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Abstract— We show an isomorphism between maximal match-
ing for packet scheduling in crossbar switches and strictly non-
blocking circuit switching in three-stage Clos networks. We use
the analogy for a crossbar switch of size n × n to construct a
simple multicast packet scheduler of complexity O(n log n) based
on maximal matching. We show that, with this simple scheduler,
a speedup of O(log n/ log log n) is necessary to support 100%
throughput for any admissible multicast traffic. If fanout splitting
of multicast packets is not allowed, we show that an extra speedup
of 2 is necessary, even when the arrival rates are within the
admissible region for mere unicast traffic. Also we revisit some
problems in unicast switch scheduling. We illustrate that the
analogy provides useful perspectives and we give a simple proof
for a well known result.

I. INTRODUCTION

Applications requiring QoS support for multicast traffic
remain to be important in small and large scale networks.
The problem of providing quality of service guarantees for
multicast traffic over crossbar switches has received a limited
attention, despite the popularity of its counterpart for unicast
traffic. One of the main reasons for this is the difficulty of the
task. Indeed, it was shown in [1] that “optimal scheduling”
of multicast packets is NP-hard over a crossbar switch and
in [2] it was proved that the resource speedup necessary to
achieve 100% throughput for all admissible multicast traffic
grows unbounded with increasing switch size. These results
hold even when the crossbar switch is multicast capable, i.e., it
is capable of connecting an input to multiple outputs. It is also
stated in [2] that “the numerical evaluation of the necessary
speedup is prohibitive” and no scaling law has been given as
to how the speedup scales with the switch size.

In this paper we first illustrate the difficulty of multicast
scheduling by showing that a speedup of 2 is necessary to
support 100% throughput to multicast traffic, even if the
rates are within the admissible region of the mere unicast
traffic. Then, we present a simple algorithm to provide 100%
throughput for all admissible multicast traffic and specify a
scaling law for the necessary speedup to achieve this task.

Our main tool in the development will be an analogy
between middle stage switch configurations of three-stage
Clos networks and schedules for a crossbar switch. A similar
analogy was first exploited in [3] for certain set of TDMA
schedulers. We illustrate that strict-sense non-blocking in a
three-stage Clos network is analogous to maximal matching
in the crossbar switch scheduling problem. Consequently the
result [4] for unicast traffic that, maximal matching is sufficient

to provide 100% throughput1 with a speedup of 2, becomes
straightforward. Further, applying a theorem given in [5] for
multicast circuit switching in Clos networks, we show that the
speedup necessary for 100% throughput for multicast traffic
scales as O(log n/ log log n) with maximal matching, which
has an associated complexity of O(n log n).

II. SWITCH MODEL AND MULTICAST TRAFFIC

We consider the combined input and output queued (CIOQ)
switch architecture with a single crossbar fabric. We assume
that the crossbar fabric is multicast capable, i.e., at any given
time, an input can be connected to multiple outputs simulta-
neously, but an output can only be connected to an input. We
call a given set of connections, a switch configuration.

We define a time slot as the time in which a cell can be
transmitted over a link. In case an internal speedup, s, is used,
up to s switch configurations can be set up in a time slot and
hence up to s cells can be transferred to an output. We call the
time in which a switch configuration remains active, a schedule
slot. Hence a schedule slot is 1/s of a time slot. We assume
links with identical capacities and packets arriving over an
input link are fragmented into fixed sized cells.
Each cell arriving at an input queue has a fanout set, i.e., the

set of the output links that the cell needs to be forwarded
to. Unicast cells have a fanout set of unit cardinality. To
avoid head of the line (HOL) blocking [6], we assume the
presence of virtual output queueing (VOQ) at each input for
every possible fanout set. Further, virtual output queueing at
a per fanout set level is referred to as multicast virtual output
queueing (MC-VOQ) in [2]. Note that in an n×n switch, for
a given input, there exist 2n − 1 possible fanout sets. Due to
this exponential growth, MC-VOQ has issues of scalability and
consequently it is merely a theoretical tool used to investigate
the limitations of IQ switches under multicast traffic.

A scheduler may choose not to place an arriving cell with
a certain fanout set F directly to the associated MC-VOQ. It
is also possible that it duplicates the cell and place a copy to
the MC-VOQ with a fanout set F ′ and the other copy to the
MC-VOQ with a fanout set F ′′ such that F ′ ∪ F ′′ = F and
F ′ ∩ F ′′ = ∅. Hence, these two copies are transferred to the
corresponding outputs at different times. We call this process

We assume that the cell arrivals are rate ergodic and each
VOQ is associated with a certain cell arrival rate (after possible

1In fact [4] shows work conservation, which is stronger than 100%
throughput.
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Fig. 1. No matter where the multicast flow is served, both outputs 1 and 2 will be idle simultaneously.

fanout splitting). For a given set of rates to be admissible, the
total rate of cells arriving at each input link or destined to
each output link cannot exceed 1 cell per time slot. Note that
it may be possible that, after fanout splitting, the total rate of
cells arriving at the VOQs of an input exceed 1 cell per time
slot.

Let us first focus on the case with only unicast cells. In this
scenario, at an input, there are n virtual output queues, one
for each output. These n2 VOQ arrival rates can be written
in the form of an n × n rate matrix R. It can be shown (see
e.g., [7], [8]) that 100% throughput is achievable if and only
if R lies in the convex hull of the set of permutation matri-
ces, i.e., there exists a frame, π1, π2, . . . , πT of (containing
possibly identical elements) permutation matrices such that
R � 1

T

∑T
k=1 πk for some possibly infinite T .

For multicast traffic, the rate matrix R is such that Rij is,
as a fraction of the link capacity, the rate at which input i
wants to be connected to output j. Hence it is possible that∑n

j=1 Rij > 1. For instance suppose in every time slot only
input 1 receives cells each of which is to be broadcast to all
outputs. Then

∑n
j=1 R1j = n. On the other hand, for all output

j,
∑n

i=1 Rij � 1, since no output can be oversubscribed.
The fundamental difference for the multicast traffic is that,

the existence of a frame, c1, c2, . . . , cT of configuration ma-
trices for which R � 1

T

∑T
k=1 ck does not necessarily imply

100% throughput is achievable. Consequently even with a
multicast capable crossbar, speedup is necessary for 100%
throughput. Following is an example.

Example 1: Consider the following rate matrix:

R =




0 0 0.5
0.5 0.5 0
0 0 0.5


 +




0.5 0.5 0
0 0 0
0 0 0


 .

The first and the second component contain the rates of the
unicast cells and the rate of the multicast cells respectively.
Thus half of the cells arriving at input 1 are multicast cells
with a fanout set of {1, 2} and the other half are unicasts
with the destination 3. Even though the sum of the rates in
the first row of R is 1.5, the total rate of the cells arriving at
the first input is 1. Indeed, no input or input or output link
is oversubscribed under this traffic. In fact input links 1 and
2 are fully subscribed. Therefore to achieve 100% throughput
without any speedup, at any point in time, input 2 must be
connected to either output 1 or output 2, but not both, since
all the cells are unicast at the second input. On the other
hand input 1 needs to be connected to these two outputs
simultaneously half the time to transfer multicast cells. This
implies that these two outputs can be let free by the first

input only half of the time as shown in Fig. 1, where the
time period illustrated can be arbitrarily long. Consequently
whenever the first input serves a multicast cell, input 2 must
remain idle. However, since input 2 is fully utilized, some
speedup is necessary.

The other alternative is the fanout splitting of the multicast
cells. With fanout splitting, the total rate of cell arrivals at the
VOQs of input 1 exceeds 1; consequently some speedup is
necessary to accommodate them. We conclude that without a
speedup, R is not supportable, with or without fanout splitting.

This example illustrates that multicast scheduling problem
is much more complicated than unicast scheduling. Even with
a multicast capable crossbar, some speedup is necessary for
100% throughput. This is valid despite the fact that matrix R
can be written as a convex combination,

R = 0.5




1 1 1
0 0 0
0 0 0


 + 0.5




0 0 0
1 1 0
0 0 1


 ,

of valid configurations matrices (R is in the convex hull of
configuration matrices) for multicast enabled crossbar.

In this example, speedup s = 1.5 is necessary and sufficient
for 100% throughput for the given traffic matrix. In [2] it was
proved that the speedup necessary to achieve 100% throughput
for all admissible multicast traffic grows unbounded with
increasing switch size. It is also stated that “the numerical
evaluation of the necessary speedup is prohibitive” and no
scaling law has been given for the necessary speedup for
100% throughput. Also, finding the multicast schedule that
works with the minimum necessary speedup is NP-hard as
shown in [1]. There are obvious ways of simplifying multicast
scheduling, such as ruling out fanout splitting. However, extra
speedup is necessary to make up for the lost flexibility as
shown in the following theorem.

Theorem 1: If fanout splitting of multicast cells is not
allowed in an n×n crossbar switch, then a speedup of 2− 1

n is
necessary to support multicast traffic for which the rate matrix
R is a doubly stochastic matrix.

Before the proof of the theorem, note that, if fanout splitting
is allowed, no speedup (s = 1) is required to support a doubly
stochastic rate matrix. A complete fanout splitting is sufficient
to achieve 100% throughout. Thus ruling out fanout splitting
costs us some extra speedup or reduced throughput at a fixed
speedup.
Proof: Consider the set of rates for which input 1 receives
all unicast traffic with an equal rate of 1/n to every output.
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Fig. 2. Three stage Clos network.

Every other input receives cells once every n time slots to be
multicast to all outputs (broadcast). For all i, j, Rij = 1/n
and consequently the overall rate matrix is doubly stochastic.

Since fanout splitting of broadcast cells is not allowed, one
schedule slot must be occupied for each broadcast cell arriving
at inputs 2 to n. Along with a broadcast cell, no unicast cell
can be scheduled from any of the input 1 VOQs. Thus extra n
scheduling slots is necessary to accommodate input 1 traffic.
As a result, to support this traffic, a total of 2n − 1 schedule
slots is necessary in a span of n time slots, corresponding to
a speedup of 2 − 1

n , completing the proof.

III. CROSSBAR SCHEDULERS AND CLOS NETWORKS

A three-stage Clos network is specified using three parameters
(T, n, T ′) as shown in Fig. 2. There are T ′ middle stage
crossbars of size n × n to connect n input stage switches
of size T × T ′ to n output stage switches of size T ′ × T .

Now consider a frame based scheduler with a schedule
of period T . Let the speedup be s = T ′/T , so the switch
goes through T ′ configuration matrices, c1, . . . , cT ′ within the
frame of T cell slots. The above scheduler is “time-analogous”
to the following circuit switching Clos network:

If input i of the crossbar switch requires to to send k
cells to output j within a frame of T slots, then, in the
associated Clos network, k of the input links of input stage
switch i require to make circuit connections to k of the
output links of the output stage switch j. If cm has a 1 in
position (i, j), then the mth middle-stage crossbar connects
input stage switch i to output stage switch j. This is illustrated
in Fig. 3. Consequently the middle stage crossbars are set
to have configurations c1, . . . cT ′ . In a sense the middle-stage
crossbars of the analogous Clos network replicates the entire
sequence of T ′ configurations of the crossbar switch in space
from the top to the bottom.

Any frame consisting of T ′ configurations corresponds to a
fixed circuit assignment in the Clos network. The ratio of the
number of middle stage crossbars to the number of input links
of each input stage switch corresponds to the speedup s =
T ′/T . Note that in the Clos network, the size of the input and
output stage switches grows with T . In this paper we construct
the analogy for schedulers with a finite and periodic schedule

of T ′ schedule matrices. In general it can be constructed for
any given rate matrix R, as described in [9], using the concept
of rate quantization.
There is one more thing we need to describe to complete the

analogy for the case of multicast. In crossbar switching, in the
case of fanout splitting, different copies of a multicast cell is
served over different configuration matrices within a frame.
If fanout splitting is not allowed, each multicast cell can be
served with only a single configuration over the frame. In the
analogous Clos network, to replicate fanout splitting, multicast
connections in input stage switches are used as illustrated in
Fig. 4. If fanout splitting is not allowed, input stage switches
are only capable of unicast connections since each cell (input
link) can go through only one middle stage crossbar. Note
that Theorem 1 also shows that 2n−1 middle stage crossbars
is necessary to support multicast circuit switching in a Clos
network in which only point to point connections are allowed
at the input and output stage switches.

Based on our analogy, instead of asking the question “what
is the necessary speedup to support all admissible multicast
traffic in a crossbar switch?” we ask “what is the necessary
number of middle stage switches to support multicast circuit
switching in a Clos network?” The second question is also
difficult and -to the best knowledge of the author- unanswered.
However, things become simpler once we focus on strict
sense non-blocking in Clos networks and it corresponds to
an interesting set of schedulers based on maximal matching
in switch sceduling as we discuss in the following section.

IV. NON-BLOCKING SWITCH SCHEDULING AND

MULTICAST SUPPORT

A network is strictly non-blocking if a connection between
an idle input and an idle output can always be established,
without the need for a rearrangement of the existing connec-
tions. Since there exists a middle stage crossbar to connect
any idle input-output switch pair, to satisfy an incoming
connection request, a simple search for that middle-stage
crossbar will be sufficient. It is well known [10] that a three-
stage Clos network, (T, n, T ′) is strictly non-blocking for
unicast connections if and only if T ′ � 2T − 1.

The analogous scheduling interpretation of strictly non-
blocking is interesting. At each input, there exists a frame
of T unicast cells to be sent to over of the output links. For
a given T , large enough for sufficient averaging of the arrival
process, a speedup of 2− 1

T decouples the scheduling of cells
at distinct inputs: Suppose an input has a cell to be sent to
output j. It can search over the existing 2T − 1 configuration
matrices for one, whose jth output is not already reserved by
some input. Each input can take turns in completely assigning
their cells to one of the scheduling matrices and at the end
of the process, it is guaranteed that every single cell will be
assigned to a matrix.

Alternatively, one can construct the T ′ = 2T − 1 configu-
ration matrices one by one as follows. For each matrix, every
input (takes order and) chooses one cell destined to an output
for which another cell (from another input) is not already
destined to. An input discards a matrix, only if it has no



,

,

crossbar
switch

j

i

Clos
network

j

i
slot 1

slot 2

frame

slot

..

.

.

.

..

.

. . .

.

..

.

..

.

.

T

T

......
1

T

1

T

.

.

.

...

...

1

T

1

T

...

.

.

.

.

.

.

...

...

...
1

T
...

...

...

...

1

T

...

...

......

......

...

�
�
�
�

�
�
�
�

1 1

n n

crossbar

crossbar
2

crossbar

1

T’

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

nn

1 jn
1

output:

1

1

2schdl slot:

Fig. 3. The T ′ middle stage crossbars of the Clos network goes through the entire frame of T ′ configurations of the crossbar switch schedule.

cell for the available (not reserved by other inputs) outputs
of the current matrix being constructed. This process leads to
2T − 1 maximal matchings between inputs and the outputs
since, for each matrix, no input and output both of which
are idle are left unmatched if there exists a cell demanding
that connection. Using the analogy, we just proved a result,
which was initially showed in [4]: Since T ′ = 2T −1 middle-
stage crossbars is necessary and sufficient for strictly non-
blocking Clos networks, a speedup of T ′

T = 2− 1
T is necessary

and sufficient for 100% throughput for unicast traffic with
maximal matching. Another important thing to note is that
the complexity of maximal matching is O(N) per time slot
for unicast traffic.

In complexity, there is no difference between multicast cells
and unicast cells for the construction of a single configuration
matrix using maximal matching. To construct each configu-
ration matrix, every input takes turn to assign a cell to be
scheduled for a transmission. This time there are multicast
cells as well as unicast cells. Now suppose at an input there
exists a multicast cell with a fanout set F ; however only the
set of outputs F ′ ⊂ F is available for the matrix currently
being constructed. Then the fanout set is split into two sets,
F ′ and F \ F ′. First |F ′| copies of the cell is multicast to
the set of outputs F ′ and the remaining part is placed in the
corresponding VOQs to be scheduled in another matrix.

In Theorem 1 of [5], it is shown that there exists a con-
nection request pattern in a (T, n, T ′) Clos network such that
an incoming feasible connection request cannot be met unless
T ′ � Θ(T log n/ log log n). Consequently, in an n×n crossbar
switch, a speedup of s = O(log n/ log log n) is necessary to
achieve 100% throughput for multicast traffic with maximal
matching. The number of configuration matrices constructed
per time slot is proportional to s, the scheduling complexity
is O(sn) ≈ O(n log n) per time slot.

Unfortunately, parallel results do not exist for rearrangeably
non-blocking multicast capable Clos networks. Therefore, s =

O(log n/ log log n) is only an upper bound for the minimum
necessary speedup, sn, for 100% throughput for all admis-
sible multicast traffic. However at a speedup sn, the switch
scheduling problem has been shown to be NP-hard, which is
obviously not the case with maximal matching.

V. SUMMARY AND CONCLUSIONS

In this paper we use the analogy between cell scheduling
in crossbar switches and circuit switching in a three-stage
Clos network to study a number of issues involving multicast
support over crossbar switches.

We showed that for a crossbar switch of size n × n,
using maximal matching, a speedup of O(log n/ log log n)
is necessary to support 100% throughput for any admissible
multicast traffic. Maximal matching is appealing for multicast
traffic, because of its simplicity: The problem of multicast
switch scheduling with the minimum necessary speedup is NP-
hard, whereas the complexity of switch scheduling associated
with maximal matching for multicast traffic is only O(n log n)
per time slot.

We also showed that if fanout splitting of multicast packets
is not allowed, a speedup of 2 is necessary, even when the
arrival rates are within the admissible region for unicast traffic.
Thus, disabling the fanout splitting of multicast cells may not
be an efficient solution for the complexity problem.

Also we revisit some problems in unicast switch scheduling.
We illustrate that the well known result that “a speedup of 2
is necessary for 100% throughput for all admissible unicast
traffic using maximal matching” becomes a straightforward
by-product of the Clos network analogy with strict sense non-
blocking.
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