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Abstract In 36 climate change simulations associated

with phases 3 and 5 of the Coupled Model Intercomparison

Project (CMIP3 and CMIP5), changes in marine low cloud

cover (LCC) exhibit a large spread, and may be either

positive or negative. Here we develop a heuristic model to

understand the source of the spread. The model’s premise

is that simulated LCC changes can be interpreted as a

linear combination of contributions from factors shaping

the clouds’ large-scale environment. We focus primarily on

two factors—the strength of the inversion capping the

atmospheric boundary layer (measured by the estimated

inversion strength, EIS) and sea surface temperature (SST).

For a given global model, the respective contributions of

EIS and SST are computed. This is done by multiplying (1)

the current-climate’s sensitivity of LCC to EIS or SST

variations, by (2) the climate-change signal in EIS or SST.

The remaining LCC changes are then attributed to changes

in greenhouse gas and aerosol concentrations, and other

environmental factors. The heuristic model is remarkably

skillful. Its SST term dominates, accounting for nearly two-

thirds of the intermodel variance of LCC changes in

CMIP3 models, and about half in CMIP5 models. Of the

two factors governing the SST term (the SST increase and

the sensitivity of LCC to SST perturbations), the SST

sensitivity drives the spread in the SST term and hence the

spread in the overall LCC changes. This sensitivity varies a

great deal from model to model and is strongly linked to

the types of cloud and boundary layer parameterizations

used in the models. EIS and SST sensitivities are also

estimated using observational cloud and meteorological

data. The observed sensitivities are generally consistent

with the majority of models as well as expectations from

prior research. Based on the observed sensitivities and the

relative magnitudes of simulated EIS and SST changes

(which we argue are also physically reasonable), the heu-

ristic model predicts LCC will decrease over the 21st-

century. However, to place a strong constraint, for example

on the magnitude of the LCC decrease, will require longer

observational records and a careful assessment of other

environmental factors producing LCC changes. Mean-

while, addressing biases in simulated EIS and SST sensi-

tivities will clearly be an important step towards reducing

intermodel spread in simulated LCC changes.

Keywords Low cloud cover � SST � EIS

1 Introduction

Through their effect on net incoming shortwave radiation,

marine low clouds play a critical role in regulating the

global energy budget (Hartmann et al. 1992; Klein and

Hartmann 1993; Weaver and Ramanathan 1997; Chen

et al. 2000). Changes in low clouds associated with simu-

lated anthropogenic climate change likewise typically have

a large effect on the shortwave component of the anthro-

pogenic perturbation to the global energy budget (Slingo

1990; Lau et al. 1996; Miller 1997; Larson et al. 1999).

These changes play a large role in shaping the response to

external forcing seen in climate simulations undertaken in

recent decades (Williams et al. 2003, 2006; Stephens 2005;
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Wyant et al. 2006). They also exhibit a large spread across

models (Cess et al. 1990; Colman 2003; Bony and Duf-

resne 2005; Bony et al. 2006; Soden and Held 2006; Webb

et al. 2006; Dufresne and Bony 2008; Medeiros et al. 2008;

Zelinka et al. 2012). A sizeable portion of the spread

originates in the subtropical stratocumulus regions off the

west coasts of continents (Soden and Vecchi 2011; Webb

et al. 2012, references therein). In these regions, simulated

changes in low cloud cover (LCC) vary a great deal in sign

and magnitude across models (Stephens 2005; Zhang and

Bretherton 2008; Brient and Bony 2012; and see also Fig. 1

of this study).

Simulated LCC changes in the stratocumulus regions are

likely driven by changes in their large-scale environment.

The goal of this study is to determine what these large-

scale environmental changes are, and assess their relative

importance to the intermodel spread in LCC changes.

Many studies (Klein and Hartmann 1993; Bretherton and

Wyant 1997; Miller 1997; Larson et al. 1999; Wood and

Bretherton 2006; Clement et al. 2009; Sun et al. 2011;

Chung and Teixeira 2012; Caldwell et al. 2013; Rieck

et al. 2012; Watanabe et al. 2012) identify two thermody-

namical variables as the most important large-scale con-

trols on LCC: One is the strength of the inversion that caps

the planetary boundary layer (PBL). The other variable is

sea surface temperature (SST).

In the case of the inversion strength, the physical

argument for a link to LCC is the following: A stronger

inversion suppresses the mixing of boundary layer air with

warmer and drier air in the free-troposphere, leading to a

shallower, moister and cloudier PBL. There is ample

observational evidence for a link between inversion

strength and low cloud cover. Seasonal and interannual

LCC variations in many low cloud regions are strongly

associated with variations in this quantity (Slingo 1980;

Klein and Hartmann 1993; Wood and Bretherton 2006; Sun

et al. 2011). If the inversion strength indeed increases in

climate change, as suggested by several studies (Miller

1997; Larson et al. 1999; Caldwell et al. 2013, and as we

find here in this study), and if LCC changes are dominated

a

b

c

Fig. 1 a Geographic distribution of LCC climatology (2000–2010)

based on data from the Moderate Resolution Imaging Spectroradi-

ometer (MODIS, King et al. 1992). The main low cloud regions off

the coasts of Peru (‘‘Per’’), Namibia (‘‘Nam’’), Australia (‘‘Aus’’),

California (‘‘Cal’’) and Canary (‘‘Can’’) are represented by five black

boxes, each of which is 40� by 20�. These regions are used to

construct regional-mean quantities throughout the paper. b The 21st-

century LCC changes averaged over each of the 5 oceanic regions in

36 models (see Table 1). These changes are computed as differences

in the LCC climatologies between the periods 2000–2019 and

2080–2099. c Regional-mean LCC climatology (2000–2019) in the 5

oceanic regions and 36 models
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by the PBL moistening induced by this increase, then LCC

would increase. In this study, to measure inversion

strength, we adopt the estimated inversion strength (EIS), a

quantity constructed by Wood and Bretherton (2006).

In the case of SST, an increase in SST with no changes

in the inversion strength may lead to a relatively drier and

less cloudy PBL. Two mechanisms that would lead to such

a relationship have emerged in recent modeling studies:

First, surface warming increases surface latent heat flux,

enhancing mixing of boundary layer air with warmer and

drier air aloft (Bretherton and Wyant 1997; Chung and

Teixeira 2012; Rieck et al. 2012). Second, through its

effect on surface moisture flux, surface warming increases

the contrast between the moisture content of the boundary

layer and that of free-tropospheric air, so the mixing with

the free-tropospheric air has a stronger drying effect on the

boundary layer air as SST increases (Brient and Bony

2012). If LCC feedback is dominated by the surface-

warming-induced PBL drying, then LCC would decrease.

In addition to EIS and SST, many other factors such as

subsidence, horizontal advection, free-tropospheric

humidity and greenhouse gas (GHG) and aerosol concen-

trations are also considered to be important to low clouds

(Albrecht 1989; Bretherton and Wyant 1997; Lohmann and

Feichter 2001; Norris 2001; Vecchi et al. 2006; Gregory

and Webb 2008; Zhang and Bretherton 2008; Andrews

et al. 2012; Watanabe et al. 2012; Caldwell et al. 2013;

Chung and Teixeira 2012).

To sort through all this potential complexity, we start

with the working hypothesis that EIS and SST are the most

important factors shaping the LCC response in simulated

future climate change (However, we do not exclude the

possibility that other factors are important as well, and

where possible, we quantify their importance.). We also

assume simulated LCC changes in global models can be

interpreted as a linear combination of the contributions

from all the controls. Accordingly, we develop a heuristic

model designed to tease out each contribution. In this

heuristic model, the contribution from each thermody-

namical variable (EIS or SST) is quantified by the product

of anthropogenic change in that variable and a local LCC

sensitivity to it. LCC changes not linearly attributable to

either EIS or SST changes (the residual term) are then

attributed to changes in other cloud-controlling factors. It is

possible EIS and SST affect LCC in a nonlinear fashion.

Such nonlinear effects are also included in the residual

term. The global models whose LCC changes we are trying

to interpret are 18 climate models participating in phase 3

of the Coupled Model Intercomparison Project (CMIP3,

see Table 1) and 18 climate models participating in phase 5

of the Coupled Model Intercomparison Project (CMIP5,

see Table 1). Our regions of interest are five subtropical

stratocumulus regions, defined by black boxes in Fig. 1a.

The heuristic model requires anthropogenic changes in

EIS and SST, as well as local LCC sensitivities to these

variables, for each of the models, and each of the regions.

While it is straightforward to quantify simulated anthro-

pogenic changes in EIS and SST, it is not obvious how to

quantify the simulated LCC sensitivities. In this study, we

assume the EIS and SST sensitivities informing the heu-

ristic model can be derived from interannual climate vari-

ability. This assumption allows us to quantify the

sensitivities based on simulated interannual climate vari-

ability in the 20th-century. If simulated LCC changes turn

out to be strongly influenced by the sensitivities, this then

creates a path towards an observational constraint of LCC

changes. The simulated sensitivities calculated from current

climate can be compared to their observed counterparts, and

unrealistic responses can be identified. In this study, we also

quantify the respective contributions of GHG and aerosol

by examining several idealized simulations with prescribed

changes in GHG and aerosol concentrations.

Previous studies have demonstrated the importance of

PBL and cloud parameterizations in shaping the cloud

response to external forcing (Mitchell et al. 1989; Senior and

Mitchell 1993; Yao and Del Genio 1999; Medeiros and

Stevens 2011). In this study, we also explore to what extent

the intermodel spread in LCC changes are linked to differ-

ences in the models’ PBL and cloud parameterizations. We

categorize the parameterizations into different types based

on their key features.We then examine the behavior ofmodel

sub-ensembles corresponding to the various parameteriza-

tion categories, and assess whether these model sub-

ensembles are distinctively different in the sign and magni-

tude of simulated LCC changes. This turns out to be the case,

allowing us to then use the heuristic model to understand

better the influence of the parameterizations. The elements of

the heuristic model most directly influenced by the param-

eterizations are the local sensitivities to EIS and SST chan-

ges, so these are the focus of our investigation.

The study is presented as follows: Data and methodol-

ogy are described in Sect. 2. Anthropogenic changes in

LCC, EIS and SST are presented in Sect. 3, and local EIS

and SST sensitivities in Sect. 4. Various contributions to

the LCC changes and their relative importance to the in-

termodel spread are assessed in Sect. 5. The link between

parameterization and the LCC changes is examined in Sect.

6. The realism of simulated EIS and SST sensitivities are

assessed against observed EIS and SST sensitivities in

Sect. 7. A summary and discussions are found in Sect. 8.

2 Data and methodology

20th- and 21st-century climates simulated by 36 CMIP3

and CMIP5 models (see Table 1) are examined. Historical
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forcing was imposed in the 20th-century simulations,

which in the case of the CMIP5 models end in 2005 rather

than 2000. In the 21st-century simulations, the anthropo-

genic forcing scenario A1B (Nakićenović et al. 2000) was

imposed on the CMIP3 models, while the Representative

Concentration Pathways (RCP) 8.5 (Taylor et al. 2012)

was imposed on the CMIP5 models. By construction, the

RCP 8.5 constitutes slightly stronger radiative forcing

than the scenario A1B: Radiative forcing between the

periods 2000–2019 and 2080–2099 is about 4.1 Wm-2 for

the scenario A1B and 5.3 Wm-2 for the RCP 8.5. The

projected evolution of aerosol concentrations in the 21st

century also differs between the scenario A1B and the

RCP 8.5: Concentrations in most aerosol compositions

increase in the scenario A1B, while they decrease in the

RCP 8.5.

LCC is defined as the overall cloud cover below 680

hPa, a definition also used in the International Satellite

Cloud Climatology Project (ISCCP, Rossow and Schiffer

Table 1 Thirty-six CMIP models used in this study

Letter Model PBL

scheme

Cloud

scheme

Reference

A BCCR-BCM2.0 K(Ri) Diag

(PDF)

Déqué et al.

(1994)

B* CCSM3 K profile Diag (RH,

stability)

Collins et al.

(2004)

C CGCM3.1(T47) K(Ri) Diag (RH,

stability)

Scinocca

et al. (2008)

D CGCM3.1(T63) K(Ri) Diag (RH,

stability)

Scinocca

et al. (2008)

E CSIRO-Mk3.5 K(Ri) Diag

(PDF)

Gordon et al.

(2002)

F ECHAM5/MPI-

OM

K(TKE) Diag

(PDF)

Roeckner

et al. (2003)

G* FGOALS-g1.0 K profile Diag (RH,

stability)

Yu et al.

(2004)

H’ GFDL-CM2.0 K profile Prog Delworth

et al. (2006)

I’ GFDL-CM2.1 K profile Prog Delworth

et al. (2006)

J GISS-EH K(TKE) Diag (RH,

stability)

Schmidt et al.

(2006)

K GISS-ER K(TKE) Diag (RH,

stability)

Schmidt et al.

(2006)

L INGY-SXG K(TKE) Diag (RH) Roeckner

et al. (1996)

M INM-CM3.0 K(Ri) Diag (RH,

stability)

Volodin and

Diansky

(2004)

N IPSL-CM4 K(Ri) Diag

(PDF)

Hourdin et al.

(2006)

O MIROC3.2(medres) K(Ri) Diag

(PDF)

K-1 model

developers

(2004)

P MRI-CGCM2.3.2 K(Ri) Diag (RH) Yukimoto

et al. (2001)

Q* PCM K profile Diag (RH,

stability)

Washington

et al. (2000)

R UKMO-HadCM3 K(Ri) Diag

(PDF)

Gordon et al.

(2000)

a* BCC-CSM1.1 K profile Diag (RH,

stability)

Wu et al.

(2010)

b* CCSM4 K profile Diag (RH,

stability)

Neale et al.

(2010)

c CSIRO-Mk3.6 K(Ri) Diag

(PDF)

Rotstayn

et al. (2010)

d CanESM2 K(Ri) Diag (RH,

stability)

Chylek et al.

(2011)

e* FGOALS-s2 K(TKE) Diag (RH,

stability)

Bao et al.

(2013)

f’ GFDL-CM3 K profile Prog Donner et al.

(2011)

g’ GFDL-ESM2G K profile Prog Dunne et al.

(2012)

h’ GFDL-ESM2M K profile Prog Dunne et al.

(2012)

Table 1 continued

Letter Model PBL

scheme

Cloud

scheme

Reference

i GISS-E2-R K(TKE) Diag (RH,

stability)

Schmidt et al.

(2013)

j’ HadGEM2-CC K profile Diag

(PDF)

Martin et al.

(2011)

k’ HadGEM2-ES K profile Diag

(PDF)

Martin et al.

(2011)

l IPSL-CM5A-LR K(Ri) Diag

(PDF)

Dufresne

et al. (2013)

m MIROC-ESM K(Ri) Diag

(PDF)

Watanabe

et al. (2011)

n MIROC-ESM-

CHEM

K(Ri) Diag

(PDF)

Watanabe

et al. (2011)

o MIROC5 K(TKE) Diag

(PDF)

Watanabe

et al. (2010)

p MPI-ESM-LR K(TKE) Diag (RH) Stevens et al.

(2013)

q MRI-CGCM3 K(Ri) Diag

(PDF)

Yukimoto

et al. (2011)

r* NorESM1-M K profile Diag (RH,

stability)

Bentsen et al.

(2012)

1st column: Reference letters of 18 CMIP3 (upper case) and 18

CMIP5 models (lower case). 2nd column: Names of the models. 3rd

column: Categorization of PBL parameterizations in the models. It is

based on how the PBL eddy diffusivity is parameterized. Models that

use cloud-top radiative cooling to drive boundary layer turbulence are

also identified by the prime in the first column. 4th column: Cate-

gorization of cloud cover parameterizations. Diagnostic and prog-

nostic schemes are referred to as ‘‘Diag’’ and ‘‘Prog’’, respectively.

Relative humidity and the stability of the atmosphere are denoted as

RH and stability for simplicity. A subset of models in the ‘‘Diag (RH,

stability)’’ category, in which the Slingo-type cloud scheme or its

variant is used, are identified by the asterisk in the first column. 5th

column: References are provided for each model
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1991). Random overlapping is assumed to obtain the

overall cloud cover from cloud fraction at multiple vertical

levels. EIS is defined as in Wood and Bretherton (2006):

EIS ¼ LTS� C850
m � ðz700 � LCLÞ ð1Þ

where LTS is the lower-tropospheric stability, defined as

the difference in potential temperature between 700 hPa

and the surface, C850
m is the moist-adiabatic potential tem-

perature gradient at 850 hPa, which is in turn a function of

the 850 hPa temperature, z700 is the height of the 700 hPa

surface, and LCL is the lifting condensation level. Con-

sistent with Wood and Bretherton (2006), we approximate

the 850 hPa temperature by the mean of the 700 hPa and

surface temperatures.

To generate input for the heuristic model, we first

compute simulated changes over the 21st century in the

regionally-averaged annual-mean LCC, EIS and SST

(respectively: DLCC;DEIS and DSST) in five oceanic

regions, defined by the ocean portions of the black boxes in

Fig. 1a. These changes are computed as differences in the

climatologies of these quantities between the periods

2000–2019 and 2080–2099. Our heuristic model expresses

simulated LCC changes as:

DLCC ¼
oLCC

oEIS
� DEISþ

oLCC

oSST
� DSST þ R ð2Þ

where the partial derivatives qLCC/ qEIS and qLCC/ qSST

represent the sensitivities of LCC to these two variables.

We compute these sensitivities based on simulated inter-

annual climate variability in the 20th-century as follows.

(Here, interanual climate variability refers to variability

on times scales longer than a year, but shorter than a

century.) First, we remove the long-term trend from each

of the LCC, EIS and SST time series. Then we regress the

LCC time series onto either the EIS or SST series. A

complicating factor is that EIS and SST time series are

not independent. For example, an increase in SST is often

associated with a decrease in EIS. To eliminate

the potential ambiguity of EIS-SST covariance in the

qLCC/ qEIS estimate, we remove the components of LCC

and EIS variations that are linearly related to SST varia-

tions by regression analysis before then regressing LCC

onto EIS. Likewise, we remove the components of LCC

and SST variations that are linearly related to EIS varia-

tions before estimating qLCC/qSST. (A detailed descrip-

tion on how these sensitivities are calculated is given in

‘‘Appendix 1’’.) To examine the robustness of our esti-

mates, we also compute qLCC/qEIS and qLCC/qSST

based on the pre-industrial control simulations and 21st-

century simulations (scenario A1B for CMIP3 models and

RCP 8.5 for CMIP5 models) with the 36 models. These

simulations generally yield very similar LCC sensitivities

to the corresponding historical simulations (see

‘‘Appendix 1’’). For simplicity, qLCC/qEIS and

qLCC/qSST are also referred hereafter to as the EIS and

SST slopes. The total contribution of EIS to the LCC

change is represented by the first term on the right side of

Eq. (2), and the contribution of SST is represented by the

second term. The last term on the right side of Eq. (2),

R represents the residual LCC changes, namely, LCC

changes that cannot be attributed in a linear fashion to

either EIS or SST changes, and is calculated as the value

that makes the equality in (2) true. In this work, the

heuristic model, Eq. (2) is used as an exploratory tool to

uncover and understand the behaviors of LCC responses

in 36 climate simulations.

We estimate the direct contribution of the anthropogenic

increase in GHG concentration to simulated LCC changes

in eight CMIP5 models in three steps. (In this work, the

direct GHG contribution refers to LCC changes induced by

GHG-forced environmental changes other than changes in

EIS and SST. It is closely linked to the so-called ‘‘cloud fast

response’’ discovered by Gregory and Webb (2008).) First,

we examine the CO2 quadrupling simulations (‘‘sstC-

lim4xCO2’’) done with eight Atmospheric General Circu-

lations Models (AGCMs) and their corresponding control

simulations (‘‘sstClim’’). (These AGCMs are the atmo-

spheric components of eight fully coupled atmosphere-

ocean models in the CMIP5 archive listed in Table 1. For

convenience, we refer to them by the reference letters of

their corresponding coupled models.) These two types of

simulations are run with the same SST climatology, but

different CO2 concentrations for a 30-year period. The

‘‘sstClim’’ simulations are run with the pre-industrial CO2

concentration, while the ‘‘sstClim4xCO2’’ simulations are

run with the CO2 concentration that is four times the pre-

industrial level. The apparent effect of the CO2 quadrupling

on LCC is quantified by the difference in LCC climatolo-

gies between these simulations. It turns out there is a robust

EIS increase in the ‘‘sstClim4xCO2’’ simulations. The EIS

increase averaged over the 5 regions and the eight AGCM

simulations is about 0.4 K. This suggests that the LCC

changes from the ‘‘sstClim’’ to ‘‘sstClim4xCO2’’ simula-

tions contain not only the direct effect of the CO2 increase,

but also some contribution from the EIS increase. (The SST

contribution in these simulations vanishes by construction.)

So, in the second step, we quantify the contribution of the

EIS increase using the EIS slope obtained from the histor-

ical simulations (DEIS � oLCC=oEIS) and remove it from

the overall LCC changes. The resultant LCC change then

represents the direct effect of the CO2 quadrupling to LCC.

Finally, to account for the fact that the CO2-equivalent

radiative forcing corresponding to the RCP 8.5 (5.3 Wm-2)

is about 30 % smaller than radiative forcing corresponding

to the CO2 quadrupling (7.4 Wm-2), we rescale the esti-

mated CO2 effect proportionally.
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To estimate the direct contribution of aerosol (in isola-

tion from any EIS and SST contributions) to simulated

LCC changes, we examine the aerosol loading simulations

(‘‘sstClimAerosol’’) done with eight AGCMs. (These

AGCMs are precisely the ones used to estimate the direct

CO2 effect.) The ‘‘sstClimAerosol’’ simulations differ from

their control simulations (‘‘sstClim’’) only in their imposed

aerosol concentrations or emissions in the case of models

with interactive aerosols. The ‘‘sstClim’’ simulations are

run with the pre-industrial aerosols, while the ‘‘sstClim-

Aerosol’’ simulations are run with aerosols in 2000. There

is a general increase in aerosol concentrations in 2000

compared to the pre-industrial period. The net effect of the

aerosol increase on LCC is quantified by the difference in

LCC climatologies between the ‘‘sstClim’’ and ‘‘sstClim-

Aerosol’’ simulations. (EIS changes little in the ‘‘sstClim-

Aerosol’’ simulations.) To account for the fact that aerosol

concentrations in the RCP 8.5 simulations decrease in the

21st century, we flip the sign of the estimated aerosol

effect. Note that the magnitude of the aerosol decrease in

RCP 8.5 is comparable to the magnitude of the aerosol

increase from the pre-industrial period to 2000, so there is

no need to rescale the estimated aerosol effect.

To estimate observed EIS and SST slopes, we use IS-

CCP cloud data (Rossow and Schiffer 1991), ERA-Interim

reanalysis (Dee et al. 2011) and NOAA optimum interpo-

lation monthly SST version 2 (Reynolds et al. 2002) during

the period 1984–2009. To correct the known error of IS-

CCP assigning low-clouds under strong inversions to

middle clouds (see Garay et al. 2008; Sun et al. 2011), we

estimate LCC as follows: LCC = (L ? M)/(1 - H), where

L, M and H are respectively: low, middle and high cloud

amount given in the ISCCP data.

3 Assessing 21st-century changes in LCC, EIS and SST

3.1 LCC

Simulated LCC changes over the 21st-century in the 5

subtropical oceanic regions and 36 models are shown in

Fig. 1b. Not surprisingly, in every region, the sign of the

LCC changes varies from model to model: It is positive as

often as it is negative. In contrast, the sign of the LCC

changes in any particular model is largely consistent across

the regions. This suggests that in any particular model,

typically there are anthropogenic changes in the large-scale

atmospheric environment common to all the regions.

Interestingly, there is virtually no correspondence between

the LCC change and LCC climatology, a fact easily dis-

cernible by visually examining Fig. 1b, c, and confirmed

by calculations of correlation (0.08 for CMIP3 models and

-0.02 for CMIP5 models). From this information, we infer

that the LCC climatology is not helpful in understanding

controls on LCC changes.

Averaged over all the regions, the LCC changes range

from -0.04 to 0.02 in CMIP3 models and -0.07 to 0.04 in

CMIP5 models. The spread in LCC changes is larger in the

CMIP5 ensemble because of larger EIS and SST increases

(see the discussion below). To quantify the climatic impact

of these changes, we compute simulated changes in

shortwave (SW) cloud radiative effect (CRE) over the 21st-

century in the 5 oceanic regions and 36 models. (SW CRE

is defined as the difference between the clear- and all-sky

net incoming solar radiation at the top of atmosphere.)

Figure 2 scatters changes in SW CRE averaged over all the

regions vs. the corresponding averages of LCC changes in

the 36 models. Changes in SW CRE are strongly anticor-

related with LCC changes across both ensembles with

correlations of about -0.90. Thus about 80% of the in-

termodel variance of SW CRE changes is accounted for by

LCC changes. Consistent with Zelinka et al. (2012),

changes in LCC, as opposed to optical depth, are dominant

in explaining effects of anthropogenic cloud changes on

absorbed shortwave radiation for subtropical boundary

layer cloud regions. Regression analysis yields a sensitivity

of about 1 W m-2 for a 0.01 change in LCC, similar to

observed (Klein and Hartmann 1993). Based on this

number and simulated LCC changes, we estimate the range

Fig. 2 Scatterplot of changes in SW CRE averaged over the 5

oceanic regions versus LCC changes averaged over the 5 oceanic

regions in 18 CMIP3 and 18 CMIP5 models. CMIP3 models are

color-coded in blue, and CMIP5 models in red. Three CMIP3 models

(A, E and L) are not shown because they do not have necessary data

available to perform this calculation. Solid line represents a least-

squares fit regression line based on all models
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of SW radiative perturbations induced by the LCC changes

to be -2 to 4 W m-2 in the CMIP3 models and -4 to 7 W

m-2 in the CMIP5 models.

3.2 EIS

EIS changes in the 5 oceanic regions and 36 models are

shown in Fig. 3a. There is a systematic increase in EIS in a

warming climate across models and regions. The ensemble-

mean change in EIS, averaged across the regions, is 0.62 K

for the CMIP3 models and about 1 K for the CMIP5 models

(Table 2). The only exceptions are the EIS changes in some

models over the Californian region (blue circles). In these

cases, no increase or even a slight decrease in EIS is seen.

Interestingly, the Californian region is also the region with

the least EIS increase in most models. Likewise, the Peru-

vian region typically has the greatest increase in EIS. In

spite of the general EIS increase across models and regions,

the magnitude of the EIS change varies considerably from

model to model. The intermodel standard deviation of the

EIS change averaged over the 5 regions is about 0.2–0.3 K

across either the CMIP3 or CMIP5 ensemble (Table 2).

Note that relative to the ensemble-mean, the intermodel

spread in the EIS change is much smaller in the CMIP5

ensemble than in CMIP3 (22 vs. 44 %).

Next we explore the origins of the simulated EIS changes.

Starting from the definition of EIS in Eq. (1), and making

some valid assumptions (see ‘‘Appendix 2’’ for detail), we

can derive the EIS change (DEIS) as a linear combination of

warming at the 700 hPa (DT700) and the surface (DTs):

a

b

c

Fig. 3 a EIS change, b the ratio of T700 change to Ts change and c SST change in the 5 oceanic regions and 36 models. Dashed line in

b represents DT700=DTs ¼ 1:2
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DEIS � a � DT700 � b � DTs ð3Þ

where a = 0.97 and b = 1.14. (Regressing DEIS in all

regions and all models against the corresponding values for

DT700 and DTs yields diagnosed values of a and b that are

very similar: 1.0 and 1.2.) Using simulated values for

DT700;DTs, and DEIS from all models and our 5 regions, we

find that the right-hand side of Eq. (3) is almost perfectly

correlated with the left-hand side (r = 0.99). The standard

error of the right side of Eq. (3) in representingDEIS is about

0.05, at least one order of magnitude smaller than DEIS in

almost all the cases. Since Eq. (3) captures DEIS so well, we

use it to understand controls on simulated EIS changes.

According to Wood and Bretherton (2006), if the vertical

profile of tropospheric warming followed a moist adiabat

from the subtropical surface, DT700=DTs � 1:2 and DEIS

vanishes (also consistent with Eq. 3). However, in more

than 90 % of the cases, the simulated values of DT700=DTs
are greater than 1.2 (see Fig. 3b). This suggests that sub-

tropical warming just above the boundary layer is generally

greater than the moist adiabat from the surface would imply,

given surface warming. This greater-than-adiabatic warm-

ing in the subtropical free-troposphere is precisely what

drives the systematic increase in EIS seen in Fig. 3a.

The question now arises: Why does the subtropical

lower-troposphere warm superadiabatically? The answer to

this question may lie in two robust features of climate

change. One is that warming in tropical warm pools (one

such region is represented by black boxes in Figs. 4, 5) is

greater than warming in low cloud regions (see Liu et al.

2005 for more discussions on this phenomenon). To dem-

onstrate that, we examine the geographic distributions of

the ensemble-mean surface temperature change in Fig. 4.

Indeed, in both CMIP3 and CMIP5 ensembles, the warm

pools warm more than the low cloud regions. Since free

tropospheric tropical temperatures are largely set by SST in

the warm pools, the greater warming in the warm pools

contributes to simulated superadiabatic warming and hence

the EIS increases in the low cloud regions. The other is that

warming over nearby land is generally greater than

warming in the low cloud regions (Fig. 4, see also Sutton

et al. 2007). This could enhance warming in the free-tro-

posphere in the low cloud regions through episodic

advection of warmer air from the continents to the marine

stratocumulus regions immediately to the west. To dem-

onstrate that, we examine the geographic distributions of

the ensemble-mean T700 change (Fig. 5). Indeed, in both

CMIP3 and CMIP5 ensembles, the low cloud regions

exhibit enhanced warming in the free troposphere closer to

the values over the nearby continents, contributing to

simulated EIS increases. Further work would be necessary

to quantitatively establish the contribution of these mech-

anisms to the EIS increases seen in Fig. 3a.

3.3 SST

SST changes in the 5 oceanic regions and 36 models are

shown in Fig. 3c. The ensemble-mean of the changes

averaged across the regions is about 1.54 K in CMIP3

models and 2.48 K in CMIP5 models (Table 2). Greater

surface warming in CMIP5 models scales approximately

with the greater radiative forcing in RCP 8.5. The inter-

model standard deviations of the EIS and SST changes are

also shown in Table 2. We note that EIS and SST changes

are not significantly correlated to one another across either

the CMIP3 or CMIP5 ensemble.

4 EIS and SST slopes

The EIS slopes (qLCC/qEIS) in the 5 oceanic regions and

36 models calculated from 20th-century variability are

shown in Fig. 6a. They are positive in more than 80 % of

the cases, indicating increasing LCC with increasing EIS.

This simulated co-variability of LCC and EIS from year to

year is qualitatively consistent with the observed relation-

ship between the two variables based on the seasonal cycle,

regional variations, and interannual variability (Klein and

Hartmann 1993; Wood and Bretherton 2006; Sun et al.

2011). The SST slope (qLCC/qSST), as shown in Fig. 6b, is

negative in about 80 % of the cases, generally indicating

decreasing LCC with increasing SST. This is also quali-

tatively consistent with the physical argument for the SST-

LCC relationship put forward in the introduction. The

ensemble-mean EIS and SST slope averaged over all the

regions are given in Table 2. Though their signs generally

agree, the magnitudes of both EIS and SST slopes vary

significantly from model to model (Fig. 6a, b; Table 2).

Note that EIS and SST slopes are not significantly corre-

lated one another across either CMIP3 or CMIP5 models.

Comparison of these slopes to observations is shown in

Sect. 7.

Table 2 EIS and SST changes and EIS and SST slopes in 36 CMIP

models

CMIP3 CMIP5

EIS change 0.62 (0.27) 1.01 (0.22)

SST change 1.54 (0.32) 2.48 (0.61)

EIS slope 1.14 (1.33) 1.52 (1.66)

SST slope -1.14 (1.08) -1.15 (1.00)

1st row: The ensemble-mean of EIS changes averaged over the 5

regions in 18 CMIP3 and 18 CMIP5 models. 2nd row: As in the 1st

row, but for SST changes. 3rd row: As in the 1st row, but for EIS

slopes. 4th row: As in the 1st row, but for SST slopes. The intermodel

standard deviation of all quantities are shown in parentheses. Unit for

EIS and SST changes is K and 0.01 K-1 for EIS and SST slopes
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Percentages of 20th-century interannual LCC variance

that can be accounted for by EIS and SST are shown in

Fig. 6c, d. Averaged across the regions, the ensemble-mean

of the variance accounted for by EIS is 15 % in CMIP3

models and 22 % in CMIP5 models. The ensemble-mean of

the variance accounted for by SST is 11 % in both CMIP3

and CMIP5 models. There are large differences in the per-

centage accounted for across models and regions. In some

a

b

Fig. 4 Geographic distributions of a CMIP3 and b CMIP5 ensemble-mean surface temperature change. The approximate location of the western

Pacific warm pool is represented by the black box in each diagram

a

b

Fig. 5 Geographic distributions of a CMIP3 and b CMIP5 ensemble-mean T700 change. The approximate location of the western Pacific warm

pool is represented by the black box in each diagram
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cases, the variables account for relatively little LCC vari-

ance, while in others EIS or SST are prime predictors,

accounting for up to 60–80 %of the LCC variance. Note that

these estimates of EIS and SST contributions to simulated

interannual LCC variability understate the roles of EIS and

SST somewhat, because they do not include the component

of LCC variability that is associated with co-varying EIS and

SST anomalies. Of course, variations in atmospheric circu-

lation (e.g., the subsidence rate) or other factors may also be

drivers of simulated interannual LCC variability.

5 Contributions to LCC changes

5.1 Roles of various factors

Given anthropogenic changes in EIS and SST and the

sensitivities of LCC to changes in EIS and SST calculated

from 20th-century variability (i.e., the EIS and SST

slopes), we can quantify the contributions of these envi-

ronmental changes to simulated LCC changes. For a subset

of CMIP5 models, we can use the residual to quantify the

respective contributions of GHG, aerosols and environ-

mental parameters other than EIS and SST.

Figure 7a, b show the EIS and SST contributions aver-

aged over the 5 oceanic regions in 36 models. The EIS

contribution is generally positive (Fig. 7a) because both the

EIS change and the associated slope are generally positive

(see Figs. 3a, 6a). In contrast, the SST contribution is

negative in almost all the models (Fig. 7b) because the SST

change is always positive (see Fig. 3c) and the SST slope is

generally negative (see Fig. 6b). Comparison of the two

terms reveals that in 27 out of the 36 models (including 14

CMIP3 and 13 CMIP5 models), the magnitude of the SST

contribution is larger than that of the EIS contribution. This

difference is also reflected in the fact that in both ensem-

bles, the magnitude of the SST contribution is about twice

that of the EIS contribution (Table 3).

a

b

c

d

Fig. 6 a The EIS slope (qLCC/qEIS), b the SST slope (qLCC/qSST) and the percentage of the interannual variance of LCC in the 20th-century

that can be accounted for by c EIS and d SST in the 5 oceanic regions and 36 models

X. Qu et al.

123



Figure 7c shows the residual term averaged over the 5

oceanic regions in 36 models. While it is generally non-

negligible, the residual term is usually not the dominant

term. This is demonstrated in Fig. 8, where the magnitude

of the residual term is scattered against the maximum of

the magnitudes of the EIS and SST contributions. In only

10 out of the 36 models is the residual greater in magnitude

than both the EIS and SST contributions. We note that

there is no significant anticorrelation across models

between the magnitude of the residual term and the portion

of 20th-century LCC variance accounted for by EIS and

a

b

c

Fig. 7 a The EIS contribution to the 21st-century LCC changes averaged over the 5 regions in 36 models. b As in (a) but for the SST

contribution. c As in (a) but for the residual term

Fig. 8 Scatterplot of the magnitude of the residual term averaged

over the 5 oceanic regions versus the maximum of the magnitudes of

the EIS and SST contributions averaged over the 5 oceanic regions.

CMIP3 models are color-coded in blue, and CMIP5 models in red

Table 3 Various contributions to LCC changes in 36 CMIP models

CMIP3 CMIP5

EIS 0.86 (1.09) 1.77 (1.66)

SST -2.08 (2.00) -3.20 (3.00)

Residual 0.80 (1.11) 0.59 (3.06)

1st row: The ensemble-mean of the EIS contribution averaged over

the 5 regions in 18 CMIP3 and 18 CMIP5 models. 2nd row: As in the

1st row, but for the SST contribution. 3rd row: As in the 1st row, but

for the residual term. The intermodel standard deviation of all

quantities are shown in parentheses. Unit is 0.01
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SST, as one might think. In some of the models with a large

residual term (e.g., models B, a, b, i and r), a large fraction

of 20th-century LCC variance is actually accounted for by

EIS and SST (see Fig. 6).

Figure 9 shows the respective contributions of GHG and

aerosol to the residual term in the eight CMIP5 models

with data making such an analysis possible. The GHG

contribution (blue bars) turns out to be negative in all eight

models. Averaged over these models, it is about -0.01

(Table 4). The negative sign of the estimated GHG con-

tribution is consistent with the common view that an

increase in GHG concentration decreases low clouds by

reducing radiative cooling in the boundary layer (Brether-

ton et al. 2013). The aerosol contribution (red bars) is also

generally negative, consistent with the notion that clouds

increase with increasing aerosol concentration. (Recall that

aerosols decrease in the RCP8.5 scenario for the 21st

century.) However, the magnitude of the aerosol contri-

bution is generally much smaller than that of the GHG

contribution (see Table 4). The component of the residual

term unrelated to GHG and aerosol, quantified by the dif-

ference between the residual term and the overall contri-

butions of GHG and aerosol, is also shown in Fig. 9. It

varies a great deal in sign and magnitude from model to

model (green bars), and dominates the other components of

the residual term (see Table 4). The GHG and aerosol

signals in Fig. 9 are consistent across models in the sense

that they agree in sign and approximate magnitude. We

therefore deem it likely that the GHG and aerosol

contributions are also relatively small components of the

residual term in the other CMIP5 models, and in the

CMIP3 models. And because the residual term is generally

small compared to the EIS and SST contributions, we also

conclude that the GHG and aerosol contributions are

probably small compared to the EIS and SST contributions

in all CMIP3 and CMIP5 models.

5.2 Intermodel spread

Next, we examine the intermodel spread in the various

contributions to LCC changes discussed above. Clearly, all

three terms on the right side of Eq. (2) contribute to the

intermodel spread in LCC changes seen in Fig. 1. To assess

their relative importance, we scatter the actual LCC

changes against each term in Fig. 10. In both CMIP3 and

CMIP5 ensembles, the EIS contribution is only weakly

correlated to the actual LCC changes (Fig. 10), suggesting

its contribution to LCC spread is relatively small. The SST

contribution, in contrast, is significantly correlated with the

actual LCC changes. The correlation between the two

quantities across CMIP3 models is 0.81, so that about 60 %

of the intermodel variance of the actual LCC changes is

accounted for by the SST contribution. The correlation

across CMIP5 models is 0.69, with 50 % of the intermodel

variance of LCC changes being accounted for by the SST

contribution. The residual term is weakly correlated or

uncorrelated with the actual LCC changes.

Because of the clear dominance of the SST contribution

to LCC changes, we look into the relative importance of the

SST change and SST slope to the spread in LCC changes.

We consider two hypothetical cases: In the first case, in

each region, every CMIP3 or CMIP5 model has precisely

the same SST change, equal to the respective ensemble-

mean SST change averaged over the 5 regions (see

Table 2). In this case, the SST contribution in each model is

quantified by the product of the SST slope averaged over the

5 regions and the respective ensemble-mean SST change

averaged over the 5 regions. Since all CMIP3 or CMIP5

models assume the same SST change, this case is used to

isolate the impact of SST slope on the spread in LCC

Fig. 9 The respective contributions of GHG (blue bars) and aerosol

(red bars) to the residual term averaged over the 5 regions in eight

CMIP5 models. The portion of the residual term that is not accounted

for by either GHG or aerosol (green bars) is attributed to other factors

such as subsidence, horizontal advection and free-tropospheric

humidity. For comparison, the respective contributions of EIS and

SST to simulated LCC changes are also shown. Note that the indirect

effects of aerosol are included in models c, d, k, l, o and q, but not in

models e and r

Table 4 The respective contributions of GHG, aerosol and envi-

ronmental factors other than EIS and SST to the regional-mean

residual term averaged over eight CMIP5 models

GHG Aerosol Others EIS SST

-1.05

(0.40)

-0.22 (0.31) 0.47 (2.97) 1.98 (1.28) -2.34 (3.11)

The respective contributions of EIS and SST to the regional-mean

LCC changes averaged over the same eight CMIP5 models are also

shown for comparison. The intermodel standard deviation of all

quantities are shown in parentheses. Unit is 0.01
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changes. In the second case, in each region, every CMIP3 or

CMIP5 model has precisely the same SST slope, equal to

the respective ensemble-mean SST slope averaged over the

5 regions (see Table 2). In this case, the SST contribution in

each model is quantified by the product of SST change

averaged over the 5 regions and the respective ensemble-

mean SST slope averaged over the 5 regions. Since all

CMIP3 or CMIP5 models assume the same SST slope, this

case is used to isolate the impact of the SST change.

We scatter the actual LCC changes against the respective

hypothetical SST contributions in both cases described

above (Fig. 11). While the SST contribution is well-corre-

latedwith the actual LCC changes in both cases, the spread in

the SST contribution is much larger in the first case, indi-

cating that the contribution of SST slope to the spread in LCC

changes is much larger than the contribution of SST change.

Note that the correlation between the SST contribution and

the actual LCC changes in the second case may also arise

from the feedback of LCC changes on SST: An increase in

LCC reduces surface incoming solar radiation, and leads to

less surface warming and hence a smaller SST contribution,

while a decrease in LCC has the opposite effect.

6 Links to parameterization

6.1 Parameterization and LCC sensitivity to EIS

and SST

To assess the impact of parameterizations on simulated

LCC changes, we break down PBL and cloud parameter-

izations used in the 36 models into different types, largely

following Moeng and Stevens (2000). We focus on these

parameterizations since we expect them to be important for

the LCC in these marine stratocumulus regions. Since these

parameterizations in the CMIP5 ensemble do not collec-

tively differ in a systematic way from those in the CMIP3

ensemble, we do not distinguish between the two ensem-

bles in the categorization.

In all 36 models, the vertical transport of heat and

moisture in PBL is quantified by the product of an eddy

diffusivity K and the vertical gradient of heat and moisture.

Based on how the eddy diffusivity K is parameterized, we

break down the PBL schemes into three categories (see

Table 1): (Category 1) the ‘‘K(Ri)’’ scheme, (Category 2)

the ‘‘K profile’’ scheme and (Category 3) the ‘‘K(TKE)’’

scheme. (See a detailed description of these schemes in

‘‘Appendix 3’’.) We note that PBL schemes in some

models are distinct in that they use cloud-top radiative

cooling to drive boundary layer turbulence. These models

generally also have an explicit representation of cloud-top

entrainment. To examine whether these schemes have any

a

b

c

Fig. 10 a Scatterplot of the EIS contribution averaged over the 5

regions versus actual LCC changes averaged over the 5 regions.

b Scatterplot of the SST contribution averaged over the 5 regions

versus actual LCC changes averaged over the 5 regions. c Scatterplot

of the residual term averaged over the 5 regions versus actual LCC

changes averaged over the 5 regions. Solid line in each diagram

represents a least-squares fit regression line. CMIP3 models are color-

coded in blue and CMIP5 models in red
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systematic influences on simulated LCC changes, we

analyze these models as a separate category, referred to as

the ‘‘Top-Driven’’ scheme.

Depending on whether cloud cover is a prognostic var-

iable, we can break down cloud parameterizations in the 36

models into diagnostic and prognostic schemes. Note that

some of the schemes classified below as diagnostic have a

prognostic equation for cloud condensate and have been

classified in other contexts as prognostic schemes (Jakob

2001; Watanabe et al. 2009). Since our focus is cloud

cover rather than cloud condensate, our categorization is

entirely based on the models’ treatment of cloud cover.

Based on the key features of the diagnostic schemes, we

can further categorize them into three types. This catego-

rization is based on their treatment of stratiform clouds. (In

these types of models, convective and stratiform clouds are

usually predicted with separate schemes. We focus on the

parameterization of stratiform clouds as the area covered

by convective clouds is usually small in these regions.)

Thus there are a total of 4 categories of cloud parameter-

izations, 3 corresponding to diagnostic schemes, and one

corresponding to prognostic schemes: (Category 1) the

‘‘Diag (RH)’’ scheme, (Category 2) the ‘‘Diag (RH, sta-

bility)’’ scheme, (Category 3) the ‘‘Diag (PDF)’’ scheme

and (Category 4) the ‘‘Prog’’ scheme. (See a detailed

description of these schemes in ‘‘Appendix 4’’.) Several

models in category 2 use the scheme developed by Slingo

(1987) or its variant, where marine stratus is parameterized

through the observed thermal stability-LCC relationship

when the stability of atmospheric column exceeds some

threshold value. To further distinguish these models, we

refer to them as the ‘‘Diag (Slingo)’’ models. We note that

a b

c d

Fig. 11 Scatterplot of actual LCC changes averaged over the 5

regions versus the product of SST slope averaged over the 5 regions

and ensemble-mean SST changes averaged over the 5 regions in

a CMIP3 and b CMIP5 models, and scatterplot of actual LCC

changes averaged over the 5 regions vs. the product of SST change

averaged over the 5 regions and ensemble-mean SST slope averaged

over the 5 regions in c CMIP3 and d CMIP5. Solid line in each

diagram represents a least-squares fit regression line. Note that axes in

a and c have identical scales, and axes in b and d have identical scales
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models tend to use certain combinations of PBL and cloud

schemes: Models with the ‘‘Diag (PDF)’’ cloud scheme

often use the ‘‘K(Ri)’’ PBL scheme, and models with the

‘‘Diag (Slingo)’’ cloud scheme all use the ‘‘K profile’’ PBL

scheme. This characteristics may be attributable to the fact

that many CMIP3 and CMIP5 models were developed from

a small group of models (See Knutti et al. 2013 for more

discussions on this phenomenon).

Given these PBL and cloud parameterizations, we

hypothesize how the local sensitivities of LCC to EIS and

SST (i.e., the EIS and SST slopes) might emerge in climate

simulations. The EIS sensitivity may emerge in two ways.

First, in models where thermal stability is used explicitly to

parameterize cloud, i.e., those with the ‘‘Diag (RH, sta-

bility)’’ cloud scheme, an EIS sensitivity may emerge from

the functional dependence of cloud on thermal stability.

Second, the EIS sensitivity may emerge indirectly through

the models’ dependence of cloud on relative humidity. This

is possible because greater thermal stability is often asso-

ciated with weaker vertical mixing and consequently a

shallower and moister PBL. Since all cloud scheme types

have at least some relative humidity effect included in their

cloud cover formulations, this indirect pathway may occur

in every model. A hypothesis borne of the discussions here

is that EIS and LCC may be related to one another in all the

models, and that the sign and magnitude of the local EIS

sensitivity may be influenced by PBL and cloud schemes

used in the models and how they interact one another.

The SST sensitivity may emerge primarily through the

models’ dependence of cloud on relative humidity. As

discussed in the introduction, surface warming increases

surface latent heat flux and the moisture contrast between

the PBL and free-tropospheric air, leading to a relatively

drier and less cloudy PBL when mixing between the PBL

and free troposphere occurs. Surface cooling may have the

opposite effect on the PBL. The sign and magnitude of the

SST slope may also be influenced by PBL and cloud

schemes and their interactions in the models because (1)

the effect of surface warming on the PBL relative humidity

is likely influenced by PBL scheme and (2) the models’

LCC response to relative humidity variations is largely

determined by cloud scheme, whether the cloud depen-

dence on relative humidity is implicit or explicit.

It is worth noting that EIS and SST sensitivities may

also be influenced by other parameterizations (i.e., shallow

convection scheme) or the interactions between parame-

terizations (Zhang and Bretherton 2008), and thus our

categorization is incomplete.

6.2 The role of parameterization

We first assess the impact of parameterization on the sign

of LCC changes. Averaged over the 5 regions, the LCC

changes are predominantly negative in models with the

‘‘K(Ri)’’ PBL scheme and the ‘‘Diag (PDF)’’ cloud scheme,

while they are positive in models with the ‘‘Diag (Slingo)’’

cloud scheme (Table 5). Note that while the averaged LCC

changes are also generally positive in models with the

‘‘K profile’’ PBL scheme and the ‘‘Diag (RH, stability)’’

cloud scheme, this sign preference is found to originate

largely from models with the ‘‘Diag (Slingo)’’ cloud

scheme. The influence of other scheme types such as the

‘‘K (TKE)’’ and ‘‘Top-Driven’’ PBL schemes and the

‘‘Diag (RH)’’ and ‘‘Prog’’ cloud schemes is less clear. We

note that these schemes are used only in a small subset of

the 36 models, so it is difficult to robustly assess their

influence on the sign of LCC changes.

Next, we assess the impact of parameterization on the

magnitude of LCC changes. Figure 12 shows LCC changes

averaged over the 5 oceanic regions in the 36 models,

color-coded by PBL and cloud schemes used in the models.

We find that parameterization plays a significant role in

determining the magnitude of LCC changes: Models with a

large LCC decrease are mostly those with the ‘‘K(Ri)’’ PBL

scheme and ‘‘Diag (PDF)’’ cloud scheme, while models

with a large LCC increase are mostly those with the ‘‘Diag

(Slingo)’’ cloud scheme. The variety of scheme types

therefore may contribute significantly to the intermodel

spread in the average LCC changes. Note that the magni-

tude of the average LCC changes also varies considerably

within each of these PBL or cloud scheme types. Differ-

ences in the implementation of these schemes in the models

may be partly responsible for the variations with the same

scheme type. In some cases, intermodel differences in the

anthropogenic changes in the large-scale atmospheric

environment may also play a role.

As demonstrated in Sect. 5, the SST slope is clearly a

significant factor in determining the size of the SST con-

tribution, and is therefore also a significant determinant of

Table 5 The number of CMIP3 or CMIP5 models where the LCC

changes averaged over the 5 oceanic regions are negative (positive),

and the breakdown by PBL and cloud scheme type

CMIP3 CMIP5

Overall 9 (9) 10 (8)

K(Ri) 8 (1) 5 (1)

K profile 0 (5) 3 (5)

K(TKE) 1 (3) 2 (2)

Top-driven 0 (2) 3 (2)

Diag (RH) 1 (1) 1 (0)

Diag (RH, stability) 2 (6) 2 (4)

Diag (Slingo) 0 (3) 0 (4)

Diag (PDF) 6 (0) 6 (2)

Prog 0 (2) 1 (2)
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the sign and magnitude of the LCC changes. We focus on it

here to understand better the association between PBL and

cloud scheme types and LCC changes demonstrated above.

Figure 13 shows the SST slope averaged over the 5 oceanic

regions in the 36 models, color-coded by PBL and cloud

schemes used in the models. Models with a large negative

SST slope are mostly those with the ‘‘K(Ri)’’ PBL scheme

and ‘‘Diag (PDF)’’ cloud scheme. This may explain why

simulated LCC changes are consistently negative in models

with these schemes. Likewise, we find that models with a

small or even positive SST slope are mostly those with the

‘‘Diag (Slingo)’’ cloud scheme. This may explain why

simulated LCC changes are consistently positive in models

with this scheme. For completeness, we also examine the

association between the EIS slope and parameterization

(Fig. 14). However, we do not find any systematic rela-

tionship between them. Interestingly, even in models where

stability is explicitly used in the cloud scheme (i.e., the

‘‘Diag (RH, stability)’’ and ‘‘Diag (Slingo)’’ schemes), the

EIS slope is not systematically greater than the slope in

other models.

7 Comparison with observation

Estimates of observed EIS and SST slopes in the 5 oceanic

regions are shown in Table 6. The observed EIS slope is

positive in all regions except the Californian region.

Averaged over all regions, the observed EIS slope is about

0.026 K-1. This is less than half the EIS slope derived from

a

c d

b

Fig. 12 The LCC changes averaged over the 5 oceanic regions in 36

models, organized in ascending order and color-coded by PBL

scheme type in (a) and (b), and cloud scheme type in (c) and (d).

CMIP3 models are shown in (a) and (c), and CMIP5 models in

(b) and (d). Models with the ‘‘Top-Driven’’ PBL scheme are

identified by a prime following their reference letters, and models

with the ‘‘Diag (Slingo)’’ cloud scheme by an asterisk following their

reference letters
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interregional and seasonal covariability of LCC and EIS

(*0.06 K-1, Wood and Bretherton 2006). The difference

stems in part from methodology. In this study, the influence

of SST on LCC and EIS variations was removed before

calculating the EIS slope, while it was included in Wood

and Bretherton (2006). If the methodology in Wood and

Bretherton (2006) were adopted in our analysis, the

observed EIS slope averaged over all regions would rise to

approximately 0.04 K-1. Sources of the remaining differ-

ence may include (1) differences in the definition of LCC,

(2) differences in cloud data used, and (3) statistical

uncertainty in deriving the slope.

We find that the observed SST slope is negative in all

regions, with an average of about -0.025 K-1 over all

regions. Based onmonthly gridded data, from theClouds and

the Earth’s Radiant Energy System (CERES)—Terra, a

recent estimate of the SST slope gives a range of -0.019 to

-0.034 K-1 (Eitzen et al. 2011). Though our average value

is within this range, the Eitzen et al. estimate was derived

without removing the influence of EIS on LCC and SST

variations. When we estimate the SST slope without

excluding this influence, the result is close to -0.04 K-1,

slightly greater than the upper bound of the estimate in Eitzen

et al. (2011), but still in approximate agreement. As with the

EIS slope, sources of the difference between Eitzen et al.

(2011) and this study may include (1) differences in the

definition of LCC, (2) differences in cloud data used, and (3)

statistical uncertainty in deriving the slope. Note also that the

confidence intervals in Table 6 are large, partly because of

the relatively short temporal coverage of ISCCP cloud data.

a b

c d

Fig. 13 SST slope averaged over the 5 oceanic regions in 36 models,

organized in ascending order and color-coded by PBL scheme type in

(a) and (b), and cloud scheme type in (c) and (d). CMIP3 models are

shown in (a) and (c), and CMIP5 models in (b) and (d). Models with

the ‘‘Top-Driven’’ PBL scheme are identified by a prime following

their reference letters, and models with the ‘‘Diag (Slingo)’’ cloud

scheme by an asterisk following their reference letters. For compar-

ison, the observed SST slope (gray bars) and its confidence interval

(gray lines) are also shown. Note that the lower bound of the

confidence interval is out of the range of y-axis
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a b

c d

Fig. 14 EIS slope averaged over the 5 oceanic regions in 36 models,

organized in ascending order and color-coded by PBL scheme type in

(a) and (b), and cloud scheme type in (c) and (d). CMIP3 models are

shown in (a) and (c), and CMIP5 models in (b) and (d). Models with

the ‘‘Top-Driven’’ PBL scheme are identified by a prime following

their reference letters, and models with the ‘‘Diag (Slingo)’’ cloud

scheme by an asterisk following their reference letters. For compar-

ison, the observed EIS slope (gray bars) and its confidence interval

(gray lines) are also shown

Table 6 Estimates of observed EIS and SST slopes as well as the 95% confidence intervals of these estimates in the 5 oceanic regions

Per Nam Aus Cal Can Overall

EIS slope 5.54 (±1.84) 3.49 (±2.07) 3.85 (±2.08) -2.07 (±3.94) 2.07 (±2.78) 2.58 (±2.54)

SST slope -0.39 (±2.09) -2.42 (±3.04) -1.16 (±2.44) -6.81 (±5.39) -1.63 (±2.72) -2.48 (±3.13)

R2(LCC, EIS) 0.61 0.33 0.38 0.05 0.09 0.29

R
2(LCC, SST) 0.01 0.10 0.04 0.22 0.06 0.08

To obtain observed EIS and SST slopes, in each region we first compute annual-mean and regional-mean LCC time series based on ISCCP cloud

data, annual-mean and regional-mean EIS time series based on ERA-Interim reanalysis and annual-mean and regional-mean SST time series

based on NOAA optimum interpolation monthly SST version 2 (see also Sect. 2). Then we remove the long-term trend from each of the LCC,

EIS and SST times series and perform regression analyses described in ‘‘Appendix 1’’. Based on these analyses, we also compute the 95 %

confidence intervals of the slope estimates. The percentages of the interannual variance of LCC that can be accounted for by EIS and SST are

also shown for each of the 5 oceanic regions, as well as the respective averages of the slopes, confidence intervals and the percentages accounted

for by EIS and SST over the 5 oceanic regions. Unit for the estimated slopes is 0.01 K-1
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Percentages of observed interannual LCC variance that

can be accounted for by EIS and SST are also shown in

Table 6 for each of the 5 oceanic regions. Averaged over

all the regions, the percentage of the LCC variance

accounted for by EIS is 0.29, while the percentage of the

LCC variance accounted for by SST is 0.08. The only

exception to this is in the Californian region, where the

percentage of the LCC variance accounted for by SST is

about 4 times that accounted for by EIS. (A similar dif-

ference in the relative magnitudes of LCC-SST and LCC-

LTS correlations in this region is also reported in Clement

et al. (2009).)

Finally, we use estimates of observed SST and EIS

slopes to assess the realism of simulated SST and EIS

slopes. Simulated slopes generally have signs consistent

with the observed slopes—negative for SST slope and

positive for EIS slope (Figs. 13, 14). And in many models,

the simulated slopes agree well with their observed coun-

terparts. The qualitative similarity between the models as

an ensemble and the observations supports the idea that the

models generally capture the real LCC sensitivity to key

environmental conditions. Nevertheless, models generally

underestimate the magnitudes of both SST and EIS slopes.

Models with the largest underestimation of SST slope or

even a positive SST slope are primarily those with the

‘‘Diag (Slingo)’’ cloud scheme. (These models generally

exhibit a large LCC increase (see Fig. 12).) In contrast,

models with realistic SST slope (including models A, D, N,

O, m and n) are primarily those with the ‘‘K(Ri)’’ PBL

scheme and ‘‘Diag (PDF)’’ cloud scheme. (These models

generally exhibit a large LCC decrease (see Fig. 12).)

Unlike the SST slope, the underestimation of EIS slope is

not associated with particular parameterization schemes.

This is consistent with the fact that there is no systematic

relationship between the EIS slope and parameterization

(see Sect. 6). Note that the underestimation of EIS slope is

generally greater in the CMIP3 ensemble than CMIP5

(Fig. 14). With regard to the percentages of the LCC var-

iance accounted for by EIS and SST, both CMIP3 and

CMIP5 ensembles underestimate the percentage accounted

for by EIS somewhat (0.15 and 0.22 vs. 0.29), but slightly

overestimate the percentage accounted for by SST (0.11 vs.

0.08, Table 6 and Sect. 4). This general qualitative agree-

ment between the models and observations again supports

the idea that the models as an ensemble have roughly the

right EIS and SST sensitivities and the right balance

between variability due to these factors and other envi-

ronmental factors.

So what do these observational estimates imply about

future LCC change? Focusing on the competition between

EIS and SST effects, we have seen that the observed EIS

and SST slopes are comparable in magnitude, as are those

of the models. This leaves the relative magnitudes of the

future EIS and SST changes to determine which effect

wins. The models predict the SST increase will be much

larger than the increase in EIS (Table 2; Fig. 3). This is

also physically reasonable. For the EIS change to be larger

than the SST change, the surface and 700 hPa warming

would have be completely decoupled from one another in

the LCC regions, a very unlikely outcome. In reality and in

the models, large-scale dynamics will constrain the surface

and 700 hPa warming so that to zero order, the vertical

atmospheric temperature structure remains close to a moist

adiabat, with the EIS change then representing the rela-

tively subtle departure from that situation. Based on these

arguments, we conclude that the larger simulated magni-

tude of the SST change is physical, and that the negative

contribution of SST to LCC changes would outweigh the

positive contribution of EIS, reducing LCC. Thus if EIS

and SST effects alone are considered, it is likely LCC

would decrease over the 21st-century. However, the

residual term representing other effects is not negligible in

many models (Fig. 7), so we cannot exclude the outcome

where the LCC change occurs for reasons other than an EIS

or SST change. There are also large statistical uncertainties

in our estimates of observed SST and EIS slopes (Table 6).

For these reasons, we have only medium overall confidence

that LCC will decrease.

8 Summary and discussions

In this study, we quantify the linear contributions of EIS

and SST to LCC changes in 36 climate change simulations

associated with phases 3 and 5 of the Coupled Model

Intercomparison Project. LCC changes not attributable to

either EIS or SST changes (the residual term) are attributed

to changes in GHG and aerosol concentrations, environ-

mental factors other than EIS and SST, and the nonlinear

effects of EIS and SST. Among the three terms in the

heuristic model (the EIS and SST contributions and the

residual term), the SST term emerges as the dominant

source of the intermodel spread in LCC changes. It

accounts for nearly two-thirds of the intermodel variance of

LCC changes in CMIP3 models and about half of it in

CMIP5 models. These results validate the central

assumptions of the heuristic model: The anthropogenic

LCC changes can be mostly understood through a small

number of large-scale controls (one is enough, as it turns

out!), and the sensitivities in the context of climate change

can be potentially diagnosed from interannual variability.

The global models’ sensitivity to changes in SST varies

a great deal from model to model, driving a large part of

the intermodel spread in LCC changes. (The large inter-

model spread in the sensitivity of marine low clouds to SST

is also demonstrated in Bony and Dufresne (2005).) LCC
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generally increases in models with a small SST sensitivity,

while it decreases in models with a large SST sensitivity.

This sensitivity is strongly influenced by cloud and

boundary layer parameterization in the global models. The

‘‘K(Ri)’’ PBL scheme, in which the PBL eddy diffusivity

K is related in simple ways to the local Richardson number,

and the ‘‘Diag (PDF)’’ cloud scheme, in which cloud cover

is determined by accounting for the sub-grid scale vari-

ability of moisture and temperature, favor a large SST

sensitivity, and a large decrease in LCC. In contrast, the

‘‘Diag (Slingo)’’ scheme, in which low clouds are param-

eterized primarily through the observed thermal stability-

LCC relationship, favors a small SST sensitivity. Models

with this scheme exhibit a large increase in LCC.

Comparison with the estimate of observed SST sensi-

tivity reveals that models with the ‘‘K(Ri)’’ PBL scheme

and ‘‘Diag (PDF)’’ cloud scheme generally simulate a

realistic SST sensitivity, while models with the ‘‘Diag

(Slingo)’’ cloud scheme underestimate it. The underesti-

mation of SST sensitivity is somewhat expected in the

‘‘Diag (Slingo)’’ scheme because under some conditions,

cloud cover is diagnosed with thermal stability in this

scheme. When these conditions are met, cloud cover has no

sensitivity to SST variations that are independent of vari-

ations in thermal stability. This leads to a vanishingly small

value of SST sensitivity. Most models underestimate the

observed EIS sensitivity. (The underestimation of EIS

sensitivity in the CMIP3 ensemble was also found in

Caldwell et al. (2013).) While this systematic bias may

contribute little to the intermodel spread in LCC changes, it

has the effect of moving the spectrum of simulated LCC

changes towards negative values.

The respective contributions of GHG and aerosol in a

subset of CMIP5 models with available data are also

quantified in this work. The GHG contribution is modest,

and consistently negative in these models, supporting the

view that an increase in GHG concentration decreases

simulated low clouds by reducing radiative cooling in the

boundary layer. The aerosol contribution is also mostly

negative, but its magnitude is even smaller than that of

the GHG contribution. The intermodel spread in either the

GHG or aerosol contribution turns out to be much smaller

than the intermodel spread in the LCC changes that

cannot be unambiguously linked to SST or EIS changes

(residual term). This indicates that meteorological factors

such as subsidence, horizontal advection, free-tropo-

spheric moisture, or nonlinear effects of LCC and EIS

changes are the main remaining sources of spread in the

residual term.

In spite of all the potential complexity underlying

anthropogenic changes in LCC, the heuristic model pre-

dicts LCC will decrease over the 21st-century. This

assessment is based on two facts: (1) The observed EIS and

SST slopes are comparable in magnitude, and (2) the future

SST increase ought to be larger than the future EIS

increase. (This is a common feature of the models and one

that makes sense physically.) However, the residual term

representing other effects is not negligible in many models,

so we cannot exclude the outcome where the LCC change

occurs for reasons other than an EIS or SST change. There

are also large statistical uncertainties in our estimates of

observed SST and EIS slopes. For these reasons, we have

only medium overall confidence that LCC will decrease.

Longer observational records and a careful assessment of

other environmental factors producing LCC changes are

needed to place a stronger constraint on simulated LCC

changes. Meanwhile, addressing biases in simulated SST

and EIS sensitivities will clearly be an important step

towards reducing uncertainties in this aspect of climate

change.
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Appendix 1: Calculating EIS and SST slopes

EIS slope is calculated based on detrended time series of

LCC, EIS and SST in 20th-century (LCC0;EIS0; SST 0) as

follows. First, we regress EIS0 onto SST 0 (EIS0 � a1�

SST 0 þ ao). Then we tease out the component of EIS0

uncorrelated with SST 0;EIS0clean (¼ EIS0 � a1 � SST
0).

Third, we regress LCC0 onto SST 0 (LCC0 � b1 � SST
0 þ bo),

and tease out the component of LCC0 uncorrelated with

SST 0; LCC0
clean (¼ LCC0 � b1 � SST

0). Finally, we regress

LCC0
clean onto EIS0clean (LCC0

clean � c1 � EIS
0
clean þ co). EIS

slope assumes the value of c1.

Likewise, to calculate SST slope, we first regress SST 0

onto EIS0 (SST 0 � a1 � EIS
0 þ ao). Then we tease out the

component of SST 0 uncorrelated with EIS0; SST 0
clean =

(SST 0 � a1 � EIS
0). Third, we regress LCC0 onto EIS0

(LCC0 � b1 � EIS
0 þ bo), and tease out the component of

LCC0 uncorrelated with EIS0; LCC0
clean =
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(LCC0 � b1 � EIS
0). Finally, we regress LCC0

clean onto

SST 0
clean (LCC

0
clean � c1 � SST

0
clean þ co). SST slope assumes

the value of c1.

Using the methodology described above, we also esti-

mate EIS and SST slopes in pre-industrial control simula-

tions and 21st-century simulations (scenario A1B for

CMIP3 models and RCP 8.5 for CMIP5 models) with 18

CMIP3 and 18 CMIP5 models (The long-term trends in

LCC, EIS and SST in the 21st-century simulations were

removed before calculating EIS and SST slopes.). Fig-

ure 15a scatters the EIS slope in the historical simulations

against the EIS slope in their corresponding pre-industrial

control simulations, and Fig. 15b scatters the EIS slope in

the historical simulations against the EIS slope in their

corresponding 21st-century simulations. The EIS slope

exhibits a high degree of correspondence among differ

simulations of each CMIP3 or CMIP5 model. Figure 15c

scatters the SST slope in the historical simulations against

the SST slope in their corresponding pre-industrial control

simulations, and Fig. 15d scatters the SST slope in the

historical simulations against the SST slope in their cor-

responding 21st-century simulations. The SST slope also

exhibits a high degree of correspondence among different

simulations of each CMIP3 or CMIP5 model, though some

discrepancy in this quantity between the historical and

21st-century simulations is visible.

Appendix 2: An analytical expression for EIS change

Based on the definition of LTS, we rewrite Eq. (1) as

follows

EIS ¼ T700 �
1000

700

� �Ra=cp

�Ts �
1000

ps

� �Ra=cp

� C850
m � ðz700 � LCLÞ ð4Þ

where Ra (=287 J K-1 kg-1) is gas constant for air, cp
(=1,004 J K-1 kg-1) is specific heat of air at constant

Fig. 15 a Scatterplot of the EIS slope in the historical simulations

versus the EIS slope in the respective pre-industrial control simula-

tions in 36 models. b Scatterplot of the EIS slope in the historical

simulations versus the EIS slope in the respective 21st-century

simulations in 36 models. c As in (a) but for the SST slope. d As in

(b) but for the SST slope. In each model, the EIS or SST slope is first

calculated for each region and then averaged over the 5 regions.

CMIP3 models are color-coded in blue and CMIP5 models in red.

Solid line in each diagram represents the line y = x. Note that the pre-

industrial control simulation with model F has no cloud data, so it is

not shown in panels (a) and (c)

On the spread of changes in marine

123



pressure, and ps is surface pressure, typically, 1,020 hPa.

Treating z700 and LCL as constants, we obtain an

expression for EIS change

DEIS ¼ 1:11 � DT700 � 0:99 � DTs �
dC850

m

dT850

� DT850 � ðz700 � LCLÞ ð5Þ

Consistent with Wood and Bretherton (2006), we

approximate T850 by the mean of Ts and T700. So,

DT850 ¼
1
2
� ðDTs þ DT700Þ. Based on the formula for C850

m

in Wood and Bretherton (2006) and assuming some typical

values for Ts, T700 and surface relative humidity

(respectively: 295, 280 K and 80 %), we obtain

dC850
m =dT850 ¼ 1� 10�4 m�1; z700 ¼ 3250 m and LCL =

430 m. With these estimates, we arrive at an analytical

expression for EIS change.

DEIS � 0:97 � DT700 � 1:14 � DTs ð6Þ

Appendix 3: PBL parameterization

The three categories of PBL schemes are described in order

of increasing complexity:

Category 1, the ‘‘K(Ri)’’ scheme. In 15 of the 36 models

(models A, C, D, E, M, N, O, P, R, c, d, l, m, n and q), K is

parameterized as a decreasing function of the local Rich-

ardson number Ri, with unstable situations (Ri\ 0) asso-

ciated with a larger K than stable situations (Ri[ 0).

Category 2, the ‘‘K profile’’ scheme. In 13 of the 36

models (models B, G, H, I, Q, a, b, f, g, h, j, k and r), a

fixed vertical profile of K is assumed when boundary layers

are unstable (Ri\ 0): K peaks somewhere inside the PBL

and decreases towards both the surface and PBL top where

it vanishes. When boundary layers are stable (Ri[ 0), the

K is parameterized as a decreasing function of Ri as in the

‘‘K(Ri)’’ scheme.

Category 3, the ‘‘K(TKE)’’ scheme. In 8 of the 36

models (models F, J, K, L, e, i, o and p), K is parameterized

as a function of turbulent kinetic energy (TKE). TKE is

predicted with a prognostic equation including terms cor-

responding to generation by wind shear and buoyancy, a

vertical transport term, and a dissipation term.

Appendix 4: Cloud cover parameterization

The four categories of cloud schemes are described in order

of increasing complexity:

Category 1, the ‘‘Diag (RH)’’ scheme. In 3 of the 31

diagnostic models (models L, P and p), cloud cover is a

simple function of relative humidity.

Category 2, the ‘‘Diag (RH, stability)’’ scheme. In 14 of

the remaining diagnostic models (models B, C, D, G, J, K,

M, Q, a, b, d, e, i and r), cloud cover is parameterized

through relative humidity with some consideration of

thermal stability effects.

Category 3, the ‘‘Diag (PDF)’’ scheme. In the final 14 of

the diagnostic models (models A, E, F, N, O, R, c, j, k, l, m,

n, o and q), cloud cover is determined by accounting for the

sub-grid scale variability in both total water content and

temperature. This variability often assumes some simple

probability density functions (PDFs).

Category 4, the ‘‘Prog’’ scheme. A prognostic scheme

developed by Tiedtke (1993) is implemented in five models

(models H, I, f, g and h). In this scheme, cloud cover is

determined by a prognostic equation that accounts for

various cloud formation and dissipation processes.
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