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�is paper relies on the concept of next generation matrix de	ned ad hoc for a new proposed extended SEIR model referred
to as ��(�)�-model to study its stability. �e model includes � successive stages of infectious subpopulations, each one acting at
the exposed subpopulation of the next infectious stage in a cascade global disposal where each infectious population acts as the
exposed subpopulation of the next infectious stage. �e model also has internal delays which characterize the time intervals of the
coupling of the susceptible dynamics with the infectious populations of the various cascade infectious stages. Since the susceptible
subpopulation is common, and then unique, to all the infectious stages, its coupled dynamic action on each of those stages is
modeled with an increasing delay as the infectious stage index increases from 1 to �. �e physical interpretation of the model is that
the dynamics of the disease exhibits di
erent stages in which the infectivity and the mortality rates vary as the individual numbers
go through the process of recovery, each stage with a characteristic average time.

1. Introduction

�ere is a very relevant interest in the literature concerning
di
erent aspects of dynamics of populations and related
biological modeling issues including their positivity, stability,
controllability, and observability and appropriate design of
control rules for suchmodels.�e interest is twofold; namely,
(a) on the one hand they have an undoubted mathematical
interest because of the rich nonlinear dynamics they can
exhibit which makes its analysis nontrivial in most cases,
(b) on the other hand they have relevant interests in the
real world concerning aspects such as health, resource
exploitation, or rationalization of the labor management
force towards economical issues. Biological and population
dynamics models are usually de	ned by a variety of math-
ematical tools. Among them we can 	nd di
erential and
di
erence equations, eventually including internal delayed
dynamics (i.e., delays in the state) or external delays (i.e.,

delays in the forcing action, if any) [1–8]. �e delays can be,
in general, modeled as point delays or as distributed delays
and as constant or as time-varying delays. �e background
literature on the various involved subjects is exhaustive. In
that context, important interest has been devoted to models
of interaction of species versus their habitat, such as, for
instance, the various Beverton-Holt models and some related
generalizations, with their intrinsic problems of positivity,
equilibrium analysis, stability, oscillatory solutions, and their
control; see, for instance, [9, 10] and references therein.
Important attention is paid to the study of their inverse
models and their control which are equivalent to the initial
direct ones while being much more tractable mathemati-
cally [9, 10]. Control rules through the online design of
the habitat carrying capacity have been dealt with and
applied in aquaculture exploitation [9]. Logistic equations,
predator-prey models, and related oscillatory regimes have
been also studied in the background literature (see, e.g.,

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2015, Article ID 379576, 15 pages
http://dx.doi.org/10.1155/2015/379576



2 Discrete Dynamics in Nature and Society

[11–13]). On the other hand, epidemic models of various
kinds ranging from very elementary to sophisticated have
received and still receive important attention. �e literature
is exhaustive (see, e.g., [1–8, 14–35]). Basic models are named
via acronyms as SIR (susceptible-infectious-removed by
immunity), SEIR (susceptible-infected-infectious-removed
by immunity), or SVEIR (susceptible-vaccinated-infected-
infectious-removed-by-immunity) models according to the
involved subpopulations with coupled dynamics. An alterna-
tive popular name for the infected population is “the exposed”
(those without external symptoms but already incubating the
disease). An alternative popular name for the removed-by-
immunity population is “the immune.” �ere are also a wide
variety of extended models available built with combinations
and extensions of the above ones. �e main properties dealt
with are the calculation and related stability analysis of
the disease-free and endemic equilibria, the infection per-
manence, which leads to the impossibility of reaching the
disease-free equilibrium, and the positivity of the trajectories
whose analysis combined with the boundedness of the total
population leads to the internal stability [2, 3, 18, 20, 22, 24] of
thewholemodel implying the boundedness of all the subpop-
ulations [2–5, 18, 20, 22, 24–28, 30, 31, 35]. �e control action
on an epidemic model is performed through vaccination
rules which can be of di
erent types, for instance, constant
or based either on linear or nonlinear feedback of some
measurable or known subpopulations, mainly, the infectious
population. Vaccination laws can also be of an impulsive
nature (in practice, acting with large e
orts along very short
periods of time) or of a combined regular/impulsive nature [2,
5–7, 26–31]. In particular, the technique of adaptive sampling
to design the relevant vaccination time instants is combined
with the design of vaccination rules in [30] so as to increase
the vaccination performance towards the disease eradication.
It has to be pointed out that epidemic models are essentially
uncontrollable so that it is not possible to drive simultane-
ously via a vaccination rule all the subpopulations to pre	xed
arbitrary values in 	nite pre	xed time intervals since the total
population is a constrain for all time for the sum of all the
subpopulations [2, 7, 26]. However, most of the models are
output controllable, or at least output stabilizable, with the
outputs being de	ned “ad hoc” by either the infected and/or
infectious subpopulations or the susceptible plus the immune
subpopulations, those de	ned to be the output of the dynamic
system, if necessary.�e relevant idea in the epidemicmodels
is that there is a transfer in-between subpopulations along
the infection process (being, therefore, uncontrollable). �e
agent transmitting the infection is a quadratic dynamics of
the susceptible and infected population with some either
constant or functional factors (the incidence rate) which
depends on a parameter or functional factor (the coe�cient
transmission rate) which depends on each infectious disease
and the population nature [3, 16]. �ere is a very basic
parameter to analyze, called the basic reproduction number,
which has the following two interpretations.

(a) If it ranges from zero to one, the disease-free equi-
librium is asymptotically stable and the infection

asymptotically vanishes without requiring any exter-
nal action on the system. In this case, the Jacobian
of the matrix of the dynamics of the epidemic model
de	ning the linearized state-trajectory has all its
eigenvalues in the stable region. If it exceeds one,
the disease-free equilibrium is unstable so that the
state trajectories can converge asymptotically to the
endemic equilibrium or exhibit an oscillatory behav-
ior.

(b) �e infection cannot progress if the reproduction
number is less than one since the minimum available
initial infected population to propagate the disease is
below its critical value for spreading.

However, the explicit expression of the reproduction
number is neither direct nor easy to obtain in sophisticated
epidemic models. �erefore, more advanced techniques,
based on the so-called next generation matrix, have been
proposed to de	ne such a reproduction number; see, for
instance, [8, 33–35]. More recent studies on epidemic models
are described in [36, 37]. �e importance of demographics
is taken into account in [36], while the stability of the
equilibrium points of a delayed disease is described in [37].
�is paper addresses the concept of the next generation
matrix for a new proposed extended continuous time SEIR
model referred to as ��(�)� model with delays where there
are �-successive stages of infectious subpopulations, each one
acting at the exposed subpopulation of the next infectious
stage in a cascade global disposal. Since the susceptible sub-
population is common to all infectious stages, its impact on
each of those stages is modeled with an increasing delay as
the infectious stage index increases from 1 to �. A second
related model is used without the above delay. Both models
are also reformulated with discretized versions. �e physical
interpretation of the ��(�)� models is that the incubating
period of any disease is not identical for all the susceptible
individuals so that they can become infected at di
erent
times. So, each of the infectious stages is an infectious
class which includes a certain number of individuals which
become infected at times centered about a reference average
time instant which is considered common for the whole
group. �e stability analysis is performed by de	ning a basic
reproduction number from an ad hoc next generationmatrix
for this model. �e basic properties which are proved are
as follows. (1) All the trajectories remain bounded since
the di
erential system is nonnegative, as it is the alternative
discrete model, in the sense that all the subpopulations
are nonnegative for all time, and the total population is
uniformly bounded for all time. (2) If the de	ned basic
reproduction number is less than one, then the disease-
free equilibrium point is globally asymptotically stable as
it is proved through the de	nition and use of a Lyapunov
function. In this case, the endemic equilibriumpoint is locally
unstable and, furthermore, it is unfeasible (i.e., nonreachable
by any trajectory) since it is not compatible with the system
positivity. (3) If such a basic reproduction number is equal
to one, then the endemic equilibrium does not exist as such
since it is identical to the disease-free equilibrium and then
globally stable since the system is positive and the total
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population is uniformly bounded for all the time so that
none of the subpopulation can be unbounded. (4) If the
basic reproduction number exceeds one then the disease-free
equilibrium point is locally unstable.

2. The Model

�is section contains the description and main properties
of the introduced models. Previous models of multistaged
infectious diseases have been described in [38] including (a)
the so-called epidemic models with multistaged infectious
period where the susceptible population in�uences the 	rst
infectious stage, that one, the second infectious stage, and so
on; (b) the epidemic models with several types of infective
subpopulations which are in�uenced in a parallel disposal
and all of them have transitions to a unique removed pop-
ulation; (c) the epidemic among a number of homogeneous
groups (each susceptible group generates its own SIRmodel).
It can be considered, in a general context, that the structure
proposed in this paper lies in the 	rst of the above classes of
the multistaged models.

2.1. ��(�)� Model with No Delays. �e proposed model is
described as a succession of infectious stages of the disease,
each one with a characteristic infectivity rate ��.�e suscepti-
ble subpopulation goes through each infected subpopulation
until they reach the recovered subpopulation, immune to the
disease for a certain time until they become susceptible again.
�e susceptible population is born at a rate � while the death
rate of each infectious subpopulation is ]� = �+	�, with �being
the natural death rate of the population and 	� the mortality
rate associated with the disease at each infectious stage. �e
transition rate from the 
th infectious subpopulation to the
next one as well as the transition rate from the last infectious
subpopulation to the recovered one is denoted by ��, while
the transition from the recovered to the susceptible is �−1. All
the parameters are assumed to be positive so as to possess
full physical meaning. �e equations for the dynamics of the
subpopulations are coupled as follows:

̇�(�) = � − (� + �∑
�=1
����(�))�(�) + �(�)� ,

̇�1(�) = �(�) �∑
�=1
����(�) − (]1 + �1)�1(�),̇��(�) = ��−1��−1(�) − (]� + ��)��(�) ∀� = 2, 3, . . . , �,�̇(�) = ����(�) − (� + �−1)�(�),

(1)

where � and � are the susceptible and recovered subpop-
ulations and �� are the various infectious subpopulations
corresponding to the di
erent infection stages. For notation
simplicity, the vector x is de	ned as

x(t) = (�1(�), �2(�), . . . , ��(�), �(�), �(�))�. (2)

Now the positivity, existence of equilibrium points, and
stability are studied for this model.

2.1.1. Positivity and Boundedness

Proposition 1. All the subpopulations remain nonnegative for
all time for any given nonnegative initial conditions, �� ≥ 0∀
 ∈ [1, . . . , � + 2] and all � ≥ 0.
Proof. Let �� > 0 be so that �(��) = 0 and �(��), ��(��) ≥ 0 ∀
 ∈[1, . . . , �]. �en, from (1)̇� (��) = � + �(��)� ≥ 0. (3)

Now, let �1 > 0 be so that �1(�1) = 0 and �(�1), ��(�1) ≥ 0∀
 ∈ [2, . . . , �]. �en, from (1)̇� (�1) = � (�1) �∑
�=2
����(�1) ≥ 0. (4)

For the next (� − 1) infectious subpopulations the same
operation is made: let �� > 0 be so that ��(��) = 0 and �(��),��(��) ≥ 0 ∀
 ̸= �. �en, from (1)̇�� (��) = ��−1��−1 (��) ≥ 0. (5)

Finally, let �� > 0 so that �(��) = 0 and �(��), ��(��) ≥ 0,∀
 ∈ [1, . . . , �]. �en, from (1)�̇ (��) = ���� (��) ≥ 0. (6)

Since it has been proven that none of the subpopulations
will have a negative derivative at any time instant when they
vanish and the rest of the subpopulations are nonnegative,
then all the subpopulations must have nonnegative values for
all time.

Not only does the epidemic system possess nonnegative
solutions under nonnegative initial conditions, but also the
total population and all the subpopulations are bounded for
all time with a uniform 	nite upper-bound as it is discussed
in the subsequent two results.

Proposition 2. 
e total populationΣ�+2�=1 ��(�) = �(�) is �nite-
ly upper-bounded for any given nonnegative initial conditions.

Proof. If we sum up (1), we obtain

�̇(�) = � − ��(�) − �∑
�=1
	���(�). (7)

Since Proposition 1 guarantees the nonnegativity of subpopu-
lations and all the parameters are assumed to be positive, then
as 	� ≥ 0 and ��(�) ≥ 0 for all time � ≥ 0, ∑��=1 	���(�) ≥ 0 for
all � ≥ 0 and�̇(�) = � − ��(�) − �∑

�=1
	���(�) ≤ � − ��(�). (8)
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�e solution to the di
erential inequality (8) is given by�(�) ≤ !−	
�(0) + �� (1 − !−	
) ≤ max(� (0) , �� ) (9)

for all � ≥ 0. �us, the total population is 	nitely upper-
bounded and the proposition is proved.

Corollary 3. All the subpopulations are �nitely upper-
bounded for all time for any given nonnegative initial condi-

tions, obeying the constraints ��(�) ≤ �(0)!−	
 +�∗��(1 − !−	
)∀
 ∈ [1, 2, . . . , � + 2], where�∗�� = �/� is the total population
at the disease-free equilibrium.

2.1.2. Equilibrium Points. �e equilibrium points are
obtained by zeroing the le�-hand side of (1), resulting in

0 = � − (� + �∑
�=1
����(�))� (�) + �(�)�

0 = �(�) �∑
�=1
����(�) − (]1 + �1)�1(�)0 = ��−1��−1(�) − (]� + ��)��(�) ∀� = 2, 3, . . . , �0 = ����(�) − (� + �−1)�(�).

(10)

�is system possesses in general two solutions. �e 	rst one
is the disease-free equilibrium point (DFE) in which the
infectious and recovered subpopulations vanish so that the
susceptible becomes the total population�∗dfe:�∗dfe = ���∗�dfe = 0 ∀
 ∈ [1, 2, . . . �]�∗dfe = 0 (11)

and the endemic equilibrium point (END), described as

�∗end = ( �∑
�=1
��Λ �)−1

�∗1,end = (1 + ��) (−� + �∑��=1(��Λ �))(�� + ∑��=1 ]�Λ �) (]1 + �1)∑��=1 ��Λ �= (�� + 1) �(�∗dfe − �∗end)(�� + ∑��=1 ]�Λ �) (]1 + �1)�∗�,end = ��−1�� + ]�
�∗�−1,end ∀� ∈ [2, 3, . . . , �]

�∗end = ��� + �−1 �∗�,end,

(12)

is Λ � = ∏�−1�=1��/∏��=1(]� + ��). Note that if �∗end > �∗dfe, then�∗� < 0 ∀� ∈ [2, 3, . . . , �], so the endemic equilibrium is
not feasible so that the only reachable equilibrium point is
the disease-free equilibrium point. In the next section, it
is seen that this situation corresponds to the reproductive
number �0 to be less than one. Once we have the expressions
of both equilibrium points, we are prepared to discuss their
equilibrium in the next section.

2.1.3. Stability Analysis: Next Generation Matrix. �e local
stability of the DFE point is proved in this section a�er
introducing the reproductive number�0, which is the average
number of new cases that produce an infected individual
during the average duration of the disease. In order to 	nd
this number easily, a next generation matrix with small
domain is constructed as follows. �e Jacobi matrix de	ned
around the disease-free equilibrium is composed of four
di
erent submatrices: *, Σ, -, and 5:

J = 6ẋ6x 77777777dfe

=
(((((((((((
(

(�1�dfe − (]1 + �1)) �2�dfe ⋅ ⋅ ⋅ ��−1�dfe ���dfe 0 0�1 −(]2 + �2) ⋅ ⋅ ⋅ 0 0 0 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅ −(]�−1 + ��−1) 0 0 00 0 ⋅ ⋅ ⋅ ��−1 −(]� + ��) 0 0−�1�dfe −�2�dfe ⋅ ⋅ ⋅ −��−1�dfe −(���dfe − ��) −(� + �−1) 00 0 ⋅ ⋅ ⋅ 0 0 1/� −�

)))))))))))
)= (* − Σ 0- 5) ,

(13)
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where

* =(
(

�1�dfe �2�dfe ⋅ ⋅ ⋅ ��−1�dfe ���dfe0 0 ⋅ ⋅ ⋅ 0 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅ 0 00 0 ⋅ ⋅ ⋅ 0 0
)
)

(14)

would be the transmission matrix, representing the appear-
ance of new infections, while

Σ =(
(

(]1 + �1) 0 ⋅ ⋅ ⋅ 0 0−�1 (]2 + �2) ⋅ ⋅ ⋅ 0 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅ (]�−1 + ��−1) 00 0 ⋅ ⋅ ⋅ −��−1 (]� + ��)
)
)
(15)

represent the remaining transitions of the infected sub-
population unrelated as the deaths, or the transition from
recovered to susceptible. �en, the inverse of that matrix Σ−1
would represent the average time in which a subpopulation
stays in an infected state. �e next generation matrix will be
then de	ned as K = −FΣ−1, and the reproductive number�0 corresponds to the spectral radius of K. �us, the spectral
radius is given by

D(K) = �0 = �∑
�=1

���∗dfe∏�−1�=1��∏��=1(�� + ]�)
= �∗dfe �∑

�=1
��Λ � = �∗dfe�∗

end

. (16)

�us, the stability of the disease-free equilibrium point is
directly related to this spectral radius. In this way, it will
be locally asymptotically stable when �0 < 1, while �0 >1 will imply instability of such a DFE point [35]. Studies
of epidemic models with a parallel disposal of several sub-
models of susceptible-infectious-recovered subpopulations
have proven that, for �0 > 1, the endemic point is locally
asymptotically stable [39]. Remember that it has been proven
in previous section, (12), that if �0 < 1, the only reachable
point is the disease-free equilibrium, which is also locally
asymptotically stable. If �0 = 1, both equilibrium points
coincide (see (12)).

2.2. Discrete ��(�)� Model with No Delays. �is section
considers the discrete-time counterpart of the continuous-
time model (1). In the discrete framework notation the
subpopulations are written as ��(�) = ��� for any time� ∈ [EF, (E + 1)F). �e discrete model will be based on the
continuous one from (1), with a step size F > 0. �us, it is

de	ned as the change ẋ� → (x�+1 − x�)/F, with x� = (�1� , �2� ,. . . , ��� , ��, ��, ) as in the continuous subpopulations from (2).
�erefore, it is obtained for E ≥ 1 that��+1 = F� + (1 − F� − �∑

�=1
F�����)�� + ��F�−1

��+1 = ����� + (1 − F� − F�−1)���1�+1 = �� �∑
�=1
F����� + (1 − F]1 − F�1)�1�

���+1 = F��−1��−1� + (1 − F]� − F��)��� ∀� = 2, 3, . . . , �.
(17)

Proposition 4. 
e discrete system described in (17) is non-
negative for any nonnegative initial conditions if the step size F
is small enough to satisfyF ≤ min [F1, F2, F3, . . . , F�+2] (18)

with F−1�+2 = ]�+�� ∀� ∈ [1, . . . , �], F−12 = �+�−1, and F−11 =� + ���(�1 + �/�), where �� = max1≤�≤�[��] and �1 is the
total initial population (i.e., the total population at the initial
time).

Proof. Given a set of nonnegative subpopulations at the Eth-
sample, from the second equation of (17), it can be deduced
that ��+1 = �� (1 − F (� + �−1)) + �����≥ ��(1 − F(� + �−1)). (19)

�en, ��+1 ≥ 0 if F ≤ F2. �e same method can be applied for
guaranteeing the nonnegativity of ���+1 ∀� ∈ [1, . . . , �]. From
the third and fourth equations at (17), it is deduced that���+1 ≥ (1 − F (]� + ��)) ��� ∀� ∈ [1, . . . , �] . (20)

�en, ���+1 ≥ 0 ∀� ∈ [1, . . . , �] if F ≤ min1≤�≤�[F�+2].
In order to guarantee the nonnegativity of the susceptible

subpopulation, 	rst a maximum value is set for��. From (17)��+1 + ��+1 �∑
�=1
���+1

= ��+1 = �F + �� (1 − �F) − �∑
�=1
���(]� − �),��+1 ≤ �F + ��(1 − �F),��+1 ≤ (1 − �F)�−1�1 + �F1 − (1 − �F)��F ,

(21)

then ∀E ≥ 1, and it can be said that��+1 ≤ max[(1 − �F)�−1�1] +max[�F1 − (1 − �F)��F ]
= �1 + �� . (22)
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So from the 	rst equation at (17) it is known that

��+1 ≥ (1 − F(� + �∑
�=1
�����))��. (23)

�en, given that ��� ≤ �� ∀E, � > 0, it is de	ned that F1 =1/(� + ��(�1 + �/�)) so that the susceptible subpopulation
remains nonnegative ifF ≤ F1 = 1� + �� (�1 + �/�) ≤ 1� + ∑��=1 ����� . (24)

�us, for a step size F ≤ min[F1, F2, F3, . . . , F�], the system
remains positive.

�e equilibrium points are obtained by making ��+1 =�� = �∗ in (17):

�∗ = F� + (1 − F� + �∑
�=1
F����∗)�∗ + �∗F�−1

�∗ = ����∗ + (1 − F� − F�−1)�∗�∗1 = �∗ �∑
�=1
F����∗ + (1 − F]1 − F�1)�1∗

�∗� = F��−1��−1∗ + (1 − F]� − F��)��∗ ∀� = 2, 3, . . . , �.
(25)

�e solutions of the above system of equations are the
same as in the continuous-time case and given by (11) and
(12) for the disease-free and endemic equilibrium points,
respectively. A next generation matrix approach for discrete
models is made so that the Jacobian matrix evaluated at the
disease-free equilibrium is as follows:

J = 6x�+16x�
x�+1 − xdfe = J(x� − xdfe). (26)

�e Jacobian takes the form

J = I −
(((((((((((
(

F(]1 + �1 − �1�dfe) −�2�dfeF ⋅ ⋅ ⋅ −��−1�dfeF −���dfeF 0 0−F�1 F(]2 + �2) ⋅ ⋅ ⋅ 0 0 0 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅ F(]�−1 + ��−1) 0 0 00 0 ⋅ ⋅ ⋅ −F��−1 F(]� + ��) 0 0�1�dfeF �2�dfeF ⋅ ⋅ ⋅ ��−1�dfeF (���dfe − ��)F (� + �−1)F 00 0 ⋅ ⋅ ⋅ 0 0 F/� F�

)))))))))))
)

. (27)

�e Jacobian can be separated into four submatrices as fol-
lows:

J = (* − Σ 0- 5) (28)

with the fertility submatrix �×�, related to the new infections
and represented as * and the transition submatrix Σ, with the
same dimensions, related to the transition of the individuals
between the di
erent subpopulations resulting in

Σ =((((
(

F(]1 + �1) 0 ⋅ ⋅ ⋅ 0 0−F�1 F(]2 + �2) ⋅ ⋅ ⋅ 0 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅ F(]�−1 + ��−1) 00 0 ⋅ ⋅ ⋅ −F��−1 F(]� + ��)
))))
)

− I,

* =((((
(

�1�dfeF �2�dfeF ⋅ ⋅ ⋅ ��−1�dfeF ���dfeF0 0 ⋅ ⋅ ⋅ 0 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅ 0 00 0 ⋅ ⋅ ⋅ 0 0
))))
)

.
(29)
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A simple calculation with the Jacobian matrix results
in an equivalent decomposition of the whole linearization
about the equilibrium system into two complete subsystems,
one describing the infection progress while the other one
expresses the disease-free subpopulation dynamics as follows:

y�+1 = (* − Σ)y�,
l�+1 = -y� + 5l�. (30)

�e term Σ�,� represents the fraction of the individuals from
the �th infected subpopulation that will survive and move to
the 
th. Because of these demographic interpretations, from
Perron-Frobenius theory on the maximum modulus [40],
the parameters are set so that the column sum of Σ and
the maximum moduli of its eigenvalues are less than one;
that is, D[Σ] < 1, so as to exclude the case of an immortal
population.�en, it can be established for the vector of initial

infectious individuals that lim�→∞(−Σ)�y0 = 0. �en, the
next generation matrix P can be de	ned as the sum of the
infections ever produced by the infected individuals at �� for
all the time they remain infectious, which would be *yk at ��,−*Σyk at ��+1, and *Σ2yk at ��+2 ad in	nitum:Py� = *(y� − Σy� + Σ2y� − Σ3y� + Σ4y� ⋅ ⋅ ⋅), (31)

whereP represents the distribution of all infections accumu-
lated during the lifespan of the infectious population:P = *(� − Σ + Σ2 − Σ3 + Σ4 ⋅ ⋅ ⋅) = *(� + Σ)−1. (32)

�en the basic reproduction number is de	ned as the spectral
radius of thePmatrix�0 = D[P] = D[*(�+Σ)−1].�e spectral
radius of the * − Σ is de	ned as D[* − Σ] = Q. It is proven in
[40] that either Q = �0 = 1 or 1 < Q < �0 or 1 > Q > �0 > 0,
so the stability of the disease-free equilibrium is determined
by the value of �0. In our model this reproduction number is
obtained as

�0 = �∑
�=1

F���dfe∏�−1�=1F��∏��=1F(�� + ]�) = �dfe�end . (33)

�us, the disease-free equilibrium state will be locally
stable when the reproduction number is less than 1 and
unstable otherwise. From known previous calculations of
the stability of similar models [35, 40], this decomposition
technique for stability analysis can be compared to previous
ones such as the study of the stability made in [35] for the
SEIRmodel, which is a speci	c version of a continuous ��(�)�
model in which � = 2 �1 = 0, ]1 = ]2 = �, and �1 = R. From
the de	nition in (33) it is obtained that �0 = �2�dfeR/(� +R)(� + �2), which agrees with the study of the eigenvalues of
the Jacobian in a continuous-time model [26].

2.3. ��(�)�Model with Delays

2.3.1. Construction of the Model. A new model is proposed
based on the previous one in which the transition rates
between subpopulations are substituted by delays, implying

that each individual must stay at each stage of the infec-
tion during a certain period of time (latent period) before

recovery. Such time periods are de	ned as F� = �−1� for the
infectious stages of the disease and F� = � for the recovered
state. �e model also preserves the infectivity mechanism of
the previous one, in which all the infectious subpopulations
a
ect the infection of the 	rst stage at di
erent rates. For
notational abbreviation in the subsequent exposition it is now
de	ned as the function S(T) = �(T)∑��=1 ����(T). �us, the

value of the infected subpopulation �1 at a certain time � is
de	ned by the ratio of the people that became infected at timeT < � that has not passed to the �2 infectious subpopulation
yet. In order to calculate such a total amount, consider the
probability

1 − ∫
−�
0

D1(	)V	 = ∫∞

−�

D1(	)V	 (34)

with D1(	) being the probability distribution of the transition�1 → �2 plus the probability to stay alive a�er time � − T,
which would be equal to !]1(�−
). An integration T ∈ (−∞, �)
is made in order to obtain the value of the subpopulation at
the instant � resulting in

�1(�) = ∫

−∞

(∫∞

−�

D1(	)V	)S(T)!]1(�−
)VT. (35)

Given the above integral function of the 	rst stage of the
infectious subpopulations, its derivative through time is
easily obtained aṡ�1(�) = S(�) − ]1�1(�) − ∫∞

0
D1(T)S(� − T)!−]1�VT. (36)

�eprobability distribution of transition is de	ned as D1(T) =X(T − F1), meaning that the probability of transition of the
subpopulation at the stage 1 of the disease to the next one is
set to zero before it has passed a latent time interval F1 and is
equal to 1 a�er that time, so that (36) transforms tȯ�1(�) = S(�) − ]1�1(�) − !−]1�1S(� − F1). (37)

As the rate of death in the subpopulation �1(�) corresponds
to −]1�1(�), it is inferred that the term !−]1�1S(� − F1)
corresponds to the rate of transition from �1(�) to �2(�). �en,
the value of the people that arrives at �2 at T < � would be!−]1�1S(T − F1), and �2 at certain time would be written as�2(�) = ∫
−∞(∫∞
−� D1(	)V	)!]2(�−
)!−]1�1S(T − F1)VT. For any
subpopulation� ∈ [1, 2, . . . , �], it can be written that��(�) = !−]�
 ∫


−∞
(∫∞

−�

D�(	)V	)5�−1⋅ S(T − Z�−1)!]��VT. (38)

For the recovered subpopulation the same technique is
used, so that the dynamic of � over time can be written as

� (�) = !−]�
 ∫

−∞

(∫∞

−�

D�(	)V	)5�S(T − Z�)!]��VT (39)
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with 5� = ∏��=1!−]��� , 5�+1 = 5�!−]��� , and Z� = ∑��=1 F�,Z�+1 = Z� +F�. �e dynamic equations of the subpopulations
are de	ned then aṡ� (�) = � − ��(�) − S(�) + 5�+1S(� − Z�+1)�̇ (�) = 5�S (� − Z�) − 5�+1S(� − Z�+1) − ]��(�)̇��(�) = 5�−1S(� − Z�−1) − 5�S(� − Z�)− ]���(�) ∀� ∈ [1, 2, . . . , �],

(40)

where, as in the previous model, � is the constant birth rate,
and the fully immune recovered subpopulation eventually
becomes susceptible again a�er the period of time F�.
2.3.2. Positivity and Boundedness

Proposition 5. 
emodel equation (40) is nonnegative for any
initial nonnegative conditions. 
us,

x�(T) ≥ 0; ∀� = 1, 2, . . . , � + 2 (41)

∀T ∈ (−∞, �0), which implies x�(�) ≥ 0; ∀� = 1, 2, . . . , � +2 ∀� ∈ [�0,∞).
Proof. Since �� ≥ 0, it is then deduced from (41) that S(T) ≥0 ∀T ∈ (−∞, �0). Assume that

∃_ > 0 | � (�0 + _) = 0, �� (�) ≥ 0∀� = 1, 2, . . . , � + 1; ∀� ∈ [�0, �0 + _) (42)

then, from (40) at the time �0 + _,̇� (�0 + _) = � + 5�+1S (�0 + _ − Z�+1) > 0; (43)

therefore, the subpopulation � will not be the 	rst subpopu-
lation to be negative.

From (38) assume that ∃�1 ≥ �0 such that ��(�1) = 0 for
the 	rst time and the value ` ≥ 0 as small as desired such that�(�1 − `) > 0; �(�1 + `) < 0. �en it can be said that

��(�1 + `)= ∫
1−�
−∞

(∫∞

1−�−�

D�(	)V	)5�−1S(T − Z�−1)× !]�(�−(
1−�))VT
+ ∫
1+�

1−�

(∫∞

1+�−�

D�(	)V	)5�−1S(T − Z�−1)× !]�(�−(
1+�))VT.
(44)

Since S(�1 − `) ≥ 0 and knowing that S(�) is continuous
and derivable for all �, from the mean value theorem, it can
be deduced that

lim
�→0

��(�1 + `)
≥ ∫
1+�

1−�

(∫∞

1+�−�

D�(	)V	)5�−1S(T − Z�−1)× !]�(�−(
1+�))VT≥ 5�−1S(�1 − Z�−1)!]�(�−
1)2` ≥ 0
(45)

which is in direct contradiction with the original assumption
of �(�1 − `) > 0; �(�1 + `) < 0. �en as �(T) is not negative
before �1 ≥ 0, the term S(T) will remain nonnegative.
Consider∀T ∈ (−∞, �1+`+).�erefore, neither the infectious
nor the susceptible subpopulation will be the 	rst one to
have a negative value. �e same method can be applied to
demonstrate that the recovered subpopulation will not be the
	rst to have a negative value either. �en, ��(�) ≥ 0 ∀
 =[1, . . . , � + 2] holds for all time for any given nonnegative
initial conditions.

Since the lower bound of the subpopulations is estab-
lished as 0, an upper-bound for all the subpopulations is set
in the following proposition.

Proposition 6. �(�) ≤ ���, ��(�) ≤ ���,�(�) ≤ ������ =∑�+2�=1 x∗��� = �/�, for any given initial conditions ∑�+2�=1 x�(0) =�(0) ≤ �/�.
Proof. �edynamic of�(�) is obtained from (40): �̇(�) = �−��(�)−∑��=1 ��(�)(]�−�). As ]� ≥ � ∀
 = [1, 2, . . . , �], and given
the previous boundary of nonnegativity from Proposition 4,
it can be seen that, for any �0 | �(�0) = �/�, �̇(�0) =−∑��=1 ��(�)(]� − �) ≤ 0. �us, �(�) ≤ �/� ∀� > �0. �en,
for each subpopulation

x (�) = (�(�), �1(�), �2(�), . . . , ��(�), �(�))� (46)

it is established that ��(�) = �(�) − ∑�+2� ̸=� ��(�) ≤ �/� −∑�+2� ̸=� ��(�) ≤ �/�; ∀� > �0.
2.3.3. EquilibriumPoints. �eexistence of equilibriumpoints
in our model is now studied. �e dynamics of the subpopu-
lation described in (40) is zero at the equilibrium points, so
that

0 = �(�� − �∗) − S∗(1 − 5�+1)0 = S∗(5�−1 − 5�) − ]��∗�0 = S∗(5� − 5�+1) − ]��∗ (47)
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being S∗ = �∗(∑��=1 ��∗� ). Two equilibrium points are

obtained and result in

�∗dfe = ���∗�dfe = 0�∗dfe = 0, (48)

�∗end = ( �∑
�=1
(��a�))−1,

�∗�end = Γa� ∀
 ∈ [1, . . . , �],�∗end = Γa�+1
(49)

with a� = (5�−1 −5�)/]� and Γ = �(�/�− (∑��=1(��c�))−1)/(1−5�+1). Note that 1 ≥ 51 ≥ 52 ≥ ⋅ ⋅ ⋅ ≥ 5�−1 ≥ 5� ≥ ⋅ ⋅ ⋅ ≥5�+1 ≥ 0 and ]� ≥ 0 ∀�, so a� ≥ 0 ∀�. Given any nonnegative
initial conditions, the endemic equilibrium point would not

be reachable if �∗end = (∑��=1(��c�))−1 > �/�, as Γ and �∗�end
would be <0.

Take into account that if �∗ = �/�, xend = xdfe, the
endemic, and the disease-free equilibrium are the same, so
there is only one equilibrium point in the system.

2.3.4. Stability of the Disease-Free Equilibrium (DFE) Point.
�e local stability of the DFE point is proved in this section
a�er introducing the reproductive number �0, the average
number of new cases that produce an infected individual
during the average duration of the disease. In order to 	nd
this number easily, a next generation is constructed as follows.

First, the vector of the subpopulations is reorganized as in
(2), so that the Jacobian matrix around the DFE point can be
properly written as

J = 6ẋ6x 77777777dfe = (* − Σ 0- 5) , (50)

where * is the transmission matrix, representing the appear-
ance of new infections *�� = 5�−1��, while Σ represent
the remaining transitions of the subpopulation which are
unrelated directly to the infection, such as the deaths, or
the transition from recovered subpopulation to susceptible
subpopulation.

�en, the next generation matrix is given by d = −FΣ−1.
�e submatrices composing the Jacobian are

* − Σ
= �∗dfe((

(
(50 − 51)�1 (50 − 51)�2 ⋅ ⋅ ⋅ (50 − 51)��−1 (50 − 51)��(51 − 52)�1 (51 − 52)�2 ⋅ ⋅ ⋅ (51 − 52)��−1 (51 − 52)��⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(5�−1 − 5�)�1 (5�−1 − 5�)�2 ⋅ ⋅ ⋅ (5�−1 − 5�)��−1 (5�−1 − 5�)��(5� − 5�+1)�1 (5� − 5�+1)�2 ⋅ ⋅ ⋅ (5� − 5�+1)��−1 (5� − 5�+1)��

))
)

−((
(

]1 0 ⋅ ⋅ ⋅ 0 00 ]2 ⋅ ⋅ ⋅ 0 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅ ]�−1 00 0 ⋅ ⋅ ⋅ 0 ]�

))
)

- = �∗dfe ( (5� − 5�+1)�1 (5� − 5�+1)�2 ⋅ ⋅ ⋅ (5� − 5�+1)��−1 (5� − 5�+1)��−(50 − 5�+1)�1 −(50 − 5�+1)�2 ⋅ ⋅ ⋅ −(50 − 5�+1)��−1 −(50 − 5�+1)��)5 = (−� 00 −�) ,

(51)

so the transmission and transition matrices are

F�� = (5�−1��)�∗dfeΣ�� = (]�X�� + 5����∗dfe) (52)

∀
, � = 1, . . . , �. �e element d�� is the number of new
cases generated in the stage of the disease 
 by one infected
case that has just arrived to the stage of the disease �. �en,
the dominant eigenvalue of the next generation matrix d
would correspond to the reproduction number �0. However,
it is possible in this case to construct a small domain next
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generation matrix [35] d� with a lower dimension than d,
from which it will be much easier to obtain this dominant
eigenvalue. Since (a) R is a matrix whose rows are linearly
independent vectors spanning the rows of F and (b) C is
a matrix whose columns are linearly independent vectors
spanning the columns of F, then F = CR, and the small
domain next generation matrix will be de	ned as KS =−RΣ−1C. In our case C = (50, 51, 52, . . . , 5�−1)� and R =(�1, �2, . . . , ��), so

d� = −(�1, �2, . . . , ��)Σ−1( 5051⋅ ⋅ ⋅5�−1)= ∑��=1 (��5�−1/]�)�/� + ∑��=1 (��5�/]�) = �0;
(53)

since dim(d�) = 1, the dominant eigenvalue of d� would
be d�. Note that d� = �0 implies that if �0 ≶ 1, then(∑��=1(��(5�−1 − 5�)/]�))−1 = �∗ ≷ �∗dfe, which is also
the condition of reachability of the endemic equilibrium, as
stated in the previous section.

Proposition 7. 
e DFE is globally asymptotically stable if�0 < 1.
Proof. A candidate for a Lyapunov function Φ is de	ned asΦ = j1 + j2 + j3, having the auxiliary functions j1, j2, j3
been de	ned as j1 = �∑

�=1
(��
]�
�� (�))

j2 = − �∑
�=1

��
]�
5� ∫
−��−1

−��

S (T) VT
j3 = �∑
�=1

��(5�−1 − 5�)
]�

∫


−��−1

S(T)VT;
(54)

now, j3 is positive de	nite ∀�, since S(T) ≥ 0 ∀T, �� ≥ 0,�� > 0, and 5�−1 > 5� = 5�−1!−	��� ∀
 = 1, 2, . . . , �. To
verify the positivity of j1 + j2, consider the de	nition of
the infectious subpopulation from (38) and the probability
transition function D�(	) = X(	 − F�). It is then established
that�� (�) = 5�−1 ∫


−∞
k (T + F� − �) S(T − Z�−1)!]�(�−
)VT. (55)

�is integral function can be recon	gured as��(�) = 5�−1 ∫
−��−1
−∞

k(T� + Z� − �)S(T�)!]�(��+��−1−
)VT�,
= 5�−1 ∫
−��−1


−��
S(T)!]�(�−(
−��−1))VT,

= 5� ∫
−��−1

−��

S(T)!]�(�−(
−��))VT.
(56)

Given this de	nition of ��(�), the parameterl�(�) is de	ned
as l�(�) = �� (�) − 5� ∫
−��−1


−��
S(T)VT

= 5� ∫
−��−1

−��

S(T) (!]�(�−(
−��)) − 1) VT. (57)

SinceS(T) ≥ 0 and (!]�(�−(
−��))−1) ≥ 0 ∀T ∈ [�−Z�, �−Z�−1],
it is deduced that l�(�) ≥ 0 ∀�, ∀
 ∈ [1, . . . , �]. �en j1(�) +j2(�) = ∑��=1(��/]�)l�(�) ≥ 0 ∀� and j3(�) ≥ 0 ∀�. �us the
nonnegativity of the Φ function is proven. �e function Φ is
equal to zero for ��(T) = 0 ∀
 = 1, . . . , �, ∀T ∈ [�−Z�, �].�en

the derivative over time Φ̇ = ̇j1 + ̇j2 + ̇j3 is calculated asΦ̇ = �∑
�=1

��
]�
(5�−1S (� − Z�−1) − 5�S (� − Z�) − ���� (�))

+ �∑
�=1

��
]�
5�(S (� − Z�) − S (� − Z�−1))

+ �∑
�=1

�� (5�−1 − 5�)
]�

(S (�) − 5�S (� − Z�−1))
(58)

Φ̇ = ∑��=1(��(5�−1 − 5�)/]�)S(�) − ����(�) = S(�)((�(�) −�∗)/�∗�(�)). For �0 < 1 → �∗ > �/� ≥ �(�), so Φ̇ = 0
for �� = 0 ∀
 = 1, . . . , � and Φ̇ < 0 otherwise from (40). �us
the proposition is proved.

2.3.5. Stability of the Endemic Equilibrium Point (END)Model
with � = 1. For simple models, that is, models with only one
or two infectious subpopulations, a study of the stability of
their endemic points is also made. �e model is linearized
around the endemic point and the eigenvalues of the Jacobi
matrix are obtained. �e function S(_) is de	ned asS (_) = Det [_� − J] = 0 (59)

with J the 3×3 Jacobimatrix from (40), de	ned at the endemic
equilibrium point from (49):

J = 6ẋ6x 77777777end. (60)

�e solutions of S(_) = (−� + _)(�]1(�∗dfe/�∗end − 1) +��∗dfe/�∗end_ + _) = 0 are _1 = −�,_2 = - − √-2 + n,_3 = - + √-2 + n, (61)

respectively, with - = −��∗dfe/2�∗end and n = −�]1(�dfe/�∗end −1). Since � > 0 and �∗dfe/�∗end > 0, _1 and _2 are de	ned as
negative.�e third solution will be de	ned as negative _3 < 0
if |-| > |√-2 + n| → |-2| > |-2 + n| → n < 0, which
is satis	ed for �∗dfe/�∗end > 1 or, as is shown in Section 2.3.4,
when �0 > 1.
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2.3.6. Stability of the Endemic Equilibrium Point (END)Model
with � = 2. For � = 2 (i.e., there are two infectious subpop-
ulations) a function p(_) will be de	ned as in (59), this time
with J a 4×4 Jacobimatrix from the susceptible, the recovered,
and the two stages of the infectious subpopulations:p (_) = (� + _) (p0 + p1_ + p2_2 + p3_3) (62)

with

p0 = �]1]2 ( �∗dfe�∗
end

− 1) ,
p1 = �(]1 + ]2) �∗dfe�∗

end

− �q,
p2 = (]1 + ]2 + � �∗dfe�∗

end

) − q,
p3 = 1

(63)

being q = ]1]2(�1(1 − 51) + �2(51 − 52))/(�1(1 − 51)]2 +�2(51−52))]1.�e 	rst eigenvalue is trivially obtained as _ =−�.�e other eigenvalues will not be directly obtained, as it is
only needed to demonstrate that their real part is negative in
order to prove the local asymptotic stability of themodel.�e
Routh-Hurwitz criterion [41] says that in order to have all the
solutions of p(_�) = 0 on the le� half plane, the coe�cients
of pmust satisfy the following conditions:

(1) p� > 0 ∀
 = 0, 1, 2, 3
(2) p1p2 > p3p0.

Both conditions can be satis	ed once that the limits of theq
parameter are established. Given ]� = max[]1, ]2] and ]� =
min[]1, ]2] then

]1]2 (�1 (1 − 51) + �2 (51 − 52))
]� (�1 (1 − 51) + �2 (51 − 52))≤ q
≤ ]1]2 (�1 (1 − 51) + �2 (51 − 52))

]� (�1 (1 − 51) + �2 (51 − 52)) ,
]� ≤ q ≤ ]�,

(64)

so that, for �0 > 1 → �∗dfe/�∗end > 1, it is deduced that the
coe�cients are positive:

0 < �]1]2 ( �∗dfe�∗
end

− 1) = p0,
0 < �(]� �∗dfe�∗

end

+ ( �∗dfe�∗
end

− 1) ]�) ≤ p1,

0 < (]� + � �∗dfe�∗
end

) ≤ p2,
0 < 1 = p3.

(65)

And the lower limit of the second condition is de	ned asp1p2 − p1p0 ≥ min [p1]min [p2] − p3p0
= � �∗dfe�∗

end

(]�(� �∗dfe�∗
end

+ ]�) + �( �∗dfe�∗
end

− 1)]�) > 0,
(66)

so all the real parts of the eigenvalues are negative and the
equilibrium endemic point is locally asymptotically stable as
long as �0 > 1.
2.4. Discrete ��(�)�Model withDelay. �edynamic equation

(40) is approximated to ẋ� → (x�+1 − x�)/F, with x� = (�1� ,�2� , . . . , ��� , ��, ��)� being the vector of the subpopulations
to obtain a discrete-time counterpart of the continuous-
time model. �e notation for any subpopulation at the time
interval � ∈ [EF, (E + 1)F) is established then as ��(�) = ��� .
�us, the analogous discrete equations to themodel from (17)
are obtained:��+1 = F� − (1 − F� + �∑

�=1
F�����)��

+ r���−�� �∑
�=1
F�����−��

��+1 = r���−�� �∑
�=1
F�����−�� − r���−�� �∑

�=1
F�����−��

+ (1 − F�)��
���+1 = r�−1��−��−1 �∑

�=1
F�����−��−1 − r���−�� �∑

�=1
F�����−��

+ (1 − F]�)��� ∀� ∈ [2, . . . , �]
�1�+1 = �� �∑

�=1
F����� + (1 − F]1)�1� − r1��−�1 �∑

�=1
F�����−�1

(67)

and l� = ∑��=1��, l� = l� + F�, with r� = ∏�−1�=1!−]���� andr� = r�!−	��� being�� and�� the rounded half down value
for F�/F, F�/F, respectively. Now, at the equilibrium point, the
delays are not relevant, while the dynamic equation at the
equilibrium can be rewritten as�∗ = F� − (1 − F�)�∗ + (r� − 1)�∗ �∑

�=1
F����∗
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�∗ = (r� − r�)�∗ �∑
�=1
F����∗ + (1 − F�)�∗

��∗ = (r�−1 − r�)�∗ �∑
�=1
F����∗ + (1 − F]�)��∗

�1∗ = (1 − r1)�∗ �∑
�=1
F����∗ + (1 − F]1)�1.

(68)

�e reproductive number will be obtained again with a
next generation matrix method as in the previous section, so
the value would bed� = �0 = ∑��=1 (��r�−1/]�F)�/�F + ∑��=1(��r�/]�F) (69)

which is similar to the reproductive number from the con-
tinuous model, with the only di
erence of the r� constants
instead of the previous 5�. However, given their similar
origins and values, the properties exhibited in both sets of
constants will be the same, in the sense that 0 ≤ 5� ≤ 5�−1 ≤⋅ ⋅ ⋅ ≤ 51 ≤ 1 such as 0 ≤ r� ≤ r�−1 ≤ ⋅ ⋅ ⋅ ≤ r1 ≤ 1. Given the
same ��(�)� model with the same characteristics, the values
of the reproduction number will be very similar too.

3. Simulation

A set of Matlab simulations are made based on the models
described in the previous section, in order to contrast the
predictions on their respective endemic and disease-free
equilibrium states. A large enough number of infectious
subpopulations are chosen, � = 3, so the stability of the
models will be tested regarding their reproductive numbers.
A common initial condition is set to all the susceptible
subpopulation in the disease-free equilibrium plus a 0.1 of
that value of infected subpopulation at the 	rst stage of the
disease. For exposition and calculations convenience, the
mortality rate � and the birth rate � will be both taken as
equal to the inverse of the average lifespan of a human � =� = (1/70) year−1. �e mortality rate of the three stages of
the infection will be ]1 = 2�, ]2 = 3�, ]3 = 3�/2, and
the average time which an individual spends in each stage
will be 19, 29, and 61 days, respectively. �e infectious ratios�� will be altered in order to obtain reproductive numbers
below and above 1, but the ratios between them will be
constant, as 4�1 = 7�2 = 4�3. When simulating the discrete
models, an appropriate time step size is chosen in order to
guarantee the nonnegativity of model with no delays. As
for the discrete model with delays, given that nonnegativity
of the subpopulations in the continuous model has been
proved in Proposition 5, an algorithm is established during
the simulation so that the discrete dynamics approximates to
the continuous one in any critical positivity points. A loop in
which the following point is evaluated is introduced, acting
over the time step size. While any of the subpopulations of
the next point present a negativity ��+1,� < 0 for any 
 ∈[1, . . . , � + 2], then the step size is reduced F�� = _F�−1� , with �
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Figure 1: Dynamic of the subpopulations for �0 = 1.5. �e dotted
lines represent the predicted endemic values.
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Figure 2: Dynamic of the subpopulations for �0 = 0.5. �e dotted
line represents the predicted disease-free value of the susceptible
subpopulation.

being the �th loop iteration, F0� = F�, and _ ∈ (0, 1). Another
loop is set a�er this resetting the time step size F�� = _−1F�−1�
while the next point is nonnegative or the time step size is
equal to or below the original value.

3.1. ��(3)� Model with No Delays. Given the parameters
previously commented, the transition ratios between the
di
erent subpopulations are obtained as the inverse of their
average times during each stage. �us, �1 = 365/19 year−1,�2 = 365/29 year−1, �3 = 365/61 year−1, and the 	nal tran-
sition from recovered to susceptible again will be set as�4 = 365/670 year−1. Given a value of the transition rates� = �0(7, 4, 7) the reproduction number will be set to 0.5
and 1.5, respectively. For the continuous model, two graphics
representing the evolution of each subpopulation for both
situations are presented in Figures 1 and 2 while, for the
discrete model, a step time F is set to 0.1 years and the
simulations are run with the same parameters. �e results of
these simulations are presented in Figures 3 and 4.
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Figure 3: Dynamic of the subpopulations for �0 = 1.5. �e dotted
lines represent the predicted endemic values.

0 5 1510 20 25

Time (years)

S

I1 I2

I3

R

S

I1

I2

I3

R

0.5

1

1.5

Figure 4: Dynamic of the subpopulations for �0 = 0.5.
3.2. ��(3)�Model with Delays. �e common parameters are
set as in the previous cases, but this time the delayed times
will be equal to their respective average times F1 = 19/365
years, F2 = 29/365 years, and F3 = 61/365 years. �e delay
of the transition between the recovered and the susceptible
subpopulations will be changed from 610/365 to 80/365 years
in order to let the simulation achieve the simulation at a
reasonable time. �e values of the transmission rates will
maintain their proportionality, but the range of the possible
reproductive number is not so wide as in the previous case.
�eir values are changed to now be �0 = 1.01 and �0 = 0.92,
respectively.�e evolution of the subpopulations is presented
in Figures 5 and 6.

In the discrete model, the same time step as before is set
to F = 0.1 years. �e evolution of the subpopulations for
each reproductive number can be seen in Figures 7 and 8,
respectively.

Observe that the subpopulations rapidly tend to the
disease-free equilibrium in Figure 8. While it is seen that the
discrete-time and continuous-time models reach the same
	nal states when the conditions are equal, the irregularity
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Figure 5: Dynamics of the ��(3)�model of the subpopulations for�0 = 1.01. �e dotted lines represent the predicted endemic values.
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Figure 6: Dynamics model of the subpopulations of the ��(3)� for�0 = 0.92. Observe that the subpopulations rapidly tend to the
disease-free equilibrium.
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Figure 7: Dynamics of the di
erent subpopulations of the discrete
delayed ��(3)� model for �0 = 1.01. �e dotted lines represent the
predicted endemic values.
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Figure 8: Dynamics of the subpopulations of the ��(3)� discrete
delayed model for �0 = 0.92.
of the dynamics in the discrete models over the continuous
has also been noticed.�is fact reveals that the discretization
procedure along with the time step must be selected carefully
prior to simulating the discrete-time model.

4. Conclusions

Amodel of a disease spreadingwithmultiple infectious stages
has been studied in depth. �e next generation techniques
have been proven to be quite useful when operating with
models with complex interactions as in the variations of the
model presented in this work. �e reproduction numbers
obtained in each case have also proven to predict correctly the
	nal stable state of the subpopulationswhen they are properly
simulated.�e simulations have also shown that the di
erent
discretizations of a continuous model can cause signi	cant
discrepancies in the resulting dynamics. An appropriate
integration step should be considered taking this into account
as well as other factors like the computation time available, or,
if themodel is being used in a controlled system, the available
time for data acquisition.
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