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On the Stability Analysis of Systems of Neutral Delay

Differential Equations

Muyang Liu, Ioannis Dassios, Federico Milano

University College Dublin, Ireland

Abstract. This paper focuses on the stability analysis of systems modeled as Neutral Delay Differ-

ential Equations (NDDEs). These systems include delays in both the state variables and their time

derivatives. The proposed approach consists of a descriptor model transformation that constructs

an equivalent set of Delay Differential Algebraic Equations (DDAEs) of the original NDDEs. We

first rigourously prove the equivalency between the original set of NDDEs and the transformed

set of DDAEs. Then, the effect on stability analysis is evaluated numerically through a delay-

independent stability criterion and the Chebyshev discretization of the characteristic equations.

Keywords: Time delay, delay differential algebraic equations (DDAEs), neutral time-delay differ-

ential equations (NDDEs), Eigenvalue analysis, delay-independent stable.

1 Introduction

Neutral Time-Delay Differential Equations (NDDEs) are systems where the delays appear

in both the state variables and their time derivatives. They have wide applications in applied

mathematics [27], physics [16], ecology [9] and engineering [1]. In this paper, we are interested
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in the evaluation of the stability of systems of NDDEs in the following form:

0p,1 = f(x, x(t− τ), ẋ, ẋ(t− τ)), (1)

where f (f : R4p 7→ Rp) are the differential equations and x = x(t) (x ∈ Rp) are the state

variables. Note that we include the case that f can be implicit with its partial derivatives to be

singular matrices, i.e. det
(
∂f
∂k

)
= 0, k = x, x(t − τ), ẋ, ẋ(t − τ) and ẋ, ẋ(t − τ) not to be zero

columns. With 0i,j we denote the zero matrix of i rows and j columns.

Conventional approaches for the stability analysis of (1) are based on Lyapunov Functional

Method (LFM) [5–7, 28]. These techniques require the solution of a Linear Matrix Inequality

(LMI) problem. The complexity to construct the Lyapunov function and the heavy computational

burden to solve the LMI problem limit the application of LFMs on engineering fields. Moreover,

as LFMs provide only sufficient but not necessary conditions for system stability, they tend to be

conservative.

There also exists a variety of frequency-domain approaches to solve the stability of Delay

Differential Equations (DDEs)[2, 3, 8, 14, 22]. Most of these techniques are based on the solution

of an eigenvalue problem. This consists in estimating the dominant modes of the DDEs through

the solution of the characteristic equation of the system. In [24–26], we have developed a general

eigenvalue analysis approach is developed to solve the stability of large system described by a

set of Delay Differential Algebraic Equations (DDAEs). Compared to LFMs, eigenvalue-based

approaches are less computationally intensive and provide a more accurate stability analysis. Note

that the eigenvalue analysis requires a linear or linearized system. The results of the stability

analysis are global if the original system is linear. For nonliner systems, only a local stability

analysis can be drawn. This is still very relevant for many engineering systems and applications,

e.g., the small-signal analysis of electrical energy systems [17].

This paper aims at developing a systematic stability solution of NDDEs in frequency-domain

field.
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Definition 1.1. Consider the system of DDAEs:

ẋ = g(x, x(t− τ), y, y(t− τ))

0q,1 = h(x, x(t− τ), y, y(t− τ))

, (2)

where g (g : R2p+2q 7→ Rp) are the differential equations; h(h : R2p+2q 7→ Rq) are the algebraic

equations, and hẋ is full rank, see also Remark 2.1; x (x ∈ Rp) are the state variables; and y

(y ∈ Rq) are the algebraic variables. Here we denote y(t − τ) as yd. Then the above system is

called non-index 1 Hessenberg if yd 6= 0 and ∂g
∂y is singular, i.e. det(∂g

∂y ) = 0.

The NDDEs (1) can be transformed into the comparison set of non-index 1 Hessenberg Delay

Differential Algebraic Equations (DDAEs) with equivalent stability characteristic and the same

eigenvalues. This numerical appraisal is called descriptor model transformation [7]. With this

transformation, analysis approaches for DDAEs can be extended to NDDEs. Regarding to the

frequency-domain analysis of DDAEs, reference [26] improves the computation efficiency and

simplifies the implementation of the eigenvalue-based approach through Chebyshev discretiza-

tion to obtain the dominant eigenvalues. In [24], the Chebyshev discretization method is shown

to achieve the best ratio of accuracy/computational burdens for large-size physical systems, i.e.

real-world power systems. The Chebyshev discretization was developed to solve non-index 1

Hessenberg form DDAEs [25]. Reference [20] discusses the basic idea of the eigenvalue analysis

of NDDEs based on the transformation to non-index 1 Hessenberg form.

The remainder of the paper is organized as follows. In Section 2 we derive the expression of

the characteristic equation of systems of NDDEs, based on the transformation into a non-index 1

Hessenberg form DDAE. Section 2 also proves a Theorem of sufficient and necessary conditions

for delay-independent stability of (1) and eigenvalue analysis approach of NDDEs . Section 3

presents several working examples of the numerical appraisals discussed in Section 2. Conclusions

are drawn in Section 4.

3



2 Stability Analysis of Neutral Systems

2.1 Eigenvalue Analysis

This section defines the characteristic equation of (1), considering a single-delay case. The

extension to multiple-delay cases is straightforward. To simplify the development of the proofs

included in this section, let:

xd = x(t− τ), x2d = x(t− 2τ), ... xkd = x(t− kτ), ∀k ∈ N+ ,

be retarded or delayed state and algebraic variables, respectively, where t is current simulation

time, and τ (τ > 0) is time delay. In the remainder of this section, since the main focus is on

frequency-domain stability analysis, time delays are assumed to be constant. Based on above

expression, (1) can be rewritten as:

0p,1 = f(x, xd, ẋ, ẋd) .

It is worth noticing at this point that we consider only small disturbances, e.g., disturbances whose

effects on the stability of a given equilibrium point can be studied through the linearized set of the

equations that model the system. According to this assumption, we can now state the following

stability theorem:

Theorem 2.1. Consider system (1) with full rank fẋ at a equilibrium point. Then following a

small disturbance, a necessary and sufficient condition for the equilibrium solution to be asymp-

totically stable is that the roots of ∆(λ) all have negative real parts, where ∆(λ) is given by:

∆(λ) = λIp − A0 − e−λτA1 −
∞∑
k=2

e−λkτAk , (3)
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with:

A0 = A, A1 = D, Ak = Ck−1D, k ≥ 2 ,

and

A = −f−1ẋ fx, B = −f−1ẋ fxd , C = −f−1ẋ fẋd , D = B + CA .

In this case the series in (3) converges if ρ(C) < 1, where ρ(·) is the spectral radius of the

eigenvalues of a matrix.

Proof. Consider a small disturbances at a equilibrium point, with ∆ presents the deviation from

this point, we linearize (1):

0p,1 = fx∆x + fxd∆xd + fẋ∆ẋ + fẋd∆ẋd . (4)

The characteristic equation of (4) is given by

det ∆(λ) = 0 ,

where

∆(λ) = λ(fẋ + e−λτ fẋd) + fx + e−λτ fxd , (5)

is the characteristic matrix. The solutions λ of the characteristic equation are called the character-

istic roots, spectrum, or eigenvalues. Such eigenvalues allow defining the local stability properties

for the stability for nonlinear NDDEs (1) at their equilibria and global stability properties for linear

NDDEs.

Instead of solving the above complicated characteristic equation directly, we propose to solve

an equivalent equation, which is determined based on a variable transformation of (1). Let y = ẋ
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and fẋ be full rank, then (1) can be rewritten as:

ẋ = y (6)

0p,1 = f(x, xd, y, yd) ,

which is a set of DDAEs (see Definition 1.1). This is a typical descriptor model transformation

[7]. Note that if ẋ 6= 0p,1 then system (6) is always non-Hessenberg index 1. Differentiating (6) at

the equilibrium point leads to:

∆ẋ = ∆y (7)

0p,1 = fx∆x + fxd∆xd + fy∆y + fyd∆yd ,

where fy ≡ fẋ and fyd ≡ fẋd . Note that, if fyd 6= 0p,p, then (7) is a set of non-index 1 Hessenberg

form DDAEs. The derivation of the characteristic equation of general non-index 1 Hessenberg

form DDAEs is thoroughly discussed in [25]. Such DDAEs have the following characteristic

matrix,see [25]:

∆(λ) = λIp − A0 − e−λτA1 −
∞∑
k=2

e−λkτAk , (8)

where Ip is the identity matrix of order p, based on the the specific form of (7),

A0 = A, A1 = D, Ak = Ck−1D, k ≥ 2

and

A = −f−1ẋ fx, B = −f−1ẋ fxd , C = −f−1ẋ fẋd , D = B + CA .

Since systems (4), and (7) are equivalent, their characteristic matrices (5), (8) respectively, will be

equivalent as well. For asymptotic stable states we have that Re(λ) < 0, or, equivalently, since

τ > 0, τRe(λ) < 0. Then

|eτ [Re(λ)+iIm(λ)]| < |eiτ Im(λ)| ,
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or, equivalently,

|eτλ| < 1 .

The matrix series in (3) can be written as:

∞∑
k=2

e−λkτCk−1D =
( ∞∑
k=1

[e−λ(k+1)τCk]
)
D .

Hence the matrix series
∑∞
k=2 e

−λkτCk−1D converges if and only if
∑∞
k=1 e

−λ(k+1)τCk con-

verges. By applying the D’Alembert criterion,
∑∞
k=1 e

−λ(k+1)τCk converges if:

limk→+∞

∥∥e−λ(k+2)τCk+1
∥∥∥∥e−λ(k+1)τCk
∥∥ < 1 ,

or, equivalently,

|e−λτ |limk→+∞

∥∥Ck+1
∥∥∥∥Ck
∥∥ < 1 ,

by using ‖Ck+1‖ ≤ ‖Ck‖‖C‖ we get

|e−λτ |limk→+∞

∥∥Ck+1
∥∥∥∥Ck
∥∥ ≤ |e−λτ |limk→+∞

∥∥Ck
∥∥∥∥C

∥∥∥∥Ck
∥∥ < 1 ,

or, equivalently, ∥∥C
∥∥ < |eλτ | < 1 ,

or, equivalently, ∥∥C
∥∥ < 1 .

Hence, the matrix series
∑∞
k=2 e

−λkτCk−1D in (3) converges if

ρ(C) = ρ(f−1y fyd) < 1

holds. The proof is completed.
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Remark 2.1. Where f−1y certainly exists as fy = fẋ is assumed to be full rank in this type of prob-

lems. However, the assumption that fy is full rank does not reduce the generality of the approach

proposed in this paper. In fact, if fy has rank q, q < p, (4) can be always rewritten as a set of

DDAEs for which the Jacobian matrix f̃ỹ with respect of a subset of the state variables x̃ ∈ x is

full rank.

Remark 2.2. If fy is full rank, (4) can be rewritten in an explicit form by multiplying by −f−1y :

∆ẋ = ∆y

0p,1 = f̂x∆x + f̂xd∆xd −∆y + f̂yd∆yd ,

and hence:

A = f̂x, B = f̂xd , C = f̂yd , D = f̂xd + f̂yd f̂x.

If ρ(C) < 1, the matrices Ak tend to 0p,p as k → ∞. Based on the definition of Ak, the condi-

tion ρ(f−1y fyd) < 1 must hold, which, by using the above explicit formulation becomes ρ(̂fyd) < 1.

Remark 2.3. Equation (3) includes a series of infinite terms, which, in actual implementations,

has to be truncated at a given value of km (see [25]). In the examples given in the following

section, we thus approximate (3) as:

∆(λ) = λIp − A0 − e−λτA1 −
km∑
k=2

e−λkτAk , (9)

where km has to be large enough.

The Chebyshev discretization scheme approach solves the eigenvalues through transforming

the original problem of computing the roots of (9) into a matrix eigenvalue problem of a Partial

Differential Equation’s (PDE) system of infinite dimensions. The dimension of the PDE is made

tractable using a discretization based on a finite element method. The discretized matrix is build

as follows. Let ΞN be the Chebyshev discretization matrix of order N (see [26] for details) and
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define

M =

 Ψ̂⊗ Ip

ÂN ÂN−1 . . . Â1 Â0

 ,

where ⊗ indicates the tensor product or the Kronecker product; Ψ̂ is a matrix composed of the

first N − 1 rows of Ψ defined as

Ψ = −2ΞN/τ ,

and the matrices Â0, . . . , ÂN are defined as follows:

Equation (9) has km delays, with τ = τ1 < τ2 < · · · < τkm−1 < τkm = kmτ . Each

point of the Chebyshev grid corresponds to a delay θj = (N − j)∆τ , with j = 1, 2, . . . , N and

∆τ = τkm/(N − 1). Thus, j = 1 corresponds to the state matrix Akm , which corresponds to the

maximum delay τkm ; and j = N is taken by the non-delayed state matrix A0. If a delay τk = θj

for some j = 2, . . . , N − 1, then the correspondent matrix Ak takes the position j in the grid.

The delays in (9) are equally spaced and, hence, these conditions happen if N is a multiple of km.

The linear interpolation discussed in [26] allows a easily extension to the multi-delay case. The

number of points N of the grid affects the precision and the computational burden of the method,

as it is discussed in [20].

2.2 Delay-independent Stable Criterion

From the point of the frequency-domain approach, we can extend the delay-independent crite-

rion of a linear retarded system [10] to neutral system based on the deduced Characteristic equation

in the last section.

Definition 2.1. Delay margin is a constant value τc, that ∀τ ∈ [0, τc] in a system of (1) is stable.

If τc is infinity, the system is delay-independent stable.

Definition 2.2. A square matrix A is called stable matrix (or Hurwitz matrix) if every eigen-
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value of A has strictly negative real part.

Theorem 2.2. We consider the NDDE system (1) and its characteristic equation (3). If ρ(C) < 1,

then the following sufficient and necessary conditions must hold for delay - dependent stability of

(1):

(i) A0 is stable;

(ii) Nkm = A0 + A1 +
∑km
k=2 Ak is stable;

(iii) ρ(G(jω),H(jω)) > 1, ∀ω ∈ (0,∞), where

ρ(G(s),H(s)) =
1

ρ(G−1(s)H(s))
, H(s) = diag(Ip . . . Ip − Akm)

and

G(s) =



0p Ip . . . 0
...

...
. . .

...

0p 0p . . . Ip

−(sIp − A0) A1 . . . Akm−1


.

Proof. If τ →∞ then (3) takes the form

∆(λ) = λIp − A0.

Hence, the matrix A0 has to be stable in order to have stability for (1) at the equilibrium state. If

τ = 0 then (9) takes the form

∆(λ) = λIp − A0 − A1 − ...− Akm,

which means that the matrix A0 + A1 +
∑km
k=2 Ak has to be stable in order to have stability for (1)
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at the equilibrium state. Equation (9)

∆(λ) = λIp − A0 − e−λτA1 −
km∑
k=2

e−λkτAk,

is also the characteristic equation of the matrix differential equation

ẋ = A0x + A1xd + A1x2d + ...+ Akmxkmd.

By applying the Fourier transform to the above equation, F(x) = X(ω), we get

jωX(ω) = A0X(ω) + A1e
−jωτX(ω) + A1e

−jω2τX(ω) + ...+ Akme
−jωkmτX(ω),

or, equivalently,

X(ω) =

km∑
k=1

(jωIp − A0)−1Ake−jωkτX(ω).

Similar to the fixed-point iteration method, we may argue that the above equation is written in

such a way that any of its solution, which is a fixed point of
∑km
k=1(jωIp−A0)−1Ake−jωkτX(ω),

is also a solution of the comparison equation. Then we may consider the following algorithm. If

we start from any point and consider the recursive process

xn =

km∑
k=1

(jωIp − A0)−1Akxn−k,

then if xn converges there exist a solution for the equation that arises after the Fourier transform

and hence the system of differential equations is stable, i.e., the roots of its characteristic equation

have strictly negative real part and we conclude that we have delay-dependent stability for (1).

Hence we have to derive the condition under which the solution of the above matrix difference

equation converges. We adopt the following notation:

y(1)n = xn−1, y(2)n = xn−2, . . . y(km−1)n = xn−(km−1), y(km)
n = xn−km ,
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or, equivalently,

y(1)
n+1 = xn, y(2)n+1 = xn−1, . . . y(km−1)n+1 = xn−(km−2), y(km)

n+1 = xn−(km−1).

Furthermore,

y(1)n+1 =
∑km
k=1(jωIp − A0)−1Aky(k)k ,

y(2)n+1 = y(1)n ,

...

y(km−1)n+1 = y(km−2)n ,

y(km)
n+1 = y(km−1)n .

Or, in matrix form

Yn+1 = Mkm(jω)Yn,

where

Yn =



y(1)n

y(2)n

· · ·

y(km)
n


and

Mkm(jω) =



(jωIp − A0)−1A1 . . . (jωIp − A0)−1Akm−1 (jωIp − A0)−1Akm

Ip . . . 0p,p 0p,p

0p,p . . . 0p,p 0p,p
...

. . .
...

...

0p,p . . . Ip 0p,p


.

Hence in order xn to converge, Yn has to converge, i.e.,

ρ(Mkm(jω)) < 1.
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From [10] it can be easily observed that Mkm(jω) = G−1(jω)H(jω) and thus

ρ(G−1(jω)H(jω)) < 1,

or, equivalently,
1

ρ(G−1(jω)H(jω))
> 1,

or, equivalently,

ρ(G(jω),H(jω)) > 1.

The proof is completed.

3 Case Study

This section further provides numerical appraisals of the conceptions discussed in Section 2

through three NDDE systems written in the form of (1). The objectives of each case are listed

below.

1. Partial Element Equivalent Circuit case in Section 3.1 explains the applications of Theorem

2.2 and proves the severe conservativeness of traditional LFMs. This section also points

out the limitation of the transforming approach discussed in Remark 2.3.

2. Dynamic population model in Section 3.2.1 is an example that shows how Theorem 2.2

asserting delay-dependent stability on a nonlinear NDDE.

3. Neutral system with distributed delay in Section 3.2.2 further proves the accuracy of Re-

mark 2.3 and extends its application to non-constant delay case.

In this section, the roots of (9) are obtained by using the Python Package DOME [23]. All

simulations and computations in this Section have been executed on a 64-bit Linux Fedora 21

operating system running on a two Intel Xeon 10 Core 2.2 GHz CPUs, 64 GB of RAM, and a

64-bit NVidia Tesla K20X GPU.
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3.1 Delay-independent neutral systems

Reference [1] discusses a third-order Partial Element Equivalent Circuit (PEEC), which is

described as following NDDE:

ẋ(t) = Lx(t) + Mx(t− τm) + Nẋ(t− τm) , (10)

where,

L

100
=


−7 1 2

3 −9 0

1 2 −6

 ,
M

100
=


1 0 −3

−0.5 −0.5 −1

−0.5 −1.5 0

 and N =
1

72


−7 1 2

3 −9 0

1 2 −6

 .

Reference [1] proves the zero solution of this system is asymptotic stable if τm is small but

leaves the exact delay margin of the system as an open question. Then, reference [13, 15, 21, 30]

obtain conservative delay margins as 0.43 s, 1.1413 s, 1.5022 s and 1.6851 s respectively, through

LFMs.

The PEEC system satisfied the hypotheses of the Theorem 2.2 because ρ(C) = ρ(N) =

0.0733� 1. The A0(L) has a very negative rightmost eigenvalues, namely −407.93. Since A0 is

stable, the condition Theorem 2.2-i holds. For km > 20, the real part of rightmost eigenvalues of

Nkm converges to−0.0527, the condition Theorem 2.2-ii, thus, holds. The proof of condition The-

orem 2.2-iii is computationally intensive. The convergence of ρ(G(jω),H(jω)) with the increase

of km is slow. Figure 1-a shows the values of ρ(G(jω),H(jω))|ω=0 as a function of km ∈ [5, 500].

Figure 1-a indicates that the function ρ(G(jω),H(jω)) has a proper convergence and no rounding

error for km = 350. To further study the condition iii, Figure 1-b, then, shows that the values of

ρ(G(jω),H(jω)) for ω ∈ [1, 200] with km = 350, which are within the range [1.122, 1.127]. Ac-

cording to Figure 1 and the continuousness of the function, ρ(G(jω),H(jω)) > 1, ∀ω ∈ (0,∞)

will be held. This model, therefore, satisfies the delay-independent criterion Theorem 2.2-iii.

Above results prove the system is delay-independent stable at zero solution yield. Since the PEEC
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system is linear, it is globally delay-independent stable.

Then, we also study the network through the Chebyshev discretization approach. Figure 2

shows the real part of estimated rightmost eigenvalues of the PEEC model with unbounded con-

stant delay τ . As τ tends to infinity, the estimated rightmost eigenvalues go to zero, which, how-

ever, are supposed to converge to the eigenvalues of matrix A0 (see Section 2), whose rightmost

eigenvalue is−407.93. The spurious zero eigenvalues are introduced by the Chebyshev discretiza-

tion matrix Ψ = −2ΞN/τ when τ goes to infinity. Although the Chebyshev discretization ap-

proach may fail to capture the precise dominating eigenvalues for large delays, it always provides

accurate stability assertion. We will show its accuracy to find delay margins in the following

section.

3.2 Delay-dependent neutral systems

This section focuses on obtaining the exact delay margin of the delay-dependent stable neutral

systems through the numerical approach discussed in Section 2.

3.2.1 Dynamic food-limited population model

The dynamic food-limited population model introduced in [9] is a typical nonlinear system of

NDDE in the form of (1):

Ṡ(t) = rS(t)

1−
S(t− τ) + cṠ(t− τ)

K

 , (11)

where r and τ are intrinsic growth rate and the recovering time, respectively, of species S, and K

is the environment capacity. Parameters r, c, K are positive.

Reference [12] provides a numerical example of the dynamic bacteria population model (11),

with K = 1, and

r =
π
√

3
+

1

20
, and c =

√
3

2π
−

1

25
.
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Figure 2: Rightmost eigenvalues of the PEEC (10)as a function of τm and with km = 350
and N = 300.
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Figure 3: ρ(G(jω),H(jω))|ω=1 of the dynamic population model (11) as a function of
km
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Linearize the model at the equilibrium point S(t) = K:

Ṡ(t) = −1.81S(t− τ)− 0.5Ṡ(t− τ) , (12)

According to above linearization, it is easy to show the system satisfies the conditions i and

ii of Theorem i and ii. The trajectory of ρ(G(jω),H(jω))|ω=1 as a function of km ∈ [5, 500]

is shown in Figure 3. The function converges at 0.5325 as km increases. This result violates

the condition iii. Therefore, this dynamic population model is delay-dependent stable at the sta-

tionary point S = K, according to Theorem 2.2-iii. Reference [20] shows the delay margin is

approximately 14.7 s.

3.2.2 Delay-dependent neutral systems with distributed delay

In this section, we consider a well-discussed neutral delay system with inclusion of a dis-

tributed delay.

ẋ(t)− Cẋ(t− τ) = Ax(t) + Bx(t− h) + D
∫ t

t−r
x(s)ds . (13)

where:

A =

−0.9 0.2

0.1 −0.9

 , B =

−1.1 −0.2

−0.1 −1.1

 , C =

−0.2 0

0.2 −0.1

 , D =

−0.12 −0.12

−0.12 −0.12

 .
The distributed delay of (13) can be transfromed into a sum of multiple constant delays

through the Simpson Second rule [29] with the subinterval number equal to 15.

The delay margins of the following two scenarios are studied:

a. h = 0.1 s, r = 0.1 s. The evolution of the real part of the rightmost eigenvalues as a

function of τ is shown in Figure 4-a.

b. h = 1 s, τ = 1 s. The evolution of the real part of the rightmost eigenvalues as a function

17



of r is shown in Figure 4-b.

The delay margins of above two scenarios are easy to find from Figure 4. The same scenarios

have also been discussed in several other papers. Table 1 compares the delay margins of the two

scenarios obtained through LFMs. The first row of Table 1 indicates the reference that provides

each result. As shown in Table 1, the LFMs [4, 11, 18] provide conservative delay margins of the

neutral system (13). Although the numerical approach provided by [19] deduces the most accurate

delay margin in scenario a, its result for scenario b is too aggressive and questionable.

Table 1: Delay Margins of NDDE (13)

Scenario [4] [11] [18] [19] This paper

a. 1.1 s 1.2 s 1.3 s 1.9 s 1.9 s

b. 6.2 s 6.4 s 6.6 s > 100 s 7.9 s
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Figure 4: Rightmost eigenvalue of (13) scenarios as a function of τ and with N = 300,
Nt = 15 and km = 100.
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4 Conclusions

The paper provides a derivation of the characteristic equation of a class of systems described

by NDDEs and a systematic approach to solve the stability analysis of such NDDEs systems. The

characteristic equation is found by means of a descriptor model transformation that leads to an

equivalent non-index 1 Hessenberg form DDAE. The equivalent DDAE characteristic equation

consists of a series of terms corresponding to infinitely many delays that are multiples of the

delays of the original NDDE. The proposed approach includes two parts, namely, (i) judging

whether the neutral system is delay-independent stable; and (ii) solving the eigenvalues for the

delay-dependent stable system. Case studies indicate that the proposed method allows determining

precisely the delay stability margin and, at least for the considered cases, it allows improving the

results obtained with other methods that are available in the literature.
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