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Abstract— Extracting a fingerprint of a digital camera has 

fertile applications in image forensics, such as source camera 

identification and image authentication. In the last decade, Photo 

Response Non_Uniformity (PRNU) has been well established as a 

reliable unique fingerprint of digital imaging devices. The PRNU 

noise appears in every image as a very weak signal, and its 

reliable estimation is crucial for the success rate of the forensic 

application. In this paper, we present a novel methodical 

evaluation of 18 state-of-the-art PRNU estimation/enhancement 

techniques that have been proposed in the literature in various 

frameworks. The techniques are classified and systematically 

compared based on their role/stage in the PRNU estimation 

procedure, manifesting their intrinsic impacts. The performance 

of each technique is extensively demonstrated with over 𝟐. 𝟐 

million test images to conclude this case-sensitive study. The 

experiments have been conducted on our created database and a 

public image database, the 'Dresden image database'.  

 
Index Terms—Authentication, camera identification, digital 

forensics, photo response non-uniformity (PRNU), sensor pattern 

noise (SPN).  

 

I. INTRODUCTION 

A.  Background 

Nowadays, digital cameras have increasingly become 

affordable and available for almost everyone in the society, 

and hence millions of pictures are being taken, transmitted and 

saved digitally on a daily basis.  In the file headers of these 

digital images, there is useful information about the source 

camera, time and data, camera settings, exposure, etc. 

However, this information can be easily stripped off and 

tampered, and hence it cannot be used as a trustworthy source 

for sensitive issues, such as courtrooms and criminal evidence.  

Digital cameras leave traces in the pixel data of their 

images.  Researchers have found and extracted traces and 

features of different types and origins to use for various image 

forensic analyses. Forensic applications in general demand a 

substantially high accuracy, and one of the most reliable 

features that can provide such accuracy was first exploited by 
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Lukas et al. [1] and it is known as the Photo Response 

Non_Uniformity (PRNU). It results from the variations of the 

sensor pixels at collecting the light energy (this is due to 

imperfections in the manufacturing of the pixels' physical 

dimensions as well as the non homogeneity that is naturally 

present in the silicon in sensors). The variations in quantum 

efficiency among pixels can be captured and denoted with a 

matrix 𝐊 ∈ ℝ𝑀×𝑁, where 𝑀 ×𝑁  are the dimensions of the 

sensor. 𝐊 follows a (zero-mean) white Gaussian distribution. 

When an imaging sensor is illuminated with light intensity 𝐘 ∈ ℝ𝑀×𝑁, in the absence of other noise sources, the sensor 

generates a signal 𝐘 + 𝐊𝐘. (The product of the matrices herein 

is elementwise.) 

With the described underlying mechanism of generating 

the aforementioned non-uniformity, a unique pattern of spatial 

noise that is fixed for an individual camera is integrated in 

every image. In contrast to other sources of random noises, 

this noise is of a deterministic nature and cannot be eliminated 

by averaging (‘pattern noise’ is the term used in the literature 
to describe such systematic noise). However, whilst other 

sources of noise are added and the generated signal is gamma 

corrected, colour de-mosaicked and corrected, de-noised and 

subjected to few other operations in the pipeline of digital 

cameras, the PRNU noise can still survive for estimation [2]. 

In general, forensic applications of PRNU fingerprint fall in 

two categories: 

1) Image Origin Identification: There are various 

applications under this category. The most popular 

applications are source camera identification and source 

camera verification. For the former, the main goal is to 

identify the exact camera that was used to take a query image 

among other cameras provided to the analyst. In verification, 

however, the forensic analyst aims to determine whether an 

image was taken by a certain camera or not.  In both cases, the 

cameras or sets of images taken by the cameras are available 

to the analyst. Another application, known as fingerprint 

matching, is to link a set of images to another set among a 

large database. This scenario could be met when a set of 

malicious images become available to the analyst to search a 

public database to find images taken by the same camera.  

More applications include video clip linking in which the aim 

is to attribute a set of images to another set where the set is 

taken from a video clip. The problem of image origin has been 

attempted in the literature using different approaches, such as 

[3]-[7]. However, a key characteristic of PRNU fingerprint is 

that it serves as an intrinsic feature that can represent the 
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individual imaging device sensor. So that, it is not only 

possible to identify and differentiate device models of the 

same make, but also individual devices of the same model. 

Other methods such as [8] incorporate the PRNU ingredient 

with another camera model identification approach to refine 

the final results. PRNU fingerprint has also been used in 

scanner identifications in [9] and [10].   

2) Image Forgery Detection: The PRNU can serve as a kind 

of watermark for image forgery detection. The idea is that 

forgery operations such as object copy-move will change or 

destroy the PRNU in the forgery area. This is met when the 

forged object comes from another camera or the spatial 

location is changed when compared to the original image. 

Indeed, some malicious acts may preserve the PRNU and 

cannot be detected using this approach. There are numerous 

image forgery detection techniques in the literature [11]-[15], 

each has its assumption on the nature of manipulation. With 

no universal approach, the practical solution is to incorporate a 

set of approaches of different principles to detect forgeries of 

various types.  

Many studies have confirmed the reliability of the PRNU 

as a fingerprint for image forensic analysis, such as [16] where 

a large-scale experiment was conducted—over one million 

images were tested spanning 6896 individual cameras 

covering 150 models. The promising results of the PRNU 

fingerprint have drawn the attention of many research groups 

in the last decade. However, the success rates of its forensic 

applications are dedicated by the quality of the estimation of 

this weak signal. Correspondingly, many techniques appeared 

with the objective of improving the success rate of a PRNU 

forensic application through implicitly or explicitly enhancing 

the quality of the PRNU estimation. The efficiency of a 

proposed technique is usually demonstrated in a numerical 

experiment of a particular forensic application in a comparison 

with few other techniques. Although these concerned 

techniques go more or less in the same direction, they target 

different stages of the PRNU estimation procedure. Thus, the 

impacts of many of these improved PRNU estimation 

techniques are relatively unapparent, even for experts in the 

field. This calls for a study that collects and categorises all 

these techniques in order to systematically evaluate, compare 

and manifest their contributions. This paper is the first and 

most complete effort to classify all the techniques proposed in 

the literature based on their role/stage in the PRNU estimation 

procedure. And, under each category those techniques are 

reviewed and numerically evaluated through intensive 

experiments. The relatively large-scale experiments are crucial 

because of the high variations in the performances of the 

methods that can be seen among cameras and images.  

B.  The standard Procedure of PRNU Estimation 

The PRNU of a camera can be estimated using  𝐿  of its 

images: 𝐈𝑙  ∈ ℝ𝑀×𝑁   ,  𝑙 = 1,… , 𝐿. Each image is de-noising 

first to separate the “original” image from its noise: �̂� ≔ 𝐈 − 𝐹(𝐈) .                                     (1) 

where 𝐹(. ) is a filtering operation. The noise residual �̂� 
contains the PRNU noise and other types of random noises 

that cannot be used in forensic applications. The noise 

residuals of the images are then typically averaged to suppress 

the random noises, and estimate the reference PRNU that 

serves as the camera fingerprint. For further refinement of the 

PRNU estimate, diverse additional signal processing strategies 

have been proposed and adopted in the literature.  

C.  Paper Evaluation System and Outline 

The diagram in Fig. 1 summarises the key stages of the 

PRNU estimation. The various techniques proposed in the 

literature are categorised in this paper according to these 

stages. The paper is organised as follows. We start with 

describing the numerical evaluation framework and the 

benchmark database in Section II. After we describe the 

PRNU-focused camera output model in Section III, we 

theoretically and numerically analyse the methods under each 

stage of the PRNU estimation procedure in each section 

respectively. In Section IV, we analyse several de-noising 

operations, and provide our findings. We investigate the 

standard and the alternative approaches of noise residual 

combining in Section V. Section VI covers the various 

pre/post-calculation PRNU enhancement techniques. In 

Section VII, the various compact PRNU representation 

methods are studied and evaluated. Alternative enhancement 

strategies are examined in Section VIII. In Section IX, we 

look over the different similarity measures that are used to 

compare and link the estimated PRNUs in forensic 

applications. In Section X, conclusions are drawn.  

D.  Notation 

We remark that throughout the paper the boldface font 

denotes matrices. Unless otherwise stated, operations 

among/on matrices such as product, raising to a power, ratio, 

and summation are elementwise. Also, (𝑚, 𝑛), 𝑚 =1,… ,𝑀, 𝑛 = 1,…𝑁, where 𝑀 ×𝑁 are the dimensions of the 

sensor, represent the pixel positions, and they are used as 

indices for matrices to designate their (pixel) components.

 

Fig. 1. A diagram of the typical PRNU estimation procedure.
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II. NUMERICAL EVALUATION FRAMEWORK 

A. Performance Metric 

As we mentioned earlier, the quality of the PRNU 

estimation is the performance characteristic that we seek to 

evaluate. To quantify the quality of the estimated PRNU, we 

measure the similarity between PRNUs extracted from the 

same cameras, i.e. intraclass PRNU estimates, as well as the 

dissimilarity between PRNU estimates of different camera 

sources, interclass PRNUs. The standard correlation 

coefficient, i.e. the normalized cross-correlation, is used as a 

similarity measure.  

The estimated PRNU can contain different types of 

contaminations; camera-model specific noise can be one of 

them.  The presence of this noise in estimated PRNUs can 

potentially increase the dissimilarity between some interclass 

PRNU estimates, as opposed to more accurate and unique 

PRNU estimates with less camera model noises. Accordingly, 

the numerical results would be influenced by the choice of the 

interclass cameras in the experiments. Therefore, in our 

evaluation, we set the interclass experiments to PRNUs 

extracted from the same camera model.  

Ideally speaking, the distribution of the correlation 

coefficients between interclass PRNU estimates should be 

concentrated around zero, whereas the intraclass PRNU 

estimates should provide a correlation close to one. 

Nonetheless, the high impurity of the estimated PRNUs causes 

the two distributions to come near each other and overlap. An 

example of the distributions of the intraclass and interclass 

correlation coefficients of the PRNU estimates for a certain 

camera is shown in Fig. 2. These distributions could be 

modelled for each camera as generalized Gaussian 

distributions. However, the correlations cannot be described 

precisely using this model or any other model; accordingly we 

cannot exploit the model’s parameters as reliable performance 
metrics. Nonetheless, the “distance” between the two 
distributions echoes the quality of the estimated PRNU 

signals. Therefore, the rate of overlap would be considerable 

for a performance marker. To this end, we draw and exploit 

the ROC curve to discriminate the interclass and intraclass 

correlation coefficients and drive two well-established 

performance measures. Since most of our studied techniques 

are developed to achieve low false positive rates in their 

forensic application, the  first  metric we evaluate is the true 

positive rate at  𝛾 = 10−3 false positive rate in the ROC curve. 

We denote this  metric for  the c-th camera by 𝒫𝑐 . As  a  

 
Fig 2. The distributions of the intraclass and interclass correlation coefficients 

of the PRNU estimates for an example camera. 

second metric to provide a more complete picture, we evaluate 

the false positive (or negative) rate at the point where the false 

positive and false negative rates are equal in the ROC curve, 

which is known as the equal error rate (EER). We use the 

notation ℛ𝑐 to represent this performance measure for the c-th 

camera. 

B. Dataset and Experimental Setup 

Forty-five cameras, listed in Table I and II below, from our 

database and the 'Dresden image database' [17], [18] are used 

to benchmark all the studied techniques. (We note that some 

images from Dresden image database do not have the original 

resolution of their cameras because of digital zooming, and 

they must be excluded in PRNU based applications.) For each 

camera, we create 144 sets of non-overlapping sub-images of 

size 64 ×64 cropped from the original images. Such cropping 

would allow us to expand our database, and it would increase 

the challenge on the PRNU-based discrimination in order to 

noticeably differentiate between the performances of the 

studied methods. The sub-images of each set of each camera 

are grouped into  𝐿 = 50  sub-images, and they are de-noised 

and combined to yield a PRNU fingerprint estimate (for a 

camera in our database for example, this would yield 10 

PRNU estimates within each of the 144 sets and hence 1440 

estimates per camera). The PRNU estimates within each set 

are compared with each other as intraclass experiments. On 

the other hand, the similarities between PRNU estimates of 

different cameras but of the same model are measured as 

interclass experiments (for one camera in our database, this 

would lead to 6480 intraclass experiments and over 2 × 106 

interclass experiments). For unique cameras in Table I which 

have no other cameras of the same model, since sub-images 

cropped from non-overlapping parts of the original images are 

meant to contain different PRNU signals, the similarities of 

those PRNU estimates are measured as interclass experiments. 

We can observe that the number of experiments per camera is 

much larger than 1/𝛾, which would lead to a much reliable 

measure of the delicate metric 𝒫𝑐 , i.e. the true positive rate at  𝛾 = 10−3 false positive rate in the ROC curve.  

All experiments are performed in MATLAB on 45 

computers in parallel with an Intel Core Duo i7-4770 @ 

3.40GHz processor and 16 GB of memory. Before we close 

this section, we note that in colour images, the PRNUs can be 

estimated from the three colour channels separately and then 

combined using the standard RGB to grey scale conversion. 

Or, PRNU extraction can be performed once on the 

combination of the three colour channels, i.e. luminance 

channel. An alternative approach is to focus solely on the 

green channel since it carries most of the PRNU information 

and the least interpolation noise (a further discussion is 

included in Section VIII). We adopt the last approach herein to 

ease our long experiments. 

III. (PRNU-Focused) Camera Model 

Regardless of the sensor type, the average signal generated 

at a sensor from 𝐘 ∈ ℝ𝑀×𝑁 illumination is 𝐘 + 𝐊𝐘 ,                                      (2) 
where 𝐊 ∈ ℝ𝑀×𝑁 represents the PRNU that follows a white 

Gaussian   distribution.  Another   source  of  pattern  noise  is 

0 0.04 0.08 0.12 0.16 0.2

Intraclass

Interclass
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TABLE I. THE LIST OF CAMERAS FROM DRESDEN IMAGE DATABASE USED 

IN OUR NUMERICAL EVALUATION. 

Camera No.    Camera Name No. of Images 

1.  SONYDSC-HX200V 630 

2.  Kodak_M1063_4 571 

3.  Kodak_M1063_0 464 

4.  Kodak_M1063_3 460 

5.  Kodak_M1063_1  458 

6.  Kodak_M1063_2 438 

7.  SamsungL301 522 

8.  Panasonic_DMC-FZ50_1 415 

9.  Panasonic_DMC-FZ50_0 265 

10.  Panasonic_DMC-FZ50_2 251 

11.  Nikon_D200_1 380 

12.  Nikon_D200_0 372 

13.  Agfa_Sensor530s 373 

14.  Agfa_DC-830I 363 

15.  Sony_DSC-H50_0 284 

16.  Agfa_DC-733S 281 

17.  Samsung_L74wide_0 232 

18.  Samsung_L74wide_2 231 

19.  Samsung_L74wide_1 224 

20.  Canon_Ixus55 224 

21.  Olympus_mju_1050SW_2 218 

22.  FujiFilm_J50_2 215 

23.  FujiFilm_J50_1 205 

24.  FujiFilm_J50_0 210 

25.  Sony_DSC-H50_1 257 

26.  Samsung_NV15_0 214 

27.  Samsung_NV15_1 211 

28.  Samsung_NV15_2 211 

29.  Olympus_mju_1050SW_1 209 

30.  Olympus_mju_1050SW_3 207 

31.  Praktica_DCZ5.9_0 209 

32.  Praktica_DCZ5.9_3 206 

33.  Praktica_DCZ5.9_1 205 

34.  Praktica_DCZ5.9_2 205 

35.  Sony_DSC-W170_0 205 

 

TABLE II. THE LIST OF OUR CAMERAS USED IN THE NUMERICAL 

EVALUATION. 

Camera 

No. 
 Camera Name No. of Images 

1.  Nikon L330_0 500 

2.  Nikon L330_1 500 

3.  Panasonic TZ20_0 500 

4.  Panasonic TZ20_1 500 

5.  Fujifilm S2950_0 500 

6.  Fujifilm S2950_1 500 

7.  Canon IXUS_0  500 

8.  Canon IXUS _1 500 

9.  Samsung PL120_0 500 

10.  Samsung PL120_1 500 

 

introduced at the imaging sensors, known as dark currents. 

This is due to thermal energy that can generate free electrons 

in silicon with no illumination exposed on the sensor. There 

are small fluctuations in the number of generated dark 

electrons from pixel to another. Yet, this sensor pattern 

imperfection cannot be used in image forensic. This is due to 

its high dependence on the temperature and its direct 

proportionality to the exposure time setting in the camera that 

is not always available for the analyst. Also, the dark currents 

are suppressed in some cameras by subtracting a dark frame 

from the final image. The two sensor imperfections are known 

combined as sensor pattern noise (SPN). However, PRNU 

noise is the most dominant part of SPN, and unlike the other 

component it is always present in an image and cannot be 

subtracted in common consumer cameras. Hence, several 

papers in the field recognise SPN as the fingerprint of a 

camera sensor. With slight abuse of terms, we use the terms 

exchangeably to maintain the consistency of the terminology 

in this paper.  

As we mentioned above, (2) represents the average number 

of collected electrons. The actual number can be more/less 

than or equal to the average, and its distribution about the 

average follows a Poisson distribution (where its variance 

equals its mean). It is usually referred to as shot noise or 

photonic noise. From above, the number of collected electrons 

can be expressed as 

 𝐘 + 𝐊𝐘 + 𝐍𝐃𝐂 + 𝐍𝐬 ,                          (3) 

where 𝐍𝐃𝐂 ∈ ℝ𝑀×𝑁 is the number of electrons due to thermal 

energy, and 𝐍𝐬 ∈ ℝ𝑀×𝑁 is the zero-mean result of the Poisson 

shot noise. The output amplifier that transforms the photon-

induced electrons at the sensors into a measurable signal adds 

a zero-mean read-out noise that is independent of the value of 

the signal. The signal is then gamma corrected to adjust to 

human vision and quantised with an ADC before saving. The 

final image can be expressed as    𝐈 = 𝑔𝛾(𝐘 + 𝐊𝐘 + 𝐍𝐬 + 𝐍𝐃𝐂)𝛾 + 𝐍𝒒 ,            (4) 

where 𝑔 is the amplifier gain, 𝛾(=0.45 typically) is the gamma 

factor, and 𝐍𝒒 ∈ ℝ𝑀×𝑁 is the quantisation noise (the reader 

can refer to [19] for more details about camera noise sources 

and characteristics). With the Taylor expansion (1 + 𝑥)𝛼 =1 + 𝛼𝑥 + 𝑂(𝑥2) at 𝑥 = 0, and by re-arranging the bracket in 

(4) into the former, we reach 

   𝐈 = 𝑔𝛾𝐘𝜸 [1 + 𝛾𝐊 + 𝛾𝐍𝐬 + 𝛾𝐍𝐃𝐂 + 𝑂 (|𝐊 + 𝐍𝐬+𝐍𝐃𝐂𝐘 |2)]        +𝐍𝒒.    (5) 

The last term in the square bracket is small and can be 

ignored. Let   𝐈𝟎 ≔ 𝑔𝛾𝐘𝜸 and 𝐍𝒕 ≔ 𝛾𝐍𝐬 + 𝛾𝐍𝐃𝐂 + 𝐍𝒒 

denotes the combination of the independent random noise 

components. To avoid introducing many notations, the 

symbols are absorbed as follows  𝐊 ≔ 𝛾𝐊. This leads to  𝐈 = 𝐈𝟎 + 𝐊𝐈𝟎 + 𝐍𝒕 .                             (6) 

The model is more or less adopted in all the existing PRNU-

based techniques despite the various terminologies. And, 

many techniques model 𝐊𝐈𝟎 + 𝐍𝒕  combined as white 

Gaussian process. In the literature, some authors distinguish 𝐊 

by the PRNU factor and 𝐊𝐈𝟎 by the PRNU signal. 

Nonetheless, 𝐊 is the actual fingerprint of a camera, and all 

the techniques implicitly or explicitly seek to estimate this 

quantity or a scaled version of it—which we simply refer to by 

the PRNU. 

IV. DE-NOISING OPERATIONS 

Various de-noising methods have been exploited in the 

PRNU extraction in the image forensics research literature. In 

the next subsections, we discuss all the techniques developed 

and adopted in the estimation of this weak signal.  

A. Wavelet-Based Filter 

This filter was originally proposed in [20], and it operates 

as follows. The fourth-level wavelet decomposition of the 

image with the 8-tap Daubechies quadrature mirror filter is 

first calculated. Let the wavelet coefficients in the vertical, 

horizontal, and diagonal subbands be respectively denoted by 
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𝐡(𝑖, 𝑗), 𝐯(𝑖, 𝑗), 𝐝(𝑖, 𝑗), (𝑖, 𝑗) ∈ 𝒯, where 𝒯 is the index set of 

the wavelet coefficients that depends on the decomposition 

level. The de-noised wavelet coefficients are obtained using 

the Wiener filter: 𝐡𝑤(𝑖, 𝑗) ≔ 𝐡(𝑖, 𝑗) �̂�2(𝑖, 𝑗)�̂�2(𝑖, 𝑗) + 𝜎02  ,                      (7)  
and similarly for 𝐯(𝑖, 𝑗) and 𝐝(𝑖, 𝑗). 𝜎02 is the variance of the 

noise that is assumed to be a white Gaussian process, and  �̂�2(𝑖, 𝑗) represents the estimated local variance of the wavelet 

coefficients of the “original” noise-free image—these 

coefficients are modelled as locally stationary iid variables 

with zero mean. The maximum a posteriori (MAP) estimation 

is used to obtain the local variance: �̂�2𝑞(𝑖, 𝑗) = max(0, 1𝑞2 ∑ 𝐡2(𝑥, 𝑧) − 𝜎02(𝑥,𝑧)∈ℬ𝑞 ),            (8) 
where 𝑞 × 𝑞 is the size of the window ℬ𝑞  around (𝑖, 𝑗); it was 

proposed to set 𝑞 ∈ {3,5,7,9}. The minimum of the four 

variances is used in (7), i.e. �̂�2(𝑖, 𝑗) = min(�̂�23(𝑖, 𝑗), �̂�25(𝑖, 𝑗), �̂�27(𝑖, 𝑗), �̂�29(𝑖, 𝑗)) . (9) 

The de-noised image is then obtained by applying the inverse 

wavelet transform on the de-noised coefficients. It was shown 

in [1] that the choice of 𝜎02 has little impact on the 

performance of the filter in PRNU extraction. The authors, 

throughout their various versions of this work, suggested 

setting  𝜎0 between 2 and 5. 

B. Context-Adaptive Interpolator (CAI)  

    In [21] the authors proposed an estimator based on an eight-

neighbour context-adaptive interpolation algorithm to supress 

the effect of image scenes (a four-neighbour version was 

proposed in their conference paper [22]). It aims to identify 

edges and to produce a high-quality PRNU estimate. 

According to this method, the local regions are classified into 

six types: smooth, horizontally edged, vertically edged, 

forward-diagonally edged, backward-diagonally edged, and 

other. A mean filter is used to estimate the centre pixel value 

in the smooth regions. In edge regions the centre pixel is 

predicted along the edge. In other regions a median filtering is 

used. To put this in a concise equation, the pixels  𝐈(𝑚, 𝑛 + 1) 
are designated by ℯ, 𝐈(𝑚 + 1, 𝑛 + 1) by 𝓈ℯ, 𝐈(𝑚 + 1, 𝑛) by 𝓈, 𝐈(𝑚 + 1, 𝑛 − 1) by 𝓈𝓌, 𝐈(𝑚, 𝑛 − 1) by 𝓌, 𝐈(𝑚 − 1, 𝑛 − 1) 
by 𝓃𝓌, 𝐈(𝑚 − 1, 𝑛) by 𝓃ℴ, and 𝐈(𝑚 − 1, 𝑛 + 1) by 𝓃ℯ, and 𝐀 = [ℯ, 𝓈ℯ, 𝓈, 𝓈𝓌,𝓌,𝓃𝓌,𝓃ℴ,𝓃ℯ]′. The centre pixel value is 

given by: �̂�(𝑚, 𝑛) =

{   
  
   𝐈(𝑚, 𝑛) − mean(𝐀),   (max(𝐀) − min(𝐀)) ≤ 20             𝐈(𝑚, 𝑛) − (𝓈+𝓃ℴ)2 ,         (|ℯ −𝓌| − |𝓃ℴ − 𝓈|) > 20          𝐈(𝑚, 𝑛) − ℯ+𝓌2 ,             (|𝓈 − 𝓃ℴ|, −|ℯ −𝓌|) > 20          𝐈(𝑚, 𝑛) − 𝓈ℯ+𝓃𝓌2 ,         (|𝓈𝓌 − 𝓃ℯ| − |𝓈ℯ − 𝓃𝓌|) > 20𝐈(𝑚, 𝑛) − 𝓈𝓌+𝓃ℯ2 ,        (|𝓈ℯ − 𝓃𝓌| − |𝓈𝓌 − 𝓃ℯ|) > 20 𝐈(𝑚, 𝑛) −median(𝐀),                    otherwise .                     

   (10) 

Then spatial Wiener filtering operation is exploited to 

eliminate the impact of the image scenes leaked in (10), where �̂� is modelled as an additive mixture of the locally stationary 

iid zero-mean signal of image content and white Gaussian 

noise. The noise variance in this operation is set to 9 and the 

MAP estimation, described in Subsection IV.A above, is used 

to obtain the local variance of the image content with a 

window of size 3 × 3. 

C. 2-Pixel Approach 

Modern low-medium end cameras have high sensor pixel 

density, and it is very likely that two pixels in the same 

vicinity have close values in  natural images. This method [23] 

capitalises on this observation in spatial domain filtering. It 

counts on engaging as little as one adjacent pixel at estimating 

the PRNU at a pixel location in order to suppress the 

correlation between neighbouring pixels in the estimated 

(supposedly white) signal. Let (𝑥, 𝑧) designate a pixel location 

in the close vicinity of (𝑚, 𝑛). Simply speaking, based on the 

model of 𝐈 in (6), a noisy estimate of 𝐊(𝑚, 𝑛)𝐈𝟎(𝑚, 𝑛) at an 

individual pixel can be produced by subtracting its value 𝐈(𝑚, 𝑛) by another pixel of the same (amplified and gamma 

corrected) illumination 𝐈𝟎(𝑥, 𝑧) but with opposite signed 𝐊(𝑥, 𝑧). Thus to obtain a rough PRNU estimate, i.e. noise 

residual, at a certain pixel of an image, this technique searches 

the 16 next-to-the-adjacent pixels to find one pixel with a 

comparable value 𝐈(𝑥, 𝑧) and an alternative signed 𝐊(𝑥)𝐈𝟎(𝑥, 𝑧). We saw in Section III that the level of a 

considerable part of the random noise at a pixel (𝑚, 𝑛) 
depends on its illumination. This search considers this pixel 

dependent noise in finding a neighbouring pixel with a close 

value 𝐈𝟎(𝑥, 𝑧). The noise residual at pixel (𝑚, 𝑛) of an image 

is estimated as     �̂�(𝑚, 𝑛) = 𝐈(𝑚, 𝑛) − 𝐈(𝑥, 𝑧)2 ,      |𝐈(𝑚, 𝑛) − 𝐈(𝑥, 𝑧)| < √𝐈(𝑚, 𝑛) and 𝐊(𝑚, 𝑛)𝐊(𝑥, 𝑧) < 0.  (11) 

Starting from the pixel on the (let’s say) top right corner, the 
search runs (anti)clockwise to find the first pixel that fulfills 

the conditions in (11). Otherwise, �̂�(𝑚, 𝑛) is set to no value 

and not considered in the combining process. The add-hoc 

threshold √𝐈(𝑚, 𝑛) in (11) reflects the standard deviation of 

the shot noise at the addressed pixel. The method exploits a 

prior rough estimate of the signs of 𝐊, which can be obtained 

by any basic filtering operation such as median filtering of few 

images of  𝐿. In the original paper, the 8 adjacent pixels are 

engaged instead. It has been modified because of the high 

correlation in adjacent pixels resulted from the interpolation 

operation that has been observed in a few cameras.  

D. Adaptive Spatial (AS) Filtering 

 In [24], it was suggested that a rather simple space variant 

filtering technique may be more useful in estimating the 

PRNU because of the relaxed requirement of de-noising every 

image entirely. Their work is based on two stage filtering. The 

first stage is the standard adaptive Wiener filter [25] that 

operates directly in the spatial domain:  

                   �̂�(𝑚, 𝑛) = 𝐈(𝑚, 𝑛) − 𝐔(𝑚, 𝑛) +[𝐈(𝑚, 𝑛) − 𝐔(𝑚, 𝑛)] �̂�2(𝑚, 𝑛)�̂�2(𝑚, 𝑛) + 𝜎02  ,       (12) 
where  𝜎02  is the variance of the noise that is assumed to be a 

white process, and 𝐔(𝑚, 𝑛) and �̂�2(𝑚, 𝑛) are the local mean 

and variance of the original image within the  𝑞 ×  𝑞  pixel-

size window ℬ𝑞  around the pixel (𝑚, 𝑛), respectively: 
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𝐔(𝑚, 𝑛) = 1𝑞2 ∑ 𝐈(𝑥, 𝑧)(𝑥,𝑧)∈ℬ𝑞 ,                           (13) 
�̂�2(𝑚, 𝑛) = [ 1𝑞2 ∑ 𝐈2(𝑥, 𝑧) −(𝑥,𝑧)∈ℬ𝑞 𝐔2(𝑚, 𝑛)] − 𝜎02.    (14) 

It was recommended in [24] to use a window of size 9 ×9 pixels and set  𝜎02  to 5 in extracting the noise residuals from 

the 𝐿 images. The second stage consists of two 2 × 2 cascaded 

median filters to suppress the impulse pixels in �̂�. 
E. Other Image De-Noising Filters   

Renowned image de-noising filters that have been 

explored in thousands of studies and applications have also 

been adopted in PRNU extraction. In this subsection, we 

briefly outline these seminal filters: 

1)  Perona-Malik diffusion (PMD) filter: The filter was 

adopted in PRNU estimation in [26]. Perona and Malik 

presented this filter in [27] based on the anisotropic diffusion 

equation: 

  
𝜕𝐈(𝑚,𝑛,𝑡)𝜕𝑡 = ∇. (𝑐(|∇𝐈(𝑚, 𝑛, 𝑡)|)∇𝐈(𝑚, 𝑛, 𝑡)) ,         (15) 

where ∇ and ∇. are the gradient and divergence operations, 

respectively. In their discrete form of (15), 𝐈(𝑚, 𝑛, 𝑡) is a de-

noised version of the image at scale 𝑡 (where 𝐈(𝑚, 𝑛, 0) is the 

original image), and 
𝜕𝐈(𝑚,𝑛,𝑡)𝜕𝑡   =𝐈(𝑚, 𝑛, 𝑡 + 1) − 𝐈(𝑚, 𝑛, 𝑡). 𝑐(|∇𝐈(𝑚, 𝑛, 𝑡)|) is the diffusion coefficient that is chosen to 

preserve edges and textures. One of the two Perona and 

Malik’s diffusion coefficients was chosen in [26] owing to its 

better performance in PRNU extraction. That is, 𝑐(𝜐) ≔ −𝑒−(|υ|/𝜒)2 ,                             (16) 
where 𝜒 is a gradient threshold parameter that is determined at 

each iteration; it represents the value below which 90% of the 

absolute value of the whole image gradient occur. The Perona-

Malik’s discrete form of the right hand side of (15) is 𝜆|ℳ| ∑ 𝑐(|𝐈(𝑚, 𝑛, 𝑡) − 𝐈(𝑥, 𝑧, 𝑡)|)(𝐈(𝑚, 𝑛, 𝑡) − 𝐈(𝑥, 𝑧, 𝑡))(𝑥,𝑧)∈ℳ     
where ℳ = {(𝑚, 𝑛 + 1), (𝑚, 𝑛 − 1), (𝑚 + 1, 𝑛), (𝑚, 𝑛)},  |ℳ| = 4 (an 8-neighbouring pixel approximation can also be 

adopted) and 𝜆 ∈ (0,1] determines the rate of diffusion. In 

[26], 𝜆 was fixed to 1/7, and the number of scales  𝑡  was set to 

three, i.e. �̂�(𝑚, 𝑛) = 𝐈(𝑚, 𝑛, 3) − 𝐈(𝑚, 𝑛, 0). 
2) Total variation (TV) filter: In the classical definition of 

this filter that was introduced in [28], the total variation of the 

image is minimized subject to constraints involving the 

statistics of the noise. The constraints are imposed using 

Lagrange multipliers. The solution is obtained using the 

gradient-decedent method (many new other optimization 

techniques have appeared in the compressive sensing field). 

The filter preserves edges whilst smooth away noise in flat 

regions, even at low signal-to-noise ratios. The PRNU 

estimation work of [29] is based on a simplified version of the 

total variation filter. The authors adopted the unconstrained 

total variation method proposed in [30] and used the gradient-

decedent optimization. With each step 𝐈(𝑚, 𝑛, 𝑡) = −∇. ( ∇𝐈|∇𝐈|𝜀) + 𝐈(𝑚, 𝑛, 𝑡 − 1),         (17) 𝐈(𝑚, 𝑛, 𝑡) is a de-noised version of the image at iteration step 𝑡 
(where 𝐈(𝑚, 𝑛, 0) is the original image) and |∇𝐈|𝜀 =

√|∇𝐈|2 + 𝜀2, where 𝜀 is inserted to avoid singularities (we set 𝜀 = 10−3 in our implementation). To simplify it further, the 

authors recommended using only one step in the gradient-

decedent optimization, which they hence name it as the first 

step total variation (FSTV) filter. The noise residual for this 

case will be given by  �̂� = −∇. (∇𝐈/|∇𝐈|𝜀).  Whilst the authors’ 
primary aim is to adopt a simple, fast de-noising operation in 

PRNU extraction, they also seek a more accurate estimate of 

the PRNU compared to other filters.  

3) Block-matching and 3D (BM3D) algorithm: The filter, 

that was introduced in [31], has been explored in PRNU 

estimation in [32] and [33]. The filter combines sliding-

window transform processing with block-matching, where a 

pixel of the true image is estimated from regions which are 

found similar to the region centered at the estimated pixel. The 

filter operates in the following steps. Image blocks are 

processed in a sliding manner to search for blocks that exhibit 

similarity to the currently-processed one. The matched blocks 

are stacked together to form a 3D array. A 3D transformation 

of the array is applied to produce a sparse representation of the 

true signal in 3D transform domain. Then efficient noise 

attenuation is achieved by applying a shrinkage operator (e.g. 

hardthresholding or Wiener filtering) on the transform 

coefficients. Inverse 3D transform of the filtered coefficients 

yields the local estimates of the blocks. This results in an 

improved de-noising performance and preserves the finest 

details in the local estimates of the matched blocks. After 

processing all blocks, the final estimate is the weighted 

average of all overlapping local block-estimates. To maintain 

the clarity and precession in this limited-space paper, the 

reader is referred to the original paper and its web page for the 

details of the implementation of this innovative filter [31].  

F. Results Analysis 

Because of the different sensor types and images, each 

camera produces a different ROC curve and hence various 

values of 𝒫𝑐  and ℛ𝑐 for each method. To reach a conclusion 

under an evaluated method, we average the two metrics 𝒫𝑐  and ℛ𝑐 across all the cameras, respectively, yielding �̅� and ℛ̅. The 

results for the aforementioned de-noising operations are listed 

in Table III. The filters are listed and arranged in order 

according to their performances. At the top, we can observe 

the excelling performance of the block-matching and 3D 

(BM3D) filter with significant improvement that can be seen 

at both metrics (it was also observed that the excelling 

performance is consistent across all the 45 cameras unlike any 

other method studied in this paper).  It is respectively followed 

by the popular wavelet-based (WB) filter. The 

computationally undemanding total variation (TV) filter, at 

two iteration steps, falls slightly behind the WB filter. We 

tested the TV filter with less/more steps; and the results were 

similar or inferior. The basic operation of adaptive spatial 

(AS) does not fall much behind the WB and TV filters. The 2-

pixel (2P), the context-adaptive interpolator (CAI) and the 

Perona-Malik diffusion (PMD) come sequentially. We remark 

that the last three filters have been shown to provide superior 

performances in the forensic applications in the original 

papers. We mainly attribute that to the imperfection of the 

filters at suppressing specific types of noise that can be 

beneficial in some experimental setups, whereas in our study 
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we are evaluating the estimation quality of the supposedly 

unique PRNU fingerprint. 

It was pointed out in various works that the filters operate 

different amount of de-nosing and hence the number of noise 

residuals L used to estimate the reference PRNU would affect 

the filters' relative performances. Therefore, we evaluate the 

filters for 𝐿 = 100  and 𝐿 = 150. We note that only cameras 

with more than 300 images in Table I and II have been used 

for those experiments. Also, since the PRNU estimates would 

give very high accuracy with such large 𝐿, we crop the images 

to size 32 × 32 . This would allow us to expand the numerical 

experiments and manifest the relative performances of the 

filters. The results are listed in Table IV. We can observe that 

the ranking of the filters persist. But, the performances of 

some of the filters seem to climb up.  

Although our main focus is on the quality of the PRNU 

estimation, the computational time of the filtering operation is 

a worth considering aspect—especially with the large number 

of images usually involved in forensic applications. The CPU 

time of the implementation of a filter in MATLAB could serve 

as a good measure of this aspect. The CPU times of the 

filters are listed in Table V—all the computations are 

performed on the same machine of Intel Core Duo i7-4770 @ 

3.40GHz processor and 16 GB of memory on images of size 512 × 512. It is highlighted that the strong performance of 

BM3D comes at the cost of relatively demanding 

computations. Whereas, the FSTV requires minimal 

computations. Before we close this section, we remark few 

notes about our implementations of the filters. The 8-

neighbouring pixel approximation of PMD was adopted here. 

And, we implemented the central difference approximation, as 

described in the appendix of [26], which  is  a  touch different 

from the original work [27]. In the TV filters, the forward 

finite difference approximation of the gradient was used in our 

implementation.  
 

TABLE III. THE PERFORMANCE RESULTS (IN %) OF THE LISTED FILTERS 

USING L=50  IMAGES 

Method �̅� ℛ̅ 

BM3D 82.4 5.1 

WB 66.7 7.6 

(2S)TV 54.9 8.8 

AS 54.9 8.9 

2P 40.2 15.6 

CAI 24.3 19.7 

PMD 16.3 18.1 

FSTV 13 24.6 

 

TABLE IV. THE PERFORMANCE (IN %) OF THE LISTED FILTERS USING 

L=100  AND L=150  FOR AN ALTERED EXPERIMENTAL SETUP. 

Method 

 �̅� ℛ̅ 𝐿 = 100 𝐿 = 150 𝐿 = 100 𝐿 = 150 

BM3D 86.2 86.2 3.6 3.2 

WB 69.1 79 6.5 4.8 

(2S)TV 60.1 74 7 5.2 

AS 49.4 59.4 9.7 7.8 

2P 42.8 58.6 14.0 10.3 

CAI 34.0 50.2 16.2 8.8 

PMD 20.9 50.5 15.8 10.0 

FSTV 11 34.0 25.1 16.8 

TABLE V. CPU TIMES OF THE LISTED FILTERING OPERATIONS. 

Method CPU Time (ms) 

CAI 4344 

BM3D 3155 

WB 851 

PMD 298 

2P 72 

AS 44 

FSTV 12 

 

 

V. COMBINING PROCESS 

As we mentioned earlier the noise residual of the filtering 

process (1) contains a considerable amount of random noises 

that cannot be used in image forensics, as well as partial scene 

details of the image itself caused by the imperfections of the 

filtering process—which are referred to by image 

contamination. Thus, to provide a reliable estimate of the 

PRNU, the noise residuals of  𝐿  images taken by the same 

camera are combined. The underlying model of the noise 

residual that is implicitly adopted in a lot of work in the 

literature is given by  �̂� = 𝐊𝐈𝟎 + 𝛉, where 𝛉 ∈ ℝ𝑀×𝑁 is a 

combination of the random noises and image contamination 

that is independent of  𝐊𝐈𝟎  and has constant mean and 

variance. Since 𝐈𝟎(𝑚, 𝑛) and 𝐊(𝑚, 𝑛) are independent at a 

pixel location, a pixel-wise average: 𝐑 ≔ ∑  �̂�𝑙 𝐿⁄𝐿𝑙=1 , where  �̂�𝑙 , 𝑙 = 1, … , 𝐿  are the noise residuals extracted from the 

images  𝐈𝑙 ,  𝑙 = 1,… , 𝐿, respectively, converges to the (scaled 

and DC-shifted) PRNU with increasing 𝐿. Alternative 

combining approaches have been adopted in the field, which 

we discuss below.   

A. Maximum Likelihood Estimator (MLE) 

The work of Chen et al. [34] models the extracted noise 

residual as �̂� = 𝐊𝐈 + 𝛉. The authors accept that the random 

noises across all the 𝐿 images at a certain pixel location, i.e. 𝛉𝑙(𝑚, 𝑛),  𝑙 = 1,… , 𝐿, are (zero-mean, fixed variance) white 

Gaussian process. Correspondingly, a maximum likelihood 

estimator can be simply adopted to estimate 𝐊: 𝐑𝑀𝐿𝐸 ≔ 
∑ �̂�𝑙𝐈𝑙𝐿𝑙=1∑ (𝐈𝑙)2𝐿𝑙=1   .                               (18) 

The assumption of fixed (random) noise variance per pixel in 

the 𝐿 images can be met in uniformly illuminated images 

taken under controlled conditions.  

B. Weighted Averaging (WA)  

The variance of the random noise is not constant in all 

natural uncontrolled images taken by a camera, even for fixed 

ISO sensitivity. This is due to several reasons among which is 

the variation of the camera settings such as integration time, 

shutter speed and focal length at the times of taking the 

pictures. Relying on this fact, it was proposed in [35] to 

capitalise on a weighted averaging operation to reduce the 

estimation error:    𝐑𝑤 ≔∑w𝑙�̂�𝑙𝐿
𝑙=1  ,                                   (19) 

where 𝑤𝑙  is the weight for the l-th image, and it is given by 
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w𝑙 = 1𝜎𝑙2  (∑ 1𝜎𝑠2𝐿
𝑠=1 )−1 .                         (20) 

where 𝜎𝑙2 is the variance of the undesirable noise in �̂�𝑙 . In 

[35], the noise variances are estimated using the difference 

signal estimation approach proposed in [36]. Based on the 

assumption that the PRNU is deterministic and invariant for an 

individual pixel of a camera from image to another, the 

random noise component can be obtained by subtracting the 

noise residual by the 𝐊𝐈𝟎 . But since the latter is not known, 

the estimated PRNU 𝐑 is used:   �̂�𝑙 ≔ �̂�𝑙 − 𝐑                                          (21) 
Then, the variance estimate �̂�𝑙 2 is simply calculated using the 

following.  �̂�𝑙 2 ≔ ∑ (�̂�𝑙(𝑚, 𝑛) − �̅�𝑙)2(𝑚,𝑛) 𝑀𝑁  ,                         (22) 
where �̅�𝑙 is the mean of the random noise component in the �̂�𝑙: �̅�𝑙 ≔ ∑ �̂�𝑙(𝑚, 𝑛)(𝑚,𝑛)𝑀𝑁 .                                (23) 
It was recommended in [35] to divide each image into a 

number of sub-images, where the noise is rather stationary, 

and run the above procedure on each sub-image yielding 

different weights.    

C. Results Analysis 

The performance results of the maximum likelihood 

estimator (MLE) and weighted averaging (WA), over the basic 

averaging approach are considered here. As the wavelet-based 

filter was originally implemented by the first PRNU-based 

work [1] and it is still the most popular filter in this forensic 

field, we use this filter in all the noise residuals combining 

approaches. For easy interpretation of the results, we 

benchmark the studied methods against the basic averaging 

approach. That is, the performance results are calculated 

through �̀� = ∑ (𝒫𝑐 − �̅�𝑊𝐵)/45𝑐=45𝑐=1  and ℛ̀ = ∑ (ℛ̅𝑊𝐵 −𝑐=45𝑐=1ℛ𝑐)/45, where �̅�𝑊𝐵  and ℛ̅𝑊𝐵 are the overall performance 

results of the basic averaging with the wavelet-based filter 

which are equal to 66% and 7.6%, respectively. In fact, for the 

rest of the paper, we will use the basic averaging with the 

wavelet-based filter to evaluate the studied techniques and 

benchmark them accordingly. We can see in Table VI that the 

MLE and the WA approaches provide clear improvements on 

the PRNU estimation. But, they seem to deliver similar results 

to each other. 

VI. PRNU ENHANCEMENT TECHNIQUES 

The estimated PRNU can still contain considerable amount 

of contamination even after combining the noise residuals of  

a large  number  of  images. Various   additional  enhancement  

 
 

TABLE VI. THE PERFORMANCE IMPROVEMENTS (IN %) OF THE NOISE 

RESIDUALS COMBINING APPROACHES OVER BASIC AVERAGING. 

Method �̀� ℛ̀ 

MLE +3.9 +1.4 

WA +4.8 +0.9 

techniques have been adopted in the literature to improve the 

purity of the estimated signal, which are described in the next 

subsections. 

A. Removing the Sharing Components (RSC)  

The estimated PRNU contains all the components that are 

systematically present in every image of an individual camera. 

These components include the sought PRNU and other 

artifacts that are not unique for a camera, not even for a model 

or make. These usually appear because of cameras employing 

the same processing algorithms in their pipelines. Hence these 

artifacts cannot serve as a reliable forensic tool and must be 

removed from the estimated PRNU to improve its quality. 

There are various types of artifacts; although the following 

two operations were not originally developed in [34] to tackle 

all the different types, they seem to effectively suppress them 

[37].  

The first step is the ‘zero-mean’ operation, denoted by 𝒵(. ), where the column average is subtracted from each pixel 

in the column and then the row average is taken from every 

pixel in the row. It targets the artifacts induced due to colour 

interpolation and the row-wise/column-wise operations of 

processing circuits and sensors.  

The second operation is Wiener filtering the PRNU 

estimate in the Fourier domain. It operates by filtering the 

magnitude of the Fourier transform, keeping the only noise 

components. This would result into a flatter frequency 

spectrum. These can be summarised as  real [ℱ−1 ( ℱ(𝒵(𝐑))|ℱ(𝒵(𝐑))| [|ℱ(𝒵(𝐑))| − 𝜔(|ℱ(𝒵(𝐑))|)])]   (24) 
where ℱ(. ) and 𝜔(. ) are the Fourier transform and the Wiener 

filtering, respectively. The noise variance in the latter is set as 

the sample variance of the magnitude of the Fourier transform |ℱ(𝒵(𝐑))|. And, the assumption is that the non-unique 

artifacts in |ℱ(𝒵(𝐑))| are locally stationary iid variables with 

zero mean. Indeed, PRNU estimates constructed from any of 

the combining techniques can be plugged in above 

analogously.  

B. Phase-Only Operation 

Similar to the approaches above, the authors in [38], [39] 

proposed a method to clear the noise residue in the frequency 

domain from image contents and non-unique artifacts of JPEG 

compression, on-sensor signal transfer, sensor design, and 

colour interpolation. The method counts on the established 

assumption that the sensor pattern noise is a white noise, and 

hence it has a flat frequency spectrum. To this end, the noise 

residuals are whitened first through:    𝐏𝐡𝑙 ≔ ℱ( �̂�𝑙)|ℱ( �̂�𝑙)| , 𝑙 = 1, … , 𝐿                 (25) 
where ℱ(. ) denotes the Fourier transform as seen above, and 

hence 𝐏𝐡𝑙 represents the phase component of the noise 

residual  �̂�𝑙  of the l-th image. The phase components are then 

combined before taking the inverse Fourier transform to yield 

the PRNU estimate:  𝐑𝑝 ≔ real [ℱ−1 (∑ 𝐏𝐡𝑙𝐿𝑙=1𝐿 )].                       (26) 
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C. Sensor Pattern Noise Enhancer Models 

In [40], the author proposed an enhancing technique based 

on the hypothesis that the stronger a signal component in noise 

residual is, the more likely that it is associated with strong 

scene details, and hence the less trustworthy the component 

should be. Working in conjunction with the wavelet-based de-

noising operation, the hypothesis suggests that an improved 

PRNU can be attained by assigning less weighting factors on 

strong components of the noise residual in the digital wavelet 

domain in order to supress the contamination of scene details. 

To this end, the author proposed five models to be applied. Let 

the wavelet coefficients of the noise residual be denoted by �̂�𝒘(𝑖, 𝑗), (𝑖, 𝑗) ∈ 𝒯, where 𝒯 is the index set of the wavelet 

coefficients that depends on the decomposition level. The two 

models (Model 3 and Model 5 in the original work) that were 

shown there to deliver the best results are, respectively: 

�̂�𝑀1(𝑖, 𝑗) ≔ {  
  1 − 𝑒−�̂�𝒘(𝑖,𝑗),                   0 ≤ �̂�𝒘(𝑖, 𝑗) ≤ 𝛼   (1 − 𝑒−𝛼). 𝑒𝛼−�̂�𝒘(𝑖,𝑗),             �̂�𝒘(𝑖, 𝑗) > 𝛼    −1 + 𝑒 �̂�𝒘(𝑖,𝑗) ,             − 𝛼 ≤ �̂�𝒘(𝑖, 𝑗) < 0   (−1 + 𝑒−𝛼). 𝑒𝛼+�̂�(𝑖,𝑗),          �̂�𝒘(𝑖, 𝑗) < −𝛼, (27) 

and  �̂�𝑀2(𝑖, 𝑗) ≔ {𝑒−0.5�̂�𝒘2(𝑖,𝑗)/𝛼2 ,           �̂�𝒘(𝑖, 𝑗) ≥ 0−𝑒−0.5�̂�𝒘2(𝑖,𝑗)/𝛼2 ,        �̂�𝒘(𝑖, 𝑗) < 0,              (28) 

where 𝛼 is a threshold to be decided by the user. The 

enhanced noise residuals are then obtained by applying the 

inverse wavelet transform on the coefficients of (27) and (28). 

In the original work, these models were developed to suppress 

the scene contamination in the noise residual of a single 

uncontrolled test image in camera identification/verification, 

and they were not applied to the noise residuals used to 

estimate the reference PRNU (the assumption there is that the 

camera is available to the analyst, and hence uniformly 

illuminated images can be taken which contain no scene 

details to suppress). It was implied in the original work that 

those models are applied in the pixel domain. This led few 

researchers to adopt the models directly in the spatial domain 

in their implementation. 

D. Results Analysis 

The described enhancement operations are implemented 

here over the wavelet-based filter with basic averaging, and 

they are benchmarked against it as we described in Section V. 

The relative performances are listed in Table VII. Our findings 

highlight the effectiveness of removing the sharing 

components (RSC). In our experiments, we observed a certain 

amount of false correlation in the estimated PRNUs not only 

between cameras of the same model but also between other 

camera models. And, the RSC operations seem to efficiently 

suppress such adversary effect. In the original work of RSC, 
the Wiener filter is described as 3 × 3, however, in the 

authors' implementation they use the variance estimation 

procedure, described in Subsection IV.A, to obtain the 

minimum local variance within windows of sizes 3 × 3, 5 × 5, 7 × 7, and 9 × 9. We adopt the same procedure in our 

implementation. The other Fourier-based operation, i.e. phase-

only operation, also seems to deliver sound performance. 

However, the improvement is not as significant (or consistent 

through different cameras) as the RSC results. This is despite   

TABLE VII. THE PERFORMANCE IMPROVEMENTS (IN %) OF THE LISTED 

METHODS OVER THE BASIC APPROACH. 

Method �̀� ℛ̀ 

RSC +6.59 +0.9 

Phase-Only +2.5 +0.01 

Model1 -9.0 -3.0 

Model2 -13.9 -6.6 

 

 

that the phase-only operation is applied at each of the L 

images, whereas the RSC operations are only applied once on 

the reference PRNU estimate. As the two methods operate in 

the same Fourier domain, combining the two operations does 

not improve the results further.  Finally, the two enhancing 

models seem to have rather harmful impact on the 

performance of the basic approach (the user parameters 𝛼 in 

the numerical experiments are set to the optimal values for the 

addressed image size, as proposed in the original work). An 

explanation could be seen in (27) and (28); as they might 

suppress the significant contamination they also magnify the 

small components which highlight the effect of the shared 

non-unique artifacts in the estimated PRNUs.  

VII. COMPACT PRNU-BASED FINGERPRINT 

In this section, we discuss methods that aim to exploit the 

information in the estimated PRNU by constructing a 

modified PRNU-based fingerprint. These methods aim to 

enhance the accuracy of the forensic application and lessen the 

computational and storage requirement. The latter is achieved 

by tapering the size of the PRNU-based fingerprint that is 

required to be stored and engaged in the forensic calculations. 

These PRNU enhancing methods are exclusive for camera 

origin identification applications, and cannot be incorporated 

in image forgery detections.    

A. Significant Components (SC) Only Technique  

The authors in [41] proposed to only use the large 

components in the estimated PRNU to cut down the overall 

random noise. In theory, the large components carry more of 

the signal of interest in comparison to small components that 

are mainly random noise. Based on the magnitude, they sort 

the components (i.e. pixels) of the estimated PRNU in a 

descending order. Then, the first d largest components are 

used while masking the rest to yield a new reduced-size 

PRNU representation 𝐑𝑠𝑐 ∈ ℝ𝑑×1. Along with the new PRNU 

representation, the locations of those significant components 

in the original PRNU estimate are saved to apply on the other 

PRNU estimates engaged in the forensic application.  

B. Clustering Technique 

In [42] and [43], a new system was proposed to suppress 

the random noises in the reference PRNU estimation by 

clustering PRNU pixels of comparable values. The method 

starts by re-arranging the estimated PRNU pixels according to 

their values in a descending/ascending order into a vector 𝐇 ∈ℝ𝑍×1 where 𝑍 = 𝑀𝑁 is the size of the PRNU signal. Then, 

every C pixels are simply averaged to give a PRNU 
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representation vector 𝐑𝐶𝐿 ∈ ℝ𝑑×1, where  𝑑 = 𝑍/𝐶 . Along 

with 𝐑𝐶𝐿, a map of the locations of the clustered pixels in the 

original PRNU is saved and used in the forensic application. 

In theory, this procedure produces a suppressed-noise 

reduced-size PRNU representation, which could serve as a 

more robust fingerprint than its original full-size counterpart. 

C. Principal Component Analysis (PCA) based Approach  

In [44], the Principal Component Analysis (PCA) has been 

used to reduce the dimensionality of the PRNU noise and 

attenuate image content contamination and other undesired 

noise components. The approach operates on the PRNU 

estimation of 𝑆 cameras. After collecting and reshaping the 

noise residuals of every camera into column vectors of size  𝑍 = 𝑀𝑁, the technique forms a covariance matrix from the  𝑆𝐿  noise residuals. Then, the PCA is performed by obtaining 

the eigenvectors of the mean-centered covariance matrix to 

convert the 𝑍-dimension noise residuals space into a smaller 

orthogonal space. The underlying idea is that the energy of the 

noise residuals characterising the reference PRNU is 

concentrated in a small subspace of the attained orthogonal 

space, while the (image-dependent) noise energy that 

represents undesirable components is spread over the whole 

space. Therefore, by preserving only the most important 

subspace (characterized by the 𝑑 eigenvectors which are 

associated to the most significant eigenvalues that correspond 

to 99% of the variance explained by the eigenvectors) and 

projecting the re-arranged noise residuals of a camera into the 

objective subspace, we obtain enhanced noise residual 

representations  𝐏𝑙 ∈ ℝ𝑑×1, 𝑙 = 1,… , 𝐿, where 𝑑 ≪ 𝑍. The 

reference PRNU representation is then obtained by 

component-wise averaging the 𝐏𝑙, 𝑙 = 1,… , 𝐿. 

D. Fingerprint Compression 

Unlike the other studied methods in this paper that seek to 

improve the accuracy of the PRNU estimation, the aim of the 

addressed methods herein is to ease the potentially burdening 

aspects of storage and computations of the PRNU signal in its 

applications. The PRNU compression techniques are visited 

here for their relation to the studied methods. Indeed, the 

PRNU signal cannot be compressed using standard methods 

such as JPEG because of the signal’s lack of redundancy. In 
[45], the authors proposed to represent the PRNU signal in a 

binary-quantization form, i.e. 1-bit representation per pixel. 

And, it was analytically shown that the reduction in the 

accuracy of the PRNU matching is insignificant. A more 

thorough study in fingerprint compression can be found in 

[46] based on random projection. The idea is to project the 

PRNU estimate, reshaped into the column vector 𝐇 ∈ ℝ𝑍×1 

where 𝑍 = 𝑀𝑁, using a random matrix 𝚽 ∈ ℝ𝑑×𝑍 where 𝑑 <𝑍 , to yield the PRNU representation: 𝐑𝐶𝑀 ≔ 𝚽 ∗ 𝐇                                   (29) 

of reduced size, i.e. 𝐑𝐶𝑀 ∈ ℝ𝑑×1. Herein, ∗ designates matrix 

multiplication. The same random matrix is used to project the 

other PRNU estimates in the application. The considered 

random matrices in [46] are the most-studied Gaussian 

random matrices, which are practically addressed using 

circulant matrices (the requirements on the suitable 𝚽 are 

thoroughly studied in the field of compressive sensing [47]). 

The  key  idea  is  based on  from  Johnson-Lindenstrauss: if  

TABLE VIII. THE PERFORMANCE IMPROVEMENTS (IN %) OF THE LISTED 

METHODS OVER THE BASIC APPROACH. 

Method �̀� ℛ̀ 

SC Only -6.7 -1.4 

Clustering +0.1 +0.3 

PCA +6.9 +2.1 

1-Bit -5.5 -2.6 

CD +6.4 -0.3 

DA -40.3 -15.7 

 

points in a vector space are projected on a suitable lower 

dimensional space then the distances are approximately 

preserved [48].  And, since PRNU fingerprints from different 

cameras are highly uncorrelated and thus the angles 

(equivalent to the distance herein) between them are wide, the 

angles between the compressed PRNUs are preserved to be 

wide. Inspired by [45] and the 1-bit compressive sensing [49], 

the authors also considered binarizing the compressed PRNU, 

which could be seen as a generalized case of [45] with identity 

projecting matrix. Theoretical results concerning the 

compressed PRNU matching accuracy show insignificant 

reduction.  

E. Results Analysis 

It is evident in Table VIII that the technique of keeping the 

significant components (SC) only does not benefit the PRNU 

classification (in this implementation, the 20% largest 

components in magnitude are kept). This indicates that there is 

information in the small components of the estimated PRNU 

that would be adversary to flush. The clustering approach is 

evaluated on the RSC-PRNU as proposed and highlighted in 

the original work. That is, the sharing components are 

removed before applying the clustering technique. 

Benchmarked against the RSC results, the clustering technique 

seems to provide no improving effect on the classification of 

the PRNU estimates. We recall and attribute these findings to 

the fact that the images used here in the estimation of the 

reference PRNU are of random nature as opposed to the fixed 

illumination images used in the numerical experiments of the 

original work. Nonetheless, considering that the clusters sizes 

are set to 64 pixels here, the clustering technique would 

constitute an excellent PRNU compression tool. In contrast, 

we can see that the principle component analysis (PCA) 

technique can bring considerable improvements. We note that 

PCA technique is trained against the interclass and intraclass 

images prior to estimating their final PRNU signals. This 

facility is not always available in forensic applications. 

Finally, the results of the 1-Bit representation of the PRNU 

show the expected slight reduction in the performance. 

VIII. MODIFIED PRNU ESTIMATION PROCEDURES 

There are other research developments in PRNU 

estimation that cannot be categorised in one of the sections 

above. They operate a modified strategy to the standard 

procedure in Fig. 1.  

A. Colour-Decoupling (CD) Approach  

 The work [50] takes into the account the characteristics of 

the colour filter array (CFA) structure. That is, the lenses of 

https://en.wikipedia.org/wiki/Covariance
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most cameras let through rays of the three colour components, 

but for every pixel only the rays of one colour are passed 

through the CFA and subsequently captured by the sensor 

pixel. Then, a colour interpolation algorithm generates the 

other two colour components of every pixel. The artificial 

colours obtained through the colour interpolation process 

(known is de-mosaicking) are not physically acquired from the 

scene by the sensor. Therefore, it is assumed that the PRNU 

extracted from the physical components should be more 

reliable. The almost universal CFA in cameras is the Bayer 

filter where pixels in odd/even rows alternate between green 

and red, and pixels in even/odd rows alternate between blue 

and green. Based on this assumption, the authors proposed a 

new strategy that first decomposes each image into 4 sub-

images (interlaced along the two dimensions) and then 

extracts the PRNU from each sub-image. The PRNU noises of 

the sub-images are then assembled to obtain the final one. This 

method aims to prevent the interpolation noise from 

propagating into the PRNU estimation of the physically 

captured pixels. According to our numerical findings shown in 

Table VIII, the promising idea enhances the PRNU results 

notably. 

B. Direct  Average (DA) Technique  

Given the deterministic nature of the PRNU, as opposed to 

the other random noise components, the PRNU can be 

estimated by simply averaging a very large number of images 

without any de-noising step. The work in [51] counts on this 

concept to estimate the PRNU of an available camera by 

capturing a very large number of uniform random noise 

images displayed on a high-resolution monitor.  Using the 

model of  𝐈  in (6), the pixel-wise mean of  𝐿  images is given 

by: 1𝐿∑ 𝐈𝑙𝐿
𝑙=1  = (1 + 𝐊)𝐿 ∑ 𝐈0,𝑙𝐿

𝑙=1 + 1𝐿 ∑𝐍𝒕,𝑙𝐿
𝑙=1 .                    (30) 

When 𝐿 tends to infinity, the last term will be a negligible 

constant. The channel gains { 𝑔𝑙}𝑙=1𝐿  and the image 

illuminations {𝐘𝑙(𝑚, 𝑛)}𝑙=1𝐿  are supposed to be mutually 

independent in  {𝐈0,𝑙(𝑚, 𝑛)}𝑙=1𝐿
. Hence, the expected value: 𝐸 [1𝐿∑ 𝐈0,𝑙(𝑚, 𝑛)𝐿

𝑙=1 ] = 𝐸[𝑔𝛾]𝐸[𝐘𝛾(𝑚, 𝑛)].          (31) 
Since 𝑔 is a global variable for an image that is independent of 

the pixel location, and the random images are displayed on the 

monitor with constant mean, then the expectation of (31) is  

constant across all the pixels. As 𝐊 is zero mean, the PRNU 

can be simply extracted by removing the DC component from 

(30) when 𝐿 tends to infinity. In practice, we deal with a 

limited number of images and the conditions are not ideal. 

Hence, (31) does not hold strictly.  The work in [51] takes the 

logarithm of the mean of a very large number of images 𝐿: ln (1𝐿∑ 𝐈𝑙𝐿
𝑙=1 ) ≅ − ln 𝐿 + ln(1 + 𝐊) + ln (∑ 𝐈0,𝑙𝐿

𝑙=1 ).    (32) 
Carrying out MacLaurin expansion ln (1𝐿∑ 𝐈𝑙𝐿

𝑙=1 ) ≅ − ln 𝐿 + 𝐊 + 𝑂(𝐊𝟐) + ln (∑ 𝐈0,𝑙𝐿
𝑙=1 ),   (33) 

and since the values of  𝐊  are very small, the higher order 

term 𝑂(𝐊𝟐) is of an insignificant value and can be ignored. 

Taking in consideration the linear manipulations in the digital 

camera pipeline, the authors model  ln(∑  𝐈0,𝑙𝐿𝑙=1 ) as the auto-

regressive and moving average (ARMA), where 𝐊 is the 

additive white Gaussian noise,  and estimate 𝐊 using  𝐑𝐷𝐴 ≔ ln(∑ 𝐈𝑙𝐿
𝑙=1 ) − 𝜔(ln (∑ 𝐈𝑙𝐿

𝑙=1 ))                   (34) 
where 𝜔(. ) is the standard 3 x 3 Wiener filter. Thus, the 

filtering operation is only applied once to estimate the 

reference PRNU, as opposed to the standard procedure. This 

approach has been tested in our evaluation system, and the 

results are shown in Table VIII. Our experiments indicate a 

considerable inferiority of the direct averaging (DA) approach 

as opposed to the standard procedure when natural 

uncontrolled images are used. 

IX. SIMILARITY MEASURES 

As we mentioned in previous sections, PRNU-based 

forensic applications generally rely on measuring the 

similarity between the estimated PRNU signals in a binary 

hypothesis test for decision-making. In this section, we outline 

the various similarity measures used in PRNU-based forensics 

because of its close relation to the studied methods. Since 

most of the developments in the similarity measures are in 

camera identification/verification application (where the 

reference PRNU 𝐑 and the noise residual  �̂�𝑞 of the query 

image  𝐈𝑞 are compared), we present them in terms of this 

application. Let 𝐗 represent 𝐑, 𝐑𝑤, 𝐑𝑝, or the product  𝐑𝑀𝐿𝐸𝐈𝑞. The basic measure is the normalized cross-

correlation (after mean centering the two signals):  𝜌 ≔ 
𝐗⊙ �̂�𝑞‖𝐗‖‖ �̂�𝑞‖  ,                                 (35) 

where ⊙ and ‖. ‖ are the dot product and norm operations, 

respectively. A development was proposed in [52] where the 

aim is to eliminate the effect of contamination of the two 

compared signals with the same periodic noise that could 

adversely increase their correlation. It is referred to by the 

peak-to-correlation energy (PCE), and based on the circular 

cross-correlation: 𝒞(𝑥, 𝑧) ≔ 1𝑀𝑁 ∑ 𝐗(𝑚, 𝑛) �̂�𝑞(𝑚 + 𝑥 mod 𝑀, 𝑛(𝑚,𝑛)+ 𝑧 mod 𝑁),                𝑥 = 0,… ,𝑀 − 1,   𝑧 = 0,… , 𝑁 − 1,          (36) 
it is given in 𝜌𝑒 ≔ sign[𝒞(0,0)] 𝒞2(0,0)1𝑀𝑁 − |𝒜| ∑ 𝒞2(𝑥, 𝑧)(𝑥,𝑧),(𝑥,𝑧)∉𝒜

  ,      (37) 
where 𝒜 is a small area around (0,0) and |𝒜| is its cardinality. 

The sign in (37) was not included in the first introduction of 

PCE; it was inserted in their later work to eliminate the false 

alarm of the negative correlations. The same idea appeared in 

[39] by considering 𝒞(0,0) (and a square root of the 

dominator) rather than its squared value to retain its sign; the 

authors referred to it by the correlation over circular cross-

correlation norm (CCN). 

A more optimal and complex similarity measure was 

pursued by Chen et al. in [34]. It begins with a new model for 
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 �̂�𝑞 . That is, a pixel-wise multiplicative shaping factor 𝐓 ∈ℝ𝑀×𝑁 is introduced to capture the de-noising process 

imperfection and other operations on the PRNU signal. And, 

the random noises and image contamination are modeled as 

coloured Gaussian noise:  

  �̂�𝑞 = 𝐓𝐗 + 𝛉,                                     (38) 
where  𝛉 ∈ ℝ𝑀×𝑁  is a matrix of independent Gaussian 

variables with unequal variances.  The work divides the noise 

residual signal into  B  non-overlapping, equal sized blocks. 

The pixels (𝑚, 𝑛) within the b-th block , 𝑏 = 1,… , 𝐵  are 

allocated a fixed 𝐓(𝑚, 𝑛) denoted by  𝑇𝑏  , and their noise 𝛉(𝑚, 𝑛) are assumed to have a fixed variance 𝜎𝑏2. The 

similarity measure is the generalized matched filter that is 

given in: 𝜌𝑚 ≔ ∑ �̂�𝑏/�̂�𝑏2𝑏 (𝐗𝒃⊙ �̂�𝒃)√∑ ‖�̂�𝑏𝐗𝒃‖𝑏 2 /�̂�𝑏2√∑ ‖�̂�𝒃‖𝑏 2 /�̂�𝑏2  ,         (39) 
where �̂�𝒃 and 𝐗𝒃 are the noise residual from the tested image 

and the PRNU term 𝐗 within the b-th block, respectively. �̂�𝑏  

and �̂�𝑏2 represent estimates of  𝑇𝑏   and 𝜎𝑏2 respectively, which 

are obtained from  the normalized cross-correlation within a 

block under the positive hypothesis:            𝜌𝑏 ≔ 𝐗𝒃⊙ �̂�𝒃‖𝐗𝒃‖‖�̂�𝒃‖ = 𝑇𝑏‖𝐗𝒃‖2 + 𝐗𝒃⊙𝛉𝒃‖𝐗𝒃‖√𝑇𝑏2‖𝐗𝒃‖2 + ‖𝛉𝒃‖2 + 2𝑇𝑏𝐗𝒃⊙𝛉𝒃  ,   (40) 
with 𝛉𝒃 being white process that is independent of 𝐗𝒃 , the 

term 𝐗𝒃⊙𝛉𝒃 will be small and can be ignored: 𝜌𝑏 ≈ 1√1 + 𝐶𝜎𝑏2/𝑇𝑏2‖𝐗𝒃‖2  ,                    (41) 
where  𝐶  is the number of pixels in each block. And, by using 

a predictor of  𝜌𝑏 to give �̂�𝑏, we have estimates of those 

parameters:  �̂�𝑏 = |�̂�𝑏|‖�̂�𝒃‖ ‖𝐗𝒃‖⁄  ,                        (42) 
 �̂�𝑏2 = (1 − �̂�𝑏2)‖�̂�𝒃‖/𝐶 .                     (43) 
Chen et al. developed a simple predictor of 𝜌𝑏  based on 

features derived from blocks of a few diverse images. They 

noted that other standard predictors and features provided the 

same performance. A more flexible, pixel-wise weighting 

approach based on similar features was proposed in [53]. In 

[54], it was proposed to only use the significant blocks of the 

query noise residual.  The significance of a block is measured 

by its signal to noise ratio (SNR). Indeed, the signal in SNR is 

the PRNU noise part that we seek, whilst the noise refers to all 

the other noise components and image contamination. The 

SNR of the b-th block is approximated using  SNR𝑏 ≔ ‖�̂�𝒃𝐗𝒃‖𝟐𝐶�̂�𝑏2 ,                                (44) 
Then, the SNR values of all the blocks are sorted and only the 

blocks with the largest SNR values are used: 

𝜌𝑠 ≔ ∑ �̂�𝑏/�̂�𝑏2𝑏,𝑏∈ℋ (𝐗𝒃⊙ �̂�𝒃)√∑ ‖�̂�𝑏𝐗𝒃‖𝑏,𝑏∈ℋ 2 /�̂�𝑏2√∑ ‖�̂�𝒃‖𝑏,𝑏∈ℋ 2 /�̂�𝑏2   ,      (45) 
where ℋ is the set of the indices of the most significant 

blocks.  

Despite that (41) represents the optimal detector, PCE is 

the most favorite detection statistics for the two facts. First, 

the assumption on the models to derive the optimal detector 

may not be satisfied. Second, PCE can facilitate selecting the 

decision threshold to achieve the sought probability of false 

detection. 

V. CONCLUSION 

In this paper, we introduced a systematic comparative 

analysis of all the techniques concerned with the estimation of 

PRNU noise. In order to conduct a profound study, we 

categorised the techniques based on their roles in the PRNU 

estimation procedure and analysed each category 

correspondingly. We created a large database of 45 cameras 

with effectively over 2.2 million test images for our numerical 

evaluation; the relatively large experiments were necessary 

given the variant performance of the techniques across 

cameras and images. The carefully selected performance 

metrics were adequate to benchmark the techniques and 

provide a conclusive study. Our findings provided some 

concrete conclusions whilst others can be extrapolated. We 

hope that the presented results can support the research 

community in digital forensics in general and PRNU-based 

image forensics in particular. With some practical aspects 

considered here along with our insight, we hope that this paper 

would benefit forensic practitioners with sharp 

implementation decisions. 
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