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Abstract

Point process generalized linear models (PP-GLMs) provide an important statistical frame-

work for modeling spiking activity in single-neurons and neuronal networks. Stochastic sta-

bility is essential when sampling from these models, as done in computational neuroscience

to analyze statistical properties of neuronal dynamics and in neuro-engineering to imple-

ment closed-loop applications. Here we show, however, that despite passing common

goodness-of-fit tests, PP-GLMs estimated from data are often unstable, leading to divergent

firing rates. The inclusion of absolute refractory periods is not a satisfactory solution since

the activity then typically settles into unphysiological rates. To address these issues, we

derive a framework for determining the existence and stability of fixed points of the expected

conditional intensity function (CIF) for general PP-GLMs. Specifically, in nonlinear Hawkes

PP-GLMs, the CIF is expressed as a function of the previous spike history and exogenous

inputs. We use a mean-field quasi-renewal (QR) approximation that decomposes spike his-

tory effects into the contribution of the last spike and an average of the CIF over all spike his-

tories prior to the last spike. Fixed points for stationary rates are derived as self-consistent

solutions of integral equations. Bifurcation analysis and the number of fixed points predict

that the original models can show stable, divergent, and metastable (fragile) dynamics. For

fragile models, fluctuations of the single-neuron dynamics predict expected divergence

times after which rates approach unphysiologically high values. This metric can be used to

estimate the probability of rates to remain physiological for given time periods, e.g., for simu-

lation purposes. We demonstrate the use of the stability framework using simulated single-

neuron examples and neurophysiological recordings. Finally, we show how to adapt PP-

GLM estimation procedures to guarantee model stability. Overall, our results provide a sta-

bility framework for data-driven PP-GLMs and shed new light on the stochastic dynamics of

state-of-the-art statistical models of neuronal spiking activity.
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Author summary

Earthquakes, gene regulatory elements, financial transactions, and action potentials pro-

duced by nerve cells are examples of sequences of discrete events in space or time. In

many cases, such events do not appear independently of each other. Instead, the occur-

rence of one event changes the rate of upcoming events (e.g, aftershocks following an

earthquake). The nonlinear Hawkes process is a statistical model that captures these com-

plex dependencies. Unfortunately, for a given model, it is hard to predict whether stochas-

tic samples will produce an event pattern consistent with observations. In particular, with

positive feedback loops, the process might diverge and yield unrealistically high event

rates. Here, we show that an approximation to the mathematical model predicts dynam-

ical properties, in particular, whether the model will exhibit stable and finite rates. In the

context of neurophysiology, we find that models estimated from experimental data often

tend to show metastability or even unstable dynamics. Our framework can be used to add

constraints to data-driven estimation procedures to find the optimal model with realistic

event rates and help to build more robust models of single-cell spiking dynamics. It is a

first step towards studying the stability of large-scale nonlinear spiking neural network

models estimated from data.

Introduction

Point-process generalized linear models (PP-GLMs) have become an important approach in

the statistical modeling of neurophysiological responses from single nerve cells and their inter-

actions in neural circuits [1–8]. A specific class of PP-GLMs are nonlinear Hawkes processes

[9, 10]. In this case, each action potential (spike) modulates the firing intensity of the neurons

in the future. Nonlinear Hawkes PP-GLMs can capture the major canonical dynamics of single

neurons [11–13] and as phenomenological models avoid the many issues that arise in the spec-

ification of biophysically detailed neuronal models [14, 15]. In this way, nonlinear Hawkes

PP-GLMs are also important phenomenological models for the simulation and study of large-

scale neuronal network models of brain function. However, nonlinear Hawkes PP-GLMs also

lead to non-renewal point process spike train statistics because contributions to the intensity

from many previous spikes can accumulate over arbitrary time scales [16, 17]. This raises the

question of whether such models will produce stable, stationary dynamics in simulations, or

whether firing rates will diverge or settle into unphysiological rates depending on a specified

absolute refractory period.

For the linear Hawkes point process model, stability can be assessed by calculating the inte-

gral of the spike-history kernel, i.e., the effect that each spike has on subsequent activity of the

same cell [18–20]. However, for the prevalent nonlinear case, no such practical criterion is cur-

rently available. Main stability results established by Brémaud and Massoulié are too restrictive

for our applications [9, 21]. Furthermore, model parameters are typically estimated from data

using maximum-likelihood methods [2]. For linear autoregressive processes, it is well known

that maximum-likelihood estimates can lead to unstable dynamics [22, 23]. We expect this to

be even more severe in nonlinear models.

Here, we first show that PP-GLMs estimated from physiological data might not generate

spike train realizations that match even simple statistics such as mean firing rates of the origi-

nal data. Instead, firing rates tend to diverge to the maximum firing rate that is allowed in the

presence of an absolute refractory period. Firing patterns like this would typically be

Stability and dynamics of nonlinear Hawkes processes and PP-GLMs

PLOSComputational Biology | DOI:10.1371/journal.pcbi.1005390 February 24, 2017 2 / 31

Union Seventh Framework Program (FP7) under

grant agreement no. 604102, Human Brain Project

(MD). The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.



considered unphysiological. This can happen in spite of the models passing commonly used

goodness-of-fit tests based on, for example, the time-rescaling theorem [24, 25].

To address the above stability issues, we propose an approximative framework to derive sto-

chastic stability conditions for PP-GLMs. For a stochastically stable point process, the state of

the point process stochastically evolves in time, but can be described by a stable and time-

invariant distribution of “states” (sample paths), resulting in a stationary point process [9]. In

contrast, a process that is not stochastically stable may show similar stochastic dynamics for

some time, but eventually its state may diverge and never return. In neural point processes,

this scenario is typically associated with a divergence of the firing rate. In case of an actual

divergence there is no stationary distribution of states. Note, however, that when considering

absolute refractory periods, the divergence of the firing rate and associated internal states of

the point process are limited. Firing with an inter-event interval equal to the refractory period

is nonphysiological, and the state distribution in this mode of firing is singular. We call this a

diverged state in slight deviance from the usual terminology. Our use of the term stochastic

stability, however, is in line with the definition from stochastic dynamical systems, but general-

ized to stochastic point processes (see also [9 Remark 4]).

Our approach to derive stability conditions for PP-GLMs is based on a recently developed

mean-field theory of neural dynamics [26, 27]. The approach relies on the following steps.

First, we use a quasi-renewal (QR) approximation that decomposes spike history effects into

the contribution of the last spike and an average of the conditional intensity function (CIF)

over all spike histories prior to the most recent spike. Second, after truncation of a moment-

based expansion, this decomposition leads to a tractable expression for the approximated CIF.

Third, under stationarity conditions, fixed points can be derived as self-consistent solutions of

an integral equation, which correspond to expected steady-state firing rates of the neuron.

Fourth, depending on the number and stability of these fixed points, each single-neuron

model can be unambiguously classified into one of three types: stable, divergent, or fragile.

The latter corresponds to metastability which results from stochastic fluctuations perturbing

the dynamics in the presence of multiple stable fixed points and when the upper fixed point

corresponds to a stable but unphysiologically high firing rate. Fluctuations around the low-

rate fixed point of the network dynamics predict an expected time horizon until rates will con-

verge to the high-rate state. This expected time metric can be used to estimate the probability

of firing rates to remain finite for a given time period. Examination of the stability of the fixed

points and how it depends on the shape of the spike-history filter not only determines the sta-

bility of the stochastic dynamics, but also leads to general stability constraints on PP-GLM

parameters.

In the following sections, we present our framework to assess the stability of a specific neu-

ron model in detail. We validate the QR approximation in comparison to results of numerical

simulations for a large range of artificial neuron models that are neurophysiologically plausi-

ble. We then apply the method to real-world data sets. Finally, we demonstrate and discuss

how parameter estimation procedures could be adapted to ensure stability of estimated

models.

As stated above, stability of neuron models is particularly important when numerical simu-

lations are desired or spike trains are to be generated from the model. Generated spike trains

can be used to assess model goodness-of-fit and to perform forecasting of neural activity over

longer time scales. Our results are a first step towards ensuring stability for recurrently con-

nected neural network models. These models can be put in the framework of multivariate non-

linear Hawkes models, and our classification framework conceptually translates to the

multivariate case. Stable (or stabilized) neuron models play an important role in the field of

computational neuroscience, especially in the simulation of large-scale models of brain

Stability and dynamics of nonlinear Hawkes processes and PP-GLMs
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function. They are also important in neuroengineering, where neuron models are embedded

in hybrid and closed-loop applications [28, 29].

Results

Estimated data-driven PP-GLMs can diverge, despite passing
goodness-of-fit tests

The nonlinear Hawkes process is a point process model that is commonly used to describe

neurophysiological responses. It defines the conditional intensity function (instantaneous fir-

ing rate) of a neuron as a nonlinear function of previous spiking activity (Fig 1A):

lðtjHtÞ ¼ � hðtÞð Þ; ð1Þ

whereHt denotes the spiking history up to time t and ϕ(x) is a non-negative nonlinear func-

tion. The term h(t) consists of a constant offset I0 and a convolution of the spike train S(t) with

(temporal) spike-history kernels or filters η(s):

hðtÞ ¼ I
0
þ ½Z � S�ðtÞ ¼ I

0
þ
XK

k¼1

Zðt � tkÞ; ð2Þ

where the ftkg 2 Ht correspond to the previous spike times (see “Materials and Methods” for

details). Based on both theoretical and empirical arguments [2, 7], we set ϕ(x) = exp(x) to

Fig 1. Schematic overview of the nonlinear Hawkes process and the quasi-renewal (QR) approximation. The quasi-renewal approximation can be
used to semi-analytically obtain steady-state firing rates of general, nonlinear Hawkes processes (PP-GLMs). Left: In the nonlinear Hawkes process, the
conditional intensity of the point process, lðtjHtÞ, is a function of the whole spiking history (see Eq (3)). It is modeled as a nonlinear function (here, an
exponential function) of a linear convolution of the previous spike history with a spike-history filter η(s) plus a constant offset I0. The dependence of the
instantaneous firing rate on all previous spikes results in a non-renewal process. There are no closed-form solutions for even the first-order statistics of
general, nonlinear Hawkes processes. Right: In the quasi-renewal approximation, the conditional intensity is modeled as a combination of the effect of the
most recent spike ti and a term involving the average over the whole spike history before the most recent spike (see Eq (5)). This term includes the average
firing activity in the past A0� A(t − s), which is filtered with the quasi-renewal filter γ(s) and added to the spike-history filter η(τ) of the most recent spike at
t − τ. This predicts the instantaneous inter-spike interval density P0(τ) from which the steady-state firing rate can be obtained as the inverse of the expected
inter-spike interval E[τ]. The self-consistent solutions for which an assumed average history of A0 leads to an equivalent predicted steady-state rate are
fixed points of the transfer function defined in the quasi-renewal approximation.

doi:10.1371/journal.pcbi.1005390.g001
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arrive at:

lðtjHtÞ ¼ exp I
0
þ
XK

k¼1

Zðt � tkÞ

 !

¼ c exp
XK

k¼1

Zðt � tkÞ

 !

; ð3Þ

with c ¼ eI0 > 0.

Every previous spike contributes a spike-history kernel, and effects of all previous spikes

accumulate. This leads to, in general, a non-renewal point process model. The model parame-

ters that describe the kernel η(s) and the baseline firing rate c can be estimated using maxi-

mum-likelihood optimization within the framework of generalized linear models (GLMs)

[2, 4].

As stated earlier, these point-process GLMs (PP-GLMs) were recently shown to be able to

describe all major canonical dynamics of single neurons [11–13] and, thus, can serve as a

canonical class of mathematically tractable models to describe general single-neuron spiking

activity. For example, in [6], we analyzed spiking data from the stomatogastric nervous system

of the crab. Neurons that are part of the pyloric network fire in stereotypical, rhythmic activity

patterns (Fig 2A). Estimated PP-GLMs from this physiological dataset pass common

goodness-of-fit tests such as based on residual analysis or the time-rescaling theorem. We cre-

ated stochastic realizations of spike trains based on the model. These spike trains reproduce

the observed burst pattern of the training data, and in a complete network simulation, the rela-

tive phases of the overall pyloric rhythm [6].

However, such simulations of spike trains from data-driven PP-GLMs do not always result

in physiological spiking patterns. For example, when estimating PP-GLMs from single-unit

data recorded from the neocortex of human epileptic patients [30], goodness-of-fit tests are

generally passed, but simulated activity tends to diverge to unphysiologically high firing rates.

One data set and estimated model are shown in Fig 2B.

In a more comprehensive analysis, we fitted PP-GLMs to spiking data from neurons

recorded from motor-related cortical areas in the monkey [31]. We restricted data to a one-

second steady-state movement preparation period of the trial. This period was roughly station-

ary since it did not include, by design, firing rate transients driven by sensory stimuli or move-

ment execution. For 35 out of the 99 data-driven models, we find that simulated spike trains

have finite divergence times. Some of these models diverge in simulations even when good-

ness-of-fit tests are passed. We show two examples in Fig 2C and 2D. Qualitatively similar

results are obtained for all other models.

Instability is also observed when the simulation is performed using a nonlinearity that

grows less rapidly than the exponential. We generated stochastic realizations of spike trains

using two additional nonlinearities (a linear rectifier, and f(x) = log(1 + ex), a smooth interpo-

lation between an exponential and linear function, S1 Fig). Both functions are globally domi-

nated by the exponential function (see S1A Fig). Potentially, nonstable behavior could be

observed when simulating with the exponential nonlinearity but not with the two less rapidly

accelerating nonlinearities. However, we find that even in these cases, firing rates diverged for

the same data sets as presented in Fig 2B and 2C.

In summary, while PP-GLMs estimated from data may serve well in encoding and decoding

analysis that require one-step spike prediction conditioned on actually observed spike history

and may pass goodness-of-fit tests, they tend to be poor generative models because of the lack

of stochastic stability. The use of PP-GLMs as generative models, however, is essential when

statistical analyses of spike trains generated by the model are required, or when long-term pre-

diction of future spiking states in single-neuron and neuronal networks is used in neural

decoding or closed-loop interventions.

Stability and dynamics of nonlinear Hawkes processes and PP-GLMs
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Fig 2. Point-processmodels estimated from physiological data can pass common goodness-of-fit
tests, but simulated activity may diverge. (A) Neurons in the stomatogastric ganglion (STG) of the crab
show rhythmic bursts of spike patterns. Each line shows a random 2-second segment of the data from one
neuron aligned to the first spike of a burst. The spike-history filter is estimated following the procedure in [6].
The neuron model passes commonly used goodness-of-fit tests, such as those based on the time-rescaling
theorem [24, 25]. Here, the Kolmogorov-Smirnov test is shown for rescaled inter-spike intervals to come from
an exponential distribution with unit mean. The null hypothesis that observed spikes are coming from the
estimated model is not rejected (P > 0.05). When sampling spike trains from the model, the model
regenerates the rhythmic, bursty activity that is qualitatively matched to the training data. (B) Similar analysis
for single-unit activity from neocortical recordings in a person with pharmacologically intractable focal epilepsy
[30]. Each line corresponds to a random ten-second segment of spontaneous activity during interictal periods,
i.e., outside seizures. The estimated spike-history filter shows a refractory period and an excitatory rebound.
Themodel passes commonly used goodness-of-fit tests (P > 0.05). When stochastic samples are generated
from the model, spiking activity diverges to a periodic firing pattern at the maximally allowed frequency given
the absolute refractory period (here, 2 ms). For some sampled realizations, this divergence can happen very
early in the simulated trial (e.g., trial 5). Therefore, simulated activity from the model is unphysiological. It does
not match statistics of the spike train in the training data (mean firing rate, inter-spike interval statistics)
despite passing the goodness-of-fit test. (C, D) Additional examples of single-unit activity frommonkey cortex,
areas PMv and M1 [31, 32]. Each line represents a steady-state movement preparation period preceding
visual cues leading to execution of reach and grasp actions. Although spike-history filters appear typical in
both examples, and goodness-of-fit tests are passed, simulated activity diverges into unphysiological firing
rates in one case (first example) and remains physiological in the other.

doi:10.1371/journal.pcbi.1005390.g002
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To our knowledge, the stability of PP-GLMs estimated from data has not been systemati-

cally examined before. In the next sections, we will develop a framework to assess the dynamics

and stability of stochastic spiking neuron models.

A framework to assess stability and dynamics of stochastic spiking
neuron models

PP-GLMs have post-spike filters which typically make the spike train probability depend on

many previous spikes. These dynamics are in contrast to the conditional intensity function of

a renewal point process which depends only on the very last spike time. Therefore, PP-GLMs

are generally not renewal processes. When assessing dynamics and stability of PP-GLMs, we

are interested in the behavior of the corresponding firing rates. For such general PP-GLMs,

however, there are no closed-form solutions for even simple statistical features, such as

expected mean firing rates or second-order statistics. Here, to obtain estimates of such statisti-

cal features for a given nonlinear Hawkes process, we employ an approximation based on a

recently introduced quasi-renewal approximation [26, 27].

The quasi-renewal approximation (Fig 1B) consists of approximating the (non-renewal)

PP-GLM by a process which is nearly a renewal-process (hence, “quasi-renewal”) that depends

on the last spike time and on the average firing rate in the past [26]. Specifically, we consider

the steady-state conditional intensity l
0
ðt; t̂Þ at time t as the average intensity over all possible

spike histories that share the most recent spike at time t̂ :

l
0
ðt; t̂Þ ¼ hlðtjHtÞiSðt<t̂ Þ

¼ cexpðZðt � t̂ÞÞhexpð½Z � S�ðtÞÞiSðt<t̂ Þ:
ð4Þ

The first term explicitly models the effect of the most recent spike only, and the second term

represents the average of the spiking activity prior to the time of the last spike in the steady-

state regime. It can be approximated by (see “Materials and Methods” for details):

h exp ð½Z � S�ðtÞÞiSðt<t̂ Þ � exp A
0

Z 1

t�t̂

ðeZðuÞ � 1
|fflfflfflffl{zfflfflfflffl}

gðuÞ

Þdu

8

><

>:

9

>=

>;

; ð5Þ

with γ(u) = eη(u) − 1 for the exponentiated spike-history kernel. Here, A0 is the steady-state fir-

ing rate of the process. Intuitively, the convolution of the actual spike train S(t) with η(s) is
replaced by the convolution of a homogeneous Poisson process spike history of intensity

A(t − u)� A0 with an effective filter γ(u) (Fig 1B). Since the convolution is applied to a con-

stant A0, the term reduces to a product of A0 and the integral of γ(u) with the lower bound

dependent on t ¼ t � t̂ . Using this approximation, we obtain a quasi-renewal CIF by combin-

ing Eqs (4) and (5). Given the QR-CIF, Eq (4), we can then as for ordinary renewal processes,

derive the steady-state survivor function S
0
as:

S
0
ðtÞ ¼ exp �

Z t

0

l
0
ðuÞdu

� �

: ð6Þ

S
0
then yields the steady-state probability density P0 of the inter-spike intervals:

P
0
ðtÞ ¼ S

0
ðtÞl

0
ðtÞ: ð7Þ

The inverse of the expected inter-spike interval must equal the firing rate f which thus is an

Stability and dynamics of nonlinear Hawkes processes and PP-GLMs
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implicit function of A0 through Eq (5):

f ðA
0
Þ ¼

Z 1

0

t P
0
ðtÞdt

� ��1

: ð8Þ

In effect, the QR theory derives a transfer function f(A0)> 0 that links an assumed average

spike history to a predicted firing rate. Assuming stationarity, f(A0) has to match A0 which

leads to a fixed-point equation. Intersections of f(A0) with the identity correspond to expected

fixed points of the dynamics. Stable fixed points in the quasi-renewal approximation predict

steady-state firing rates of nonlinear Hawkes processes (PP-GLMs).

We first show how the number and stability of fixed points of the derived transfer function

f(A0) for the nonlinear Hawkes process endowed with an absolute refractory period can be

used to classify the dynamical behavior of the single-neuron model (Fig 3):

• No fixed point: If there is no stable fixed point (i.e., f(A0)> A0 for all A0), activity will

diverge after a finite transient. However, this cannot happen in the presence of an absolute

Fig 3. Stochastic dynamics of nonlinear Hawkes PP-GLMs endowedwith absolute refractory periods:
Classification based on transfer functions in the quasi-renewal approximation. The quasi-renewal
approximation provides a predicted firing rate of a neuron model f(A0) based on an assumed average firing
rate in the past A0 (see “Materials and Methods”). This defines an iterative equation whose fixed points
represent the steady-state firing rates. A qualitative classification of the dynamical behaviors is based on the
location and stability of the fixed points. Note that throughout the study, we are assuming that there exists an
absolute refractory period. Thereby, the maximum firing rate of any model is limited by a maximal firing rate
λmax. We define a steady-state firing rate to be unphysiological if it exceeds λthr = 0.9 × λmax (gray area). Given
an absolute refractory period, there always exists at least one stable fixed point. If it is the only one and below
λthr, the model is classified as stable (top, left). If the only stable fixed point is above λthr, the model is divergent
(top, center). If there are two stable fixed points, one above and one below λthr, the model is classified as
“fragile” (metastable), indicating that the (physiological) low-rate fixed point is only transiently stable. Expected
divergence times E[Tdiv] will depend on the distance between the fixed points. To provide a complete
classification framework, we also need to consider the case of two or more stable fixed points, although the
latter case seems to be rarely encountered in our experience. In case of two or more stable fixed points below
the threshold, the model is classified as stable (bottom, left). Its dynamics is predicted to be multi-stable with
steady-state rates fluctuating around two fixed points. If all stable fixed points lie above the threshold the
model is considered “divergent” (bottom, center). Any case for which there are multiple stable fixed points
both below and above λthr are considered “fragile” (bottom, right).

doi:10.1371/journal.pcbi.1005390.g003
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refractory period τref. The maximal firing rate of the neuron is bounded by λmax = 1/τref. In

that case, there is always at least one stable fixed point. Throughout the rest of the paper, we

assume the existence of such an absolute refractory period and set τref = 2 ms.

• One stable fixed point: Any perturbation in the firing rate will eventually decay back to the

steady-state rate. If the steady-state firing rate predicted by the fixed point is close to the

mean firing rate of the training data, the rate is considered physiological and we classify the

neuron model as “stable” (Fig 3 top, left). Conversely, if the fixed point is above λthr = 0.9 ×

λmax, we define here the rate as unphysiologically high and classify the model as “divergent”

(Fig 3 top, center).

• Two stable fixed points: More than one stable fixed point leads to multi-stable dynamics.

Due to the continuity of the transfer function, the first fixed point is necessarily stable, fol-

lowed by an unstable fixed point, and so on, in alternating fashion. In general, in stochastic

multi-stable dynamics, activity will remain around one state for some time before fluctua-

tions drive it towards a different stable fixed point (metastability). Depending on the location

of the stable fixed points, such multi-stable activity can be classified as “stable” (both fixed

points smaller than λthr; Fig 3 bottom, left) or “divergent” (both fixed points larger than λthr;
Fig 3 bottom, center). Interesting dynamics emerges when one fixed point is within the

range of physiological rates and the other one is close to the “divergent”, maximal rate (Fig 3

top, right). In that case, if activity is initialized in the lower state, it will remain in the lower

state for a finite time before switching to the unphysiological, high-rate state. We call these

metastable dynamics “fragile” to emphasize that such models may produce realistic firing

rates in simulations when initialized in the low state but will ultimately escape the stable

fixed point and diverge to unphysiological high-firing activity. By E[Tdiv], we denote the

expected time to transition from the low-rate state to the high-rate state for the first time.

Expected divergence times E[Tdiv] will depend on the distance between the fixed points and

the location of the unstable fixed point.

• Three or more stable fixed points: Dynamics can be classified analogously to the previous

cases based on how many fixed points are above and below λthr (Fig 3 bottom, right). How-

ever, more than two stable fixed points seem rare in our datasets and simulations. Although

they might be constructed by a deliberate choice of the spike-history filter η(s), all models

that we estimated from physiological data turned out to have at most two stable fixed points.

Overall, the above classification of the qualitative stochastic dynamics suggests a general

framework to assess stability and dynamics of stochastic spiking neuron models (Fig 4). In the

particular case of data-driven models, training data are used to estimate parameters of a non-

linear Hawkes model (PP-GLM) through (regularized) maximum-likelihood optimization. As

shown above, we find empirically that simulating spike trains from these models often yields

unphysiological spiking patterns, and firing rates may diverge (Figs 2 and 4, top). We can use

the quasi-renewal approximation to analyze the stability of the estimated neuron model. This

approximation predicts the dynamics of the neuron model and distinguishes three qualita-

tively different dynamical behaviors.

Stable or fragile models with high expected divergence times can be safely used to generate

stochastic samples from the model. For divergent models or fragile models with low expected

divergence times, stabilization constraints can be added to the maximum-likelihood optimiza-

tion problem to constrain the feasible parameter space to non-divergent models. In any of the

three cases, the model (or its stabilized variant) is evaluated based on standard model selection

and goodness-of-fit tests before any inference is made (Fig 4, bottom).
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In the next sections, we present the application of this framework to simulated and real data

to demonstrate its validity and utility in modeling electrophysiological responses. First, we

demonstrate the proposed method for PP-GLMs that have a spike-history filter that consists of

either a single exponential or a sum of two exponentials before moving on to filters estimated

from neurophysiological data.

Predicted stability reflects simulation outcomes for exponential spike-
history filters

We start with the analysis of a simple PP-GLM with a spike-history filter given by a single

exponential and an absolute refractory period. The complete model is given by:

lðtjHtÞ ¼ ce½Z�S�ðtÞ;

ZðsÞ ¼ JyðsÞe�s=t þ JrefyðsÞyðtref � sÞ;

Fig 4. A framework to assess stability and dynamics of stochastic spiking neuronmodels. Stability of
models estimated from physiological data is analyzed using the quasi-renewal approximation. When stable
models are desired for sampling or simulations, stability constraints can be included in model estimation.
Three types of dynamics can be distinguished: First, “stable” models have steady-state firing rates that are in
the physiological range. Spike trains can be safely generated from the model. Second, “divergent” models
have a steady-state firing rate that is very close to the maximally allowed firing rate. In this case, stabilization
constraints can be added to the maximum-likelihood optimization problem to constrain the feasible parameter
space to non-divergent models. Finally, model dynamics can be classified as “fragile”, indicating metastable
dynamics. While there is a steady-state firing rate at physiological firing rates, there are additional steady-
state rates at unphysiological high rates. A simulation that is started with physiological initial conditions may
remain in the low-rate regime for a while, but will ultimately visit the unphysiological rate. The framework may
provide an estimate of the expected escape or “divergence” time, E[Tdiv]. Depending on E[Tdiv], the model can
be effectively treated as “stable” or “divergent” based on the typical time scales that would be relevant for
simulation. In any of the three cases, the model (or its stabilized variant) is evaluated based on standard
model selection and goodness-of-fit tests before any inference is made.

doi:10.1371/journal.pcbi.1005390.g004
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with Heaviside function θ(x) and parameters τref = 2 ms, Jref = −1 (−1012 in numerical simula-

tions), τ = 20 ms, and amplitude J.

We scanned the two-dimensional parameter space given by the amplitude J of the filter

and the baseline firing rate c (Fig 5A; −2� J� 4 with 121 equally spaced samples and

0.1� c� 6.0 s−1 with 60 equally-spaced samples). The QR approximation predicts three

regimes of dynamical activity: For slightly positive and negative kernel amplitude J, the model

is stable. Indeed, in simulations, we observe finite and stable rates (Fig 5B, top row). For higher

amplitudes, the dynamics are predicted to be fragile and ultimately divergent (for large J and

c). As expected, the average divergence time estimated from numerical simulations gradually

decreases with increasing J and c (color-coded in Fig 5A). Divergent models are almost

instantly diverging (Fig 5B, bottom row), while for fragile models, a whole spectrum of diver-

gence times is observed (Fig 5B, middle row). Within the variance given by the finite number

of simulated models, we did not observe any discrepancies between the behavior predicted by

the QR approximation and the numerical results.

For all models of the parameter range that were classified as stable, we compared the pre-

dicted steady-state firing rate to the one observed in numerical simulations (Fig 6A). In this

case, the QR approximation provides an excellent prediction of mean firing rates (Pearson’s

correlation coefficient ρ> 0.999).

A major feature of the QR approximation is to predict (an upper bound on) the expected

divergence times for fragile models. In practice, this is relevant for model sampling via simula-

tion where it is important to classify fragile models as “effectively stable” or divergent (see

Fig 4). For high firing rates close to A
0
¼ t�1

ref , the regular spike train with inter-spike intervals

around τref is the only possible spike train realization. Therefore, one way to estimate E[Tdiv] is

Fig 5. Predicted stability reflects simulation outcomes: Exponential spike-history filter. (A) Spike
trains are simulated from a nonlinear Hawkes model with baseline firing rate c and an auto-history kernel
η(s) = J exp(−s/τ) with amplitude J, time constant τ = 0.02 s, and absolute refractory period τref = 2 ms. The
QR approximation qualitatively predicts three classes of dynamics (separated by thick lines). Color indicates
average divergence times estimated from simulations. In the dashed region, no finite divergence times were
observed. (B) An example of a spike-history filter for each of the dynamics is shown together with a spike
raster of simulated activity. Purely inhibitory filters produce stable dynamics (top, J = −1, c = 5 s−1). For fragile
models, after an episode of irregular firing, dynamics switches into a tonic firing mode close to the limit
frequency 1/τref (middle, J = 1, c = 5 s−1). For divergent models, the only stable fixed point is close to the limit
frequency (bottom, J = 3, c = 5 s−1). After a brief transient, the model switches to the tonic firing mode at limit
frequency. All dynamics observed in simulations are in accordance with the prediction from the QR
approximation.

doi:10.1371/journal.pcbi.1005390.g005
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to consider periodic spike histories with different frequencies that would lead to self-sustained

periodic firing at maximal rate with high probability (see “Materials and Methods” for details).

Fig 6B compares predicted versus observed divergence times for all fragile models. The pre-

dicted Tdiv provide an upper bound on the observed divergence times. The divergence time of

a simulation was defined as the end of the first two-second interval in which the average rate

exceeded λthr. For this reason, estimated divergence times cannot be below 2 s (Fig 6B, gray

area). Therefore, small estimated divergence times do not obey the predicted bound. However,

there seems to be a reasonable (power-law) dependence between predicted and observed Tdiv
(Pearson’s correlation coefficient ρ = 0.925).

We now look at more complex PP-GLMs to test the validity of our proposed framework.

We consider spike-history filters consisting of a sum of two exponentials with amplitudes Jr, Ja,

and corresponding time constants τr and τa:

lðtjHtÞ ¼ ce½Z�S�ðtÞ;

ZðsÞ ¼ JryðsÞe
�s=tr þ JayðsÞe

�s=ta þ JrefyðsÞyðtref � sÞ:

Depending on the signs of the amplitudes, this model resembles many plausible single-neuron

behaviors: Jr< 0 indicates a relative refractory period beyond the absolute 2 ms refractory

period while Jr> 0 promotes bursty dynamics. Similarly, Ja 6¼ 0 can be interpreted as inhibi-

tory or facilitating adaptation (e.g., spike-frequency adaptation [16, 17, 33]).

We evaluated models on a wide range of combinations of amplitudes Jr and Ja (Fig 7A; −11

� Jr� 11 with 100 equally spaced samples and −3� Ja� 3 with 75 equally-spaced samples),

for τr = 20 ms and τa = 100 ms, respectively, and for fixed c = 5 s−1. As expected, negative and

positive but small values of Jr and Ja lead to stable dynamics. For a narrow band, models are

expected to be fragile (Fig 7B, top row). This observation is consistent with divergence times

estimated from numerical simulations. Finally, larger values of either Ja or Jr lead to divergent

models, although in an asymmetric way (Fig 7A and 7B, bottom row). Qualitatively similar

results are obtained for other values of the baseline c (S2 and S3 Figs).

Fig 6. Rate and time to divergence: Exponential spike-history filter. (A) Observed steady-state firing rate
versus predicted steady-state firing rate for every model classified as “stable” in Fig 5. Each dot corresponds
to a model. Dashed line indicates equality. Linear correlation coefficient is ρ = 0.9996. (B) Observed versus
predicted divergence times for all models classified as “fragile” in Fig 5. Note the logarithmic axes. The QR
approximation provides an approximation of the divergence times. The divergence time of a simulation was
defined as the end of the first two-second interval in which the average rate exceeded λthr. Therefore,
estimated divergence times cannot be below 2 s (gray area).

doi:10.1371/journal.pcbi.1005390.g006
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Estimated divergence times are generally consistent with the qualitative prediction of the

QR approximation with one exception: For multiphasic spike-history filters, i.e. either strongly

refractory neurons (Jr� 0) with excitatory rebounds (Ja� 0) or the opposite (Jr� 0 and Ja�

0), the QR approximation predicts divergent models, but simulations indicate that rates

remain below the threshold λthr to be classified as divergent (Fig 7A, upper left and lower right

corners; Fig 7B, middle row). Spike trains generated from models with these parameters tend

to produce intermittent bursts. This is a condition for which the quasi-renewal approximation

is known to become invalid [26]. The dynamics lead to the divergent state where the model

neuron fires initially at maximally allowed firing rate (hence, unphysiological). However, the

dynamics escape this high-firing rate fixed point after a finite number of such high-rate bursts,

and the activity reverts back to the low-rate state. Averaged over a longer time period, the

mean activity stays well below λthr and therefore, T̂ div ¼ 1 in contrast to the dynamics pre-

dicted by the QR approximation. The reason for this discrepancy is that the QR approximation

assumes homogeneous, Poisson-like firing prior to the last spike time, while the only way to

achieve firing rates close to the maximally allowed rate by the absolute refractory period is to

have a highly regular spike train. For highly regular spike histories, the QR approximation

does not provide valid fixed points of the dynamics. However, these cases can be captured by

an analysis of the regular spiking limit (see “Bursting and the regular spiking limit”) which

does not explicitly depend on the QR approximation.

A less severe limitation of the QR approximation is visible in the comparison between pre-

dicted and simulated steady-state firing rates for models classified as stable (Fig 8A). While

most rates are accurately estimated (points near the diagonal line), very bursty neurons have

higher firing rates in simulations than predicted by the QR approximation (stable models with

Jr� 0 and Ja� 0). This is due to dependencies beyond the last spike that are ignored in the

approximation but are non-negligible for burst firing. Loosely speaking, in this case the QR

approximation predicts the rate of isolated spikes and bursts, but not the number of total

spikes. The burst duration can be predicted from a simple criterion based on the conditional

Fig 7. Predicted stability reflects simulation outcomes: Sum-of-exponentials spike-history filter. (A)
Spike trains are simulated from a nonlinear Hawkes model with fixed baseline c = 5 s−1 and an auto-history
kernel consisting of two exponentials with amplitudes Jr, Ja, and corresponding time constants τr = 0.02 s and
τa = 0.1 s. Observed divergence times for simulated spike trains are color-coded (same scale as in Fig 5). In
the dashed region, no finite divergence times were observed. (B) Auto-history kernels for three different
parameter values (models a, b and c), displaying irregular, bursty and divergent dynamics, respectively,
consistent with the prediction of the QR-approximation except for model b (see main text).

doi:10.1371/journal.pcbi.1005390.g007
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intensity function of the PP-GLM, independent of the QR approximation (see “Bursting and

the regular spiking limit”).

Finally, predicted and observed divergence times for all fragile models are well approxi-

mated by the QR approximation (Fig 8B) except for small divergence times whose estimation

is biased due to the finite time window to detect divergence in numerical simulations.

In summary, the QR approximation yielded remarkably accurate predictions of the dynam-

ical behavior of PP-GLMs for most parameter settings. When the steady-state rate was not

accurately predicted for bursty neurons, the qualitative prediction was still consistent with

simulations. For extreme parameter values, we observed intermittent burst activity that was

incorrectly predicted to be divergent. Although not divergent according to the definition of

Fig 3, the resulting spiking pattern would nevertheless be considered unphysiological and

undesirable in modeling applications. Thus, in this case, the discrepancy between the QR pre-

diction and the simulation does not play a significant role in practice.

So far, we have studied parametric spike-history filters in the form of a single exponential

or sum of two exponential terms. In the next section, we will show that the validity of the QR

approximation extends to physiological PP-GLM spike-history filters as they are typically

obtained in the context of data-driven model estimation.

The quasi-renewal approximation predicts stability for complex
(physiologically plausible) model parameters

We applied the QR approximation to models estimated from actual neuronal recordings, spe-

cifically, multi-electrode single-unit recordings in monkey cortex (see “Materials and Meth-

ods”). Of the nonlinear Hawkes PP-GLMs estimated from 99 recorded single units, 11 were

Fig 8. Rate and time to divergence: Sum-of-exponentials spike-history filter. (A) Observed steady-state
firing rate versus predicted steady-state firing rate for every model classified as “stable” in Fig 7. Each dot
corresponds to a model. Dashed line indicates equality. Linear correlation coefficient is ρ = 0.50. While
steady-state rates are correctly predicted for most models, discrepancies arise due to limiting assumptions of
the QR approximations when Jr� 0 and Ja� 0. However, the qualitative prediction of the dynamics as stable
remains correct. (B) Observed versus predicted divergence times for all models classified as “fragile” in Fig 7.
Note the logarithmic axes. Dashed line indicates diagonal. The QR approximation provides an approximation
of the divergence times. The divergence time of a simulation was defined as the end of the first two-second
interval in which the average rate exceeded λthr. Therefore, estimated divergence times cannot be below 2 s
(gray area). The data suggest a power-law dependence between predicted and observed divergence times
(Pearson’s correlation coefficient ρ = 0.94).

doi:10.1371/journal.pcbi.1005390.g008
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predicted to be stable, 86 were predicted as “fragile” with varying degrees of expected diver-

gence times, and 2 were predicted to be divergent.

In all cases, the predictions were consistent with numerical simulations: For all models pre-

dicted to be stable, none of the N = 48 simulations of length T = 1000 s diverged (T̂ div ¼ 1),

and both divergent models showed finite divergence times (T̂ div ¼ 86 s and T̂ div ¼ 2 s, respec-

tively). Fragile models did not diverge in our simulations of length T = 1000 s in 53 out of the

86 cases, while the other maximum-likelihood models diverged with varying degrees of

observed divergence times (T̂ div ¼ 4� 45 000 s).

We examined in detail the stability predictions based on the QR approximation for a diver-

gent neuron model in Fig 9. Spike-sorted single-unit activity (Fig 9A) was used to estimate a

nonlinear Hawkes process with ten basis functions for the spike-history filter consisting of

raised cosines [4, 5]. The resulting maximum-likelihood estimate (MLE) displays a relative

refractory period followed by an excitatory rebound (Fig 9B). The corresponding transfer

function of the QR approximation shows a single stable fixed point close to the maximally

allowed firing rate (Fig 9C). Therefore, this model is classified as divergent.

We then explored the neighboring parameter space by varying the baseline rate parameter c

and using scaled versions of the MLE spike-history filter. The qualitative predictions (sepa-

rated by thick lines in Fig 9D) were overall consistent with numerical simulations of the model

(Fig 9D). Here, the color scale represents the estimated divergence time in simulations based

on 48 independent simulations of T = 1000 s each.

Fig 9. The quasi-renewal approximation predicts stability for complex (physiologically plausible)
model parameters. (A) Single-unit activity (SUA) frommulti-electrode recordings frommonkey cortical area
PMv [31] (same unit as in Fig 2C). Spike waveforms are shown (mean waveform in green) and indicate well-
sorted SUA. (B) Estimated spike-history kernel using maximum-likelihood estimation. The kernel exhibits a
relative refractory period followed by an excitatory rebound. (C) The transfer function predicted by the QR
approximation. There is a single stable fixed point at� 500 s−1. The model is therefore classified as
“divergent”. (D) The QR approximation predicts the maximum-likelihood estimate (MLE) (center dot) to be
divergent. Color indicates average divergence times in simulations for variations of the baseline rate c (y-axis)
and scaled versions of the filter relative to the integral of eη(s) − 1 (x-axis). Thick lines indicate the separation
between areas for which the QR approximation predicts stability, fragility, or divergence. Overall, estimated
divergence times from simulations agree with the qualitative predictions.

doi:10.1371/journal.pcbi.1005390.g009
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In sum, the QR approximation not only predicted correctly the stability of the data-driven

neurophysiological models, but also the stability of parameter variations around the MLE

model.

Neuron models can be stabilized with constrained maximum-likelihood
estimation

We have shown that fitting PP-GLMs to electrophysiological data can lead to divergent and

fragile models (Figs 2 and 9). The QR approximation not only offers a way to predict stability,

but also to find stable models. As stated before, stability is an important feature when the goal

is to sample from the model or to obtain data-driven models for simulations. Conceptually, we

can constrain the parameter search for the maximum-likelihood solution to the parameter

space for which the QR approximation predicts stable models. We will now provide a proof of

concept of this approach by demonstrating how this constraint can be implemented in

practice.

We search for the maximum-likelihood estimate (MLE) under the additional constraint

that the model is predicted to be stable by the QR approximation. This can be implemented by

minimizing the cost function consisting of the negative log-likelihood of the data plus a pen-

alty term that is infinity whenever the model is predicted to be fragile or divergent and zero

otherwise. We use a gradient-free numerical optimization scheme (see “Materials and Meth-

ods”). We initialize the parameter values with the unconstrained MLE for which all positive

coefficients are set to zero. This corresponds to a non-positive spike-history filter and ensures

that the initial evaluation of the cost function is finite. We call the constrained solution the

“stabilized MLE”.

For illustration, in Fig 10A, we use the same data from monkey electrophysiological record-

ings as in Fig 9. We find that the spike-history filter of the stabilized MLE resembles a regular-

ized version of the (unconstrained) MLE (Fig 10A), i.e., its coefficients are slightly biased

towards zero. The MLE itself passes a goodness-of-fit test on training and test data and yields a

substantial power in predicting spiking in 1 ms time bins (Fig 10B–10D). However, sampling

from the MLE leads to divergent and unphysiological spike trains (Fig 10E). In contrast, sam-

pling from the stabilized model yields firing rates comparable to the training data, and spike

trains that are qualitatively similar (Fig 10E).

We quantified similarity of spike train statistics up to second order using the inter-spike

interval (ISI) distribution (Fig 10F) and spike train auto-correlation function (Fig 10G). We

evaluated the spiking pattern using three metrics (local ISI variability lv, shape (log κ) and
scale parameter (log α) of the best-fitting Gamma distribution, following the methodology pre-

sented in [35, 36]. Our data from monkey region PMv are consistent with reported values in

[36, Table 1, row 15]: lv(data) = 0.54 ± 0.18, log κ(data) = 0.80 ± 0.38, log α(data) = 3.16 ± 0.26

(mean ± standard deviation over segments of 20 consecutive ISIs). Metrics for spike trains

generated from the stabilized MLE model are well aligned to those of the physiological data:

lv(stab.MLE) = 0.66 ± 0.22, log κ(stab.MLE) = 0.69 ± 0.35, and log α(stab.MLE) = 3.26 ± 0.26. In addi-

tion, the spike trains generated from the stabilized MLE also reproduce the serial correlations

between consecutive ISIs in the physiological data (Fig 10H).

Although this was not a direct optimization criterion, the stabilized MLE is almost as good

in predicting spiking activity in 1 ms time bins conditioned on observed spiking history as the

MLE (Fig 10B) and scores only marginally worse on the goodness-of-fit tests (Fig 10D). The

cross-validated log-likelihood of the stabilized model is within 80% of the log-likelihood score

of the MLE (2.43 bits/s versus 2.90 bits/s relative to the prediction of a homogeneous Poisson

process with correct spiking rate, Fig 10C).
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Spike train statistics were not shown for the MLE because physiological spike trains could

not be obtained. However, we explored the possibility of a simple modification in the simula-

tion procedure for the MLE solution that guarantees stability of the generated spike train. In

the “reset condition” [34], the conditional intensity of the point process at time t is not calcu-

lated using the original CIF (Eq (3)) but instead using only the spike-history effect stemming

from the most recent spike at t̂ : lðtjHtÞ ¼ c exp ðZðt � t̂ÞÞ. This yields a renewal process with

guaranteed finite rate in simulations.

We found that models simulated with the reset condition do produce finite firing rates

and spike trains that look plausible on first sight (Fig 10D). However, the firing rate and

autocorrelation function are not matched with the training data. Most notably, neither ISI

shape (Fig 10F and 10G, green line; lv(reset) = 0.72 ± 0.21, log κ(reset) = 0.51 ± 0.31,

Fig 10. Neuronmodels can be stabilizedwith constrainedmaximum-likelihood estimation. (A)
Estimated spike-history kernels using maximum-likelihood estimation (blue) and the constrained (stabilized)
maximum-likelihood estimation (red). Data are from single-unit activity (SUA) recordings frommonkey cortical
area PMv [31]. (B) Power of predicting spiking activity on test data for both the maximum-likelihood estimate
(MLE) and the stabilized MLE. The receiver operating characteristic (ROC) curve is shown for predicting
spikes in 1 ms time bins with false positive rate (FP, x-axis) and true positive rates (TP, y-axis). Diagonal line
indicates chance-level prediction. Predictive power is defined as PP = 2 � AUC − 1 with AUC being the area
under the curve. Perfect spike prediction corresponds to PP = 1. Both models predict spikes equally well. (C)
Log-likelihood evaluated on test data. Both MLE and stabilized MLEmodels preserve information about spike
times. Model log-likelihoods (in bits per second) are relative to a homogeneous Poisson process with the
correct spiking rate. (D) Kolmogorov-Smirnov test of rescaled inter-spike intervals following the time-rescaling
theorem. Both MLE and the stabilized MLE pass the goodness-of-fit test (P > 0.05). (E) Recorded spike trains
and simulated spike trains from estimated models. Top: Randomly selected 10 s intervals of neural activity
part of the training data (black). Simulating from the unconstrained MLEmodel (blue) leads to quickly
diverging firing rates (Tdiv � 10 s). Spiking activity from the stabilized MLE (red) remains finite and
physiological. Simulating from the MLE with a reset condition after each spike (green, [34]) leads to non-
divergent firing rates, but the firing rate of the training data is not matched. (F) Inter-spike interval statistics of
real and simulated spiking activity for which rates were non-divergent. Same colors as in (D). The stabilized
MLE qualitatively reproduces the training data ISI distribution. (G) Autocorrelation of recorded and simulated
activity. (H) Serial ISI correlations of real and simulated spiking activity. The stabilized MLE accurately
reproduces correlations in the training data. Simulating the MLE with a reset condition (green) leads to a
renewal process, hence vanishing correlations at non-zero lags.

doi:10.1371/journal.pcbi.1005390.g010
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log α(reset) = 2.57 ± 0.20) nor ISI correlations are reproduced due to the renewal property of

the modified model (Fig 10H, green line).

Discussion

We have presented a framework to predict the stability and dynamics of a general class of sto-

chastic neural point process models, specifically nonlinear Hawkes processes and point process

GLMs. This framework is based on a quasi-renewal approximation of the exact conditional

intensity function model. The assessment of stability can serve as an additional goodness-of-fit

test along with other approaches, such as tests based on the time-rescaling theorem. We have

also shown that simulated activity from point-process models estimated from neurophysiolog-

ical data tends to exhibit unphysiologically high firing rates. This behavior results from lacking

stochastic stability of the estimated PP-GLMs. When sampling and simulations based on these

PP-GLMs is desired, our framework can be used to derive stability constraints which can be

included into standard parameter estimation techniques such as (regularized) maximum-like-

lihood optimization. Furthermore, our framework provides a way to determine and classify

the qualitative types of stochastic dynamics exhibited by PP-GLMs, specifically nonlinear

Hawkes processes with absolute refractory periods.

Empirically, we have shown that many point-process GLMs estimated from neurophysio-

logical data tend to show fragile or even divergent dynamics. Several reasons could explain this

finding. One potential scenario is that of the actual recorded neural dynamics being close to

instability. Even assuming a correctly specified model, finite data will lead to finite variance in

the parameter sets estimated via maximum likelihood. If the true parameters are close to the

boundary between stability and divergence, the estimated MLE from finite data may lie in the

unstable (divergent) region of the parameter space. In this way, the simulated model would

show qualitatively different dynamics than the underlying data set from which it was derived

(i.e., it would diverge).

Another potential reason is the extent of model misspecification. Constraining the true

data-generating process into the form of the nonlinear Hawkes process, as assumed here,

might bias the parameter estimation towards the parameter space for which model dynamics

is unstable. An example for such model misspecification are non-stationary firing rates. In the

present models, we assumed a constant baseline firing rate. Maximum-likelihood estimates

have shown to be systematically biased if the non-stationarity is not accounted for in the

model [37]. Detecting and accounting for non-stationarity in neuronal spiking data is, how-

ever, a nontrivial task. The stability framework proposed here can be used as a tool for comple-

mentary analyses in this regard.

The quasi-renewal approximation can be used alongside other goodness-of-fit tests to assess

model adequacy. It would be a reasonable demand for a model to be classified as stable or frag-

ile with high expected divergence times if it is to be used within the context of simulations or

closed-loop applications. Even outside the context of simulations, a model classified as diver-

gent is failing a goodness-of-fit test as it is not able to reproduce the statistics of the training

data. Conversely, a model classified as stable might produce finite steady-state firing rates but

may still fail with regards to other statistics of the training data, such as first- and second-order

firing statistics, interval correlations, or burst properties. Our work exemplifies that it is impor-

tant to check goodness-of-fit using a comprehensive battery of tests to check for different types

of model misspecifications.

The derivation of the quasi-renewal approximation involves a series expansion which here

we truncated after the first order. As it was previously stated, this approximation becomes less

valid with non-vanishing second- and higher-order spike-spike correlations [26]. This is the
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case, e.g., for strongly bursting neurons. We have observed these limitations in the exploration

of the parameter space over which the QR approximation is valid (Figs 5 and 7). In principle,

second- and higher-order correlation terms can be included in the expansion. In particular,

Naud et al. [26] truncate the series after the second order. In this case, a self-consistent solution

has to be found in terms of the steady-state firing rate and the steady-state spike train auto-

correlation.

An additional limitation is inherent to the reduction of the spiking dynamics to a one-

dimensional description of a transfer or gain function. For high firing rates, spike trains are

constrained by the absolute refractory period and exhibit strong regularity. The transfer func-

tion can be qualitatively different when point process histories are assumed to be periodic

spike trains of a particular rate rather than homogeneous Poisson-like firing with vanishing

higher-order correlations. Hence, the description of the dynamics using a single transfer func-

tions becomes less valid for high firing rates. In practice, this happens when activity diverges

beyond which the usefulness of the QR approximation becomes limited.

Relaxing assumptions and extensions

We now discuss possible relaxing assumptions and extensions to the quasi-renewal framework

to assess stability and dynamics of neural point process models.

First, the ability to separate the effect of the most recent spike from all previous spikes and

to use the moment-generating functional are unique to the exponential nonlinearity. Possibly,

for other specific choices of the nonlinearity a similar manipulation or approximation of Eq

(11) may be conceivable, or the firing rate transfer function may be estimated by numerical

simulation of the model. However, we consider such an extension of the theory beyond the

scope of the present work. Using a different nonlinearity will likely require to invoke some

type of Lipschitz condition and alternative ways of studying the stability properties (see, e.g.,

[9]).

Second, the nonlinear Hawkes process can be formulated as a multivariate process to

describe an ensemble of coupled neurons [4, 5, 21]. The corresponding extension of the quasi-

renewal framework is possible [27] and may be used to study stability of such networks of het-

erogeneous neurons. Local linear stability analysis of derived fixed points for the neuronal net-

work dynamics can then be readily implemented based on the spectral radius of a coupling

matrix (obtained from coupling coefficients, history filters’ integrals, and the nonlinearity’s

first derivative) computed at the fixed point locations [9, 21].

Third, we assumed no (time-varying) exogenous input. The framework can be easily

extended to accommodate non-stationary inputs, such as stimulus drive, by allowing the base-

line firing rate c in Eq (3) to be time-dependent and performing the QR stability analysis for

the supremum of c as long as such a bound exists. If stability is predicted for this dominating

model, the model with time-varying exogeneous input will be stable as long as the exogeneous

drive is independent of the firing rate of the neuron itself [21]. This generalization allows the

stability analysis to be performed, e.g., for state-space models such as linear dynamic systems

with conditionally Poisson observations, where spike-history effects are combined with neural

couplings to a low-dimensional latent state whose dynamics is stable itself [2, 38–42].

Fourth, throughout this study, we assumed an absolute refractory period of 2 ms. Because

the absolute length of such a refractory period does not impact the theoretical analysis, a

refractory period of arbitrary length may be used. Although the existence of refractory periods

is pervasive in most physical applications, the assumption of an absolute refractory period

might not be justified in some cases. The refractory period leads to a finite support of the trans-

fer function and a bounded firing rate. In the limit of a vanishing refractory period, there
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might be additional alignments of fixed points to those outlined in Fig 3, such as a single stable

and a single unstable fixed point, which can be similarly classified into stable, fragile, and

divergent dynamics.

Finally, we provided an approximation of the divergence time for fragile, metastable mod-

els. A more direct estimation of the divergence time seems desirable. One alternative to esti-

mate the divergence time would be a fluctuation analysis in analogy to Brownian motion in a

potential. In this case, the divergence time would correspond to the escape time of the particle

from the potential given around the low-rate stable fixed point. In first order, noise in this pro-

cess may be described by white noise, scaled with an intensity that should be proportional (if

not equal) to the square root of the rate (Poisson statistics). A more insightful or useful esti-

mate of the fluctuations may also be derived from the power spectral density of the activity in

the metastable state [27, 43]. Alternatively, a periodic perturbation approach as in [7] may be

attempted to calculate the time scales of expected divergences.

Alternative stabilization methods

We provided a proof-of-principle of how our proposed quasi-renewal framework can be

incorporated into a maximum-likelihood parameter estimation procedure in order to guaran-

tee the stability of models estimated from physiological data. We saw that the ordinary MLE

provided unphysiological spike trains while the stabilized version matched first- and second-

order statistics of the training data with only marginal loss in predictive power and goodness-

of-fit scores.

In our current implementation, we maximize the likelihood of the model under the con-

straint that the model is predicted to be stable by the QR approximation. The determination of

stability based on the number and location of fixed points—essentially a bifurcation analysis—

consists of multiple steps and is highly nonlinear. We were not able to differentiate the penalty

term to exploit more efficient gradient-based optimization schemes. However, empirically, we

have observed that the space of admissible parameters seems to form a single connected, possi-

bly even convex, set. From a computational point of view, the determination of stability

involves one-dimensional (scalar) arithmetic that allows fast evaluation of many candidate

parameter sets during the optimization procedure. If necessary, additional speed-ups could be

obtained by parallelizing the computation of the penalty term when evaluating different local

search directions.

We restricted the attainable parameter space to all models that are classified as stable,

thereby explicitly excluding fragile models with long expected divergence times. In practice,

stable models and fragile models are both candidates for physiological dynamics as long as

simulation times are shorter than typical divergence times. Therefore, a more refined cost

function than the one used here (see Eq (35)) could involve a penalty proportional to the

expected divergence rate E[Tdiv]
−1, weighted by a corresponding regularization parameter.

The calculation of the expected divergence rate is more computationally expensive than the

determination of stability itself but would provide a continuous and potentially smooth pen-

alty function that could be superior to the all-or-nothing penalty term of the proposed optimi-

zation scheme.

Alternatively, a computationally efficient regularization is the L1-regularized maximum-

likelihood estimate. It provides a convex optimization problem that can be efficiently solved

[44–46]. For stronger regularization parameters, estimated coefficients tend towards zero.

Nonlinear Hawkes processes with vanishing spike-history filter (coefficients tending towards

zero) are always stable. This implies the existence of an optimally L1-regularized solution that
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is predicted to be stable. Therefore, strong L1-regularization might be an alternative approach

to model stabilization.

In addition, a more parametric description of the spike-history kernel could facilitate stabil-

ity. For example, the addition of an adapting (inhibitory) power-law component is likely to

prevent any runaway-excitation and has been observed experimentally under certain condi-

tions [17]. A parametric form like this will have to be accompanied by model selection and

appropriate goodness-of-fit tests.

A simple way to ensure stability of nonlinear Hawkes processes in simulations is to imple-

ment a “reset condition” following each spike when the previous spiking history is forgotten.

This leads to a renewal process with a well-defined stationary and unique solutions [47]. How-

ever, by definition, second-order statistics such as ISI correlations cannot be reproduced and

spike trains generated with this condition are not realizations from the original nonlinear

Hawkes model. Nevertheless, it might be an easy fix in certain applications where stable net-

work simulations are desired without explicitly reproducing physiological spike train statistics

[34].

Finally, we note that while previous work in the mathematical domains covers uniqueness

and existence theorems for stationary point processes [9, 21], it does not provide predictions

of dynamics, metastability, or whether steady-state rates are in a physiological regime. In the

case of Lipschitz-continuous nonlinearities, existing conditions for stability are overly conser-

vative and of little relevance for neurophysiologically plausible spike-history filters. We are

currently working on relaxations of these conditions that would allow easier characterizations

of stability of neuron models and neuronal networks, and we hope to report such results in the

future.

Importance of stable point process models for applications

The ability to predict stochastic stability of a given point process model has merit in its own

right and is therefore a main contribution of our study. While stability in simulations is neither

a necessary nor sufficient condition for the model fitting procedure itself, and a trade-off

between stability constraints and other standard regularized MLE approaches should be con-

sidered case by case, data-driven models that are guaranteed to be stable are of major impor-

tance for many applications. We will conclude by giving a few examples.

First, to understand brain circuits may mean to be able to rebuild them using artificial com-

ponents. PP-GLMs offer a direct and relatively well-understood method to derive neuron

models from data. But their use in rebuilding brain circuits in simulation is limited if stochas-

tic stability is uncertain. For the simple example of a PP-GLM fit of a neuronal network with

an embedded “synfire chain”, Zaytsev et al. ensured stability of the network by adding a reset

mechanism of the membrane after each spike to prevent run-away excitation [34].

Second, PP-GLMs are used in the context of (closed-loop) brain machine interfaces. Pres-

ent-day experiments may interface brain tissue to virtual actuators that in turn provide feed-

back signals to the brain (e.g., [48]). Future applications of such technology may replace

damaged neural tissue by simulated neural circuits which are connected bidirectionally to the

brain. Such circuits could potentially be made using PP-GLMs or related models, fitted to the

system that is being substituted. Stability of the model is essential in this case to exclude major

system malfunction.

A final application is to make spike-timing predictions from neuron models: Given parallel

recordings of neuronal activity, precise timing of single spikes can already be predicted using

PP-GLMs [5]. However, such predictions have been limited to the very near future (on the

order of milliseconds), but typically cannot be used for extended time differences into the
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future because of model instability. Ensuring stability of PP-GLMs potentially extends the time

horizon of spike timing prediction. This may enable applications in epilepsy treatment, seis-

mology, finance, and other fields that study self-exciting dynamical processes.

Materials andmethods

Ethics statement

For the non-human primate data, all procedures were in accordance with Brown University

Institutional Animal Care and Use Committee approved protocols and the Guide for the Care

and Use of Laboratory Animals. Approval for the human studies was granted by local Institu-

tional Review Boards (Partners Human Research Committee, Massachusetts General Hospital,

Harvard Medical School), and the participant was enrolled after obtaining informed consent.

Experimental details

Full experimental details for the electrophysiological data from the crab can be found in [6],

for the non-human primate data in [31], and for the human data in [30, 49].

The nonlinear Hawkes process

The nonlinear Hawkes process is a flexible class of self-exciting and/or self-inhibiting point

process models [9]. For a stochastic point process, the conditional intensity function is given

by [10]:

lðtjHtÞ ¼ lim
D!0

Pðspike inðt; t þ D�jHtÞ

D
; ð9Þ

whereHt is the history of the process (i.e., all K spikes at times tk up to time t).

In the nonlinear Hawkes model, lðtjHtÞ is assumed to take the following form:

lðtjHtÞ ¼ � ½Z � S�ðtÞð Þ ¼ �
XK

k¼1

Zðt � tkÞ

 !

; ð10Þ

where �ðxÞ : R! Rþ is a nonlinearity that maps the convolution of the spike train S with a

causal auto-history kernel ZðsÞ 2 R onto a non-negative conditional intensity lðtjHtÞ.

Here, we consider ϕ(x) = c exp(x) = exp(I0 + x) with c = exp(I0)> 0. The exponential non-

linearity implies that modulations from previous spikes interact in a multiplicative way [50].

The choice for the exponential nonlinearity has both theoretical [2, 7] and empirical support,

e.g., from electrophysiological experiments [51, 52]. We only consider the single-neuron (uni-

variate) case although nonlinear Hawkes processes can be similarly defined for coupled neuro-

nal ensembles with the corresponding matrix of auto- and cross-history kernels ηij(s).
Furthermore, we assume constant exogenous input, i.e., c� const. For time-varying inputs

c(t) or other (potentially non-stationary) exogenous inputs, a conservative stability analysis

can be performed by using csup = sup c(t) as long as such a bound exists.

Hence, the stochastic process is completely determined by two parameters: c (or equiva-

lently I0) and the causal auto-history kernel η(s).
To simplify analysis, we make certain assumptions about η(s). One is the introduction of an

absolute refractory period τref which indicates that the next spike can occur no closer than τref
to the last spike. It can be modeled by setting η(s) = −1 for s< τref. Given that action poten-

tials, the events that are modeled with the point process model, have an extent of around 1 ms,

we assume τref = 2 ms.
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Quasi-renewal approximation

In the nonlinear Hawkes model, the effects of previous spikes can accumulate. This leads, in

general, to a non-renewal process. For this specific class of point process models, there are no

closed-form formulas to predict mean intensities, inter-spike interval (ISI) distributions,

power spectra, or other properties of the process. We are interested in whether a nonlinear

Hawkes process with given parameters permits stable, finite steady-state firing rates.

To make progress, we need to approximate Eq (10). Our approach is based on the recently

introduced quasi-renewal approximation [26, 27]. To obtain an estimate of the mean rate of

the process A0, we average lðtjHtÞ over all possible spike trains S(t) prior to the last spike t̂ :

l
0
ðt; t̂Þ ¼ hlðtjHtÞiSðt<t̂ Þ

¼ c exp ðZðt � t̂ÞÞ h exp ð½Z � S�ðtÞÞiSðt<t̂ Þ:

We identify the second term with the moment-generating functional of S that can be expanded

in a series of moments [26, 53] which we truncate after the first order:

l
0
ðt; t̂Þ � c exp ðZðt � t̂ÞÞ exp

Z t̂

�1

ðeZðt�t
0Þ � 1ÞhSðt0ÞiSðt<t̂ Þ

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

A0

dt0

8

><

>:

9

>=

>;

; ð11Þ

with A
0
¼ hSðt0ÞiSðt<t̂ Þ being the first moment of the averaged spike train, which corresponds

to a constant by assuming stationarity. A0 is the steady-state firing rate which for now remains

unknown.

We can rewrite the integration bounds and introduce t ¼ t � t̂ as the time since the last

spike to obtain:

l
0
ðtÞ ¼ c exp ZðtÞ þ A

0

Z 1

t

ðeZðuÞ � 1
|fflfflfflffl{zfflfflfflffl}

gðuÞ

Þdu

8

><

>:

9

>=

>;

; ð12Þ

with γ(u) = eη(u) − 1 for the exponentiated kernel and G ¼
R1

0
gðuÞdu. Γ is used in the rescaling

of the filter for the analysis presented in Fig 9.

Using the quasi-renewal (QR) conditional intensity of Eq (12), we obtain the steady-state

survivor function S
0
and inter-spike interval (ISI) density P0 as:

S
0
ðtÞ ¼ exp �

Z t

0

l
0
ðuÞdu

� �

; ð13Þ

P
0
ðtÞ ¼ S

0
ðtÞl

0
ðtÞ; ð14Þ

which, in turn, predict the firing rate:

f ðA
0
Þ ¼

Z 1

0

t P
0
ðtÞdt

� ��1

: ð15Þ
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Because d
dt
S
0
ðtÞ ¼ �P

0
ðtÞ and integrating by parts:

f ðA
0
Þ ¼ �

Z 1

0

t
d

dt
S

0
ðtÞdt

� ��1

¼ �½tS
0
ðtÞ�

1

0
þ

Z 1

0

S
0
ðtÞdt

� ��1

¼

Z 1

0

S
0
ðtÞdt

� ��1

;

ð16Þ

which is continuous and differentiable in A0.

Stability based on the transfer function

Eq (16) defines an average input-output mapping for the single neuron, known as transfer or

gain function, which maps an assumed mean input rate A0 to the mean output rate of the pro-

cess f(A0). The dynamics of the model can be characterised based on the properties of the

transfer function. Fixed points of this map, Â
0
¼ f ðÂ

0
Þ, can be locally stable or unstable. To

detect the fixed points reliably, we search for the zero crossings of the function g(A0) = f(A0) −

A0.

A fixed point Â
0
is locally stable if g 0ðÂ

0
Þ ¼ d

dA0
gðA

0
ÞjA0¼Â0

< 0 and unstable if g 0ðÂ
0
Þ � 0.

Based on the number and location of fixed points of the mean firing rate map (Eq (16)) we can

then classify the model (see Results).

Prediction of divergence rate for fragile models

For fragile (metastable) models, we may ask whether there is an inter-spike interval x, which if

several spikes occur repeatedly with this interval, causes a divergence of the firing rate. If such

an x exists, we can compute the probability of this event. Although other routes to a divergent

rate are possible, this one yields an explicit value for its rate of occurrence and can be used as a

lower bound for the divergence rate of a metastable model.

Let t1 be the time of a spike of the process. Then the next spike occurs within the interval x

with probability 1� Sðt
1
þ x; t

1
Þ, where S is the survivor function. We may now iterate this

argument to compute the probability that, following t1, there is a sequence of K spikes with

intervals smaller or equal to x, as:

pregðxÞ ¼ ð1� Sðt
1
þ x; t

1
ÞÞð1� Sðt

1
þ 2x; t

1
þ xÞÞ . . .

¼

YK

k¼1

½1� Sðt
1
þ kx; t

1
þ ðk� 1ÞxÞ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pðx;kÞ

ð17Þ

To evaluate Eq (17) and compute S, we need to approximate the intensity function lðtjHtÞ for

the case that up to t1 we do not have information about the spike history apart from the rate

A0, but from t1 on it is defined as the regular firing case with spike times tk = t1 + (k − 1)x for
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k� 1. This gives rise to a similar quasi-renewal approximation as for Eq (12):

lregðt; xÞ ¼ hlðtjHtÞiSðt<t1Þ

¼ cexp
X1

k¼1

Zðt � tkÞ

( )

hexp ½Z � S�ðtÞf giSðt<t1Þ

� cexp
X1

k¼1

Zðt � t
1
� ðk� 1ÞxÞ

( )

exp

Z t1

�1

ðeZðt�t
0Þ � 1ÞA

0
dt0

� �

¼ cexp
X1

k¼1

Zðt � t
1
� ðk� 1ÞxÞ

( )

exp A
0

Z 1

t�t1

gðsÞds

� �

:

ð18Þ

Inserted into Eq (17), we then first check whether the sequence p(x, k) increases monotonically

towards 1, setting t1 = 0. If for a given k we have p(x, k)> p(x, k + 1), we terminate the iteration

because x does not seem to lead to the regular divergence and return preg = 0. If, in contrast,

for some value of k, p(x, k) is close to 1, we have found a divergent case that occurs with proba-

bility preg(x), as given by Eq (17) with K = k.

This procedure is performed for all x 2 ½tref ;A
�1

0
�, and the maximummaxx preg(x) is

returned. As preg(x) is the probability of the regular divergence with intervals x or shorter to

occur after any spike of the process, the rate of divergence is thus bounded from below by:

rdiv � A
0
max

x
pregðxÞ : ð19Þ

This provides an upper bound for Tdiv ¼ r�1

div .

Bursting and the regular spiking limit

Apart from the dynamic stability that we have discussed so far, a particular limit of the space of

possible spike trains is of special interest. In case of a divergent firing rate, which occurs in

unstable or fragile models, the analysis of the gain function predicts that the firing rate satu-

rates at the limit given by the inverse of the refractory period, A
0
¼ t�1

ref . However, there is only

one spike train that can realize this firing rate, which is the regular spike train:

SxðtÞ ¼
X1

k¼�1

dðt � kxÞ; ð20Þ

with inter-spike-interval x = τref. Here θ denotes the Heaviside function and δ denotes the
Dirac delta function.

For the regular spike train Sx, with x> τref being close to the refractory period, to be a possi-

ble mode of firing of the model, it is necessary that the conditional intensity of the neuron (Eq

(10)), evaluated at time x after the last spike (at t − x),

l
K

regðxÞ ¼ c exp
XK

k¼1

ZðkxÞ

" #

; ð21Þ

reaches a sufficiently high value, so that the rate x−1 can be maintained, when the regular spike

train extends into the past forever, lregðxÞ ¼ lim K!1l
K

regðxÞ. But what precisely is that suffi-

ciently high value of λreg? Since after τref the refractory period is over, and because the condi-

tional intensity changes approximately on the time scale of the filter η that is much greater

than the remaining interval x − τref, we may approximate the mean output inter-spike-interval
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of the process by:

mregðxÞ ¼ tref þ l
�1

regðxÞ : ð22Þ

Now we can formulate a condition on the divergent firing model class: If the expected interval

μreg in the regular firing case is smaller or equal to the input interval x, the regular firing state

can be maintained. From Eqs (22) and (21), we obtain the condition:

X1

k¼1

ZðkxÞ � � ln cðx � trefÞ½ � : ð23Þ

This condition is instructive in two ways: First, to maintain the interval x = τref, the series on

the left hand side (LHS) has to diverge to positive infinity quicker than the logarithm on right

hand side (RHS). Second, in case the series on the LHS of Eq (23) converges for all x� τref,

there is a minimum value of x for which Eq (23) is still fulfilled. Then x−1 is the peak firing rate

that this model can maintain close to the regular spiking limit.

Many models, even ones with an upper unstable fixed point, might not fulfill Eq (23). These

models are fragile, but also cannot maintain the regular firing mode. Nonetheless we may ask

for how many regular spikes they can maintain the tonic activity. This can be addressed by a

modified condition like Eq (21) considering K<1. By analogous reasoning as above, we

arrive at the condition:

XK

k¼1

ZðkxÞ � � ln cðx � trefÞ½ � : ð24Þ

For a given tonic firing interval x close to τref (e.g., defined as x�1 ¼ 0:9� t�1

ref ), the maximum

Kmax for which Eq (24) is fulfilled yields a good approximation of the duration Kmax x of the

intermittent regular spiking episodes of the model.

If the spike-history filter is a sum of two exponential terms, the condition in Eq (24) takes

the specific form of a geometric series:

�ln½cðx� trefÞ� �

XK

k¼1

ZðkxÞ ¼

XK

k¼1

Jre
�kx=tr þ Jae

�kx=ta
� �

¼ Jre
�x=tr

XK

k¼0

e�kx=tr þ Jae
�x=ta

XK

k¼0

e�kx=ta

¼ Jre
�x=tr

1� e�Kx=tr

1� e�x=tr
þ Jae

�x=ta
1� e�Kx=ta

1� e�x=ta

¼ Jr
1� e�Kx=tr

ex=tr � 1
þ Ja

1� e�Kx=ta

ex=ta � 1
;

ð25Þ

which for K!1 becomes condition Eq (23), which here is:

�ln cðx � trefÞ½ � � Jrðe
x=tr � 1Þ

�1
þ Jaðe

x=ta � 1Þ
�1
: ð26Þ

The boundary defined by Eq (26) in the (Jr, Ja) space is a line: For every Jr there is a maximum

Jmax
a from which on Eq (26) is true. For Ja < Jmax

a , in contrast, we are assured that the regular fir-

ing mode with interval x is unstable. Models for which Eq (26) is not fulfilled will show inter-

mittent bursting activity (compare with Fig 7).
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Estimation of average divergence time from simulations

We estimate the average divergence time of a given neuron model by simulating N = 48 inde-

pendent neurons for T = 1000 s each. A neuron is said to have diverged at time t if its average

firing rate in the interval [t − 1, t + 1] seconds exceeds lthr ¼ 0:9� t�1

ref . Alternatively, the firing

rate may stay below λthr until the end of the simulation (“censored observation”).

We can now derive the maximum-likelihood estimate of the divergence time. We assume

that neurons diverge randomly with rate r = 1/Tdiv. This seems to be justified in practice based

on our simulations. Then, the likelihood of observing a divergence time y smaller than T is
1

Tdiv
e�y=Tdiv and the probability to observe a censored observation of length T is given by:

Z 1

T

1

Tdiv

e�y=Tdivdy ¼ e�T=Tdiv : ð27Þ

If we denote the observed divergence times as y1, y2, . . ., yk, and we have Nc = N − k censored

observations, the overall log-likelihood function is given by:

logL ¼
Xk

i¼1

log
1

Tdiv

e�yi=Tdiv
� �

þ Nc log ðe
�T=TdivÞ ð28Þ

¼ �ðN � NcÞ log ðTdivÞ �
NcT

Tdiv

�

P
yi

Tdiv

: ð29Þ

At the maximal (log-)likelihood estimate T̂ div, the gradient with respect to Tdiv has to vanish:

@ logL

@Tdiv

�
�
�
�
Tdiv¼T̂ div

¼ �
N � Nc

T̂ div

þ
NcT

T̂ 2

div

þ

P
yi

T̂ 2

div

¼
!

0 ; ð30Þ

T̂ divðN � NcÞ ¼ NcT þ
X

yi ; ð31Þ

T̂ div ¼
NcT þ

P
yi

N � Nc

: ð32Þ

This assumes that there was at least one non-censored observation (Nc< N). Otherwise, we set

T̂ div ¼ 1. Note that if Nc> 0, T̂ div may be larger than T.

Model estimation via maximum-likelihood optimization

If η(s) in Eq (10) is parameterized through a set of basis functions {Bi(s)} with linear coeffi-

cients {βi}, then η(s) = ∑i βi Bi(s). All model parameters fI
0
;~bg can be estimated via the statisti-

cal framework of generalized linear models (GLMs) [2]. We discretize the spike train to obtain

a series of spike counts ni in each time window of length Δ = 1 ms. The expected spike count is

given by the discrete-time approximation of Eq (10) as E[ni] = λiΔ. The log-likelihood is then

proportional to:

logL /
X

i

ðni log ðliDÞ � liDÞ: ð33Þ

For the estimation of physiologically plausible model parameters (Fig 9), we used 10 raised

cosine functions [4] with logarithmically spaced peaks up to 400 ms as basis functions {Bi(s)}

for the spike-history filter. In addition, an absolute refractory period of τref = 2 ms was

enforced. To improve numerical convergence and to ensure finite parameters for very sparse
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data sets, we added a small L2-penalty term to the log-likelihood function so that the maxi-

mum-likelihood estimate (MLE) corresponds to the minimum of the cost function:

CðI
0
;~bÞ ¼ � logLðI

0
;~bÞ þ a

X10

i¼1

b
2

i ; ð34Þ

with regularization parameter α = 5 � 10−4.

Stabilization-constrained maximum-likelihood estimation

For the stabilization procedure (Fig 10), we performed the maximum-likelihood estimation

(see previous section) under the additional constraint that the model is predicted to be stable

by the QR approximation. That is, we optimized the cost function:

CðI
0
;~bÞ¼

� logLðI
0
;~bÞ þ a

P
10

i¼1
b
2

i if the model fI
0
;~bg is predicted to be stable;

1 otherwise:
ð35Þ

(

We used a gradient-free optimization algorithm (Nelder-Mead) with a convergence criterion

on the change in parameter values (kD
~bk

k~bk
< 10

�4).

The initial condition was chosen as the MLE solution for which positive parameter coeffi-

cients were set to zero. Because basis functions Bi(s) are non-negative, this corresponds to a

non-positive spike-history filter and ensures that the initial evaluation of the cost function is

finite. Then, the optimization starts from a region with finite cost and allows the algorithm to

descend to a (local) minimum.

Simulation

All simulations with the spike-history filter consisting of one or two exponentials (Figs 5 to 8)

were performed using NEST [54], with neuron model “pp_psc_delta” in time steps of 0.5 ms.

All other spike train simulations were performed with custom-written MATLAB software with

a time discretization of 0.2 ms. Analysis and optimization were performed in MATLAB and

Python.

Supporting information

S1 Fig. Less-rapidly growing nonlinearities do not prevent instability. (A) In addition to the

exponential nonlinearity used in Fig 2 (blue), we also simulated spike trains using two less rap-

idly growing nonlinearities: First, a linear-rectifier function, i.e., f(x) = [x + 1]+ which is x + 1

for x> −1 and 0 otherwise. The offset is chosen so that the function matches the exponential

nonlinearity at x = 0 (green). In addition, we used f(x) = log(1 + ex) (red), i.e., a smooth inter-

polation between the exponential for small x with linear asymptotic behavior for large x. (B)

Simulated spike trains for two additional nonlinearities for the two data sets that were shown

to diverge in simulations (Fig 2B and 2C).

(TIF)

S2 Fig. Same as Fig 7A with c = 2 s−1. Spike trains are simulated from a nonlinear Hawkes

model with fixed baseline c = 2 s−1 and an auto-history kernel consisting of two exponentials

with amplitudes Jr, Ja, and corresponding time constants τr = 0.02 s and τa = 0.1 s. Observed

divergence times for simulated spike trains are color-coded (same scale as in Fig 5). In the

dashed region, no finite divergence times were observed.

(TIF)
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S3 Fig. Same as Fig 7A with c = 10 s−1. Spike trains are simulated from a nonlinear Hawkes

model with fixed baseline c = 10 s−1 and an auto-history kernel consisting of two exponentials

with amplitudes Jr, Ja, and corresponding time constants τr = 0.02 s and τa = 0.1 s. Observed

divergence times for simulated spike trains are color-coded (same scale as in Fig 5). In the

dashed region, no finite divergence times were observed.

(TIF)
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