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ON THE STABILITY AND BOUNDEDNESS OF

SOLUTIONS OF NONLINEAR THIRD ORDER

DIFFERENTIAL EQUATIONS WITH DELAY

Cemil Tunç

Abstract

By defining a Lyapunov functional, we investigate the stability and bound-
edness of solutions to nonlinear third order differential equation with constant
delay, r :

x′′′(t) + g(x(t), x′(t))x′′(t) + f(x(t− r), x′(t− r)) + h(x(t− r))
= p(t, x(t), x′(t), x(t− r), x′(t− r), x′′(t)),

when p(t, x(t), x′(t), x(t − r), x′(t − r), x′′(t)) = 0 and 6= 0, respectively. Our
results achieve a stability result which exists in the relevant literature of or-
dinary nonlinear third order differential equations without delay to the above
functional differential equation for the stability and boundedness of solutions.
An example is introduced to illustrate the importance of the results obtained.

1 Introduction

By a recent paper, which has been published in 2007, Zhang and Si [6] investigated
the asymptotic stability of solutions to the following nonlinear third order scalar
differential equation without delay:

x′′′(t) + g(x′(t))x′′(t) + f(x(t), x′(t)) + h(x(t)) = 0.

In this paper, instead of the above equation discussed in [6], we consider non-
linear third order differential equation with constant delay, r :

x′′′(t) + g(x(t), x′(t))x′′(t) + f(x(t− r), x′(t− r)) + h(x(t− r))
= p(t, x(t), x′(t), x(t− r), x′(t− r), x′′(t)), (1)
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This equation, (1), can be expressed as the following system:

x′(t) = y(t),
y′(t) = z(t),
z′(t) = −g(x(t), y(t))z(t)− f(x(t), y(t))− h(x(t))

+
t∫

t−r

fx(x(s), y(s))y(s)ds +
t∫

t−r

fy(x(s), y(s))z(s)ds

+
t∫

t−r

h′(x(s))y(s)ds + p(t, x(t), y(t), x(t− r), y(t− r), z(t)),

(2)

where r is a positive constant which will be determined later; the primes in equation
(1) denote differentiation with respect to t, t ∈ <+, <+ = [0,∞); g, f, h and p are
continuous functions in their respective arguments on <2, <2, < and <+ × <5,
respectively, with f(x, 0) = h(0) = 0. The continuity of the functions g, f, h and p
guarantees the existence of the solution of equation (1) (see [2, pp.14]). In addition,
it is assumed that the derivatives gx(x, y) ≡ ∂

∂xg(x, y), fx(x, y) ≡ ∂
∂xf(x, y), fy(x, y)

≡ ∂
∂y f(x, y) and h′(x) ≡ dh

dx exist and are continuous; the functions g, f, h and p

satisfy a Lipschitz condition in x, y, z, x(t − r) and y(t − r). Then the solution
is unique (see [2, pp.15]). Throughout the paper x(t), y(t) and z(t) are also
abbreviated as x, y and z, respectively.

The motivation for the present paper has come by the paper in [6]. Our purpose
is to achieve the result established in [6] to nonlinear functional differential equation
(1) for the asymptotic stability of the null solution and boundedness of all solutions
of this equation, when p ≡ 0 and p 6= 0 in (1), respectively. We also give an example
for the illustrations of the topic. It is worth mentioning that all papers registered in
the references of this paper have been published without including an explanatory
example on the subject (see Sinha [3], Zhang and Si [6] and Tunç ([4], [5]).

2 Preliminaries

We will give some basic information for the general non-autonomous delay differ-
ential system. Consider the general non-autonomous delay differential system:

ẋ = F (t, xt), xt = x(t + θ),−r ≤ θ ≤ 0, t ≥ 0, (3)

where F : [0, ∞)×CH → <n is a continuous mapping, F (t, 0) = 0, and we suppose
that F takes closed bounded sets into bounded sets of <n. Here (C, ‖. ‖) is the
Banach space of continuous function φ : [−r, 0] → <n with supremum norm, r > 0;
CH is the open H -ball in C ; CH := {φ ∈ (C[−r, 0], <n) : ‖φ‖ < H}.

Definition1. (See [1].) Let F (t, 0) = 0. The null solution of (3) is:
(i) stable if for each ε > 0 and t1 ≥ t0 ≥ 0 there exists δ > 0 such that

[φ ∈ C(t1), ‖φ‖ < δ, t ≥ t1] imply that |x(t, t1, φ)| < ε.

(ii) asymptotically stable if it is stable and if for each t1 ≥ t0 ≥ 0 there is an
η > 0 such that [φ ∈ C(t1), ‖φ‖ < η] imply that x(t, t1, φ) → 0 as t →∞.
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Definition 2. (See [1].) Let V (t, φ) be a continuous functional defined for t ≥ 0,
φ ∈ CH . The derivative of V along solutions of (3) will be denoted by V̇ and is
defined by the following relation:

V̇ (t, φ) = lim sup
h→0

V (t + h, xt+h(t0, φ))− V (t, xt(t0, φ))
h

,

where x(t0, φ) is the solution of (3) with xt0(t0, φ) = φ.

It should be noted that the function x(t0, φ) here represents the solution of (3)
with the initial condition φ ∈ CH at t = t0, t0 ≥ 0.

We also consider the general autonomous delay differential system

ẋ = G(xt), (4)

which is a special case of (3), and the following lemma is given:
Lemma1. (See[3].) Suppose G(0) = 0. Let V be a continuous functional

defined on CH = C with V (0) = 0, and let u(s) be a function, non-negative and
continuous for 0 ≤ s < ∞ , u(s) → ∞ as s → ∞ with u(0) = 0. If for all φ ∈ C,
u(|φ(0)|) ≤ V (φ), V̇ (φ) ≤ 0, then the solution x = 0 of (4) is stable.

If we define Z = {φ ∈ CH : V̇ (φ) = 0}, then the solution x = 0 of (4) is
asymptotically stable, provided that the largest invariant set in Z is Q = {0}.

3 Main results

First, for the case p(t, x, y, x(t−r), y(t−r), z) ≡ 0, the following result is introduced
Theorem 1. In addition to the basic assumptions imposed on the functions g ,

f and h that appearing in (1), we assume that the following conditions hold: There
are positive constants a, b, µ, δ, λ1, λ2, K and L such that

g(x, y) ≥ a + µ, ygx(x, y) ≤ 0, f(x, y)sgny ≥ (b + δ) |y| ,
−K ≤ fx(x, y) ≤ 0, |fy(x, y)| ≤ L, 0 < h′(x) < ab and sgnh(x) = sgnx.

Then the null solution of equation (1) is asymptotically stable, provided that

r < min
{

2aδ

a2b + aK + aL + 2λ1
,

2µ

ab + K + L + 2λ2

}

with

λ1 =
a2b

2
+

ab

2
+

aK

2
+

K

2

and

λ2 =
aL

2
+

L

2
.
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Proof. To prove this theorem, we define the following Lyapunov functional
V = V (xt, yt, zt) :

V = a
x∫
0

h(ξ)dξ + h(x)y + 1
2 (ay + z)2 + a

y∫
0

[g(x, η)− a]ηdη

+
y∫
0

f(x, η)dη + λ1

0∫
−r

t∫
t+s

y2(θ)dθds + λ2

0∫
−r

t∫
t+s

z2(θ)dθds,
(5)

where λ1 and λ2 are the positive constants defined above.
Now, we have V (0, 0, 0) = 0 and the functional V can be rearranged as the

following:

V = a
x∫
0

h(ξ)dξ − 1
2bh

2(x) + b
2

[
y + h(x)

b

]2

+ 1
2 (ay + z)2

+a
y∫
0

[g(x, η)− a]ηdη +
y∫
0

f(x, η)dη − b
2y2

+λ1

0∫
−r

t∫
t+s

y2(θ)dθds + λ2

0∫
−r

t∫
t+s

z2(θ)dθds.

(6)

By using the assumptions 0 < h′(x) < ab, sgnh(x) = sgnx and g(x, y) ≥ a + µ, we
have

a
x∫
0

h(ξ)dξ − 1
2bh

2(x) = a
x∫
0

h(ξ)dξ − 1
b

∫ x

0
h(ξ)h′(ξ)dξ

=
∫ x

0
[a− b−1h′(ξ)]h(ξ)dξ

=b−1
∫ x

0
[ab− h′(ξ)]h(ξ)dξ > 0

and

a

y∫

0

[g(x, η)− a]ηdη ≥ aµ

2
y2.

On the other hand, the assumption f(x, y)sgny ≥ (b + δ) |y| yields that

f(x, y) ≥ (b + δ)y when y > 0, and hence f(x, y)y ≥ (b + δ)y2

and
f(x, y) ≤ (b + δ)y when y < 0, and hence f(x, y)y ≥ (b + δ)y2.

It also follows that
y∫

0

f(x, η)dη − b

2
y2 =

y∫

0

[f(x, η)− bη]dη ≥ 0.

Gathering aforementioned estimates into (6) we obtain

V ≥ b−1
∫ x

0
[ab− h′(ξ)]h(ξ)dξ + aµ

2 y2 + 1
2 (ay + z)2

+λ1

0∫
−r

t∫
t+s

y2(θ)dθds + λ2

0∫
−r

t∫
t+s

z2(θ)dθds.
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It is evident, from the terms included in last inequality, that there exist sufficiently
small positive constants Di , (i = 1, 2, 3), such that

V ≥ D1x
2 + D2y

2 + D3z
2 + λ1

0∫
−r

t∫
t+s

y2(θ)dθds + λ2

0∫
−r

t∫
t+s

z2(θ)dθds

≥ D4(x2 + y2 + z2) + λ1

0∫
−r

t∫
t+s

y2(θ)dθds + λ2

0∫
−r

t∫
t+s

z2(θ)dθds

≥ D4(x2 + y2 + z2),

and hence
x2 + y2 + z2 ≤ D−1

4 V (xt, yt, zt)

and
y2 + z2 ≤ D−1

4 V (xt, yt, zt)

since the integrals
0∫
−r

t∫
t+s

y2(θ)dθds and
0∫
−r

t∫
t+s

z2(θ)dθds are non-negative, where

D4 = min{D1, D2, D3}. Now, it can be shown that there exists a continuous func-
tion u(s) ≥ 0 with u(|φ(0)|) ≥ 0 such that u(|φ(0)|) ≤ V (φ).

Now, the time derivative of functional V along the system (2) leads that

dV
dt = −af(x, y)y + h′(x)y2 − {g(x, y)− a}z2 + ay

y∫
0

gx(x, η)ηdη

+y
y∫
0

fx(x, η)dη + (ay + z)
t∫

t−r

h′(x(s))y(s)ds

+(ay + z)
t∫

t−r

fx(x(s), y(s))y(s)ds + (ay + z)
t∫

t−r

fy(x(s), y(s))z(s)ds

+λ1y
2r − λ1

t∫
t−r

y2(s)ds + λ2z
2r − λ2

t∫
t−r

z2(s)ds.

By help of the assumptions of the theorem and the inequality 2 |st| ≤ s2 + u2, it
follows the existence of the following:

−af(x, y)y + h′(x)y2 ≤ −aby2 − aδy2 + h′(x)y2

= −{ab− h′(x)}y2 − aδy2

≤ −aδy2;

−{g(x, y)− a}z2 ≤ −µz2;

ay

y∫

0

gx(x, η)ηdη ≤ 0;

y

y∫

0

fx(x, η)dη ≤ 0;
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ay

t∫

t−r

h′(x(s))y(s)ds ≤ a2br

2
y2 +

a2b

2

t∫

t−r

y2(s)ds;

z

t∫

t−r

h′(x(s))y(s)ds ≤ abr

2
z2 +

ab

2

t∫

t−r

y2(s)ds;

ay

t∫

t−r

fx(x(s), y(s))y(s)ds ≤ aKr

2
y2 +

aK

2

t∫

t−r

y2(s)ds;

z

t∫

t−r

fx(x(s), y(s))y(s)ds ≤ Kr

2
z2 +

K

2

t∫

t−r

y2(s)ds;

ay

t∫

t−r

fy(x(s), y(s))z(s)ds ≤ aLr

2
y2 +

aL

2

t∫

t−r

z2(s)ds;

z

t∫

t−r

fy(x(s), y(s))z(s)ds ≤ Lr

2
z2 +

L

2

t∫

t−r

z2(s)ds.

The above estimates imply that

dV
dt ≤ −

{
aδ −

(
a2b
2 + aK

2 + aL
2 + λ1

)
r
}

y2

−{
µ− (

ab
2 + K

2 + L
2 + λ2

)
r
}

z2

+
{

a2b
2 + ab

2 + aK
2 + K

2 − λ1

} t∫
t−r

y2(s)ds

+
{

aL
2 + L

2 − λ2

} t∫
t−r

z2(s)ds.

If we choose

λ1 =
a2b

2
+

ab

2
+

aK

2
+

K

2
and

λ2 =
aL

2
+

L

2
,

then it follows that

d
dtV (xt, yt, zt) ≤ −

{
aδ −

(
a2b
2 + aK

2 + aL
2 + λ1

)
r
}

y2

−{
µ− (

ab
2 + K

2 + L
2 + λ2

)
r
}

z2.

Hence, we conclude that

d

dt
V (xt, yt, zt) ≤ −D5y

2 −D6z
2 ≤ 0
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for some positive constants D5 and D6 provided that

r < min
{

2aδ

a2b + aK + aL + 2λ1
,

2µ

ab + K + L + 2λ2

}
.

It can also be followed that the largest invariant set in Z is Q = {0}, where Z = {φ ∈
CH : V̇ (φ) = 0}. That is, the only solution of equation (1) for which d

dtV (xt, yt, zt) =
0 is the solution x ≡ 0. The above discussion guarantees that the null solution of
equation (1) is asymptotically stable and completes the proof of Theorem 1.

In the case p(t, x, y, x(t− r), y(t− r), z) 6= 0, we prove the following result:
Theorem 2.In addition to the assumptions of Theorem 1, we assume the fol-

lowing condition holds for continuous p that appearing in (1):

|p(t, x, y, x(t− r), y(t− r), z)| ≤ q(t)

where q ∈ L1(0,∞), L1(0,∞) is space of Lebesgue integrable functions.
Then, there exists a finite positive constant M such that the solution x(t) of

equation (1) defined by the initial function

x(t) = φ(t), x′(t) = φ′(t), x′′(t) = φ′′(t)

satisfies the inequalities

|x(t)| ≤
√

M, |x′(t)| ≤
√

M, |x′′(t)| ≤
√

M

for all t ≥ t0 ≥ 0, where φ ∈ C2([t0 − r, t0], <), provided that

r < min
{

2aδ

a2b + aK + aL + 2λ1
,

2µ

ab + K + L + 2λ2

}
.

Remark. We use Lyapunov functional V = V (xt, yt, zt), which is given by (5),
to prove Theorem 2.

Proof. For the case p(t, x, y, x(t − r), y(t − r), z) 6= 0, on differentiating (5)
along the system (2), we have readily that

d

dt
V (xt, yt, zt) ≤ −D5y

2 −D6z
2 + (ay + z)p(t, x, y, x(t− r), y(t− r), z).

Clearly, we observe that

d
dtV (xt, yt, zt) ≤ (a |y|+ |z|) |p(t, x, y, x(t− r), y(t− r), z)|

≤ D7(|y|+ |z|)q(t),
where D7 = max{1, a}.

Now, the inequalities |y| < 1 + y2 and |z| < 1 + z2 lead

d

dt
V (xt, yt, zt) ≤ D7(2 + y2 + z2) q(t).

By
y2 + z2 ≤ D−1

4 V (xt, yt, zt)
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it follows that

d
dtV (xt, yt, zt) ≤ D7(2 + D−1

4 V (xt, yt, zt))q(t)
= 2D7q(t) + D7D

−1
4 V (xt, yt, zt)q(t).

(7)

Integrating (7)from 0 to t and using the assumption q ∈ L1(0,∞) and Gronwall-
Reid-Bellman inequality, we get

V (xt, yt, zt) ≤ V (x0, y0, z0) + 2D7A + D7D
−1
4

t∫
0

(V (xs, ys, zs))q(s)ds

≤ (V (x0, y0, z0) + 2D7A) exp
(

D7D
−1
4

t∫
0

q(s)ds

)

≤ (V (x0, y0, z0) + 2D7A) exp(D7D
−1
4 A) = M1 < ∞,

where M1 > 0 is a constant, M1 = (V (x0, y0, z0) + 2D7A) exp(D7D
−1
4 A) and

A =
∞∫
0

q(s)ds.

Under the above discussion, we arrive at the following:

x2(t) + y2(t) + z2(t) ≤ D−1
4 V (xt, yt, zt) ≤ M,

where M = M1D
−1
4 . Therefore, one can conclude that

|x(t)| ≤
√

M, |y(t)| ≤
√

M, |z(t)| ≤
√

M

for all t ≥ t0 ≥ 0. That is,

|x(t)| ≤
√

M, |x′(t)| ≤
√

M, |x′′(t)| ≤
√

M

for all t ≥ t0 ≥ 0.
The proof of Theorem 2 is now complete.
Example.Consider nonlinear third order delay differential equation

x′′′(t) + (9 + (x′(t))2)x′′(t) + 4x′(t− r) + 2arctgx(t− r)
= 1

1+t2+x2(t)+x2(t−r)+x′2(t)+x′2(t−r)+x′′2(t) .
(8)

It can be seen that differential equation (8) has the form (1) and may be expressed
as following:

z′(t) = −(9 + y2(t))z(t)− 7y(t)− 2arctgx(t)

+2
t∫

t−r

y(s)ds +
t∫

t−r

6z(s)ds + 2
t∫

t−r

y(s)
1+x2(s)ds

+ 1
1+t2+x2(t)+x2(t−r)+y2(t)+y2(t−r)+z2(t) ,

(9)

By comparing (9) with (1) and taking into account the assumptions of the theorems,
it follows the following:

g(y) = 9 + y2,
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9 + y2 ≥ 9 = 8 + 1 = a + µ,

a = 8, µ = 1;

f(y) = 7y, f(0) = 0,

f(y)y ≥ (6)y2 = (5 + 1)y2 = (b + δ)y2,

b = 5, δ = 1;

h(x) = 2arctgx, h(0) = 0,

h′(x) =
2

1 + x2
,

0 < h′(x) =
2

1 + x2
< 16 = ab,

sgn arctgx = sgn x;

f ′(y) = 4 = L

...
p(t, x, x(t− r), y, y(t− r), z) = 1

1+t2+x2(t)+x2(t−r)+y2(t)+y2(t−r)+z2(t)

≤ 1
1+t2

and ∞∫

0

q(s)ds =

∞∫

0

1
1 + s2

ds =
π

2
< ∞,

that is, q ∈ L1(0,∞).
Thus, all the assumptions of Theorem 1 and Theorem 2 hold. That is, the null

solution of equation (8) is asymptotic stability and all solutions of the same equation
are bounded, when p ≡ 0 and p 6= 0 in (8), respectively.

References

[1] T. A. Burton,Stability and periodic solutions of ordinary and functional-
differential equations,Mathematics in Science and Engineering, 178. Academic
Press, Inc., Orlando, FL, 1985.
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