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On the spectrum of the linear transport operator* 
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In this paper, spectral properties of the time-independent linear transport operator A are studied. 

This operator is defined in its natural Banach space L l(D X V), where D is the bounded space 

domain and V is the velocity domain. The collision operator K accounts for elastic and inelastic 

slowing down, fission, and low energy elastic and inelastic scattering. The various cross sections in 

K and the total cross section are piecewise continuous functions of position and speed. The two 

cases vo>O and vo=O are treated, where Vo is the minimum neutron speed. For vo=O, it is shown 

that I7(A) consists of a full half-plane plus, in an adjoining strip, point eigenvalues and curves. For 

v 0 > 0, I7(A) consists just of point eigenvalues and curves in a certain half-space. In both cases, the 

curves are due to purely elastic "Bragg" scattering and are absent if this scattering does not occur. 

Finally the spectral differences between the two cases Vo> ° and vo=O are discussed briefly, and it 

is proved that A is the infinitesimal generator of a strongly continuous semigroup of operators. 

I. INTRODUCTION 

Since the pioneering work of Lehner and Wing, 1 the 

spectrum of the linear or "neutron" transport operator 

has been the subject of intensive study by mathemati

cians, phYSiCists, and nuclear engineers. 2-37 Knowledge 

of this spectrum is, as has been stressed in Ref. 1, a 

necessary prerequisite to the calculation of eigenfunc

tion expansions for time-dependent problems. (In some 

cases, due to the existence of a half plane of "con_ 

tinuum" spectrum, analysis has shown that such ex

pansions are not feaSible. ) In addition, knowledge of the 

spectrum is important in the interpretation of pulsed 

neutron experiments. 

It would be a formidable task to summarize the re

search embodied in the references (which listing should 

not be considered all-inclusive, incidentally, but only 

representative). We would like to make a few general 

comments, however, about their contents in order to 

motivate our own work. 

A great deal of the above work involves specific mod

els of the transport operator (i. e., of the collision term 

and the geometry). Thus Ref. 1 treats a one-speed, one

dimensional equation with isotropiC scattering, while 

Ref. 12, for another example, deals with a three-di

mensional ideal gas scattering model. As the years 

progressed, various authors attempted to treat in

creasingly general problems. For example, we find 

Mika14 generalizing the results of Ref. 1 to anisotropic 

and energy dependent operators, still in one space 

dimension. As another example, Bednarz13 obtained 

some fairly general results but specifically excluded 

purely elastic scattering at thermal neutron energies. 

An attempt was made to remove this restriction17.27 but 

these results depend upon the assumptions that the mini

mum neutron speed v is zero, and v~a(v) < v~(v) - A *. 
Here ~a and ~ are the elastic and total cross sections, 

and A * is the minimum value of v~(v), which is required 

to be at v = O. Some additional recent work36 has treated 
elastic scattering involving a discontinuity in the total 

reaction rate (as a function of neutron speed), but it 

contains a technical error in the proof of Lemma 2.38 

Most of the cited references employ a spectral analy-
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sis in Hilbert space similar to that in Ref. 1. However, 

other approaches have been used, two of which we shall 

mention here. 

First, we refer to a paper by Jorgens,2 where semi

group techniques are used to treat the case of a finite 

body in which the minimum neutron speed va is positive. 

For this case Jorgens showed that the spectrum of the 

transport operator consists solely of isolated point spec

trum. (Other authors, conSidering the case va = 0, have 

asserted that the spectrum should contain a half-space 

ReA -'S - A *.) 

Also, we refer to the homogeneous, infinite medium 

problems which have been treated31 by taking a Fourier 

transform in the space variable and a Laplace transform 

in time. One obtains a problem involving both time and 

space eigenvalues in which a dispersion law, i. e., a 

functional relation between the two quantities, is sought. 

The above brief overview of the previous work sug

gests the motivations for the present paper. 

First, we employ a more general collision operator 

than has been considered previously. It consists of 

three terms: (i) a completely continuous portion, rep

resenting elastic slowing down, fiSSion, and low energy 

inelastic scattering; (ii) a Singular nilpotent portion, 

representing inelastic slowing down; and (iii) a singular 

portion, representing low energy elastic "Bragg" 
scattering. 39 

Secondly, our work is carried out in an L1 space 

whereas nearly all previous work has been performed 

in L 2 • We do this because L1 is the natural space for the 

transport operator, since the integral of the angular 

density has physical significance. (In quantum mechan

ics, where 1 if! 12 carries physical meaning, L2 is ap

propriate. ) This point, incidentally, has been stressed 

by Case (private communications) and Ribaric, 37 who 

gives a lengthy discussion. See also Refs. 33 and 35. 

Thirdly, we treat the two separate cases va = 0 and 

va> 0 where va is the minimum neutron speed. (Thus 

our work for va> 0 will generalize Jorgens' results. 2) 

The differences in the spectrum for these cases is sub-

Copyright © 1974 American Institute of Physics 1987 
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stantial, and we shall briefly discuss these differences 
in Sec. 6. 

Finally, ~e feel that our methods have an advantage 
of being systematic. Subsequent generalizations, for 
example to problems of gas dynamics, should thus be 

made simpler. 

The plan of this paper is as follows. In Sec. 2 we de
scribe the transport operator and its domain, and we 

introduce various restrictions which we find necessary 
to impose on the collision terms mentioned above. 

Section 3 is devoted to studying the spectrum of the 

streaming operator T, i. e., the transport operator 
minus collision terms. The results are embodied in 

Theorems 1 and 2, which state that a(T) (Ref. 40) con
sists of a half plane or only the point at infinity, depen

ding respectively upon whether the minimum neutron 
speed Vo is or is not zero. In Sec. 4 we study the one

speed transport operator denoted by T + Ko; i. e., Ko is 
a collision operator which does not change the neutron 
speed. The analysis of this section depends heavily on 
the results of Sec. 3 and uses the concept of potentially 

compact operators41 and a theorem of Gohberg, 42 some
times called the "Smul'yan" theorem. The first con
clusions (Theorem 3) are that the spectrum of T + Ko, 

for fixed v, is a pure isolated point spectrum of finite 
geometrical multiplicity restricted to a certain left 

half-space. (These results are also proved in Ref. 2. 

The lack of "continuum" spectrum is due to our con
sidering a finite body; for an infinite slab, for example, 
the one-speed operator does have a "continuum" spec
trum. 5) Next (Theorem 5) we consider the "full" spec

trum of T + Ko by considering all admissable values of 

v. As v varies, the (point) spectrum of T + Ko for fixed 
v shifts about to form curves; the full spectrum of 

T + Ko consists of the closure of this set of curves plus 
a( T). We also prove (Theorem 6) that for Vo = 0 and a 

sufficiently small body, all the spectrum is contained 
in the continuum, a result which has been argued 
heuristically7,10 and proved for certain models. 12,13 

All of these results are, of course, of greater or 
lesser importance depending upon how meaningfully one 
takes a one-speed model of the transport operator. 
However, we use these results in Sec. 5, in which the 
total transport operator T + K is considered and we 
prove that a(T + K) differs from a(T + Ko) only by the 

addition of point spectrum. Also, we make some 
estimates as to the location of this spectrum and we 
show that the low energy elastic scattering term Ko can 

introduce lines of spectra. 

Finally, we show, in Theorem 11, that the transport 

operator is the infinitesimal generator of a strongly 
continuous semigroup of operators. This theorem, in 
a sense, justifies this entire paper since it guarantees 
the existence of a semigroup which solves the initial 

value problem for the transport operator. 

In Sec. 6 we discuss our results and indicate the 

direction in which future work might be aimed. We con
clude with an Appendix to which some of the technical 
details of the proofs have been relegated. 

J. Math. Phys., Vol. 15, No.1 1, November 1974 

II. DESCRIPTION OF THE TRANSPORT OEPRATOR 

We take D to be an open, bounded, connected set of 
points r in three-dimensional configuration space. (If 

D is not convex then we require that neutrons emitted 
out of D be absorbed, so that the problem of reentering 
neutrons does not arise. ) We take V to be the three-di
mensional velocity space consisting of velocities 
v=vn, with Inl=landvo";v,,;v1 <c, wherecisthe 
speed of light. (Since we are dealing with a nonrelativis

tic equation, we require v1 «c. In a nuclear reactor, 
where the maximum neutron energy is about one percent 
of the neutron rest mass, this condition is certainly 

fulfilled. ) 

We define X as the Banach space of complex-valued, 
measurable functions 1/J(r, v), defined on 15x V, satisfying 

111/J11 = ( ( 11/J(r, v) I drdv < "", 
-'rED .J,.EV 

Now we shall describe the transport operator A and 

its (dense) domain Xo eX. 

We write A as the sum A = T + K where T is the 
"streaming" operator and K is the "scattering" or 

"collision" operator. 

The operator T is defined by44 

(T1/J)(r, v) = - [v· V + vl:(r, v)]1/J(r, v). (2.1) 

Here the gradient operator V acts only on rand vl:(r, v) 

satisfies the following properties: 

(a) vl:(r, v) is nonnegative, bounded, and piecewise 

continuous in rand v. 

(b) If Vo = 0, then 

ess inf lim vl:(r, v) =\ * 
rED v-o 

exists, and 

vl:(r, v) - \ * 
v 

(2.2) 

(2.3) 

where Co is a nonnegative constant. [If vl:(r, v) is mono

tone increasing in v for each r, then Co automatically 
exists and can be taken to be 0.] 

(c) For Vo ;;. 0, we define the constant X( vo) by 

X( vo) = ess inf vl:(r, v). (2.4) 
rE D 

VOC v~ Vi 

We note that X(O),,; \*, and that equality holds if vl:(r, v) 

is monotone increasing in v. 45 

Now we define Xo to be the (dense) subspace of func
tions 1/J such that 1/J( r, v) =:: 0 for rEaD and v pointing into 

D, and T1/JEX. T is a closed operator on Xo' Since K 

will be bounded on X, then A = T + K will be a closed 

operator on Xo' 

Next we discuss the scattering operator K. To do so, 

we write it as the sum 

K=Kc+K,+Ko' (2.5) 

where Kc,K" and Ko are all bounded operators in X. 

K c represents" continuum" scattering and is described 
by an integral operator: 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Mon, 24 Mar 2014 19:11:17



1989 E.W. Larsen and P.F. Zweifel: Spectrum of the linear transport operator 1989 

(Kc1/J)(r, v) = J .. EV kc(r, v' - v)1/J(r, v' )dv' . (2.6) 

The kernel kc satisfies: 

(d) kc is nonnegative and piecewise continuous. Also, 

kc is bounded except possibly for the case vo=O, in 

which we allow 

(2.7) 

This "continuum" scattering corresponds physically to 

fission, high energy elashc slowing down, and thermal 

inelastic scattering. 

Kd represents high e~ergy inelastic scattering and is 

described by a "downsJ:1ift" operator of the form 

Mo -i''&n 
(Ka1/J)(r, v) = 0 (Kd )1/J)(r, v), 

m=l 

x 6[v' - wn(v)]1/J(r, V' )dV' . (2.8) 

Here the operator K~m) describes an event in which a 

discrete energy Em is lost by a neutron at r with initial 

speed wm(v) and final speed v. wm(v) is defined by 

Em = tNw~(v) - tNv
2

, 

where N is the mass ofa neutron. The kernels k(m) 
d 

satisfy: 

(e) k<;') are nonnegative, piecewise continuous, and 

bounded: 

(2.9) 

(f) There exists a threshold speed v
t 

such that, for 

all m, k~m)(r, v' - v) = 0 for v' < Vt. (v t is the threshold 

speed below which the high-energy inelastic scattering 

described by Ka cannot occur. ) 

It follows from the above description of Ka and from 

our assumption that neutron speeds are bounded above 

that Kd is nilpotent, i. e., there exists an integer MI 

such that 

(2. 10) 

Physically, this means that after a maximum of MI - 1 

consecutive high energy inelastic colliSions, a neutron 

must have speed below Vt' 

Finally, the operator Ko in (2. 5) is a "Bragg" scat

tering or one-speed operator for low energy neutrons 

described by 

(Ko1/J)(r, v)= f .. ko(r, v, 0' - 0)6(v' - v)1/J(r, Y')dV'. 

(2. 11) 

The kernel ko satisfies: 

(g) ko is nonnegative, piecewise continuous, and 

bounded except possibly for the case Vo = 0, in which we 
allow 

To end this section, we shall make some comments 

regarding the above assumptions. 

First, the inequalities (2.7), (2.9), and (2.12) imply 

thatK=Ko+Kc+Kd is a bounded operator. This means 
physically that for each neutron density I/!, the corre

sponding total rate of secondary neutron production KI/! is 

uniformly bounded: IIK1/J11 .'If IIKIIII<J!II. 

Next, we note that the various kernels and cross sec

tions have been assumed piecewise continuous. Physi

cally, discontinuities in r correspond to boundaries be

tween regions with different constituents while discon

tinuities in v correspond to threshold effects, either 

the Bragg scattering "cutoff" or the;ii.).elastic scattering 

threshold. To prove our results, we sball assume that 

"piecewise continuous" has one of the following two 

meanings: 

(i) The various kernels and cross sections are con

tinuous in all of their variables. (This corresponds to 

a body in which the constituents vary continuously with 

pOSition, and no threshold effects occur in speed. ) 

(j) If = UnM:1If n' where D n are open sets. In D n' the 

various kernels and cross sections are constant func

tions of r, kc(r, v' - v) is continuous in v' and v; and 

v2::(r, v), ko(r, v, 0' - 0), and k~m)(r, v, W - 0) are con

tinuous in 0' and 0 and piecewise continuous in v. For 

mathematical convenience, we take the values of these 

functions on aD n to be the limiting value from either side 

of the boundary; we take 2::, ko, and k~m) to be continuous 

from the right in v for 0 < v < VI and continuous from the 

left for v = VI; and require that the limits in v from the 

left exist for 0 < v < VI' (This corresponds to a com

posite body in which each part is homogeneous in posi

tion and threshold effects can occur in speed. ) 

More complicated discontinuities can be handled using 

our methods. However we shall not consider them here 

since the geometrical descriptions and proofs become 

very lengthy. Assumptions (i) and (j) will be explicitly 

needed only in Theorem 5 and in Lemmas 3 and 4 

(Appendix). 

III. THE STREAMING OPERATOR AND ITS SPECTRUM 
SPECTRUM 

In this section we shall consider the operator T de

scribed in Sec. 2 and determine its spectrum for the 

two cases vo> 0 and Vo = O. First we consider the 
simpler case vo> O. 

Theorem 1: If va> 0, then a(T)={oo}. 

Proof: For any A we can formally solve the equation 

(AI - T)cp = <J! for cp to obtain 

1jd(r,m 
(AI - T)-I<J!(r, v) = v <J!(r - to, v) 

toO 

xexp(_[t A+V2::~-SO,v) dS)dt, 

O.'lf ko(r, v, 0' - 0) .'If Mo/v2
• 

(h)ko(r,v,Of-O)=O forv>v
t
• 

We note that (f) and (h) imply 

(2.12) (3.1) 

Ki AI - T)-IKo = 0, A E p(T). 

J. Math. Phys., Vol. 15, No. 11, November 1974 

where d(r, 0) is the distance from r to aD in the direc
tion - O. 

For each vo> 0 and A, there exists a positive constant 
(2. 13) M(A, vo) satisfying 
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1
1 (It A+v~(r-sn,v) d11 M( ) ;; exp - v s"" A, VO , 

o 

0"" t ""d(r, n). 

Then by (3.1), 

I 
rJ(r.Cl) 

(AI- Tt11/J(r, v) I ""M(A, vo) )t=o II/J(r - tn, v) I dt. 

Integrating this inequality over r and v, we obtain 

II(AI - Tt1I/JII"" IM(X, vo)III/JII, 

where 1 is the length of the longest:etraight line in D. 

Thus A Ep(T) for every finite A. SinceT is unbounded, 

then a(T) must consist solely of the point at 00. QED 

Theorem 2: If Vo = 0, then a(T) = {x I Re X"" - X *}. Fur

ther, for each X E a(T), there exists a sequence {I/JJcXo 
such that III/Jnll = 1 and lim".c (AI - T)I/Jn::= o. 

Proof: For each A, the operator (AI - T)-l exists on 
R(AI- T) (Ref. 40) and is given by (3.1). Thus X Ep(T) 

iff (AI - T)-l is a bounded operator defined on X. 

First we consider ReA> - A *. Then 

1 ~ exp (-it ~d V~(:-sn, v) ds)1 

_11 (. t A+ X*) (It v~(r+sn'V)-A*d) I -I-exp- --exp- s 
v . v 0 v 

1 
"" - exp[ - I(Rex + i\ *)/v] exp(lco), (3.2) 

v 

where X * is defined by (2.2), Co by (2.3), and 1 is the 
length of the longest straight line in D. By (3.1) and 

(3.2), 

j
d(r.(l) 

I (i\l- T)-ll/J(r, v) I "" exp(lco) II/J(r - tn, v) I 
toO 

x exp[-t(Rex+x*)/v]dt. 
v 

We integrate this inequality along the line L: ro + sn, 
ro E aD, 0"" s ""d(ro, - n), to obtain 

(d(to.-Ol 

10 I(AI-T)-ll/J(ro+sn,v)lds 

""exp(lco) xll/J(r +tn v)ldt. 
[

d(ro.-(l) 

ReA + i\* 0 0' 

Now we integrate over the remaining two space 

directions and v to get 

Thus i\ E p( T), and 

II(AI - T)-lll "" exp(lco), Rei\ > - A *. 
Rei\ + i\ * 

(3.3) 

Next we consider Rei\ < - A *. Then there exists a 

point ro ED and positive numbers Ea, Eu and ~ such that 

Rei\ + v~(r, v) < - Eo 

for 

J. Math. Phys., Vol. 15, No. 11, November 1974 

For n such that 0 < lin < ~/2, we define 

ct>n(r, v) = (:iY 7~; H n(r, v) exp (- i I~A d(r, n») 

where 1m denotes "imaginary part" and 

H(r,v)={I, Ir-ro!<El and l/n<v<2/n 
n 0, otherwise. 

Then ct>nEX and IIct>nll = 1. From (3.1) we can easily 

verify that (AI- Tt1ct>nEX; also, we obtain the estimate 

I (V - Tt1ct>n(r, v) I ~ Cl! Y 7~; E: [exp(~ n) - ~ 
1 2 

for-<v<-,lr-ro l<E1/2. 
n n 

Therefore, 

II(V - T)"lct>nll ~ 8~ [exp(~~- 1] . 
Since this becomes unbounded as n- 00, then i\ E O'(T). 

Thus {i\ I ReA < - i\ *} c O'(T), and since the spectrum is a 

closed set, then a(T) is as described in the statement 
of the theorem. 

Next we let ReA < - A * and take ct>n to be as defined 
above. We define I/Jn by 

I/Jn= (V - T)-1ct>,/II(AI- T)-1ct>n ll • 

Then IIl/Jnll=l and limn_~(AI-T)l/Jn=O. For ReX=-i\*, 

there exist sequences {i\n} with Rei\n < - X * and Xn - i\, 

and {I/Jn.m} with III/Jn.mll::= 1 and (i\,/ - T)I/Jn,m - 0 as m - 00. 

We can thus construct a sequence I/Jn = I/Jn.m
n 

such that 

(x,/ - T)I/Jn - O. Then I/Jn satisfies 

lim (V - T)I/Jn= lim [(X - i\n)l/Jn + (X,/ - T)I/Jn] = O. 
n~QCI n- ao 

This proves the second half of the theorem. QED 

Thus the finite spectrum exists and is a half-space 

only if neutrons can exist with arbitrarily small speeds. 

Also the description of 0'( T) (1. e., of X *) depends only 

on the limiting value of v~(r, v) as v- 0 and is insensi

tive to discontinuities or nonmonotonicity of v~(r, v). 

Finally, we add that for vo> 0, the calculations leading 

to (3.3) can be modified to yield the useful inequality 

H(i\!- T)-
1
H "" Rex: ~(vo)' Rei\ > - X(vo), 

where X(vo) is defined by (2.4). 

IV. THE ONE SPEED OPERATOR T+ Ko AND ITS 
SPECTRUM 

(3.4) 

In this section we shall consider the operator T + K o 
and determine the basic properties of its spectrum. 

T + Ko is a one-speed operator in the sense that it com

mutes with functions of valone. Thus we define an 

auxiliary Banach space XO as follows. We let S be the 
unit sphere in V and define XO as the set of all complex

valued functions I/J(r, n) defined on D x S, satisfying 

IIl/Jllo=JED ';;01=1 II/J(r,O)ldrdO. 

Then the operators T=T(v), Ko=Ko(v), and T+Ko=A(v) 

(which, as we have indicated, depend parametrically 
upon v) are defined on the subspace xg c XO of functions 
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such that T(V)l/JEXO and l/J(r,G)=O for rErW and G 

pointing into D. Clearly, xg is independent of v. 

To proceed we need the following theorem, which is 

due to Gohberg. 42 

Theorem (Gohberg): Let L(X) be an operator-valued 

function, holomorphic in an open connected set G, and 

compact for X E G. Then for all points X E G, with the 

possible exception of certain isolated points, the num

ber a(x) of linearly independent solutions of the equation 

[I-L(X)]</>=O 

is constant: 

a(X)=n; 

at the isolated points mentioned, 

a(x) > n. 

Henceforth we shall denote all quantities pertaining to 

XO by a "zero" superscript. We can now prove 

Theorem 3: Let ~(v) = infrv~(r, v). Then {X I ReX 

> -l(v) + IIKo(v)IIO}cpO[A(v)]. Also, o,o[A(v)] consists en

tirely of isolated eigenvalues of finite geometrical 

multiplicity. 

Proof: The proof of Theorem 1 can be modified to show 

that dl[ T( v)] = {oo}. Also, the calculations leading to 

(3.3) can be modified to give 

II[V - T(V)]-IIiO "" 1_ () for ReX> - x(v), 
ReX + X v 

and thus 

II[V - T(V)]-IK (v)IIO "" IlKo(t,:)11° < 1 
° ReX +X(v) 

for ReX> -X(v) + IIKo(v)llo. 

(4.1) 

For such X, V -A(v)= [V - T(v)]{I - [H - T(V)]-IKo(v)} 

is invertible, yielding 

(4.2) 

This proves the first half of the theorem. 

To prove the remainder of the Theorem, we shall con

sider the operator Q(X, v) =Ko(v) [V - T(V)]-IKo(v). In the 

Appendix, we shall prove that Q is a compact operator 

on XO. (See Lemma 3. ) Therefore, Q(X, v) [V - T(V)]-I 

= {!(o(v)[H - T(V)]-1}2 is a compact, operator-valued func

tion of X which is holomorphic in the entire complex 

plane. Also, by (4. 1), 1- {Ko(v) [V - T(V)]-lY is inver

tible for ReX> -l(v) + IIKo(v)llo. Thus by GOhberg's 

Theorem there exists at most a set of isolated values of 

X in the complex plane such that 1 E Puo {[K o( v)[ V 

- T(V)]-Ir}, and at these points 1 is an eigenvalue of 

finite geometrical multiplicity. At all other values of 

X, 1 EpO{[Ko(v)[V - T(V)]-l)2}. 

Now since {Ko(v)[V - T(V)]-1}2 is compact, then 

Ko(v)[H - T(V)]-I is potentially compact41 and its spec

trum, except possibly for the point 0, consists entirely 

of point spectrum. 
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Thus by the spectral mapping theorem, only for the 

above set of isolated values of X can we have 

1 E~ {!(o(v) [V - T(V)]-I}. At such a X value the equation 

0= {I - Ko(v)[V - T(V)]-I}</> = [H -A(v)][H - T(V)]-I</> has 

a finite number of solutions. Consequently, X is an 

eigenvalue ofA(v) of finite geometrical multiplicity. At 

all other values of X, 1 E pO{!(o(v)[H - T(V)]-I} and for 

such X the operator 

I -Ko(v) [V - T(V)]-I = [V -A(v)] [H - T(V)]-I 

has a bounded inverse defined on XO. Taking this inverse, 

we find 

[H - A(V)]-I = [V - T(V)]-I {I -Ko(v)[V - T(V)]-I}-I, 

and consequently X E pO[A(v)]. This proves the theorem. 

QED 

The next theorem is based on a result of Vidav22
: 

Theorem 4: Letxo(v)=SuPAEaOIA(V)) ReX, and let 
5:(v) < 5:o(v). Then ~o(v) is an eigenvalue of A(v), cor

responding to which is a positive eigenfunction. 

Proof: A simple modification of the proof of Theorem 

3, Ref. 22 yields the result. QED 

Thus, the picture of dl[A(v)] which emerges can be 

graphically described by Fig. 1. In the Appendix, we 

show that IlKo(v)IIO = sUPr v~o(r, v), where ~o(r, v) is the 

cross section for low energy elastic collisions at speed 

v. Thus there is no spectrum to the right of the line 

ReX = v[sup ~o(r, v) - inf~(r, v)]. 
r r 

We note that the above results hold for v fixed; con

sequently, the eigenvalues depend parametrically upon 

v. In general, as v varies between Vo and VI' some of 

the eigenvalues will remain stationary and some will 

shift and trace out curves. Thus, the set 

s = U uO[A(v)] (4.3) 
Vij=Ei v ~ Vl 

will consist of isolated pOints and curved lines. Using 

S, we have: 

Theorem 5: Let S be defined by (4.3). Then, for 

vo~O, 

Im~ 

I I 
I \ 

I I 
I- \ 

-I _-I 
\ ~o(vll 

Re~ 1 I 
I -I 

_I I 
I- I 
I I 
\ I 

I \ ° -l(v) -1.(v)+ IIKo(v)1I 

FIG. 1. dl[A(v)l. ;\(v) < ;\o(v). 

(4.4) 
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and 

{A I ReA> - X(vo) + IIKoll}c p(T + KJ. (4.5) 

Furthermore, for each A E a(T + K o), there exists a 

sequence {lPn}cX such that IllPnll = 1, lPn(r, v)=O for v> Vt' 

and II(AI- T -Ko)1/!nll - o. 

Proof: First we show that a(T) uSc a(T + Ko). To do 

this, let A E a(T). Then by Theorem 2, there exists a 

sequence {tPn} with II tPnll = 1 such that (AI - T)tPn - O. By 
Lemma 1 (see the Appendix) there exists a sequence of 

integers M n such that, with 

lPn(r, v) = exp(iM nO. 00) tPn(r, v), (4.6) 

we have 

Thus, 

II(AI - T - Ko)lPnll <> II(AI - T)tPnll + IIKolPnll- 0, 

and so if (AI - T - Kot1 exists, it must be unbounded. 

Consequently, AEa(T+Ko), and so a(T)ca(T+Ko)' 

Next, we let A E S. Then by Theorem 3 there exists 

a function ¢(r, 0) such that 114)110 = 1 and 

(AI-T-Ko)(J>(r, 0)=0 for v=v. Ifv<v1' we define the 

sequence lPn by 

( )
_{n/v2 tP(r,O), v<>v<>v+1/n 

lPn r, v - 0, otherwise. 

Then IllPnll = 1. For v <> v <> V + l/n, 

(
' r T K) ( ) _ v~(r, v) - v~(r, V) A..(r, 0) 
IU- - olPnr,v-n v2 'I' 

v-v 
+ n -2- O·VtP(r, 0) 

v 

- ~ f [ko(r, v, 0' - 0) 
V llO' 1=1 

(4.7) 

- ko(r, v, 0' - O»)tP(r, O')dO', 

while for v < v or v> v + lin, (AI - T -Ko)lPn= O. Thus, 

integrating over r and v, we obtain 

II 
(u+l/n I - - I 

II(AI - T -Ko)lPn <>n J.=il v~(r, v) - v~(r, v) dv 

+ -1-1 1. 1o. V tP(r, O)ldOdr 
n rED 101=1 

r~+l/nf 1 r 
+nJ.=v rED 101=IJO'I=1 

x ItP(r, 0')1 dO' dOdrdv. 

Since v~(r, v) and ko(r, v, 0' - 0) are continuous from 

the right in v (see Sec. 2), then each of the above inte

grals will tend to zero as n - 00. Consequently, 

II(AI - T - Ko)lPnll- 0, and so A E a(T + Ko). This result 

holds if ff < VI' If v = v1> we define the sequence lPn as in 
(4.7), except that we take lP n to be nonzero over the 

interval VI - lin <> v <> VI' Then since v~(r, v) and ko are 
continuous from the left at v1 , the above procedure will 

apply. Thus we have S c a(T+K). 
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Hence a(T) USc a(T + Ko), since the spectrum is 

closed. To prove inclusion the other way, we shall con
sider the equivalent inclusion 

C[a(T)US]cp(T+Ko)' (4.8) 

where C means" complement. " Thus, we let 

AEC[a(T)uII. Then the equation 

(AI - T - Ko)tP(r, v) = lP(r, v) 

has a solution tP such that IltP(r, v)II O <> constlllP(r, v) 110 for 

VO<>V<>Vl' even if vo=O. Consequently, IltPll 

= II(AI - T - KO)-llPll < 00 for each lP EX. By the results in 

Sec. 2, T is closed and K is bounded, so T + Ko is 

closed in X. Consequently, (AI - T _Kot1 is closed, and 

so by the closed graph theorem is bounded. Thus 

AEp(T+Ko)' This proves (4.8), and also (4.4). 

Next we use (3.4) and we repeat the same arguments 

which led to (4. 2) to obtain 

II (AI - T - KO)-111 <> ReA + ~(~o) - IIKoll ' 

ReA> - ~(vo) + IIKoli. (4.9) 

This proves (4.5). 

Finally, we let A E a(T + Ko). (With no change in the 

spectrum, we can decrease v1 so that v1 =v t.) If AEa(T), 

then the sequence described by (4. 6) satisfies IIlPnll = 1 

and II(AI - T -Ko)lPnll- O. If A ES then the sequence de

scribed by (4.7) satisfies these conditions. If A ES, then 

there exist sequences {lPn}cS with An - A and {lPn.m} with 

IllPn.mll = 1 and II(AI - T -Ko)lPn.mll- 0 as m - 00. We can 
thus construct a sequence lPn= lPn•mn such that 

(AI - T -Ko)lPn - O. Then 

(AI - T - Ko)lPn = (A - An)lPn + (AI - T - Ko)lPn - O. 

These results hold for VI = V t. For v1 > v t' we extend the 

above functions lPn by defining them to be zero for 

VI "" V > v t; this yields a sequence which satisfies all the 

conditions of the theorem. 

This completes the proof of Theorem 5. QED 

We remark that a(T + Ko) is described graphically by 

Fig. 2 for vo> 0 and by Fig. 3 for Vo = O. Also, as in 

the case of aO[A(v»), IIKoll = sUPr •• v~o(r, v) (see Appendix). 

Thus there can exist no spectrum to the right of the line 

ReA = sUPr.v v~o(r, v) - infr•v v~(r, v). Note that the de-

1mA 

I 

o 
• i ./ 

I 

---f-----':~>---_+__+------ ..... ReA 

I 
I 

• I 

/fa 
I 

-A* 

FIG. 2. a(T+Ko), vo> o. 
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FIG. 3. (}"(T+Ko), vo'" O. 

finition of ~o(r, v) is such that it may actually exceed 

~(r, v). In fact, in the extreme one-speed case, 44 

v~(r, v) == 1 and v~o(r, v) = c. 

Finally, let us consider Vo = O. We note that Ko is a 

bounded operator on X but that the operator v-lKo is in 

general unbounded. However, if ko satisfies an inequality 

of the form ko(r, v, 0' - 0) ~Molv [instead of (2.12)], 

then v-lKo will be bounded. For cases of this type, we 

can prove the following theorem: 

Theorem 6: Let Vo == 0 and v-lKo be a bounded operator 

on X. If the maximum diameter 1 of D satisfies 

(4.10) 

then 

{A I ReA> - A *} C p( T + Ko). (4.11) 

Proof: Let (4. 10) be satisfied and let ReA> - A *. Then 

by (3.1) and (3.2) we have 

( 
ReA+A*) 

x exp . - t v exp(lco) dt 

I
d (r.CI> 

~ exp(lco) I (v-lKo)ifi (r - tn, v) I dt. 
pO 

Integrating over r and v, we obtain 

II(Al- TtlKol1 ~ 1 exp(lco)lIv-lKoll < 1. 

Therefore, the operators 

(Al - T)-l(AI - T - Ko) c I - (AI - TrlKo 

have bounded inverses defined on X, and 

(AI - T - KO)-l = [I - (Al- TtlKo]-l(AI - T)-l 

is bounded, proving that \ E p(T + Ko). This verifies the 

inclusion (4.11). QED 

Thus if the hypotheses of Theorem 6 are satisfied, 

then all the spectrum of A is imbedded in the "continuum" 

ReA ~ - \ *. We shall comment on this in Sec. 6. 

V. THE TRANSPORT OPERATOR T+ K AND ITS 
SPECTRUM 

In this section, we shall prove that a(T + K) differs 

J. Math. Phys., Vol. 15, No. 11, November 1974 

from a( T + Ko) only by the addition of point spectrum, 

and we shall give estimates on the location of this spec

trum. If p(T +Ko) is a connected set, then the added 

spectrum consists of isolated, discrete points of finite 

geometrical multiplicity. If p( T + Ko) is not a connected 

set, as in Fig. 2 and 3, then certain connected com

ponents of p(T + Ko) can become wholly or partially 

filled with point spectrum. We shall prove these results 

in the following theorems. 

Theorem 7: a(T+Ko)ca(T+K). 

Proof: Let A E a(T + Ko). Then by Theorem 4, there 

exists a sequence { <I>,.} such that II <l>n I I = 1, <l>n(r, v) = 0 

for v> VI' and (Al- T -Ko)<I>n - O. By Lemma 2 (Ap

pendix), there exists a sequence of integers {M n} such 

that, with 

ifin(r, v) == <l>n(r, v) exp(iM nV)' 

we have lIifinll = 1 and Kcifin - O. Furthermore, by con

dition (f) of Sec. 2, Kaifin=O. Therefore, by (2.5), 

II (AI - T - K) ifin II ~ II (AI - T - Ko)<I>nll + IIKcl/inll- O. 

This proves the theorem. QED 

To state the next theorem, we write p( T + Ko) as the 

union of its connected components: 

p(T+Ko)= USn' 

where Ci is a nonnegative integer or 00. Each Sn is a 

connected, open set and is the reflection of Son across 

the ReA axis. So is the "largest" of these sets and con

tains the right half plane ReA> - X(vo) + IIKII. (See 

Theorem 9. ) Figures 2 and 3 illustrate this situation. 

If the lines generated by a(T + Ko) do not form closed 

loops, then p(T + Ko) is connected and is equal to So. 

Now we can state the theorem. 

Theorem 8: The set a(T + K) n p(T + Ko) is described 

by: 

(i) [a(T+K)np(T+Ko)]cPa(T+K). 

(ii) a( T + K) n S n consists of eigenvalues of finite 

geometrical multiplicity. 

(iii) a( T + K) n So consists of isolated points. 

Proof: We define Kl =Kc + Ka' Then the operator Q(A) 

=Kl(Al - T - KO)-l is a holomorphic, operator-valued 

function of A in Sn' Simple algebraic manipulations allow 

us to rewrite Q(A) in the form 

Q(A) =Kl(AI - T)-l + Kl(AI - T)-lKo(AI - T - Korl. 

(5.1) 

In the Appendix we shall show that for A E p(T), 

Kl(AI - T)-lKo and [Kl(Al- Trl]Ml>l are compact, where 

Ml satisfies (2.10). Then QMl>l(A) is a holomorphic, 

compact operator-valued function of A in Sn" It follows 

from Gohberg's theorem that either 1 EPa[QMl>\A)] for 

all A E Sn' or there exist at most isolated values of A 
for which 1 E Pa[QMl>l(A)] and 1 Ep[QMl+l(A)] for all other 

values of A E S. In either case the eigenvalue 1 has 

finite geometrical multiplicity. 

Since QM!+l(A) is compact, then Q(A) is potentially 

compact and its spectrum, except possibly for the point 

0, consists entirely of point spectrum. Thus by the 
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1mA 
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I 
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~ 
I • 
I 1 
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-A* -1(vo)+ IIKoll -1(vo)+IIKIl 

FIG. 4. a(T+K) , vo>o, -l(vo)<sup'Xo(v)<:>"o. 

spectral mapping theorem, we must have for A E Sn either 
1 E p[Q(A)] or 1 E Pa[Q(A.)). If 1 is in the point spectrum, 

it has finite geometrical multiplicity. 

If 1 Ep[Q(A.)], then 

1- Q(A.) = (AI - T - K)(AI - T - Kotl 

has a bounded inverse defined on X, and hence 

(AI - T - K)-l = (AI - T - Kotl[I _ Q(A.)]-l. 

Thus A. E p(T + K). 

If 1 EPa[Q(A)], then the equation 

0= [I - Q(A)]<t>=(AI- T -K) [(AI- T -Kotl<t>] 

has a finite number of solutions. Hence X E Pa( T + K) 

and the geometrical multiplicity of A is finite. This 

proves claims (i) and (ii). 

To prove claim (iii), we note from (5.1) and (4.9) 

that Q(X)-O as ReA.- 00. Hence by Gohberg's theorem 

there exist at most isolated values of A E So for which 
1 EPa[QM1+l(X)]. By the spectral mapping theorem, only 

for these A. values can 1 EPa[Q(A)], and as we showed 

above, only such A can be in a(T + K). QED 

The next theorem provides estimates on the location 

of a(T+K). 

Theorm 9: {xIReA> -X(vo)+ IIKII}cp(T+K). Also, if 

vo=O, if v-1K is a bounded operator on X, and if the 
maximum diameter l of D satisfies 

(5.3) 

then 

{A. IRe:>.. > - A. *}c p(T + K). 

Proof: Using (3.4) and repeating the argument which 

led to (4.2), we obtain 

II(Al- T - Kt11l.;; ReA. + t(:o) _ IlKlI' ReA. > - X(vo) 

+IIKII. 

(5.4) 

This proves the first part of the theorem. To prove the 
second part, we simply repeat the proof of Theorem 6 

with K replacing Ko' QED 

The next result generalizes Theorem 4, from which 

we borrow some notation. 
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Theoren;, 10: Let A.o=suPI.Ea(A) ReA. If AO> suPv~o(v) 
and Xo> - X( vo) then Xo is an eigenvalue of A, corres
ponding to which is a positive eigenfunction. 

Proof: As in Theorem 4, we refer to the proof of 
Theorem 3 ip. Ref. 22. QED 

Thus, a( T + K) is described by Fig. 4 for vo> 0 and 

by Fig. 5 for vo = O. These figures differ from Figs. 2 

and 3 respectively only by the addition of point spectrum. 
We note that if "loops" exist, as shown in Figs. 2 and 
3, then we cannot exclude the possibility that their in

teriors (the sets Sll with n = 0) become partially or 
wholly filled with point spectrum. Also, IIKII is given in 
the Appendix and as in the cases of aO[A(v)] and a(T + Ko), 

we deduce an absolute limit to the real part of (T + K) 

as sUPr.vv~.(r, v) - infr,vv~(r, v). 

We conclude the main body of this paper with the 

following result: 

Theorem 11: The transport operator A = T + K is the 

infinitesimal generator of a strongly continuous semi
group of operators. 

PrOOf: By the results in Sec. 2, T is a closed, dense

ly defined operator and K is bounded. Thus T + K is a 
closed, densely defined operator satisfying (5.4), and 

so the conditions of the Hille-Yosida-Phillips 
theorem46 are met. QED 

It follows that the semigroup T (t) = exp(At) exists and 

enables us to solve the initial value problem 

a<Ji =A<Ji 
at 

<Ji 11=0 = <Jio· 

The behavior of the solution of this problem thus de
pends on the location and classification of a(A). In this 
paper we have described many of the basic properties 
of this spectrum for arbitrary bounded domains and, 

we hope, realistic and general transport operators. 

VI. DISCUSSION 

If we refer to the results of Sec. 5, as exhibited 

schematically in Figs. 4 and 5, we see that the spectrum 
of T + K can have a rather complicated structure. This 

is due in part to the curves and loops which a(T + K) 

inherits from a(T +Ko) (Figs. 2 and 3). At present, 

1mA 

• 

-A* 

.1 
I 
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I 
I 

-1(0 }+IIKII 
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little is known about the spectrum of this one-speed 

operator. However, for a restrictive case (isotropic 
scattering, spatial independence of all cross sections 

and kernels, and analysis in L 2) it is known that the 
portion of the spectrum of one-speed operators which 
lies to the right of the line Re\ = - v~(v) is real [where 
~(v) is the total cross section]. If this is true in general, 
then the curves in Figs. 2 through 5 to the right of the 

line Rex = - ~(vo) will consist of line segments on the 
real aXiS, and the spectral picture for T + K will sim
plify considerably. 

Another question of obvious importance concerns the 
existence of a simple dominant eigenvalue, i. e., a 
simple eigenvalue whose real part is larger than any 
other A in the spectrum, and whose eigenfunction is 
nonnegative. Physically one expects that such an eigen

value will exist but this remains to be proved. Our re
sults indicate only that under the conditions of Theorem 

10, a "semidominant" real eigenvalue AO with real eigen
function exists. At present we cannot show that complex 

eigenvalues with real parts equal to \0 do not exist, 
nor can we say anything about the algebraic multiplicity 

of AO or any other eigenvalue. (Vidav's proof22 that the 
eigenvalues out of the continuum have finite multiplicity 
is valid only for geometrical multiplicity, and his proof 

that Ao is a simple eigenvalue in L P' p> 1, only shows 
that Ao has geometrical multiplicity one. ) 

Finally, we note (Theorem 9) that if vo=O and v-1K is 

a bounded operator, then for sufficiently small bodies 

the spectrum to the right of the line ReX = - X * disap
pears. This famous "disappearance of the point spec
trum into the continuum" was first predicted on a heu

ristic basis by Nelkin7 and has become a part of the 
folklore of neutron transport theory. It turns out that 
this effect has never been observed experimentally. 47 

Our results suggest that this is due to the absence of the 

continuum to the left of ReX = - X * for vo> O. In other 
words the case Vo >0 corresponds more closely to physi
cal reality. This is hardly surprising; the Boltzman 

equation considered here treats the neutrons as claSSi
cal particles and cannot be expected to be valid for 
neutron speeds so low that the neutron wavelength be
comes comparable to a mean free path. To consider 
realistically the case Vo = 0, another equation should be 
studied. The experimental evidence suggests strongly 
that equation would not predict the continuous spectrum 

we find here for the case Vo = O. 

APPENDIX 

Here we shall prove certain results which were needed 
earlier. We shall state these results as lemmas. 

Lemma 1: Let l/! EX and let 0 0 be fixed. Then w,,(r, v) 

= ljJ(r, v) exp(inO. 0 0) EX, IIw"11 = IIwll, and Kow" - O. 

Lemma 2: Let l/!EX. Then l/!,,(r,v)=l/!(r, v)exp(inv) EX, 

Ilw"1I = 1Il/!1I, and Kcl/!" - O. 

PrOofs: By the Riemann-Lebesgue Lemma,48 the se

quence Koi/J" of Lemma 1 satisfies lim"... .. (Koi/J,,)(r, v) = 0 
for almost every rand v. Since, by (2.11) and (2.12), 

I(Koi/J,,)(r,v)1 ~MoIn. i/J(r,vO')dO' ",g{r,v), 

and since IIgIl < 00, then it follows from the Lebesgue 
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dominated convergence theorem48 that 11K0i/J,,11- O. 

Lemma 2 is proved in a similar way. QED 

Lemma 3: Ko(v)[Al- T(V)]-lKo(v) is, for fixed v, a 

compact operator in XC. 

Lemma 4: For X E p(T), the operators K1(Al- T)-lKo' 

Kc(Al- T)-lKc' and KiAl- TtlKc are compact in X. 

Proofs: The proofs that each of the operators of 

Lemmas 3 and 4 is compact are virtually identical. Thus 

we shall single out K1(Al - TtlKo and prove the result 
only for this operator, and for the more difficult case 

vo=O. 

Since Kl =Kc + Kif, then by (2.13) K1(Al - TtlKo 

=KlllI - TtlKo' Thus we need to show only that 
Kc(Al- T)-lKo =L is compact for ReX> - X *. 

Using (2.6), (2.10), and (3.1) we write L in the 

explicit form 

(Li/J)(r, v)= Ir' I .. G(r', v', r, V)i/J(r', v)dv' dr' 

where 

v' t, r - r' ) 
G(r',v',r,v)= Ir-r'12 ko{,v',Ot-lr_r'1 

(, r-r' ) 
x Rc ~,v' I r _ r' I - v 

xexp{- [~r-r'l ~, [x+v'~(r-s Irr_-:I ,V') ]as}. 
Now for each (r', v') E 15x V, we define the function 

i/Jr' , .. by 

i/Jr. , .. (r, v) = G(r' , v' , r, v). 

Then by the "Dunford-Pettis" theorem, 49 L is a com

pact operator if 1JI"'{i/Jr' , .. I (r', v) EDX V} is a "compact" 
subset of X. Equivalently, L is compact if IJIcX and 

every infinite sequence in IJI possesses a Cauchy 
subsequence. 

First we show that IJIcX. USing (2.7), (2.12), and 
(3.2), we obtain 

1
,/, ( )1~MqMcexp(lco)exp{- Ir-rol[(ReX+A*)/v']) 
'fr' ,'" r, v v' I r _ r' 12 v2 

(AI) 

Now we integrate over r and v to get 

11 ,/, II ~ MJvIc exp(lco) 4 
'fr'... ~ v' 7rV1 

{ [,!(r,m 

X In it.o exp(- t Re~+ A * )dtdO 

Thus IJIcX. 

Next, we consider an infinite sequence in IJI. If the 

various kernels and cross sections are continuous, as 
described by (i) of Sec. 2, then we select a subsequence 

1/1,,= l/!r'" ,"" such that (r:, v:) - (ro', vo')· Letting l/!o'" i/Jro . .,o' 
we have, for any € > 0, 
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II<Po - <Pn ll = .t-rol~' Iv I <Po - <Pn I dvdr 

+ lr-rOI>, Iv l1Po- <Pnldvdr. 

By (AI), the first integral on the right side of this 

equation is O(€). By the continuity of the various kernels 

in G, the second integral can be made O(€) by requiring 

n to be sufficiently large. Thus II<Po - <Pn ll - 0, proving 

that L is compact if condition (i) of Sec. 2 holds. 

If condition (j) of Sec. 2 holds, then from any infinite 

sequence in 'l1 we select an infinite subsequence 1Pn 

;: <Prn' ,vn' such that (r,:, v,:) - (ro' vo) E: I5x V; for some 

k, r n' E: D K' all n; and v,: is either a decreasing or an in

creasing sequence. Then, as a simple modification of 

the above proof for condition (i) will show, the sequence 

<Pn is a Cauchy sequence because of the conditions im

posed on the kernels and cross sections. Thus, the 

operator L is again compact. This proves the lemma 

for cases (i) and (j) of Sec. 2. QED 

Lemma 5: For A E:p(T), [K1(AI - T)-l]Ml+l is compact. 

Proof: We write 

[K1(AI - T)-l]Ml+l:= [Kc(AI - T)-l +KiAI - T)-l]Ml+l 

:= [Kc(AI - Ttl]Ml+l + ... + Kc(AI - T)-l 

x [KiAl- T)-l]Ml + [Ki Al - T)-l]Ml+1, (A2) 

where the dots refer to operators, all of which are 

products of Kc(Al- T)-l and Kd(Al - Ttl, and all of which 

contain the product Kd(Al- TtlKc' which by Lemma 4 is 

compact. Also by Lemma 4, the first term on the right 

side of (A2) is compact. By Eq. (2. 10) and the fact that 

(AI - T)-l is a one-speed operator, [Ki Al - T)-l]Ml:= 0 so 

that the last two terms on the right side of (A2) are zero. 

Therefore, [K1(V - T)"l]Ml+l is a sum of compact 

operators, and hence is itself compact. QED 

Lemma 6: IIKII = sUPr,vv~s(r, v), where ~s(r, v) is the 

cross section for scattering plus fission (i. e., for col

lisions in which secondary neutrons are emitted). 

Proof: In terms of the differential cross section 

~$(r, v' - v), we can write 

(K<p)(r, v)= Iv' v'~s(r, v' - v)<p(r, v')dv', 

and, by definition, 

~s(r, v') = 1 ~s(r, v' - v) dv. 
v 

We combine these equations to obtain 

IIK<p11 ,,;11 v~s(r,v)I<p(r,v)ldrdv, r v' (A3) 

where equality holds for <P ~ O. From this equation, we 

get 

(A4) 

However, equality holds in (A4) as can be seen by taking 

in (A3) a nonnegative sequence <Pn which "converges" to 

the delta function at the point where v~s(r, v) "attains" 

~m~~~. ~D 

Corollary: IIKoll = sUPr,v v~o(r, v), where ~o(r, v) is the 

cross section for low energy elastic collisions. Similar

ly, for fixed v, IlKollo = sUPr v~o(r, v). 
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