : |x| = t}, 0 ≤ t < h(Γ).

Clearly,

gΓ(0) = 1; gΓ(t) = b0 . . . bn, tn < t ≤ tn+1, n = 0, 1, . . .(2.2)

We also introduce the reduced height of Γ

L(Γ) =

∫ h(Γ)

0

dt

gΓ(t)
.(2.3)

Clearly h(Γ) < ∞ implies L(Γ) < ∞. For the trees of infinite height
both L(Γ) < ∞ and L(Γ) = ∞ is possible.

The natural measure dx on Γ is induced by the Lebesgue measure on
the edges. The spaces Lp(Γ) are understood as Lp-spaces with respect
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to this measure. We denote by |E| the measure of a (measurable)
subset E ⊂ Γ and call the number |Γ| the total length of Γ. It is
clear that ρ(x, y) = |〈x, y〉| for any pair of points x, y ∈ Γ and that
|Γ| = ∫

Γ
gΓ(t)dt.

2.2. Special subtrees of Γ. Subtrees T ⊂ Γ of the following two
types play a special part in the further analysis. For any vertex v and
for any edge e = 〈v, w〉, v ≺ w we set

Tv = {x ∈ Γ : x º v}, Te = e ∪ Tw.

Evidently, To = Γ and

Tv =
⋃

1≤j≤b(v)

Tej
v
, ∀v ∈ V(Γ).

Due to the regularity of Γ, all the subtrees Te, gen(e) = k can be
identified with a single tree Γk whose generating sequences are

b0(Γk) = 1, bn(Γk) = bk+n(Γ), n ∈ N;

t0(Γk) = 0; tn(Γk) = tk+n(Γ)− tk(Γ), n ∈ N.

It follows from here and from (2.2) that the branching function gΓk
is

given by

gΓk
(t) =

gΓ(tk + t)

b0 . . . bk

=
gΓ(tk + t)

gΓ(tk+)
, k = 0, 1, . . .(2.4)

Note also that any subtree Tv, gen(v) = k, can be identified with the
union of bk copies of the tree Γk emanating from the common root v.

3. The Laplacian on a regular tree

The notion of differential operator on any metric graph, in particular
on a tree, is well known. Still, for the sake of completeness we present
here the variational definition of the Dirichlet Laplacian on a tree.

3.1. The operator ∆. We say that a scalar-valued function f on Γ
belongs to the Sobolev space H1 = H1(Γ) if f is continuous, f ¹e ∈ H1(e)
for each edge e, and

‖f‖2
H1 :=

∫

Γ

(|f ′(x)|2 + |f(x)|2)dx < ∞.

The derivative of a function f ¹ e at an interior point x ∈ e is always
taken in the direction compatible with the partial ordering on Γ. This
agreement is indifferent for the definition of H1 but we shall use it later.
By H1,0 = H1,0(Γ) we denote the subspace {f ∈ H1 : f(o) = 0}.

Let H1
c stand for the set of all functions from H1 having compact

support and H1,0
c = H1

c ∩ H1,0.



6 M. SOLOMYAK

Lemma 3.1. Let h(Γ) = ∞. Then H1
c is dense in H1, and therefore

H1,0
c is dense in H1,0.

Proof. For any number L > 0 let ϕL(t) be the continuous function
on R+, which is 1 for t ≤ L, is 0 for t ≥ L + 1 and is linear on
[L,L + 1]. Given a function f ∈ H1(Γ), denote fL(x) = ϕL(|x|)f(x).
Then fL ∈ H1

c and an elementary calculation shows that fL → f in H1

as L →∞.

We define the (positive) Dirichlet and Neumann Laplacians ∆D and
∆N as the self-adjoint operators in L2(Γ), associated with the quadratic
form

∫
Γ
|f ′|2dx considered on the form domains

Quad(∆D) = H1,0(Γ), Quad(∆N) = H1(Γ)

respectively. The difference between the properties of the operators
∆D and ∆N is minor, and for definiteness we address the first of them
in the most part of the paper. For this reason, we use for it a shortened
notation

∆ := ∆D.

It is easy to describe the operator domain Dom(∆) and the action
of ∆. Evidently f ∈ Dom(∆) ⇒ f ¹e ∈ H2(e) for each edge e and the
Euler – Lagrange equation reduces on e to ∆f = −f ′′. At the root we
have the boundary condition f(o) = 0 which appears in the definition
of Quad(∆). At each vertex v 6= o the functions f ∈ Dom(∆) satisfy
certain matching conditions. In order to describe them, denote by f−
the restriction f ¹ e−v and by fj, j = 1, . . . , b(v) the restrictions f ¹ ej

v.
The matching conditions at v 6= o are

f−(v) = f1(v) = . . . = fb(v)(v); f ′1(v) + . . . + f ′b(v)(v) = f ′−(v).(3.1)

These are nothing but the Kirchhoff laws well known in the theory
of electrical networks. The first condition in (3.1) comes from the
requirement f ∈ H1(Γ) which includes continuity of f , and the second
arises as the natural condition in the sense of Calculus of Variations.
The conditions listed are also sufficient for f ∈ Dom(∆).

Due to the boundary condition f(o) = 0, the Dirichlet Laplacian
on Γ splits into the orthogonal sum of the Dirichlet Laplacians on the

subtrees whose initial edges are e1
o, . . . , e

b(o)
o . For this reason, in what

follows we assume b(o) = 1 (except for Subsection 7.2). Under the
latter assumption, the only difference for the Neumann Laplacian ∆N

is that the boundary condition f(o) = 0 is replaced by f ′(o) = 0.
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3.2. Reduction of the Laplacian. Our further analysis is based
upon an orthogonal decomposition of the space L2(Γ) which, for the
case of regular trees, reduces the Laplacian. Let us describe this de-
composition.

Given a subtree T ⊂ Γ, we say that a function f ∈ L2(Γ) belongs to
the set (a closed subspace) FT if

f(x) = 0 for x /∈ T ; f(x) = f(y) if x, y ∈ T and |x| = |y|.
In particular, FΓ consists of all symmetric (i.e. depending only on |x|)
functions from L2(Γ).

We need the subspaces FT associated with the subtrees Te and Tv,
introduced in Subsection 2.2. To simplify our notations, we shall write
Fe, Fv instead of FTe ,FTv . It is clear that for each vertex v 6= o the
subspaces Fej

v
, j = 1, . . . , b(v) are mutually orthogonal and their or-

thogonal sum F̃v contains Fv. Denote

F′v = F̃v ª Fv.

Theorem 3.2. Let Γ be a regular metric tree and b(o) = 1. Then the
subspaces F′v, v ∈ V(Γ) are mutually orthogonal and orthogonal to FΓ.
Moreover,

L2(Γ) = FΓ ⊕
∑

v∈V(Γ)

⊕F′v,(3.2)

and this decomposition reduces the Dirichlet Laplacian and the Neu-
mann Laplacian on Γ.

Now we have to describe the parts of the Laplacian in the subspaces
FΓ and F′v. For this purpose, along with the operator ∆ on Γ let us
consider the Dirichlet Laplacian on each tree Γk defined in Subsection
2.2. Below we denote this operator by ∆k. Consider also its part
Ak = ∆k ¹FΓk

which is a natural analog of the operator A0 = ∆¹FΓ.

Theorem 3.3. Let v ∈ V(Γ) and gen(v) = k > 0. Then the operator
∆ ¹F′v is unitarily equivalent to the orthogonal sum of (bk − 1) copies
of the operator Ak.

The proof is given in [11]. A naive but justifiable explanation is that
∆ ¹ Fv is the orthogonal sum of bk copies of the operator Ak and the
passage to ∆¹F′v corresponds to the withdrawal of one of these copies.

Our next step is to understand the nature of each operator Ak. Be-
low we introduce a family {Ak}, k = 0, 1, . . . of operators acting in
L2(tk, h(Γ)) and then show that Ak ∼ Ak for each k; here and in the
sequel the symbol “∼” stands for the unitary equivalence.
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Denote Ij = (tj−1, tj), j ∈ N. The domain Dom(Ak) consists of all
functions u on [tj, h(Γ)), such that u¹Ij ∈ H2(Ij) for any j > k,

∑

j>k

∫

Ij

(|u′′|2 + |u|2)dt < ∞,(3.3)

and the following boundary condition at tk and the matching conditions
at the points tj, j > k are satisfied:

u(tk) = 0; u(tj+) = b
1/2
j u(tj−), j > k;(3.4)

u′(tj+) = b
−1/2
j u′(tj−), j > k.(3.5)

The operator Ak acts on this domain as

(Aku)(t) = −u′′(t), t 6= tj, j ≥ k.(3.6)

It is self-adjoint and non-negative. Its quadratic domain is

(3.7) Quad(Ak) =
{
u ∈ L2(tk, h(Γ)) : u¹Ij ∈ H1(Ij) ∀j > k,

∑

j>k

∫

Ij

|u′|2dt < ∞, and the conditions (3.4) are satisfied
}
.

The quadratic form of Ak is

ak[u] =
∑

j>k

∫

Ij

|u′|2dt, u ∈ Quad(Ak).(3.8)

Lemma 3.4. For any k = 0, 1, . . .

Ak ∼ Ak.(3.9)

Proof. We prove (3.9) for k = 0, the rest is similar. It is natural to
identify a function f ∈ FΓ with the function ϕf on [0, h(Γ)) satisfying
f(x) = ϕf (t) for any x ∈ Γ such that |x| = t. Then

∫

Γ

|f(x)|2dx =

∫ h(Γ)

0

|ϕf (t)|2gΓ(t)dt, ∀f ∈ FΓ.(3.10)

If f ∈ H1,0(Γ), then ϕf is continuous on [0, h(Γ)), has the distributional
derivative ϕ′f ∈ L2

loc(0, h(Γ)), satisfies ϕf (0) = 0, and

∫

Γ

|f ′(x)|2dx =

∫ h(Γ)

0

|ϕ′f (t)|2gΓ(t)dt, ∀f ∈ H1,0(Γ) ∩ FΓ.(3.11)

We also see that

f ∈ Quad(∆¹FΓ) ⇔ ϕf ∈ H1,•((0, h(Γ)); gΓ

)
(3.12)
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where H1,•((0, h(Γ)); gΓ

)
stands for the weighted Sobolev space which

is defined by the conditions
∫ h(Γ)

0

(|ϕ′(t)|2 + |ϕ(t)|2)gΓ(t)dt < ∞; ϕ(0) = 0.(3.13)

Correspondingly, A0 turns into the operator in the weighted space
L2

(
(0, h(Γ)); gΓ

)
, associated with the quadratic form in the right-hand

side of the equality in (3.11).

Now we substitute u(t) = ϕ(t)
√

gΓ(t). Then u′(t) = ϕ′(t)
√

gΓ(t)
for t 6= t1, t2, . . . , since gΓ(t) is constant on each interval Ij. Clearly
u(0) = 0; at any point tj, j ∈ N the function u meets the matching

condition u(tj+) = b
1/2
j u(tj−) which comes from the continuity of ϕ.

All this shows that ‖f‖2
L2(Γ) = ‖u‖2

L2(0,h(Γ)),

f ∈ Quad(A0) ⇔ u ∈ Quad(A0)

and ‖f ′‖2
L2(Γ) = a0[u]. It follows that A0 ∼ A0.

The outcome of this analysis is the following result. It was proved in
[11] for the general case of Schrödinger operators. Below A[r] stands
for the orthogonal sum of r copies of a self-adjoint operator A.

Theorem 3.5. Let Γ be the regular tree with the generating sequences
{bn} (with b0 = 1) and {tn}. Then

∆ ∼ A0 ⊕
∞∑

k=1

⊕Ak
[b0...bk−1(bk−1)].(3.14)

3.3. Spectrum of A0 and spectrum of ∆. We conclude from (3.7)
and (3.8) that

Quad(A0) ⊃ Quad(A1) ⊃ Quad(A2) ⊃ . . .

and

ak = a0 ¹Quad(Ak), ∀k ∈ N.

By the variational principle, this implies that the spectral properties
of all the operators Ak and of the whole operator ∆ are basically
determined by the properties of the single operator A0. In particular,
the following statement holds. As usual, we denote by σ(A) and σp(A)
the spectrum and the point spectrum of a self-adjoint operator A.

Theorem 3.6. Let Ak, k = 0, 1, . . . be the operators in L2(tk, h(Γ))
whose domain and action are defined by the equations (3.3) – (3.6).
Then
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(i) If A0 is positive definite, then the same is true for any operator
Ak, k ∈ N, and

min σ(A0) ≤ min σ(A1) ≤ . . . ≤ min σ(Ak) ≤ . . .

(ii) If the spectrum of A0 is discrete, then the same is true for any
operator Ak, k ∈ N.

(iii) If the spectrum of A0 is discrete, then

min σ(Ak) →∞ as k →∞.(3.15)

Note that the statement Theorem 3.6 (iii) does not follow from the
above construction and needs a separate proof. It will be given in
Section 4 (see (4.4)) for the trees of finite height and in the end of
Subsection 5.3 for the trees of infinite height.

It follows from Theorem 3.2 that

σp(∆) =
∞⋃

k=0

σp(Ak); σ(∆) =
∞⋃

k=0

σ(Ak).(3.16)

Together with Theorem 3.6, this leads to the following result.

Corollary 3.7. (i) The Dirichlet Laplacian ∆ on a regular tree is pos-
itive definite if and only if the operator A0 is positive definite. More-
over,

inf σ(∆) = inf σ(A0).

(ii) The spectrum of ∆ is discrete if and only if the spectrum of A0 is
discrete.

4. Laplacian on regular trees of finite height

Here we assume h(Γ) < ∞, cf. (2.1).

Theorem 4.1. (i) Let Γ be a regular tree and h(Γ) < ∞. Then the
spectrum σ(∆) is discrete.

(ii) Suppose in addition that |Γ| < ∞. Then the Weyl asymptotic
formula for the eigenvalue counting function of ∆ is satisfied:

N(λ;∆) = π−1|Γ|λ1/2(1 + o(1)), λ →∞.(4.1)

Proof. (i) First of all, we prove that the spectrum of A0 is discrete.
Taking (3.10) and (3.11) into account and using the variational de-
scription of the spectrum, we find that it is sufficient to check that the
Rayleigh quotient

∫ h(Γ)

0
|ϕ(t)|2gΓ(t)dt

∫ h(Γ)

0
|ϕ′(t)|2gΓ(t)dt

, ϕ ∈ H1
loc

(
(0, h(Γ)), gΓ

)
, ϕ(0) = 0
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generates a compact operator. After the change of variables

s = s(t) =

∫ t

0

dτ

gΓ(τ)

we come to another Rayleigh quotient:
∫ L(Γ)

0
|ψ(s)|2W (s)ds

∫ L(Γ)

0
|ψ′(s)|2ds

, ψ ∈ H1(0, h(Γ)), ψ(0) = 0(4.2)

where L(Γ) is the reduced height of Γ and W (s) = g2
Γ(t(s)). The

function W is monotone and

∫ L(Γ)

0

√
W (s)ds =

∫ L(Γ)

0

gΓ(t(s))ds =

∫ L(Γ)

0

t′(s)ds = h(Γ) < ∞.

It is well known ([2], Theorem 3.1; see also an exposition in [3]) that
under these conditions the Rayleigh quotient (4.2) generates a compact
operator, say K, whose eigenvalues satisfy the estimate

√
λn(K) ≤ Cn−1

∫ L(Γ)

0

√
W (s)ds = Ch(Γ)n−1

where C is an absolute constant. It follows in particular that

‖K‖ = λ1(K) ≤ (
Ch(Γ)

)2
.

Equivalently, this means that

min σ(A0) ≥ (Ch(Γ))−2.(4.3)

Applying the same argument to the operators Ak, we find that

min σ(Ak) ≥ (C(h(Γ)− tk))
−2, k ∈ N.(4.4)

This implies (3.15) and therefore, discreteness of σ(∆).

(ii) Two different proofs of (4.1) were given by the author in [15] and
[17]. Here we outline the first of them since it is more straightforward.

If f ∈ H1,0(Γ), then

|f(x)|2 =
∣∣
∫

〈o,x〉

f ′(y)dy
∣∣2 ≤ h(Γ)‖f ′‖2

L2(Γ).

Hence, for any non-negative function V ∈ L1(Γ) we have∫

Γ

V |f |2dx ≤ h(Γ)‖f ′‖2
L2(Γ)

∫

Γ

V dx.

This shows that in the case h(Γ) < ∞ the quadratic form in the left-
hand side generates a bounded self-adjoint operator, say TΓ,V , in the
space H1,0(Γ) equipped with the norm ‖f ′‖L2(Γ). It is easy to check
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that this operator is compact. If |Γ| < ∞, its eigenvalues satisfy the
estimate

λn(TΓ,V ) ≤ |Γ|n−2

∫

Γ

V dx, ∀n ∈ N(4.5)

which was established in [15] for the general case of operators on metric
graphs. The Rayleigh quotient for the operator TΓ,V is∫

Γ
V |f |2dx∫

Γ
|f ′|2dx

, f(o) = 0.

This shows in particular that the operator TΓ,111, i.e. TΓ,V for V ≡ 1,
can be identified with ∆−1.

Given a number ε > 0, find a compact subtree Tε ⊂ Γ such that
|Γ \ Tε| < ε. Let Vε be the characteristic function of Tε. Evidently,

TΓ,111 = TΓ,Vε + TΓ,111−Vε .

For the first term the Weyl asymptotics holds,

πλ1/2#{n : λn(TΓ,Vε) > λ} = |Tε|+ o(1), λ → 0.(4.6)

This follows from the classical result for a single interval. Indeed, inser-
tion of the additional condition f(vk) = 0 at a finite number of vertices
allows one to withdraw the non-compact part Γ\Tε and does not affect
the asymptotic behaviour of the eigenvalues. Further, we derive from
(4.5) that

λn(TΓ,111−Vε) ≤ ε|Γ|n−2, ∀n ∈ N.

This estimate allows us to pass in (4.6) to the limit as ε → 0, which
leads to (4.1).

5. Laplacian on regular trees of infinite height

5.1. Trees with arbitrarily long edges. Our next result is quite
elementary and its proof is standard. The result applies to arbitrary
metric graphs rather than to trees only, see [17]. Still, below we for-
mulate only the particular case we are interested in in this paper.

Theorem 5.1. Let G be a regular metric tree and supe∈E(Γ) |e| = ∞.
Then σ(∆) = [0,∞).

Proof. It is enough to show that for any r > 0 the point λ = r2 belongs
to the spectrum. For this purpose we fix a non-negative function ζ ∈
C∞

0 (−1, 1) such that ζ(t) = 1 on (−1/2, 1/2). Further, choose an edge
e ∈ E(Γ). In an appropriate coordinate system, e can be identified with
the interval (−l, l) where l = |e|/2. The function f on Γ,

f(t) = ζ(t/l) sin rt on e, f(t) = 0 otherwise,
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belongs to Dom(∆). An elementary calculation shows that

‖∆f − r2f‖ ≤ ε(l)‖f‖, ε(l) → 0 as l →∞.

Choosing a sequence of edges e such that |e| → ∞, we obtain a Weyl
sequence for the operator ∆ and the point λ = r2. This implies that
λ ∈ σ(∆).

The assumption of Theorem 5.1 does not exclude the embedded
eigenvalues. This will be shown in the next section, see Example 6.2.

5.2. Criterion of positive definiteness of the Laplacian.

Theorem 5.2. Let Γ be a regular tree and h(Γ) = ∞. Then the Lapla-
cian on Γ is positive definite if and only if L(Γ) < ∞ and

B(Γ) := sup
t>0

(∫ t

0

gΓ(s)ds ·
∫ ∞

t

ds

gΓ(s)

)
< ∞.(5.1)

Moreover,

(4B(Γ))−1 ≤ min σ(∆) ≤ B(Γ)−1.(5.2)

Recall that the “reduced height” L(Γ) is defined by (2.3).

Proof. According to Corollary 3.7, we have to study positive definite-
ness of the operator A0 or, equivalently, of A0. Let c0 := min σ(A0).
Taking into account the relations (3.10) – (3.12), we come to the in-
equality

c0

∫ ∞

0

|ϕ(t)|2gΓ(t)dt ≤
∫ ∞

0

|ϕ′(t)|2gΓ(t)dt, ∀ϕ ∈ H1,•(R+; gΓ).(5.3)

Due to the density of the class H1,0
c (Γ) in H1,0(Γ), it is sufficient to have

this inequality for functions with compact support.
The inequality (5.3) with c0 > 0 is a special case of the Hardy in-

equality with two weights. Necessary and sufficient conditions for such
inequalities to be satisfied (Muckenhoupt conditions) are well known,
see e.g. [9], Section 1.3.1. Since gΓ(t) ≥ 1, they are never satisfied if
L(Γ) = ∞, so that the condition L(Γ) < ∞ is necessary for positive
definiteness of the Laplacian.

Let ϕ ∈ H1,•(R+; gΓ) be a function with compact support. Then
its derivative ω = ϕ′ lies in L2(R+; gΓ) and also has compact support.
Besides,

∫
R+

ωdt = 0. Denote by Ω the class of all such functions ω.

For any ω ∈ Ω the function ϕ(t) = − ∫∞
t

ω(s)ds lies in H1,•(R+; gΓ) and
has compact support. For this reason, the inequality (5.3) is equivalent
to

c0

∫ ∞

0

∣∣
∫ ∞

t

ω(s)ds
∣∣2gΓ(t)dt ≤

∫ ∞

0

|ω(t)|2gΓ(t)dt, ∀ω ∈ Ω.(5.4)
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Since 111 /∈ L2(R+; gΓ), the set Ω is dense in the whole of L2(R+; gΓ).
Hence, the validity of (5.4) on Ω is equivalent to its validity on L2(R+; gΓ).
The condition (5.1) is exactly the Muckenhoupt condition for (5.4) to
be satisfied with some constant c0 > 0, see [9], Theorem 1.3.1/3. The
inequality (5.2) is also a part of this Theorem.

It follows from Theorem 5.2 that in the case L(Γ) = ∞ the point
λ = 0 lies in σ(∆). A straightforward calculation shows that λ = 0 is
not an eigenvalue an hence, 0 ∈ σess(∆).

5.3. Discreteness of σ(∆).

Theorem 5.3. Let Γ be a regular tree and h(Γ) = ∞. Then the Lapla-
cian on Γ has discrete spectrum if and only if L(Γ) < ∞, B(Γ) < ∞,
and

lim
t→∞

(∫ t

0

gΓ(s)ds ·
∫ ∞

t

ds

gΓ(s)

)
= 0.(5.5)

Proof. The necessity of the assumption L(Γ) < ∞ is clear from Theo-
rem 5.2. Under this assumption, the condition B(Γ) < ∞ is necessary
and sufficient for the boundedness of the operator Q0, generated in the
space H1,•(R+; gΓ) by the Rayleigh quotient

∫∞
0
|ϕ(t)|2gΓ(t)dt∫∞

0
|ϕ′(t)|2gΓ(t)dt

.

It follows in a standard way that the condition (5.5) is necessary and
sufficient for the compactness of Q0 or, equivalently, that of A−1

0 . By
Theorem 3.6 (ii), each operator A−1

k is also compact, and it remains
for us to show that ‖A−1

k ‖ → 0 as k →∞. For this purpose we apply
Theorem 5.2 to the tree Γk. It follows from (2.4) that

∫ t

0

gΓk
(s)ds ·

∫ ∞

t

ds

gΓk
(s)

=

∫ t

0

gΓ(tk + s)ds ·
∫ ∞

t

ds

gΓ(tk + s)

≤
∫ tk+t

0

gΓ(s)ds ·
∫ ∞

tk+t

ds

gΓ(s)
.

In view of (5.5), B(Γk) → 0 as k →∞. By (5.2), min σ(Γk) →∞ and
we are done.

6. Examples

In our first example we show that for a tree Γ of finite height but
infinite volume the eigenvalues of the Laplacian may have quite an
unusual behaviour; see [17] for the proof.
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Example 6.1. Fix the numbers q ∈ (0, 1) and b ∈ N. Consider the
tree Γ defined by the sequences tn = 1 − qn, n = 0, 1, . . . and bn =
b = const, n = 1, 2, . . . Then h(Γ) = 1, so that the spectrum of the
Laplacian on Γ is always discrete. Further, gΓ(t) = bn for tn < t ≤ tn+1.
The total length of Γ is

|Γ| = 1− q +
∞∑

n=1

bn(qn − qn+1) = (1− q)
∞∑

n=0

(bq)n.

Hence, |Γ| = 1−q
1−bq

< ∞ if bq < 1 and |Γ| = ∞ otherwise. In the first

case, Theorem 4.1 shows that for the eigenvalues of ∆ the Weyl law
(4.1) holds.

If bq = 1, then

N(λ;∆) =
1− q

2π ln b

√
λ
(
ln λ + O(1)

)
, λ →∞,

and if bq > 1, then there exists a bounded and bounded away from
zero periodic function ψ with the period ln(q−2) such that

N(λ;∆) = λβ/2
(
ψ(ln λ) + o(1)

)
, λ →∞

where β = − logq b > 1.

In our next example we show that under the assumptions of Theo-
rem 5.1 the spectrum σ(∆) may have a dense set of embedded eigen-
values.

Example 6.2. Consider the tree Γ with tn = 2n−1π, n ∈ N. The
sequence bn such that b0 = 1 and bn > 1 for n ≥ 1 can be ar-
bitrary. A direct inspection shows that for any integer l the func-
tion ul(t) = (gΓ(t))−1/2 sin lt is an eigenfunction of the operator A0,
with the eigenvalue λl = l2. In the same way, the function ul,k(t) =
(gΓ(t))−1/2 sin(2−klt), t ≥ tn is an eigenfunction of any operator An

with n > k. The corresponding eigenvalue is λl,k = 2−2kl2, and the
result follows from (3.16).

Note that in this example σ(∆) is not pure point, since for each k
we have σ(Ak) 6= σp(Ak).

Now we present an example (borrowed from [14]) of a tree for which
the Laplacian is positive definite.

Example 6.3. Consider the tree Γ = Γb with bn = b = const, n ∈ N
and tn = n; so, all the edges of Γb are of the same length 1. We have
gΓb

(t) ∼ exp(βt), β = ln b, so that the conditions of Theorem 5.2 are
satisfied which yields positive definiteness of the Laplacian.
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For the tree Γb the spectrum of ∆ can be calculated explicitly. Define

θ = arccos
2

b1/2 + b−1/2
.

It turns out that σ(∆) is of infinite multiplicity and consists of the
bands[(

π(l− 1) + θ
)2

,
(
πl− θ

)2]
and the eigenvalues λl =

(
πl

)2
, l = 1, 2, . . .

So, in this case the spectrum has the band-gap structure typical for
periodic problems.

For comparison, consider the discrete Laplacian ∆d on the combi-
natorial rooted tree, with the branching numbers as for our tree Γb. It
is well known (and can be easily calculated, see e.g. [1] where this was
done for b = 2) that σ(∆d) = [(b1/2−1)2, (b1/2+1)2]. This shows that in
general there is no direct connections between the spectra of the Lapla-
cian on a metric tree and the discrete Laplacian on the combinatorial
tree of the same structure.

We conclude this section with an example of a tree for which the
Laplacian has discrete spectrum.

Example 6.4. Consider the tree Γ with bn = b = const, n ∈ N and
tn = n1/α, α > 1. Then gΓ(t) = bn for n1/α < t ≤ (n + 1)1/α, which
implies gΓ(t) ∼ exp(βtα) as t → ∞. It is easy to check that the
condition (5.5) is satisfied. Hence, σ(∆) is discrete.

An alternative way to construct a similar example is to take tn = n
and bn growing fast enough.

7. Concluding remarks

7.1. The Neumann boundary condition at the root. Let us dis-
cuss the changes in the above scheme appearing if we consider the
Neumann Laplacian ∆N . The codimension of the subspace H1,0(Γ) in
H1(Γ) is one, which implies that the qualitative properties of the oper-
ators ∆N and ∆D are the same. But as a matter of fact, much more
can be said about the relations between these two operators.

Let us return to the orthogonal decomposition (3.2) of the space
L2(Γ). If f ∈ F′v ∩ H1(Γ) and v 6= o, then f(v) = 0. It follows that

∆N ¹F′v = ∆D ¹F′v, ∀v 6= o.

Therefore, the analog of the decomposition (3.14) for the operator ∆N

takes the form

∆N ∼ A′
0 ⊕

∞∑

k=1

⊕Ak
[b0...bk−1(bk−1)](7.1)
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where only the first term differs from the one in (3.14): namely, in (3.4)
for k = 0 the condition u(0) = 0 should be replaced by u′(0) = 0.

The only place where this difference might be important, is Theo-
rem 5.2 where a bound for min σ(∆) was found. However, even here
the inequality (5.2) remains valid for the Neumann Laplacian. Indeed,
the condition ϕ(t) = 0 for large t was used when justifying (5.4), rather
than the condition ϕ(0) = 0.

7.2. Regular trees without boundary. Let Γ be a general metric
tree. Choose a vertex o ∈ E(Γ) and suppose that there are b0 > 1
edges of Γ adjacent to o. Then Γ can be split into b0 rooted subtrees
Γ1, . . . Γb0 having the common root o. We say that the tree Γ is regular
if and only if all the subtrees Γj are regular in the sense of Definition
2.1 and the corresponding sequences {tn} and {bn} are the same for all
j = 1, . . . , b0. Note that this definition is not invariant with respect to
the choice of the vertex o.

The definition of the Laplacian ∆ extends to the trees without
boundary in a natural way. The only difference is that now we have
no boundary condition at o. Instead, the functions from Quad(∆) are
required to be continuous at o; the functions f ∈ Dom(∆) satisfy (3.1)
also for v = o.

Theorems 3.2 and 3.5 extend to the new situation, with small changes
appearing due to the fact that now b0 > 1. As a result, the subspace F′o
is no more trivial, and the operator ∆¹F′o is unitary equivalent to the
orthogonal sum of (b0 − 1) copies of the operator A0 described by the
equations (3.3) – (3.6) (for k = 0). The analog of the decomposition
(3.14) now takes the form

∆ ∼ A′
0 ⊕Ab0−1

0 ⊕A
b0(b1−1)
1 ⊕A

b0b1(b2−1)
2 . . .

where A′
0 is the same operator as in (7.1).
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