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In this paper, we perform a stability analysis of a pair of van der Pol oscillators with

delayed self-connection, position and velocity couplings. Bifurcation diagram of the

damping, position and velocity coupling strengths is constructed, which gives insight

into how stability boundary curves come into existence and how these curves evolve

from small closed loops into open-ended curves. The van der Pol oscillator has been

considered by many researchers as the nodes for various networks. It is inherently

unstable at the zero equilibrium. Stability control of a network is always an important

problem. Currently, the stabilization of the zero equilibrium of a pair of van der

Pol oscillators can be achieved only for small damping strength by using delayed

velocity coupling. An interesting question arises naturally: can the zero equilibrium be

stabilized for an arbitrarily large value of the damping strength? We prove that it can

be. In addition, a simple condition is given on how to choose the feedback parameters

to achieve such goal. We further investigate how the in-phase mode or the out-of-phase

mode of a periodic solution is related to the stability boundary curve that it emerges

from a Hopf bifurcation. Analytical expression of a periodic solution is derived

using an integration method. Some illustrative examples show that the theoretical

prediction and numerical simulation are in good agreement. C© 2013 Author(s). All

article content, except where otherwise noted, is licensed under a Creative Commons

Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4834115]

I. INTRODUCTION

Many important physical, chemical and biological systems such as semiconductor lasers,1, 2

coupled Brusselator models3, 4 and neural networks for circadian pacemakers5 are composed of

coupled nonlinear oscillators. Ubiquitous in nature due to finite propagation speeds of signals, time

delay may have profound effects on the collective dynamics of such systems. The study of the

effects of time delay on the collective states has received much attention in recent years.6–9 In

particular, the van der Pol oscillator has been considered by many researchers as the nodes for

various networks. Atay10 investigated the effect of delayed feedback for the van der Pol oscillator

on oscillatory behavior. Maccari11 investigated the resonance of a parametrically excited van der Pol

oscillator under state feedback control with a time delay. From the viewpoint of vibration control,

they demonstrated that the time delay and the feedback pairs could enhance the control performance

and reduce the amplitude peak. For a van der Pol-Duffing oscillator with delayed position feedback,

Xu and Chung12 showed that time delay might be used as a simple but efficient switch to control

motions of a system: either from orderly motion to chaos or from chaotic motion to order for different

applications. Wirkus and Rand13 studied the dynamics of two weakly coupled van der Pol oscillators

aElectronic mail: makchung@cityu.edu.hk
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with delayed velocity coupling due to its relevance to coupled laser oscillators. They found that

both the in-phase and out-of-phase modes were stable for delays of about a quarter of the uncoupled

period of the oscillators. Li et al.14 extended the above work by including both delayed position and

velocity coupling. They showed that, for the case of 1:1 internal resonance, both the in-phase mode

and out-of-phase mode existed when the two coupling coefficients were identical, and there were

two death domains when these two modes did not exist. Zhang and Gu15 considered the dynamics

of a system of two van der Pol equations with delay position coupling. They showed the existence

of stability switches and, as the delay is varied, a sequence of Hopf bifurcations occurred at the

zero equilibrium. Song16 investigated the stability switches of two van der Pol oscillators with delay

velocity coupling, and obtained different in-phase and anti-phase patterns as the coupling delay was

increased. In the above papers, only weakly nonlinear van der Pol oscillators were investigated.

One of the most interesting and important collective behaviors in coupled oscillators that

have aroused much attention in recent years is the amplitude death which refers to the diffusive-

coupling-induced stabilization of unstable fixed points in coupled oscillators.17, 18 The theoretical

and practical meanings of the phenomenon of amplitude death in coupled systems are of great

significance. For example, it is a desirable control mechanism in cases such as coupled lasers where

it leads to stabilization19, 20 and a pathological case of oscillation suppression or disruption in cases

like neuronal disorders such as Alzheimers disease, Parkinsons disease, etc.21–25 For the occurrence

of amplitude death, one of the following conditions is needed: the parameter mismatch,18, 26 the

time-delayed coupling,27 dynamical coupling28 and conjugate coupling.29 Amplitude death by delay

was first reported by Ramana Reddy et al.27 in their study of a pair of limit cycle oscillators which

were the normal form for the Hopf bifurcation. A novel result30 that they found was the occurrence

of amplitude death even in the absence of a frequency mismatch between the two oscillators. Based

on the system studied in Ref. 30, Song et al.31 gave more detailed and specific conditions on the

existence of amplitude death for different delays. Since Pyragas32 introduced a novel feedback control

method of using a single time delay some two decades ago, the investigation has been extended to

multiple time delays33 for stabilizing steady states of various chaotic dynamical systems. For several

well-known chaotic systems, Ahlborn and Parlitz34 showed that multiple delay feedback control is

more effective for fixed point stabilization in terms of stability and flexibility, in particular for large

delay times. Blyuss et al.35 applied delayed feedback control to stabilize an unstable steady state of

a neutral delay differential equation. They showed that a number of amplitude death regions came

into existence in the parameter space due to the interplay between the control strength and two time

delays. For the van der Pol-Duffing system with delayed position feedback, Xu et al.36 obtained an

amplitude death region near a weak resonant double Hopf bifurcation point. A thorough review of

the current works can be found in Ref. 37.

The effect of time delay on the amplitude death of the Stuart-Landau oscillators with linearly

(diffusively) delay coupling has been well studied.27, 37 As for the van der Pol oscillators with delay

coupling, investigations have been focused only on the weakly nonlinear situation. For the pair of van

der Pol oscillators with delay velocity coupling studied in Ref. 16, amplitude death is possible only

when the damping strength is less than 0.5. Complex dynamics such as periodic-doubling sequences

leading to chaos occur for strongly nonlinear situation.38 An interesting question naturally arises: can

the strongly nonlinear van der Pol oscillators be stabilized using delay coupling? In other words, is it

possible to derive a delay feedback control strategy such that amplitude death exists for all positive

values of the damping strength? Ahlborn and Parlitz34 suggested that more delays entering into the

control terms were more effective and flexible for fixed point stabilization. Due to the complicated

analytical expressions, the analysis of systems with multiple delays is always based on numerical

simulations. It would be invaluable to develop an efficient analytical method for problems with

multiple delays. Delayed position and velocity feedbacks are two kinds of strategies commonly used

for control purposes. However, there are very few investigations on using both kinds for the stability

control of the van der Pol oscillators. These situations constitute the motivation of the present paper.

In this paper, our goal is to derive a delay feedback control strategy for the amplitude death

of nonlinear van der Pol oscillators with arbitrary large damping strength and investigate periodic

solutions of the in-phase and out-of-phase modes arising from Hopf bifurcation. In doing so,

we introduce three kinds of feedbacks namely, position, velocity, self-connection and three time
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FIG. 1. A pair of van der Pol oscillators with discrete time delays in the signal transmission of self-connection, position and

velocity couplings.

delays. The paper is organized as follows. Sec. II describes the model formulation and introduces a

parameter γ for finding the solutions of the characteristic equation of the linearized system. Local

stability analysis of the zero equilibrium is preformed in Sec. III. Bifurcation diagram of the system

parameters is constructed and the properties of the stability boundary curves in the plane of time

delays are discussed. In Sec. IV, we turn our attention to amplitude death region in the plane of

time delays and prove a sufficient condition for its existence for arbitrary large damping strength.

Sec. V is devoted to the investigation of the periodic solutions of the in-phase and the out-of-phase

modes. We show how the type of mode is related to the stability boundary curves obtained in

Sec. III. An integration method is employed to study the amplitude of periodic solutions arising

from a Hopf bifurcation. As illustrated in Sec. VI, the analytical results are in good agreement with

those obtained from numerical simulations. Finally, Sec. VII contains the conclusions.

II. MODEL FORMULATION

We study a pair of van der Pol oscillators in which there are distinct, discrete time delays in

the signal transmission of self-connection, position and velocity couplings. The coupled system is

shown schematically in Fig. 1 and expressed in two delay differential equations as

ẍ1(t) + μ[x2
1 (t) − 1]ẋ1(t) + x1(t)

= α[x2(t − τA) − x1(t − τ1)] + β[ẋ2(t − τA) − ẋ1(t − τ1)],

ẍ2(t) + μ[x2
2 (t) − 1]ẋ2(t) + x2(t)

= α[x1(t − τB) − x2(t − τ1)] + β[ẋ1(t − τB)) − ẋ2(t − τ1)]. (1)

where τ 1, τA and τB are, respectively, the time delays of self-connection, from oscillator x2 to x1,

and from x1 to x2; α and β are, respectively, the position and velocity coupling strengths; μ is the

damping strength which is always positive. Let y1(t) = ẋ1(t) and y2(t) = ẋ2(t), system (1) can be

written as

ẋ1(t) = y1(t),

ẏ1(t) = −x1(t) − μ[x2
1 (t) − 1]y1(t)

+α[x2(t − τA) − x1(t − τ1)] + β[y2(t − τA) − y1(t − τ1)],

ẋ2(t) = y2(t),

ẏ2(t) = −x2(t) − μ[x2
2 (t) − 1]y2(t)

+α[x1(t − τB) − x2(t − τ1)] + β[y1(t − τB) − y2(t − τ1)]. (2)

We note that system (2) is reduced to the system investigated in Ref. 15 if β = τ 1 = 0 and that

of Ref. 16 if α = τ 1 = 0. The characteristic equation of the linearization of system (2) at the origin

is given by

�(λ, τ1, τ2) = �1(λ, τ1, τ2)�2(λ, τ1, τ2) = 0, (3a)

where τ2 = τA+τB

2
and

�1(λ, τ1, τ2) = λ2 − μλ + 1 + (βλ + α)(e−λτ1 − e−λτ2 ), (3b)
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�2(λ, τ1, τ2) = λ2 − μλ + 1 + (βλ + α)(e−λτ1 + e−λτ2 ). (3c)

Equation (3a) determines the local stability of the origin in (1). When τ 1 = τ 2 = 0, (3a) has the

following four roots:

λ1,2 =
1

2
(μ ±

√

μ2 − 4), and λ3,4 =
1

2
μ − β ±

√

(μ

2
− β

)2

− (1 + 2α). (3d)

Since μ > 0, the origin is always unstable. To investigate the distribution of roots of (3a) for

nonzero τ 1 and τ 2, we have to consider the stability boundary curves of (3b) and (3c) by letting λ =
iω for ω > 0. From (3b) and (3c), we obtain, respectively,

cos(ωτ2) = cos(ωτ1) −
A

β2ω2 + α2
, sin(ωτ2) = sin(ωτ1) −

B

β2ω2 + α2
, (4a)

and

cos(ωτ2) =
A

β2ω2 + α2
− cos(ωτ1), sin(ωτ2) =

B

β2ω2 + α2
− sin(ωτ1), (4b)

where A = (μβ + α)ω2 − α and B = ω(βω2 − μα − β). Eliminating τ 2 in (4a) or (4b), we arrive

at the same equation

ω4 + (μ2 − 2)ω2 + 1 − 2A cos(ωτ1) − 2B sin(ωτ1) = 0. (5)

Let C =
√

A2 + B2 =
√

(β2ω2 + α2)[ω4 + (μ2 − 2)ω2 + 1], and

sin θ =
A

C
and cos θ =

B

C
. (6)

Then, after simplification, (5) becomes
√

ω4 + (μ2 − 2)ω2 + 1 = 2
√

β2ω2 + α2γ, where γ = sin(θ + ωτ1). (7)

It follows from (7) that 0 < γ ≤ 1. Substituting (6) and (7) into (4a), we obtain

cos ωτ2 = cos ωτ1 − 2γ sin θ, sin ωτ2 = sin ωτ1 − 2γ cos θ,

=⇒ τ2 =
2nπ − 2θ

ω
− τ1, for n ∈ Z. (8)

To simplify the subsequent calculations, we let α = kβ. It follows from (7) and (8) that �1(iω,

τ 1, τ 2) = 0 in (3b) is equivalent to

ω4 + (μ2 − 2 − 4β2γ 2)ω2 + 1 − 4k2β2γ 2 = 0, (9a)

γ = sin(θ + ωτ1) ∈ (0, 1], (9b)

τ2 =
2nπ − 2θ

ω
− τ1, for n ∈ Z. (9c)

Similarly, �2(iω, τ 1, τ 2) = 0 in (3c) is equivalent to

ω4 + (μ2 − 2 − 4β2γ 2)ω2 + 1 − 4k2β2γ 2 = 0, (10a)

γ = sin(θ + ωτ1) ∈ (0, 1], (10b)

τ2 =
(2n + 1)π − 2θ

ω
− τ1, for n ∈ Z. (10c)
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For the solutions of (3b), we may first choose γ ∈ (0, 1] and obtain ω if it exists from (9a). Then, τ 1

and τ 2 can be obtained from (9b) and (9c), respectively.

III. LOCAL STABILITY ANALYSIS

In this section, we investigate the number of positive solutions of ω in (3a) and construct

bifurcation diagram in the parameter space of μ, β and k. The van der Pol oscillator is inherently

unstable at the zero equilibrium. A study of positive solution of ω gives the condition of μ, β and k

that a pair of eigenvalues of (3a) cross the imaginary axis, resulting in a change of stability at the

zero equilibrium. For a given k, we will show that the bifurcation diagram (μ, β) is partitioned into

three regions according to whether the stability boundary curves exist (closed or open-ended) or not.

For a region with no positive solution, the zero equilibrium is always unstable even when delays

exist. The existence of two positive solutions in a region may lead to the occurrence of amplitude

death, i.e. the stabilization of the zero equilibrium.

Let Ŵ = (μ2 − 2 − 4β2γ 2)2 − 4(1 − 4k2β2γ 2) be the discriminant of (9a). Since (9a) is a

quadratic equation in ω2, we have the following lemma regarding the number of positive roots of ω

in (9a).

Lemma 1. Let k, β ∈ R, μ ∈ R
+, γ ∈ (0, 1] and assume

(B1) either μ2 − 2 − 4β2γ 2 ≥ 0 and 1 − 4k2β2γ 2 > 0 or Ŵ < 0;

(B2) either 1 − 4k2β2γ 2 < 0, or μ2 − 2 − 4β2γ 2 < 0 and Ŵ = 0;

(B3) μ2 − 2 − 4β2γ 2 < 0, 1 − 4k2β2γ 2 > 0 and Ŵ > 0.

Then, (B1) − (B3) are the conditions for 0, 1 and 2 positive real roots, respectively, of ω in (9a).

To investigate how Ŵ varies with respect to μ > 0 and k, we consider the equation Ŵ = 0 and

obtain

γ 4 +
1

β2

(

k2 + 1 −
μ2

2

)

γ 2 +
μ2(μ2 − 4)

16β4
= 0 (11a)

=⇒ γ 2
± =

1

2β2

[

μ2

2
− 1 − k2 ±

√

(1 + k2)2 − μ2k2

]

. (11b)

With some calculations on inequalities, we obtain the regions in the (k, μ) plane with 0, 1 and 2

positive real roots of γ in (11a) as follows:

Lemma 2. Let k ∈ R, μ ∈ R
+ and assume

(C1) either |k| ≥ 1 and μ > 2, or μ > 1+k2

|k| ;

(C2) either μ < 2, or |k| < 1 and μ = 1+k2

|k| ;

(C3) |k| < 1 and 2 < μ < 1+k2

|k| .

Then, (C1) − (C3) are the conditions for 0, 1 and 2 positive real roots, respectively, of γ in (11a)

(see Fig. 2).

Remark 1 The curve segment μ = 1+k2

|k| with |k| < 1, which is the boundary of (C1) and (C3),

belongs to (C2).

Remark 2 For given μ > 0, k and if (11a) has a positive real root in γ , there exists β such that

γ ∈ (0, 1].

Next, we consider the bifurcation diagram of (9a) with respect to the number of positive roots

in ω for γ ∈ (0, 1]. Define

γ1 =
1

2|kβ|
> 0 and γ 2

2 =
μ2 − 2

4β2
, (12)
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FIG. 2. Number of positive roots of γ in (11a). There are 0, 1 and 2 positive real roots in regions C1, C2 and C3, respectively.

The curve segment (k, 1+k2

|k| ) with |k| < 1 belongs to (C2).

so that 1 − 4k2β2γ 2
1 = 0 and μ2 − 2 − 4β2γ 2

2 = 0, respectively. Since γ1 > 1 ⇔ |β| < 1
2|k| and

together with Lemmas 1 and 2, we have the following conditions of γ 1, γ 2 and γ + (which is defined

in (11b)) on the number of positive roots of ω in (9a):

Lemma 3. Assume that γ 1 > 1. Then, for γ ∈ (0, 1],

(a) if γ 2
2 ≥ 1 or γ + > 1, (9a) has no positive solution;

(b) if γ 2
2 < 1 and γ + ≤ 1, (9a) has 0, 1 or 2 positive solutions according to γ < γ +, γ = γ +

or γ + < γ ≤ 1, respectively.

Lemma 4. Assume that γ 1 ≤ 1. Then, for γ ∈ (0, 1],

(a) if γ 2
1 ≤ γ 2

2 , (9a) has 0 or 1 positive solution according to γ ≤ γ 1 or γ 1 < γ ≤ 1, respectively;

(b) if γ 2
1 > γ 2

2 , (9a) has 0, 1, 2 or 1 positive solution accordng to γ < γ +, γ = γ +, γ + < γ <

γ 1 or γ 1 ≤ γ ≤ 1, respectively.

For γ ∈ (0, 1], we define γ = sin c for 0 < c ≤ π
2

. Then, for a positive solution of (9a),

(τ 1, τ 2) in (9b) and (9c) can be expressed as

(τ1, τ2) =
(

2mπ + c − θ

ω
,

2m1π − c − θ

ω

)

, (13a)

or

(τ1, τ2) =
(

(2m + 1)π − c − θ

ω
,

(2m1 − 1)π + c − θ

ω

)

, (13b)

where m, m1 = m − n ≥ 0. Since (10a) is the same as (9a) and for a positive solution of (10a),

(τ 1, τ 2) in (10b) and (10c) is given by

(τ1, τ2) =
(

2mπ + c − θ

ω
,

(2m1 + 1)π − c − θ

ω

)

, (13c)

or

(τ1, τ2) =
(

(2m + 1)π − c − θ

ω
,

2m1π + c − θ

ω

)

. (13d)

In the above consideration, we use γ as a parameter to find the purely imaginary roots of (3a).

The following theorem gives the bifurcation diagram of (3a) with respect to the number of purely

imaginary roots.
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(a) (b)

FIG. 3. (a) Bifurcation diagram of (3a) with respect to the number of purely imaginary roots; (b) Curves of γ 2
i = 1 for i ∈

{+, 1, 2} and regions where γ 2
i is greater/less than one. These curves intersect concurrently at P± = (

√

2 + 1

k2 , ± 1
2|k| ).

Theorem 1. Let k, β ∈ R, μ ∈ R
+ and define the following regions in the (μ, β) plane as

(region I):

⎧

⎨

⎩

β2 < 1
2

[

μ2

2
− 1 − k2 +

√

(1 + k2)2 − μ2k2
]

, f or μ <

√

2 + 1
k2 ,

|β| < 1
2|k| , f or μ ≥

√

2 + 1
k2 ;

(region II): |β| < 1
2|k| , μ <

√

2 + 1
k2 and β2 ≥ 1

2

[

μ2

2
− 1 − k2 +

√

(1 + k2)2 − μ2k2
]

;

(region IIIa): |β| ≥ 1
2|k| and μ ≥

√

2 + 1
k2 ;

(region IIIb): |β| ≥ 1
2|k| and μ <

√

2 + 1
k2 .

(see Fig. 3 for the above regions.)

(a) If k, β and μ satisfy the condition of region I, then (3a) has no purely imaginary root.

(b) If k, β and μ satisfy the condition of region II, then (3a) has 0, 1 or 2 pairs of purely

imaginary roots according to γ < γ +, γ = γ + or γ + < γ ≤ 1, respectively.

(c) If k, β and μ satisfy the condition of region IIIa, then (3a) has 0 or 1 pair of purely imaginary

roots according to γ ≤ γ 1, or γ 1 < γ ≤ 1, respectively.

(d) If k, β and μ satisfy the condition of region IIIb, then (3a) has 0, 1, 2 or 1 pair of purely

imaginary roots according to γ < γ +, γ = γ +, γ + < γ < γ 1 or γ 1 ≤ γ ≤ 1, respectively.

Furthermore, given γ ∈ (0, 1] and for m, m1 ≥ 0, the stability boundary curves in the (τ 1, τ 2)

plane can be obtained from (13a)-(13d) for τ 1, τ 2 > 0.

Proof. See Appendix A. �

Theorem 1 provides information of and construction method for the stability boundary curves

in the (τ 1, τ 2) plane.

Remark 1 For the values of k, β and μ in region I, since (3a) has no purely imaginary root, there

is no stability boundary curve in the (τ 1, τ 2) plane. Therefore, both �(λ, τ 1, τ 2) = 0 and �(λ, 0, 0)

= 0 have four roots in the right-half plane.

Remark 2 For the values of k, β and μ in region II, stability boundary curves can be constructed

using (13a)-(13d) for γ ∈ [γ +, 1]. Since ω is always finite and so do τ 1 and τ 2, the curves form

closed loops which may intersect itself (see Fig. 4). When the values of μ, β and k tend to either

OP+ or OP− such that γ + = 1, i.e. c = π
2

, the loops shrink to the set of discrete points

(τ1, τ2) =

(

(2m + 1
2
)π − θ

ω
,

(2m1 ± 1
2
)π − θ

ω

)

, (14)
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τ
1

τ
2

FIG. 4. Stability boundary curves in the (τ 1, τ 2) plane for (μ, k, β) = (0.05, 0.05, 0.1) (region II of Theorem 1). The ordered

pair in a loop shows the values of (m, m1) in (13a)-(13d). The overlapping areas are amplitude death regions.

where m, m1 ≥ 0 and τ 1, τ 2 > 0.

Remark 3 For the values of k, β and μ in regions IIIa or IIIb, one of the roots of (9a) vanishes

at γ = γ 1. Then, both τ 1 and τ 2 in (13a)-(13d) become infinite. Therefore, the stability boundary

curves are open-ended (see Fig. 5).

For the parameters of μ, β and k in region II, stability boundary loops in the (τ 1, τ 2) plane can

be constructed in the following way:

(a) Set γ = γ + in (9a). From (9a) and (11b), ω = ω+ is given by

ω2
+ = 1 + 2β2γ 2

+ −
μ2

2
=

√

(1 + k2)2 − μ2k2 − k2. (15)

(b) Find the corresponding value of θ = θ+ from (6) and c = c+ where γ+ = sin c+ with 0 <

c+ ≤ π
2

.

(c) Segments from the pairs {(13a) and (13b)} and {(13c) and (13d)} form closed stability

boundary loops as γ increases from γ + to 1.

From numerical simulation, we observe that two horizontally neighboring loops never intersect

each other to form amplitude death region. However, it may occur to two vertically neighboring

loops with small m and m1(see Fig. 4). For m = 0, the small loops are initially born in the left-half

(τ 1, τ 2) plane and, as |β| increases, part of their interior crosses the τ 2-axis into the right-half

(τ 1, τ 2) plane. In fact, in Fig. 4 where μ = 0.05, (3a) has two pairs of eigenvalues in the right-half

plane when (τ 1, τ 2) is outside the loops. Inside each loop (but not inside an overlapping area), (3a)

has a pair of eigenvalues in the right-half plane. Inside the overlapping areas, all the eigenvalues of

(3a) are in the left-half plane and thus these areas are amplitude death regions. To find the possibility

of amplitude death region for arbitrary large μ, we investigate the intersection of stability boundary

curves with m = 0 and the τ 2-axis.

We first find the value of β for which a stability boundary curve with m = 0 is tangential to

τ 2-axis. When τ 1 = 0, (5) is reduced to

ω4 + (μ2 − 2 − 2kβ − 2μβ)ω2 + 2kβ + 1 = 0. (16)
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FIG. 5. Stability boundary curves in the (τ 1, τ 2) plane for (μ, k, β) = (20, 25, 40)(region III of Theorem 1). The shaded

area is an amplitude death region.

At a tangential point, (16) has a double root in ω2 such that the discriminant vanishes, i.e.

(μ + k)2β2 + μ(2 − kμ − μ2)β + μ2(μ2/4 − 1) = 0. (17)

The larger root βT of (17) and the double root of ω2 in (16) are given by, respectively,

βT =
μ(μ2 + kμ − 2 + 2

√

1 + kμ + k2)

2(μ + k)2
, (18)

and

ω2
T =

k + μ
√

1 + kμ + k2

μ + k
. (19)

In the stability control of the coupled van der Pol system for arbitrary large value of μ, we may

assume that k is positive. At β = βT, it follows from (4b) that

A = βT [(μ + k)ω2
T − k] = βT μ

√

1 + kμ + k2 > 0 (20a)

and

B = ωT βT (ω2
T − μk − 1)

=
−ωT βT μ

√

1 + kμ + k2(
√

1 + kμ + k2 − 1)

μ + k
< 0. (20b)

Let θ = θT at β = βT. It follows from (6) that θT is in the second quadrant. Therefore, the tangential

point is generated from (13b) or (13d) since π /2 < θT = π − c < π . For β > βT, (16) has two

positive roots ω1 and ω2 where ω1 < ωT < ω2 and each stability boundary curve intersects the

τ 2-axis at two points. From (13a)-(13d) with τ 1 = m = 0, we denote the intersection points by

τ
(i,n)
2 =

nπ − 2θi

ωi

for i = 1, 2, n ≥ 1, (21)
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and θ i is obtained from (6) with ω = ωi. For delay-coupled van der Pol oscillators with one delay,

it was shown in Ref. 15 and 16 that stability switchings occur along the time-delay axis. For the

generalized system (3a), we apply the results of Ref. 39 which studied the stability boundary curves

of general linear systems with two delays. The following theorem states the directions of crossing

the imaginary axis for solutions of �i(λ, τ 1, τ 2) = 0 (i = 1, 2) at these intersection points in the

positive τ 2 direction.

Theorem 2. Let τ
(i,n)
2 (i = 1, 2 and n ≥ 1) be defined in (21) and (0, τ

(i,n)
2 ) be points generated

by (13a)-(13d) with τ 1 = m = 0. As (0, τ 2) crosses (0, τ
(1,n)
2 ) ((0, τ

(2,n)
2 ), resp.) in the positive τ 2

direction, a pair of solutions of �i(λ, 0, τ 2) = 0 (i = 1, 2) cross the imaginary axis to the left (right,

resp.).

Remark 1 From (20a) and (20b), θ1 in (21) is always in the second quadrant. Therefore, from

(21), τ
(1,1)
2 < 0 and τ

(1,2)
2 > 0.

Remark 2 When β >
μ

2
, we have τ

(2,1)
2 > 0. Furthermore, �(λ, 0, 0) = 0 in (3a) has only two

roots with positive real parts, namely λ1, 2 in (3d). Among the intersection points on the positive

τ 2-axis, either (0, τ
(1,2)
2 ) or (0, τ

(2,1)
2 ) is the nearest to the origin.

Remark 3 It follows from Theorem 2 that if

β >
μ

2
and τ

(1,2)
2 < τ

(2,1)
2 , (22)

all the roots of �(λ, 0, τ 2) = 0 have negative real part for τ2 ∈ (τ
(1,2)
2 , τ

(2,1)
2 ). Thus, the interior of

the intersection of the two stability boundary curves is an amplitude death region (see the shaded

areas in Figs. 4 and 5).

IV. EXISTENCE OF AMPLITUDE DEATH REGION FOR ARBITRARY

DAMPING STRENGTH

The system investigated in Ref. 16 is a special case of system (2) in that α = τ 1 = 0 and

amplitude death is possible only when μ < 0.5. By adding a position delay feedback (i.e. α �= 0)

to the system in Ref. 16 while keeping τ 1 = 0, is it possible to obtain amplitude death for arbitrary

large μ > 0? We give an affirmative answer.

To find sufficient conditions in terms of μ, k, β which satisfy the second condition in (22) we

note that

τ
(1,2)
2 =

2(π − θ1)

ω1

<
2 tan(π − θ1)

ω1

and
π − 2 tan θ2

ω2

< τ
(2,1)
2 =

π − 2θ2

ω2

.

Given μ > 0, the condition

2 tan(π − θ1)

ω1

<
π − 2 tan θ2

ω2

(23)

is sufficient for τ
(1,2)
2 < τ

(2,1)
2 . Substituting (6) into (23) and after simplification, we obtain the

following sufficient condition for the existence of amplitude death region.

Theorem 3. If k1 = β

μ
and k2 = k

μ
such that

k1 >
1

2
+

8

π2
, and [πk1k2(2k1 − 1)]2 > [2k1(k2 + 1) − 1]3, (24)

then the origin of system (2) is stable for τ2 ∈ (τ
(1,2)
2 , τ

(2,1)
2 ).

In Fig. 6, the shaded region in the (
β

μ
, k

μ
) plane satisfies (24). As an illustrative example, for

arbitrary μ > 0, we may choose k1 = β/μ = 2, k2 = k/μ = 1.25 and τ2 = [τ
(1,2)
2 + τ

(2,1)
2 ]/2

so that the conditions in Theorem 3 are satisfied. For instance, when μ = 20, we have β = 40,

k = 25 and τ2 = [τ
(1,2)
2 + τ

(2,1)
2 ]/2 = (0.02 + 0.0288)/2 = 0.0244. From numerical simulations,
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FIG. 6. Regions for the existence of amplitude death of system (1) in the (τ 1, τ 2) plane: the shaded region satisfies (24) in

Theorem 3 whilst the region to the right of the dashed line satisfies condition (22).

Figs. 7(a)-7(b) show the time history of x1 and x2 in (1) without time delay (i.e. τ 1 = τ 2 = 0).

As observed from the long-term behavior, a stable periodic solution exists. However, for τ
(1,2)
2

< τ2 < τ
(2,1)
2 , the zero equilibrium is asymptotically stable, as depicted in Figs. 7(c)-7(d) where τ 2

= 0.0244.

Theorem 3 provides a sufficient condition for the existence of amplitude death region based on

(23). To obtain a more accurate region in Fig. 6 for the existence of amplitude death region, we may

use the second condition of (22) as

τ
(1,2)
2 =

2(π − θ1)

ω1

< τ
(2,1)
2 =

π − 2θ2

ω2

(25)

For a given value of k1, the minimum value of k2 for which (25) is satisfied can be computed

numerically. The region is also plotted in Fig. 6. The shaded region is inside the region to the

right of the dashed curve since condition (23) is more conservative than (25). It is observed that the

boundary curve from numerical result is asymptotically close to that of the second condition of (24) as

k1 → ∞.

V. IN-PHASE/OUT-OF-PHASE MODES AND AN INTEGRATION METHOD

In the study of two weakly coupled van der Pol oscillators with delayed velocity coupling,

Wirkus and Rand13 found that both the in-phase and out-of-phase modes were stable for delays

of about a quarter of the uncoupled period of the oscillators. In the bifurcation analysis of system

(1) with delayed position and velocity couplings, we are going to investigate how the in-phase and

out-of-phase modes occur and derive an analytical expression for a periodic solution arising from

Hopf bifurcation using an integration method.

For simplicity, we assume in system (1) that τA = τB = τ 2. We take τ 1 as the bifurcation

parameter and assume a Hopf bifurcation occurs at τ 1 = τ 10. Other bifurcation parameter such as

τ 2 can be treated in a similar way. For a small perturbation τ 1 = τ 10 + ǫτ 11, a periodic solution

z = (z1, z2)T of order ǫ1/2 comes into existence. Let zi = ǫ1/2xi for i = 1, 2. Since zi,τ10+ǫτ11
=

zi,τ10
− ǫτ11 żi,τ10

and żi,τ10+ǫτ11
= żi,τ10

− ǫτ11 z̈i,τ10
for i = 1, 2, (1) can be expressed in matrix form

as

z̈ − μż + z + α(zτ10
− J zτ2

) + β(żτ10
− J żτ2

) = ǫ f, (26)
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FIG. 7. Time history of (x1, x2) for (μ, k, β) = (20, 25, 40): (a) transient and (b) long-term behavior when τ 2 = 0; and (c)

transient behavior and (d) asymptotically stable when τ 2 = 0.0244.

where z =
(

z1

z2

)

, zτ10
=

(

z1,τ10

z2,τ10

)

, zτ2
=

(

z1,τ2

z2,τ2

)

, J =
(

0 1

1 0

)

, and f =
(

−μz2
1 ż1 + ατ11 ż1,τ10

+ βτ11 z̈1,τ10

−μz2
2 ż2 + ατ11 ż2,τ10

+ βτ11 z̈2,τ10

)

.

Theorem 4. A periodic solution of (26) is of the in-phase mode (out-of-phase mode, resp.) if it

emerges from a Hopf bifurcation on a stability boundary curve generated by (9a)–(9c) ((10a)–(10c),

resp.).

Proof. See Appendix B. �

It follows from Theorem 4 that, in Fig. 4, the periodic solutions arising from the stability

boundary loops (m, 2n), m, n ∈ Z, are of the in-phase mode while those from the loops (m, 2n + 1)

the out-of-phase mode.

In Ref. 13, an algebraic condition was given to distinguish an in-phase oscillation from an out-

of-phase oscillation. In our investigation, we describe how in-phase and out-of-phase oscillations are

related to the stability boundary curves in the (τ 1, τ 2) plane. Therefore, we consider the oscillations

from a geometrical point of view which is different from that of Ref. 13.

Next, we derive an analytical expression for a periodic solution arising from Hopf bifurcation

using the integration method described in Ref. 36.

Theorem 5. If w(t) is a periodic solution of the adjoint equation of (26) which is given by

ẅ + μẇ + w + α(w−τ10
− Jw−τ2

) − β(ẇ−τ10
− J ẇ−τ2

) = 0, (27)
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FIG. 8. Time history of the oscillators x1 (solid) and x2 (dashed) in (a) the out-of-phase mode and (b) the in-phase mode at

τ 1 = 1. (c) A comparison of the zero-order out-of-phase (cross) and in-phase (plus) analytical solutions of (29a) with those

from numerical simulations in the phase plane of x1.

and w(t) = w(t + 2π/ω), then

[w(0)]T [ż(2π/ω) − ż(0)] − [ẇ(0)]T [z(2π/ω) − z(0)] − μ[w(0)]T [z(2π/ω) − z(0)]

+α

∫ 0

−τ10

wT
−τ10

[z(t) − z(t + 2π/ω)]dt − α

∫ 0

−τ2

wT
−τ2

J [z(t) − z(t + 2π/ω)]dt

+β[w(0)]T {[zτ10
(2π/ω) − zτ10

(0)] − J [zτ2
(2π/ω) − zτ2

(0)]}

−β

∫ 0

−τ10

ẇT
−τ10

[z(t) − z(t + 2π/ω)]dt + β

∫ 0

−τ2

ẇT
−τ2

J [z(t) − z(t + 2π/ω)]dt = ǫ

∫ 2π/ω

0

wT f dt.

(28)

Proof. Eq.(28) can be obtained by multiplying both sides of (26) by wT , integrating with

respective to t from 0 to the period 2π /ω and applying integration by part. �

Based on the expression of (B1), a periodic solution of (26) for small ǫ can be considered to be

a perturbation to (B1) as

zǫ(t) = p(ǫ) cos(ωt)K , (29a)
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FIG. 9. Time history of the oscillators x1 (solid) and x2 (dashed) in (a) the out-of-phase mode and (b) the in-phase mode at

τ 1 = 1.5. (c) A comparison of the zero-order out-of-phase (cross) and in-phase (plus) analytical solutions of (29a) with those

from numerical simulations in the phase plane of x1.

where

p(ǫ) =
∞

∑

i=0

piǫ
i , ω =

∞
∑

i=0

ωiǫ
i and K =

{

(1, 1)T for the in-phase mode,

(1,−1)T for the out-of-phase mode.
(29b)

An analytical expression for the zero-order amplitude p0 in (29b) can easily be obtained from

Theorem 5.

Now, a periodic solution of (27) can be expressed as

w(t) = (q1 cos(ω0t) + q2 sin(ω0t))K , (30)

where q1 and q2 are independent constants and K is defined in (29b). Substituting (29a)-(29b) and (30)

into (28), comparing coefficients of the ǫ term and noting the independence of q1 and q2, we obtain

two equations in p0 and ω1. On solving the equations, we obtain the analytical expressions of p0 and

ω1 as shown in Corollary 1.

Corollary 1. Given the system parameters α, β and μ, we assume that ω0, τ 10 and τ 2 satisfy

either (9a)-(9c) or (10a)-(10c). If a periodic solution of (26) arises from a Hopf bifurcation where

τ 10 is perturbed to τ 10 + ǫτ 11, then ω1 and p0 in (29b) are given by

ω1 =
τ11ω0[α sin(ω0τ10) − βω0 cos(ω0τ10)]

ω0(μτ2 − 2) + [βω0 cos(ω0τ10) − α sin(ω0τ10)](τ10 − τ2) + βS
,
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FIG. 10. A comparison between the zero-order approximate solution (29a) (solid) and the numerical simulation (cross) in

Max(x1) vs. ǫτ 11 for the periodic solution of system (1) when τ 1 is increased from τ 10 to τ 10 + 1 (correspondingly ǫτ 11

from 0 to 1), where (a) the in-phase mode, (b) the out-of-phase mode.

p0 =
2

ω0
√

μ

√

ω1ω0τ2(ω2
0−1) + ω0[βω0 sin(ω0τ10)+α cos(ω0τ10)][ω1(τ10−τ2)+ω0τ11]−ω1αS

where

S =
ω0(βω2

0 − μα − β)

β2ω2
0 + α2

.

The stability of a periodic solution arising from a Hopf bifurcation can be determined from the

Floquet theory described in Ref. 36.
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VI. NUMERICAL SIMULATION

In this section, we perform numerical simulations to illustrate the results obtained from previous

sections. In particular, we consider the periodic solutions arising from Hopf bifurcation near the

shaded death region shown in Fig. 4 where (μ, k, β) = (0.05, 0.05, 0.1). Let (τ 1, τ 2) be the intersection

point of the stability boundary loops (0, 0) and (0, 1). Since it satisfies both (9a)-(9c) and (10a)-(10c),

we have (τ 1, τ 2) = (0.8744, 1.4249). From Theorem 4, if τ 1 is increased from τ 10 = 0.8744 while

keeping τ 2 unchanged at 1.4249, we would expect a stable periodic solution of the in-phase mode

arising from a Hopf bifurcation out of the stability boundary loop (0, 0) and another stable periodic

solution of the out-of-phase mode from the loop (0, 1). As predicted from theoretical consideration,

we find two periodic solutions as τ 1 is increased from τ 10. Figures 8(a) and 8(b) show the numerical

simulation in time history for the in-phase mode and out-of-phase mode, respectively, at τ 1 = 1. A

comparison of the phase portraits between the analytical solutions obtained from Corollary 1 and

numerical simulations is depicted in Fig. 8(c). Figures 9(a)-9(c) show the periodic solutions at τ 1 =
1.5. In Fig. 10, the periodic solutions obtained from Corollary 1 are compared with those obtained

from numerical simulation as τ 1 is increased. It can be seen that they are in good agreement.

VII. CONCLUSIONS

In this paper, we perform a stability analysis of a pair of van der Pol oscillators with delayed

self-connection, position and velocity couplings. By introducing a parameter γ where 0 < γ ≤ 1 in

the local stability analysis, stability boundary curves can easily be obtained if they exist. Bifurcation

diagram on stability analysis of the damping, position and velocity coupling strengths is constructed,

which consists of three types of regions: (i) absolutely unstable region, (ii) regions where closed

stability boundary curves exist, and (iii) regions where the stability boundary curves are open-ended.

Stability switching regions are observed near the τ 2-axis. An interesting question arises naturally:

for arbitrary large damping strength μ, can the zero equilibrium of a pair of van der Pol oscillators be

stabilized using the delayed position and velocity couplings strategy? Theorem 3 gives an affirmative

answer. A sufficient condition which requires only one time delay τ 2 is found for the stabilization of

the zero equilibrium. With delayed velocity coupling alone, it was shown in Ref. 16 that stabilization

of the zero equilibrium can be achieved when μ < 0.5. However, with both delayed position and

velocity couplings, it is shown that stability of the zero equilibrium can be achieved for arbitrary large

μ. A general question arises naturally, for a network of van der Pol oscillators with any topological

connection, is it possible to derive a delayed couplings strategy to stabilize the zero equilibrium for

arbitrary large damping strength μ? The question will be dealt with in future.

Periodic solutions of the in-phase and the out-of-phase modes coexist in system (1). We have

shown how the type of mode is related to the stability boundary curve that a periodic solution

emerges from a Hopf bifurcation. The amplitude of a periodic solution can easily be obtained

using an integration method. The analytical solutions agree very well with those from numerical

simulation.
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APPENDIX A

Proof of Theorem 1: Since a positive solution of (9a) is 1 equivalent to a pair of purely imaginary

roots of (3a), we only need to prove that the region specified by the inequalities in each part of

Lemma 3 or Lemma 4 corresponds to one of the regions defined in this theorem.

From the definition of γ + in (11b) and γ 1, 2 in (12), we have

γ 2
+ = 1 ⇔ β2 =

1

2

[

μ2

2
− 1 − k2 +

√

(1 + k2)2 − μ2k2

]

,
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γ1 = 1 ⇔ |β| =
1

2|k|
and γ 2

2 = 1 ⇔ μ2 = 4β2 + 2.

Fig. 3(b) shows the curves of γ 2
i = 1 for i ∈ {+, 1, 2} and the regions where γ 2

i is greater or less

than one. These curves intersect concurrently at two points

P± =

(

√

2 +
1

k2
,±

1

2|k|

)

.

The region specified by the inequalities of Lemma 3(a) is given by

γ1 > 1 and (γ 2
2 ≥ 1 or γ+ > 1)

⇐⇒ |β| >
1

2|k|
and

(

μ2 ≥ 4β2 + 2 or β2 >
1

2

[

μ2

2
− 1 − k2 +

√

(1 + k2)2 − μ2k2

])

.

It can be shown easily that the points satisfying the above inequalities are those to the right of the

curves OP+ and OP− in Fig. 3(b) (see the shaded area), i.e. the points in region I defined in this

theorem (see Fig. 3). From Lemma 3(a), since (9a) has no positive solution for this set of points,

(3a) has no purely imaginary root. This proves part (a). Furthermore, the region specified by the

inequalities of Lemma 3(b) corresponds to region II. Finally, since

γ 2
1 ≤ γ 2

2 ⇔ μ ≥
√

2 +
1

k2
,

the regions specified by the inequalities of Lemma 4(a) and 4(b) correspond to regions IIIa and IIIb,

respectively. This completes the proof.

APPENDIX B

Proof of Theorem 4: Assume that at the Hopf bifurcation, a pair of eigenvalues in (3a) cross

the imaginary axis at λ = ±iω0. Then, for |ǫ| ≪ 1, the zero-order periodic solution of (26) can be

expressed as

z0 = p cos(ω0t) + q sin(ω0t), (B1)

where p = (p1, p2)T , q = (q1, q2)T . Substituting (B1) into (26) yields

Mp = −Nq and Mq = Np, (B2)

where M =
(

m1 m2

m2 m1

)

, N =
(

n1 n2

n2 n1

)

and

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

m1 = −ω2
0 + 1 + βω0 sin(ω0τ10) + α cos(ω0τ10),

m2 = −βω0 sin(ω0τ2) − α cos(ω0τ2),

n1 = −μω0 + βω0 cos(ω0τ10) − α sin(ω0τ10),

n2 = −βω0 cos(ω0τ2) + α sin(ω0τ2).

If the Hopf bifurcation comes from a stability boundary curve generated by (9a)-(9c), it follows

from (4a) that m1 = −m2 and n1 = −n2 and so, from (B2), p1 = p2 and q1 = q2. Therefore, the

periodic solution is of the in-phase mode. On the other hand, if the Hopf bifurcation is from a curve

generated by (10a)-(10c), we have from (4b) that m1 = m2 and n1 = n2 which imply p1 = −p2 and

q1 = −q2. The periodic solution is of the out-of-phase mode.
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