
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 6, JUNE 1999 1057

On the Speedup Required for
Work-Conserving Crossbar Switches
Pattabhiraman Krishna, Naimish S. Patel, Anna Charny, and Robert J. Simcoe

Abstract—This paper describes the architecture for a work-
conserving server using a combined I/O-buffered crossbar switch.
The switch employs a novel algorithm based on output occupancy,
the lowest occupancy output first algorithm (LOOFA), and a
speedup of only two. A work-conserving switch provides the same
throughput performance as an output-buffered switch. The work-
conserving property of the switch is independent of the switch size
and input traffic pattern. We also present a suite of algorithms
that can be used in combination with LOOFA. These algorithms
determine the fairness and delay properties of the switch. We
also describe a mechanism to provide delay bounds for real-time
traffic using LOOFA. These delay bounds are achievable without
requiring output-buffered switch emulation.

Index Terms—Crossbar switches, quality-of-service (QoS),
scheduling, work-conservation.

I. INTRODUCTION

T HE rapid growth in the popularity of the Internet has
caused the traffic on the Internet to double every year

for the last several years. It has also spurred the emergence
of many Internet service providers (ISP’s) whose revenues
primarily come from providing Internet access to individuals
and corporate customers. The ISP’s typically lease wide-area
links that cost them, for some very high capacity links (e.g.,
OC-48), up to several dollars per minute. In order to remain
profitable in such an environment, the ISP’s need to keep these
links fully utilized. There is a dire need to reduce/eliminate
link idling. Also, to sustain growth, they need to provide
new differentiated services—e.g., tiered service, support for
multimedia applications, etc.

The switches/routers in the ISP’s networks play a critical
role in providing these features. It is desirable that mechanisms
be built into these switches so that they can be work conserving
(to eliminate link idling), support prioritization (for tiered
service), and provide rate and delay guarantees (to support

Manuscript received July 15, 1998; revised February 1, 1999. An early
version of this paper was presented at IWQoS ’98, Napa Valley, CA, May
1998.

P. Krishna is with the Compaq Computer Corp., Marlboro, MA 01752
USA (e-mail: pat_krishna@yahoo.com).

N. S. Patel was with the Digital Computer Corp., Littleton, MA 01460
USA. He is now with Sycamore Networks, Tewksbury, MA 01876 USA (e-
mail: naimish@sycamorenet.com).

A. Charney was with the Digitial Computer Corp., Littleton, MA 01460
USA. She is now with Cabletron Systems, Andover, MA 01810 USA (e-
mail: charny@ctron.com).

R. J. Simcoe was with the Digitial Computer Corp., Littleton, MA 01460
USA. He is now with Nexabit Networks, Marlboro, MA 01752 USA (e-mail:
bsimcoe@nexabit.com).

Publisher Item Identifier S 0733-8716(99)04486-8.

multimedia applications). In addition, the switch has to be of
a very high capacity.

Optimal throughput and delay performance is obtained using
output-buffered switches. As long as input ports and output
ports are undersubscribed (i.e., feasible loads), 100% through-
put is achieved. Moreover, since the packets are immediately
placed in the output buffers upon arrival, it is possible to better
control the latency of the packet. This helps in providing QoS
guarantees. To achieve this, the switch fabric must operate at
a rate at least equal to the aggregate of all the input links
connected to the switch. However, increasing line rates
and increasing switch size make it extremely difficult
to significantly speed up the switch fabric and also build
memories with a bandwidth of . This has renewed
interest in switches with lower complexity (and cost), such as
input-buffered switches.

One of the most popular interconnection networks used for
building input-buffered switches is the crossbar because of its
1) low cost; 2) good scalability; and 3) nonblocking properties.
An input-buffered crossbar switch has the crossbar fabric run-
ning at the link rate. If each input maintains a single first in/first
out (FIFO) queue, packets suffer from head-of-line (HOL)
blocking. This limits the maximum throughput achievable.
Karol et al. [1] showed that the maximum throughput of an
input-buffered crossbar switch operating under uniform traffic
is limited to about 58%. Moreover, Li [2] has shown that the
maximum throughput of the switch decreases monotonically
with increasing burst size. A considerable amount of work
has been done in recent years to build input-buffered switches
that match the performance of an output-buffered switch. To
eliminate HOL blocking, virtual output queues (VOQ’s) [5],
[7] were proposed at the inputs. Each input hasqueues, one
for each output, resulting in a total of queues. However,
since there could be contention at the inputs and outputs, there
is a necessity for an arbitration algorithm to schedule packets
between various inputs and outputs (equivalent to the matching
problem for bipartite graphs).

Definition 1: A maximal match on a bipartite graph is one
where no more matches can be made trivially. A maximum
match on the other hand is one that matches the maximum
number of inputs and outputs, i.e., there is no other match
that matches more inputs and outputs. A maximum match is
maximal; however, the reverse is not true.

It has been shown that an input-buffered switch with VOQ’s
can provide asymptotic 100% throughput using a maximum
matching algorithm [3]. However, the complexity of the best
known maximum match algorithm is too high [for

0733–8716/99$10.00 1999 IEEE

1058 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 6, JUNE 1999

uniform traffic and for nonuniform traffic] [4]
for high-speed implementations. Moreover, under certain traf-
fic conditions, maximum matching can lead to starvation. Over
the years, a number of maximal matching algorithms (e.g.,
PIM [5], WPIM [6], SLIP [7], FARR [8], and LPF [12]) have
been proposed. However, none of these algorithms match the
performance of an output-buffered switch.

Increasing thespeedupof the switch fabric has also been
proposed as one of the ways to improve the performance of an
input-buffered switch. Speedup is defined as the ratio of the
switch-fabric bandwidth and the bandwidth of the input links.
(Until otherwise mentioned, we will be assuming that all input
links and output links of the switch have thesamecapacity.)
However, when the switch fabric has a higher bandwidth than
the links, buffering is required at the outputs too. Thus, a
combination of input-buffered and output-buffered switches is
required [called combined input- and output-buffered (CIOB)
switches]. The goal then, is to find the minimum speedup
required to match the performance of an output-buffered
switch.

One of the early efforts in this direction was the Knockout
Switch [16] proposed by Yehet al. Instead of speedup, they
employed a switch with aparallelism factor , where is the
maximum number of packets that can be transferred to each
output in a time slot. In [17] and [18], it was observed that
more than 99.5% throughput is achievable using .

Unlike a switch operating under aspeedupof , in a switch
with a parallelism factorof , the packets to an output
cannot come from the same input. In [11], a simulation study
of input-buffered switches suggested that a speedup of two is
sufficient to provide both throughput and delay performance
of an output-buffered switch. However, there were no proofs
to back their claims. McKeownet al. [9] showed that a CIOB
switch with VOQ’s is always work conserving if speedup is
greater than . Prabhakaret al. [10] showed that a speedup
of four is sufficient to emulate an output-buffered switch (with
an output FIFO) using a CIOB switch with VOQ’s. In a
recent work [19], it has been shown that a speedup of two
is sufficient to emulate an output-buffered switch employing a
monotonic and work-conserving scheduler. As explained later
in Section VI, the proposed form of the algorithm in [19]
is too complex to implement using the current technology.
The implementation difficulty, however, does not dilute the
theoretical importance of the result in any way.

In this paper, we present a novel and implementationally
simple scheduling algorithm, called the lowest occupancy
output first algorithm (LOOFA). We prove that a CIOB switch
with VOQ’s operating under LOOFA and a speedup of two is
work conserving at all times. The work-conserving property
of a switch operating under LOOFA is independent of the
switch size and input traffic pattern. We also present a suite
of algorithms that can be used in combination with LOOFA.
These algorithms determine the delay and fairness properties
of the switch. In this paper, we will also present a mechanism
that, when augmented with a switch operating under LOOFA
and speedup of two, cannot only provide work-conserving
properties, but also provide delay guarantees. The arbitration
delay is the key component in the end-to-end switch delay

in a crossbar-based switch, partly because it is the one that
is the most difficult to control. We derive expressions for the
arbitration and output queueing delay bounds for a LOOFA
switch. To our knowledge, LOOFA is the only arbitration
algorithm that is not only simple to implement, but also
provides both work-conserving properties and delay bounds in
a crossbar switch for a speedup of only two. The delay bound
obtained is in the same order as an emulated output-buffered
switch (with an output FIFO) [10].

The rest of the paper is organized as follows. Section II
presents the high-level description of the switch architecture
used by LOOFA. Section III explains the problem solved by
the proposed algorithm. Section IV describes the algorithm.
Section V describes the queueing architecture required to
provide QoS guarantees. Also presented are the delay bounds
obtained using LOOFA. Section VI compares the complexity
of LOOFA with the algorithm presented in [19]. Conclusions
are presented in Section VII, and the proofs are presented in
the Appendix.

II. HIGH LEVEL DESCRIPTION OF THEARCHITECTURE1

The interconnection architecture is an crossbar with
a speedup of , where is the number of crossbar ports. The
crossbar connections between the input and output ports are
called channels. The variable-length packets are broken into
fixed-sized cells before being transmitted across the crossbar.
The cells are reassembled at the output of the switch. In
practice, the cell size is chosen such that the arbitration and
scheduling functions can be performed within the time it
requires the cell to traverse the speeded-up crossbar.

Cell slot is the time required to transmit a cell across the
input and output link and is equal to , where and are
the cell size and the link bandwidth, respectively. To simplify
the discussions, we are going to assume that all packets are the
same size as a cell. We use cell and packet interchangeably
throughout the paper.

Each input-line card has VOQ’s, each corresponding to
a crossbar output port. Packets upon arrival from the physical
input link are stored in the memory, and a pointer to the packet
is appended to the VOQ corresponding to the output channel
of the packet. The switch has a central arbiter that executes
the iterative maximal-matching algorithm described in Section
IV. In each cell slot, the arbiter schedules and transfers at most

cells from an input and cells to an output, where is the
speedup. The arbiter operates on the contents of all the VOQ’s
across the switch. During each phase, upon completion of the
matching algorithm, the arbiter sends to each input channel
the identifier of the output channel to which the input channel

can send a cell. Once a cell is transmitted across the crossbar,
the cell is stored in the memory at the output side of the switch,
waiting to be transmitted onto the outgoing link.

1The queueing architecture described in this section is sufficient to explain
the LOOFA algorithm. However, it should be noted that the architecture needs
to be augmented in order to provide features like per-flow fairness and delay
guarantees. In this paper, we will only describe the queueing architecture to
provide delay guarantees (Section V-A).

KRISHNA et al.: WORK-CONSERVING CROSSBAR SWITCHES 1059

Fig. 1. An example of output-buffered emulation.

III. PROBLEM

Each cell slot is divided into phases. For a speedup of,
there are phases per cell slot. In each phase, an input can
transfer at most one cell, and an output can receive at most one
cell. Extreme values of and represent an input-
buffered switch and an output-buffered switch, respectively.
For the intermediate values , we require buffering
both at the input and the output, hence, the CIOB architecture.
The problem that we try to solve is determining themaximal-
matching algorithm that requires the smallest speedup to match
the performance of an output-buffered switch, irrespective of
the input-traffic pattern.

Fig. 1 illustrates an example of output-buffered emulation
using a CIOB switch with . At , cells , and

arrive at different inputs destined for output 2. At ,
cell arrives at input 3 destined for output 3. The cells circled
at the output are the cells that are currently being transmitted
on the output link.

Identical behavior as an output-buffered switch means that
under identical input traffic: (a) the CIOB switch is busy at the
same time as the emulated switch; and (b) the packet departure
order is the same at every output port. If only (a) is satisfied,
then the throughput performance is matched, and if both (a)
and (b) are satisfied, then delay performance is also matched.
A work-conserving switch will satisfy condition (a). As can
be observed in Fig. 1, both conditions (a) and (b) are satisfied
by the example CIOB switch.

In this paper, we do not strive to exactly emulate an output-
buffered switch. Instead we employ a very simple algorithm
to provide work conservation and later augment the switch
with a queueing architecture at the input to provide QoS
guarantees. This enables us to build switches that are not only
very high capacity, but also are work conserving and provide
QoS guarantees.

IV. DESCRIPTION OF THEALGORITHM

As stated earlier, for a speedup of, there are phases
per cell slot. During each phase, an execution of the matching

algorithm takes place. It is assumed that sufficient number
of iterations is completed during the execution such that no
more trivial matches can be added. For a switch of size

iterations are sufficient. New cell arrivals take place at the
beginning of a cell slot. An input can receive at most one
new cell per cell slot from its incoming link. Departures from
the output take place at the end of a cell slot. An output
can transmit at most one cell per cell slot to its outgoing
link. As mentioned earlier, the input channels maintain a
VOQ per output channel. Output channels maintain a queue
to receive cells from input channels. An integer variable,
named occupancy, is associated with each output queue. As
the name implies, the occupancy of an outputat any time
is simply the number of cells currently residing in output
’s queue. The natural place to maintain occupancy values

is at the arbiter. The arbiter keeps track of the number of
times () an output was matched in the current cell
slot. At the end of the cell slot, the arbiter increments the
occupancy of an output by , simulating a cell
departure from the output. However, if is zero and
the occupancy is zero, the occupancy is not updated. Zero
occupancy is permissible, implying that a single cell could
have entered a zero-occupancy output and exited it during the
cell slot.

Definition 2: A switch is work conserving if and only if
each output of the switch for which there are cells (either at
input or at the output) at the beginning of cell slotis active
at the end of the cell slot .

Under a speedup of two, each cell slot has two phases.
During each phase, the following steps occur.

1) Initially, all inputs and outputs are unmatched.
2) Each unmatched input selects the active VOQ (i.e., a

VOQ that has at least one cell queued) going to an
unmatched output with the lowest occupancy and sends
a request to that output (OUTPUT SELECTION).

3) The output, upon receiving requests from multiple in-
puts, selects one and sends a grant to that input (INPUT
SELECTION).

4) The switch returns to step 2 until no more connections
can be made.

The algorithm essentially gives priority to output channels
with low occupancy, thereby attempting to simultaneously
maintain work conservation across all output channels. It is
interesting that a crossbar speedup of only two is necessary and
sufficient to ensure work conservation. The proof is presented
in the Appendix.

The work-conserving feature of the switch isindependentof
the selection algorithm used at the outputs. Table I lists some
examples of the selection algorithm that can be employed at
the outputs.

The version of the algorithm mentioned earlier is thegreedy
one. In thebest-first version, in each iteration, the inputs
pick the lowest-occupancy unmatched outputacrossthe switch
(i.e., global decision making, as opposed to local decision
making in the greedy version) and performs step 3 for that
output. If a unmatched input does not have any cell for the
lowest-occupancy output, the input sends a null request to

1060 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 6, JUNE 1999

TABLE I
EXAMPLE INPUT SELECTION ALGORITHMS

Fig. 2. Example illustrating the difference between greedy and best-first
versions.

the arbiter. Thus, the best-first version of the algorithm has
to execute iterations to perform correctly. However, in
the greedy version of the algorithm, multiple outputs can be
matched in an iteration, thus requiring on average less than

iterations.
The example in Fig. 2 illustrates the difference between the

matches made in the greedy version and best-first version of
the algorithm. Each cell is represented by a tuple (OCC, TS),
where OCC is the occupancy of the output of the cell, and TS
is the timestamp assigned to the cell. For example, TS could
be the time of arrival of the cell into the VOQ. The input-
selection algorithm employed in this example is theoldest cell
first (OCF). There are four cells in the request graph,– .
For example, cell has a TS of zero and is going to output 2,
whose occupancy is zero. Thus,is represented by (0,0). The
inactive VOQ’s are [1,1], [1,3], [2,1], [3,1] and [3,2], where

represents a VOQ for output in input .
In the greedy version of the algorithm, in each iteration,

each input sends a request to the lowest-occupancy unmatched
output amongst the active VOQ’s. Ties are broken by picking
the lowest port number. Thus, inputs 1 and 2 will send a
request to output 2, and input 3 will send a request to output
3. Using the OCF, output 2 selects input 1, and output 3 selects
input 3. Thus, cells and are matched using the greedy
version.

In the best version of the algorithm, in each iteration, each
input sends a request to the lowest-occupancy unmatched
output across the whole switch. In this example, the lowest-
occupancy output across the switch is 2. Thus, inputs 1 and
2 will send a request to output 2, and since input 3 does not
have any cell for output 2, it will send a null request in this
iteration. In the first iteration, cell gets matched. In the
second iteration, the lowest occupancy unmatched output is

3. Inputs 2 and 3 send a request to output 3, which selects
input 2 using OCF. Thus, cells and are matched using
the best-first version.

It should be noted thatboth the greedy and the best-first
version of the LOOFA algorithm are work conserving (see
Appendix for the proofs). The choice of the input selection al-
gorithm will determine the fairness properties in an overloaded
switch, and delay properties under feasible rates. In this paper,
we will only present the delay properties of the switch.

V. PROVIDING RATE AND DELAY

GUARANTEES USING LOOFA

In order to provide rate or delay guarantees for the QoS
traffic, admission control is essential. In the absence of any
admission control, the guarantees achievable for QoS traffic
effectively converge to those of best-effort traffic. The QoS
traffic also becomes less useful if the admitted flows are not
policed somewhere, be it at the network edge or within the
switch itself. In the absence of policing, flows that do not con-
form to their negotiated rates can cause problems to switches
attempting to provide rate and delay guarantees to all admitted
flows. In this paper, we will assume that the switch has to
perform the policing itself. It is also implicitly assumed that
the switch-control processor performs the admission control
and the relevant per-flow parameters are communicated to the
scheduling and arbitration modules in the switch.

In the absence of policing, and under the assumption that
flows do in fact conform to their requested rate in long term
average, the task of providing long-term rate guarantees is
relatively simple. By admitting flows whose aggregate rate
is less than the switch capacity (in particular, the aggregate
rate of all flows to each output port must not exceed the
port’s capacity), one may simply use LOOFA and a speedup
of two (which provides 100% throughput for feasible loads).
No per-flow state needs to be maintained in the switch.

On the other hand, if the flows cannot be trusted to conform
to their negotiated rates, some policing mechanism is needed
to ensure that guarantees for each flow are met. An effective
way to police traffic is to incorporate a rate controller that
limits the maximum rate of a flow to its requested rate.
An example implementation of a rate controller is the rate-
controlled version of worst-case fair, weighted fair queueing
(WF Q) [13]. The use of rate controllers for shaping QoS
traffic can also yield delay bounds for the QoS traffic. We will
now describe a queueing architecture to provide delay bounds
in a crossbar switch.

KRISHNA et al.: WORK-CONSERVING CROSSBAR SWITCHES 1061

Fig. 3. Queueing architecture at the input to support QoS traffic.

A. A Queueing Architecture to Support QoS Traffic

It is implicitly assumed that there is a rate associated
with each flow. The service parameters of each flow are
communicated to the switch during connection establishment.
It is also assumed that the flow loads are feasible. Please refer
to Fig. 3 for the following discussion. Each input channel
maintains a per-flow queue. Packets upon arrival from the
physical input link are mapped to a flow through a flow
mapper. The flow can be based on various classifiers: source
address, destination address, protocol type, etc. The packet
is stored in the memory, and a pointer to that packet is
added to the queue corresponding to the flow. There is a
(police) rate controller , one per VOQ, that schedules
flows into their respective VOQ’s. When a flow is scheduled,
the pointer to the HOL cell in the selected flow’s queue is
removed and added to the tail of the VOQ corresponding
to the flow. However, since we have one per VOQ,
there can be multiple cells simultaneously entering different
VOQ’s per cell time. In order to maintain one-cell arrival2

per cell time, we employ another rate controller that
schedules a single VOQ per cell time. Thus, we have two
types of VOQ’s3—unscheduledandscheduled. When the rate
controller schedules a VOQ, the pointer to the HOL cell
in the selectedunscheduledVOQ is removed and added to
the tail of thescheduledVOQ. The matching algorithmonly
considers cells from thescheduledVOQ’s. It is important
to note that in the discussion in the previous sections, the
arbiter considered the HOL cells in all VOQ’s. It was essential
for the work-conserving property that no more than one cell

2Limiting to one-cell arrival per cell slot is essential for the correct operation
of LOOFA.

3Of course, we need not have two separate queues to implement it. We
could have just maintained a bit with each cell and set the bit when it gets
scheduled. We explain it this way purely for the sake of clarity.

could enter the input. In the framework we discuss here, the
arbiter considers only the cells which “arrive” to it from the
two-level rate controller, and so the property of one “arrival”
per cell slot holds with respect to such cells. The idea here
is to “pretreat” traffic arriving to the input so that by the
time the arbiter “sees” the traffic, the combined traffic at all
inputs destined to a particular output conforms closely to the
output rate [15], [20]. As will be shown in the next section,
the combination of the use of rate controllers and the work-
conserving property of LOOFA provide delay guarantees for
the scheduledcells.

B. Arbitration Delay Bounds

The end-to-end switch delay of a cell is the sum of
the delay incurred at the input, the arbitration delay ,
and the delay incurred at the output . The input delays
are due to the rate controllers and are not dependent on
the matching algorithm used. In this paper, we will derive
the arbitration and the output delays due to LOOFA. The
key delay component in crossbar switches is the arbitration
delay, which critically depends on the matching algorithm
used. The arbitration delay of a cell is the time taken to
reach the output channel after it is scheduled. We prove in
the Appendix that using the best-first version of LOOFA and
employing OCF as the input selection (best-first LOOFA-OCF)
algorithm for cell slots. This
delay bound is for the case when the input rate controllers

and employ a rate-controlled version of WFQ.4 It is
also shown that if the output is arranged in a FIFO manner,

cell slots. Thus, for , the bound on the sum
of the arbitration and output delay is 6cell slots. This delay
bound did not require the switch to emulate an output-buffered
switch.

In [14], it has been proven that best-first LOOFA-OCF
emulates an output-buffered switch (with the output arranged
in a FIFO) for a speedup of only three. It is shown in the
Appendix that by using the queueing architecture presented in
the previous section at the input, we can obtain a bound of only
2 cell slots for for a switch which emulates an
output-buffered switch (with the output arranged in a FIFO).
Thus, the bound for using best-first LOOFA-OCF
for is slightly worse than .

VI. COMPLEXITY COMPARISON

In this section we will compare the complexity of best-first
LOOFA-OCF with thecritical cell first (CCF) algorithm that
exactly emulates output-buffered switches [19]. There are two
primary operations that lend to the complexity of an iterative
crossbar maximal-matching algorithm:

a) assigning/updating priority of the cells;
b) computation of the maximal match.

The priority determines the order in which cells are selected
to send a request from an input and also the order in which

4The delay bounds depend on the discrepancy bounds of the rate controller.
WF2Q was chosen because it is known to have a very small discrepancy bound
and therefore can ensure small delays [13].

1062 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 6, JUNE 1999

requests are selected at an output. In the case of LOOFA-
OCF, the priority of a cell is a function of the OCC and TS.
The input ordering is determined by the OCC of the output
of the cell, and the output ordering is determined by the TS
of the cell. If the TS is the time of arrival into the VOQ
(which is the case in LOOFA-OCF), it is invariant during the
lifetime of the cell in the switch. However, the occupancy of
an output can change over a cell slot, thus causing a change in
the priority of the cells (those that are still at the input side of
the switch) going to the output. For example, if the occupancy
of an output increases during a cell slot, the priority of the
cells going to the output has to decrease. Thus, at the end
of each cell slot, there needs to be a mechanism to update
the priorities of the cells residing at the inputs. Since the
occupancies are stored in the arbiter (see Section IV), they
can be centrally updated. Moreover, only at mostoccupancy
values get updated (one per output port) instead of updating
values for each cell in the switch. Typical range offor WAN
switches is 8–64. Thus, at the beginning of each phase, the
inputs just need to send the TS of the HOL cells of its active
VOQ’s. Along with the locally stored occupancy values, the
arbiter has all the information it requires to run the matching
algorithm.

In order to exactly emulate output-buffered switches, cells in
the CIOB switch have to exit the switch at exactly the same
time as in the shadow output-buffered switch [19]. Let the
time of departure of cell from the shadow switch be .
We need to keep track of the “output cushion” of
each cell , which is the number of cells that are currently
at the output and have a lower than cell . Mere output
occupancy tracking is not enough.5 The priority of a cell
is its output cushion, which changes every cell slot. Unlike
occupancy, all cells going to a particular output do not have the
same priority. In the worst case, at the end of each cell slot, the
priorities of all the cells at the inputs have to be updated. The
priority information of the cells can either be maintained at the
arbiter (thus increasing the storage overhead) or maintained at
the input (thus increasing the communication overhead during
requests and updates). One may argue that since the relative
priorities of the cells at the input do not change, we need not
update the priorities. This is not true because when a new cell
arrives, it has to be placed in the correct position in the ordered
list at the input for the algorithm to perform correctly. More
specifically, a new cell that arrives into an empty VOQ will
need to know its priority at the time of its arrival because it
can take part in the matching process in that cell slot itself.
Thus, the update overhead in the case of CCF is proportional
to the number of cells in the switch, which can be extremely
high.

The complexity due to the computation of the maximal
match in best-first LOOFA-OCF is similar to that in CCF.
Both require (switch size) iterations for correct operation.
By correct operation in the context of LOOFA, we mean that
work conservation and delay bounds are not violated. In the
context of CCF, correct operation means exact emulation of
the output-buffered switch.

5Actually, exact emulation is possible using occupancy. However, it
requires a speedup of three [14].

VII. CONCLUSION

There is an immediate demand for high capacity switches
and routers that can provide both work-conserving properties
and also rate and delay guarantees. Presented in this paper
was a novel crossbar-arbitration algorithm, LOOFA, which
is work conserving for all traffic patterns and switch sizes
for a speedup of only two. Also presented were a number
of schemes that can be used in combination with LOOFA to
provide a wide range of delay and fairness properties. For a
rate-controlled input, and using best-first LOOFA-OCF with a
speedup of two, bounds were derived for the arbitration and
output queueing delays. We also show that these delay bounds
are achievable without the need to emulate an output-buffered
switch. To the best of our knowledge, LOOFA is the only
arbitration algorithm that is easy to implement and provides
both work conservation and delay guarantees in a crossbar for
a speedup of only two.

APPENDIX

PROOF FOR THEWORK-CONSERVING PROPERTY

The following terminology is used in the claims and proofs.
A cell going from input to output .
Speedup of the switch fabric.
The number of cells in output at time .

IT For a cell going from input to output , it
is the set of cells (where) that
have occupancy at , except
itself.

IT Size of the input thread of cell at .
NI Number of cells sent from a cell ’s input

thread in th cell slot.
NO Number of cells sent to output in th cell

slot.
Set of all the cells at the input of the switch
at .
Beginning (end) of theth cell slot.

New Set of cells that arrived into the switch at the
beginning of cell slot .

Xfer Set of cells that were transferred to the output
of the switch at the end of the cell slot.

The following notations are specific to theproofs for delay
bounds.

TS Timestamp of the cell . In the best-effort
LOOFA-OCF scheme, the timestamp of a
cell is the time the cell was scheduled by

.
Sum of the rates of all flows going from input

to output .
OT For a cell , it is the set of cells (where

) that have timestamps less than
or equal to the timestamp of .

OT Size of the output thread of cell at .
Number of cells scheduled for outputfrom
input by the end of cell slot .

. Number of cells scheduled
for output by the end of cell slot.
Number of scheduled cells that exit output
by the end of cell slot .

KRISHNA et al.: WORK-CONSERVING CROSSBAR SWITCHES 1063

Number of scheduled cells for outputthat
remains in the switch by the end of cell slot
. It is basically equal to .

Number of scheduled cells at inputby the
end of cell slot .

Lemma 1: Consider a switch running LOOFA (greedy or
best-first version). Consider a tagged cell that at the
beginning of phase is at the input of the switch. If
remains in its input at the end of phaseand is not forwarded
to its output, at least one cell was transferred from its input
thread, and/or one cell was transferred to its output during the
phase .

Proof: In the best-first version of LOOFA only one
output (specifically, the lowest-occupancy unmatched output
across the switch) gets matched every iteration. The selected
output gets matched to the unmatched input that has the
cell destined to it with the lowest timestamp (in the case of
OCF-based input selection). Under the operation of such an
algorithm, if a cell did not go during a phase, then a different
cell must have left its input thread and/or its output thread. In
the greedy version of LOOFA, the inputs initiates the matching
operation. Each input selects the lowest unmatched output
amongst the outputs for which it has a cell and sends a request
to it. Multiple outputs can get requests from inputs. Each
requested output selects the input with the lowest timestamp
(in the case of OCF). Under the operation of such an algorithm,
if a cell does not go during a phase, then a different cell must
have left its input thread and/or gone to its output. Unlike the
best-first version, if a cell did not leave its input thread, it is
not guaranteed that a cell from its output thread would have
left. However, for work conservation, it suffices that Lemma
1 is true—which happens to be the case for both the greedy
and the best-first version of LOOFA.

Corollary 1: Consider a switch running the lowest-
occupancy first algorithm with a speedup of. Consider
a tagged cell destined for output, which at the beginning
of cell slot is in the input of the switch. If
remains in its input at the end of cell slot and is not
forwarded to its output , thenNI NO .

Proof: Follows from Lemma 1.
Lemma 2: At an input, the length of the input thread of all

the cells going to outputs having the same occupancy value
are equal.

A. Proof for Work Conservation

For the purpose of the proof, we use the following occu-
pancy update procedure. At the end of a cell slot , the
occupancy of the output, called , is decremented by one
(simulating a cell departure to its outgoing link) only if there
was a cell in the output FIFO at the beginning of the cell slot

or if there was at least one cell at any input of the
switch destined for this output at . Thus, in the presence
of such an updating procedure for , the instant for any
output of the switch becomes less than zero, the switch will
cease to be work conserving. In Theorem 1, we will prove a
stronger invariant: for each and every cell (say,) in the
switch operating under LOOFA with a speedup of two, during

its tenure at the input of the switch, IT .
Therefore, the occupancy of all outputs in a switch operating
under LOOFA and a speedup of two is always nonnegative.

Theorem 1: Consider an switch operating under
LOOFA with a speedup of . Suppose that the switch has
been operating from cell slot 1, having been empty before
that time. For each cell in the switch, as long as the cell
remains at the input, IT holds, so long as

holds. where is the end of
the cell slot (the cell arrives at), and is
the end of the cell slot (the cell gets transferred to
its output during).

Proof: New arrivals for the th cell slot take place at .
For a speedup over a cell slot, the occupancy of the
outputs that has at least one cell in the input changes in one
of the following ways:

Case 1) ; Let

Case 2) ; Let

Case 3) ; Let

Let

New New

where

New

Thus, New consists of new cells that arrived at and
are still at the input of the switch at, and the outputs of the
cells are in class at . It follows that

and

New

Given that there can at most be one new arrival into an input
per cell slot,

IT IT (1)

Let us assume there were no violations until the end of the
th cell slot. Thus

IT

(A1)

It follows from (1) and (A1) that

IT (2)

We will now show that there is no violation at,i.e.,
IT holds.

1064 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 6, JUNE 1999

Case 1: As per Assumption (A1),
IT . Since no cells were sent to output

, two cells must have gone from the input thread
of the cells (from Corollary 1). Now we have to
determine the increase in the input thread. An increase in the
input thread can happen due to a new cell arrival and/or other
cells that at had an occupancy more than and at

have an occupancy less than or equal to . However,
since we know that occupancy can decrement by at most one,
outputs with occupancy value more than outputat
cannot have a lower occupancy thanat . Thus, for all the
cells in Case 1, the input thread can increaseonly due to a
new cell arrival. Due to the new cell arrival at, at most one
new cell can become part of its input thread. Thus, from (2)

IT IT

We know that for all the cells in Case 1,
.

Thus, , there is no violation. CLAIM 1
Case 2: As per Assumption (A1),

IT . Let us assume that there is a
violation at , i.e.,

IT (A2)

For the outputs , exactly one cell was sent to
in the cell slot . For a speedup (from Corollary 1)
at least one cell must have gone from the cell ’s (where

) input thread. Let the increase in input thread
due to other cells in the input be. Thus, from (1)

IT IT

IT

Since the occupancy value of the cell does
not change in this time slot, and since occupancy can decrease
by at most one, only cells that can become new additions to

’s input thread are the cells for which the occupancy
value , and the occupancy of these
cells decreased by one over the cell slot. Thus, .
Since the occupancy value of these cells is equal to
at , the length of the input thread at are equal too (from
Lemma 2). Thus, as per Assumption (A2), if there is a violation
for a cell , then there should have been a violation
for a cell . This however contradicts Claim 1.
Thus, there are no violations for CLAIM 2

Case 3: As per Assumption (A1),
IT . Let us assume that there is a

violation at , i.e.,

IT (A3)

For the outputs exactly two cells were sent to
in the cell slot . For a speedup , from Corollary 1, no
cells could have gone from the cell ’s (where)
input thread during. Let the increase in input thread due to
other cells in the input be. Thus, from (1)

IT IT

We know for cells in Case 3, .
For Assumption (A3) to be valid,IT
holds true for some cell . Only cells that can
become new additions to ’s input thread at are

. These are comprised of cells ’s in
that had occupancy and cells ’s
in that had occupancy . At

. Since the occupancy values are equal,
the lengths of the input threads are equal too (as per Lemma
2). Thus, as per Assumption (A3), if there was a violation
for a at , then there should have been a
violation for . This however contradicts
Claims 1 and 2. Hence, there must have been no violations for

. CLAIM 3
Thus, from Claims 1, 2, and 3,

IT .
Theorem 2: An switch running the lowest-

occupancy first algorithm is work conserving regardless of
the input traffic patterns and for arbitrary values of, so long
as its speedup .

Proof: Since, for each cell as long as the cell remains
at the input IT , it follows from Theorem 1 that

. Thus, the switch is work conserving.

B. Proof for Arbitration and Output Delay Bounds

Lemma 3: holds true in an switch
running best-first LOOFA-OCF algorithm for WFQ-based
rate controlled inputs, as long as .

Proof: From [13], we know that following holds for
WF Q based rate controllers: .
Thus

where is the total load at the output. Now, since LOOFA
is work conserving as long as , the number of cells
exiting an output should be at least equal to the lower bound on
the number of cells scheduled for that output. Thus,

. Thus, the maximum number of scheduled cells for
an output that can remain in the switch at any time is

.
Corollary 2: and

OT holds true in an switch running
the best-first LOOFA-OCF algorithm for WFQ-based rate
controlled inputs, as long as .

KRISHNA et al.: WORK-CONSERVING CROSSBAR SWITCHES 1065

Proof: Since all cells scheduled for an output either
reside at the input side of the switch and the output FIFO,
it follows from Lemma 3. It also follows that the delay any
cell encounters at the output is bounded by 2 .

Corollary 3: IT holds true
in an switch running the best-first LOOFA-OCF
algorithm for WF Q-based rate controlled inputs, as long as

. It also follows that also holds.
Proof: Follows from Corollary 2 and Theorem 1.

Theorem 3: The arbitration delay of an switch
running the best-first LOOFA-OCF algorithm for WFQ-based
rate controlled inputs is bounded by , as long as

.
Proof: The only cells that a cell competes with are the

cells in its output thread and its input thread. Thus, any new
cell arriving into the switch competes with at most 4cells
(2 due to its input thread and 2 due to its output thread)
(follows from Corollaries 2 and 3). From Lemma 1, it follows
that, using best-first LOOFA-OCF, in each phase, if a tagged
cell does not go, then a cell from its output thread or/and
input threadgoes. It also implies that if a cell does not
go, a cell from its output thread or/and itsinput goes. Thus,
during each phase, the sum OT decreases at
least by one. can increase by one during each cell slot
due to a new cell arrival. Thus, under a speedup of, the sum

OT decreases at least by .
Thus, at the end of cell slots, if the tagged

cell is still at the input, there will be no cells competing with
it—in other words, there will be no cells in its output thread
nor in its input (apart from itself). Thus, in the next cell slot,
only the new cell that comes into its input competes with it,
and hence, the tagged cell will go to its output in one of the

phases. Thus, .
Corollary 4: The delay of an output-

buffered switch employing a FIFO policy at the output for
WF Q-based rate controlled inputs is bounded by 2.

Proof: is the delay incurred by the cell from
the time it exits the rate controller and the time it exits the
switch output. From Lemma 3, a cell exiting the rate controller
notices at most 2 cells ahead of it at the output in a output-
buffered switch. Since the output is serviced in a FIFO manner,

is bounded by 2 .

ACKNOWLEDGMENT

The authors are grateful to J. Saxe and T. Rodeheffer of the
Systems Research Center at Compaq Computer Corporation
for verifying the work-conservation proofs.

REFERENCES

[1] M. Karol, M. Hluchyj, and S. Morgan, “Input versus output queueing on
a space division switch,”IEEE Trans. Commun., vol. 35, pp. 1347–1356,
1987.

[2] S.-Q. Li, “Performance of a nonblocking space-division packet switch
with correlated input traffic,” inProc. IEEE Globecom, 1989, pp.
1754–1763.

[3] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” inProc. IEEE INFOCOM, 1996,
pp. 296–302.

[4] R. E. Tarjan, “Data Structures and Network Algorithms,” Bell Labs,
1983.

[5] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High
speed switch scheduling for local area networks,”ACM Trans. Comput.
Syst., vol. 11, pp. 319–352, Nov. 1993.

[6] D. Stiliadis and A. Verma, “Providing bandwidth guarantees in an
input-buffered crossbar switch,” inProc. IEEE INFOCOM, 1995, pp.
960–968.

[7] N. McKeown, “Scheduling algorithms for input-queued cell switches,”
Ph.D. dissertation, Univ. California, Berkeley, CA, 1995.

[8] C. Lund, S. Phillips, and N. Reingold, “Fair prioritized scheduling in an
input-buffered switch,” inProc. Broadband Commun., 1996.

[9] N. McKeown, B. Prabhakar, and M. Zhu, “Matching output queueing
with combined input and output queueing,” inProc. 35th Ann. Allerton
Conf. Commun., Control, and Computing, Oct. 1997.

[10] B. Prabhakar and N. McKeown, “On the speedup required for combined
input and output queued switching,” Computer Systems Lab, Stanford
Univ., Stanford, CA, Tech. Rep. CSL-TR-97-738.

[11] R. Guerin and K. N. Sivarajan, “Delay and throughput performance
of speeded-up input-queueing packet switches,” IBM, Res. Rep. RC
20892, 1997.

[12] A. Mekkittikul and N. McKeown, “A practical scheduling algorithm
to achieve 100% throughput in input-queued switches,” inProc. IEEE
INFOCOM, Mar. 1998.

[13] J. Bennett and H. Zhang, “WF2Q—Worst-case fair weighted fair queue-
ing,” in Proc. INFOCOM, 1996.

[14] T. L. Rodeheffer and J. B. Saxe, “An efficient matching algorithm for
a high-throughput, low-latency data switch,” Compaq Comput. Corp.,
Syst. Res. Ctr., Res. Rep. 1998-162.

[15] A. Charny, P. Krishna, N. Patel, and R. Simcoe, “Algorithms for
providing bandwidth and delay guarantees in input-buffered crossbar
switches with speedup,” inProc. IWQoS, Napa Valley, CA, May
1998.

[16] Y.-S. Yeh, M. G. Hluchyj, and A. S. Acampora, “The knockout switch:
A simple, modular architecture for high-performance packet switching,”
IEEE J. Select. Areas Commun., vol. SAC-5, pp. 1274–1283, Oct. 1987.

[17] Y. Oie et al., “Effect of speedup in nonblocking packet switch,” in
Proc. ICC, 1989.

[18] J. S.-C. Chen and T. E. Stern, “Throughput analysis, optimal buffer
allocation, and traffic imbalance study of a generic nonblocking packet
switch,” IEEE J. Select. Areas Commun., vol. 9, pp. 439–449, Apr.
1991.

[19] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching
output queueing with a combined input output queued switch,” Stanford
Univ., Stanford, CA, Tech. Rep. CSL-TR-98-758. (An extended version
of this report also appears in this special issue.)

[20] A. Charny, “Providing QoS guarantees in input-buffered crossbar
switches with speedup,” Ph.D. Dissertation, MIT, Cambridge, MA,
1998.

Pattabhiraman Krishna received the B.S. degree
in electrical engineering from Regional Engineering
College, Rourkela, India, in 1990, the M.S. degree
in electrical engineering from Texas A&M Univer-
sity, College Station, TX, in 1992, and the Ph.D.
Degree in computer science, also from Texas A&M
University, in 1996.

Since August 1996, he has been a member of
the Advanced Development Group with Networks
Products Business, Compaq Computer Corp., (for-
merly Digital Equipment Corp.), Littleton, MA. His

research interests are in the areas of data networking and mobile computing.

Naimish S. Patelreceived the B.S. and M.S. degrees in electrical engineering
from the Massachusetts Institute of Technology, Cambridge, in 1996.

From 1996 to 1997, he was a staff member at Lincoln Laboratories,
Lexington, MA. In March 1997, he joined the Network Products Group,
Digital Computer Corp., Littleton, MA. In February 1998, he joined Sycamore
Networks, Chelmsford, MA, as a Founding Engineer, where he currently is
Network Engineer and Lead Designer of DWDM systems.

1066 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 6, JUNE 1999

Anna Charny received the M.S. degree in mathe-
matics from Kalinin State University, Russia, and
the M.S. and Ph.D. degrees in computer science
from the Massachusetts Institute of Technology,
Cambridge.

Until 1998, she was with the Networks and Com-
munications Division, Digital Equipment Corp., Lit-
tleton, MA. Currently, she is with the Digital Net-
work Products Group, Cabletron Corp., Andover,
MA.

Dr. Charny has served as Technical Expert for
the Traffic Management Group of the ATM Forum. She is a Member of the
Editorial Board for IEEE NETWORKING MAGAZINE. Her research interests are
performance analysis and design of algorithms for high-speed communications
networks.

Robert J. Simcoewas born in Columbus, OH, on
November 5, 1943. He received the B.S.E.E. degree
from the University of Illinois, Urbana, in 1966.

From 1966 to 1973, he worked at the National
Security Agency. From 1973 to 1982, he worked
at the Integrated Circuit Center, General Electric.
From 1982 to 1997, he worked at Digital Equipment
Corp., Littleton, MA. He is now the Corporate Con-
sulting Engineer at Nexabit Networks Inc., Marl-
boro, MA, where he is working on Terabit switching
and routing.

