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In this paper, a dynamical two-stage game with R&D competition and joint profit maximization is built. The stability of all the
equilibrium points is discussed through Jury condition, and the stability region of the Nash equilibrium point is then given. The
influence of the parameters on the system is discussed, and we find that the firm can even benefit from chaos, when it has higher
innovation efficiencyand higher adjusting speed. And then the coexistenceofmultiple attractors is studied using basin of attraction.
Our research result shows that the coexisting attractors can be observed in the two-parameter bifurcation diagram. At last, the
boundary of feasible region, global bifurcations, and formation mechanism of fractal structure of attracting basin are analyzed
through critical curves and noninvertible map theory.

1. Introduction

With the rapid development of economics, the competition
among firms has become more and more fierce. The firms,
which are the most important part of the market, must form
a core competitiveness that is different from other firms, if
they want to get a good survival and remain invincible in
the market. Research and development (or R&D for short)
has become the main driving force for the development of
enterprises and it is also an important way for enterprises to
obtain the core competitiveness. In fact, the R&D activities of
enterprises can reduce production cost, improve the quality
of products, expand the market share, and further improve
its market competitiveness. However, in the real economic
environment, R&D spillovers often arise when the R&D
activities are carried out. In fact, the R&D spillovers are
inevitable due to the information exchange of R&D among
firms and the flow of human resources. In recent years, the
problem of competition and cooperation in R&D investment
has attracted more and more attention of entrepreneurs
and economists. The classic research begins in the 1980s;
a famous duopoly model with technology spillover was
built by D’Aspremont and Jacquemin [1]. In this model, the

competition between firms was divided into two stages. At
the first stage, both firms decided their ownR&D level, while,
at the second stage, all the firms determined their outputs
to the market. This famous model is also called AJ model
by followers. Then, Kamien et al. [2] extended the model of
D’Aspremont and Jacquemin to 𝑛 firms and got the KMZ
model. InKMZmodel, the forms of R&D are also extended to
total competition, R&D cartel, research joint ventures (RJVs),
and RJVs cartel.

Both AJ model and KMZ model are two-stage game
models. Actually, the two-stage game is better than one-
stage game for solving the uncertainty of the market and the
interaction of competitors’ strategies when the R&D activity
is considered. Following the AJ model and the KMZ model,
Ziss [3] built a two-stage duopoly game model with R&D
spillovers. Amir [4] studied the effects of R&D spillover and
pointed out that the R&D cost of firms would increase with
an increasing amount of technology outflow. Lambertinti et
al. [5] extended the research results of Amir and proposed
that the cooperative innovation will increase information
sharing of market. Katsoulacos and Ulph [6] have led to
a study of endogenous spillovers in R&D cooperation. Yin
[7] studied the asymmetric R&D cooperation structure and
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pointed out that one of the important motivations for
providing cooperative innovation is to increase the market
share. Alallah [8] analyzed the influence of spillover rate on
cooperative motivation and joint profit under asymmetrical
R&D spillover. Bischi et al. [9, 10] established a two-stage
dynamic game according to knowledge share and R&D
competition in the market and analyzed the stability of the
built model. Zhang et al. [11] considered a two-stage duopoly
model with semi-collusion in production, and the complex
chaotic behavior of the given model was researched in their
works.

The influence of chaos theory on modern science is lim-
ited not only to nature science, but also to other fields, such as
philosophy [12], social science [13], and economics [14]. The
economic system is essentially nonlinear, so the chaotic phe-
nomenon must exist in the economic system. In recent years,
it has attracted the attention of a growing number of scholars
to explore the evolution of the economic system and explain
the complicated economic phenomena by using chaos theory.
Gangopadhyay [15] built a dynamic model of enterprise
merger, and the bifurcation behavior and the coexistence
of multiple attractors in the built model were discussed.
Canovas et al. [16] set up a piecewise smooth model for
market competition, and the asymptotic dynamic behaviors
of this model were discussed. Bischi et al. [17] proposed an
inertial model of market share based on the optimal response
and naı̈ve expectation, the influence of the heterogeneity of
the enterprise was also analyzed, and it was found that there
are very rich local and global bifurcation phenomena in the
built system. Li and Ma [18] considered a bounded rational
dual-channel game, and the complex dynamical behavior of
their model was simulated in their works. Cavalli et al. [19]
built a nonlinear dynamical duopoly game by using bounded
rationality and “LMA” (the abbreviation of “local monopo-
listic approximation”) adjustment strategies, and then they
analyzed the coexistence of periodic points and the “lobes”
basin of attraction was formed by periodic points. Based
on the research results of [19], Cavalli and Naimzada [20]
built a heterogeneous duopoly Cournot game with reduced
rationality, isoelastic demand function, and linear total cost.
And they found that the Nash equilibrium point may lose
its stability through a flip bifurcation or a Neimark-Sacker
bifurcation. In addition, a lot of researchers have discussed
the complex dynamical behaviors of nonlinear oligopolies
from different aspects, such as differentiated goods [21–
25], heterogeneous firms [26–31], and delayed decisions
[32, 33].

Another important issue for dynamical economical
model is the coexistence of attractors. During the long run
of dynamical economical system, the initial conditions play a
very important role in determining the asymptotic behavior
of the system. And thus, it is especially important to discuss
the dependence of system on the initial conditions using
basin of attraction and to analyze the evolution of attracting
basin. In recent years, this topic has attracted a lot of attention
of many scholars. Bischi et al. [34] discussed the coexistence
ofmulti-attractors and cyclic attractors in a dynamicCournot
game. Agiza et al. [35] analyzed the multi-stability of a three-
dimensional dynamical oligopoly model. Both the routes to

complex attractors and the creation of basins with complex
structures were studied in their paper. Cavalli and Naimzada
[19] built an oligopoly model with different rational players,
and then they explored the complex dynamical behaviors
of the given model induced by coexistence of multiple
attractors. Gori and Sodini [36] presented a nonlinear
duopoly game with price competition, and the stability and
coexistence of attractors were studied using the basin of
attraction.

Through analyzing the above related research results, it is
not difficult to find out that the R&D competition between
duopoly firms that produce complementary products is
seldom studied. However, the R&D competition between
firms that produce complementary products is very common
in the real market. A typical example is the cooperation
and competition between “small program” and “APP” soft-
ware. One firm developing “small program” and another
firm developing “APP” always compete in R&D level as
the development of them has a lot of commonalities. But
they collaborate in the production level because they are
complementary in functionality. They choose to cooperate
in producing and selling their products, so as to maximize
their joint profits.Therefore, a two-stage duopoly game under
the background of R&D spillover, complementary products,
and joint profits maximization is proposed in this present
work.

In addition, the stability and the complex dynamical
behavior in the built two-stage duopoly game is another topic
in this research. As the stability of equilibrium point is often
influenced by various parameters, the stability condition
and stability region with various sets of parameters will be
discussed in this article. And the complicated dynamical
phenomena maybe arise when the equilibrium points lose
their stability. The coexistence of many different attractors
is the most important dynamical behaviors, which can be
found in our model. The coexistence of attractors (i.e.,
multistability) indicates the long-run dependence of market
dynamics on the initial conditions. Different initial con-
ditions not only will result in a vast difference for firms
after several games, but also may cause the coexistence of
different situations. So by modeling the practical problem
and analyzing the stability and multistability of the built
model, it is beneficial for firms to make their decisions and
predictions.

The plan of this article is given as follows. In the second
section, a duopoly two-stage game based on R&D spillover,
complementary goods, and maximization of joint profits is
built. At the first stage of this game, two firms compete
in the R&D level, but the R&D spillovers are permitted in
this model. However, at the second stage, these two firms
produce complementary goods and choose cooperation at
the production level. In Section 3, the equilibrium points
of this model are solved and the stability conditions are
discussed. In Section 4, the stability of the Nash equilibrium
point and the bifurcation of this system are analyzed using
numerical simulation. And then, in Section 5, the coexistence
among many attractors is investigated. The evolution and
formulation mechanism of attracting basins are studied.
Results are summarized in the last section.
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2. The Model

Suppose there are two firms, labeled by 𝑖 (𝑖=1,2), in a market,
which conduct R&D and produce complementary goods.
In order to better analyze the R&D investment behavior of
the two firms, we consider the following two-stage game. In
the first stage of the game, both firms compete in the R&D
level and choose the R&D efforts as their decision variables
to reduce the production cost and improve the quality of
their products, while, at the second stage of the game, both
firms choose the market prices as their decision variables.
And they choose cooperation, share the market information,
and pursue the maximization of their joint profit at the
production level. Obviously, the R&D investments of the two
firms in the first stage will affect their profits in the second
stage.

Let 𝑝𝑖 > 0 and 𝑞𝑖 > 0 be the price and the quantity
of product of firm 𝑖 (𝑖 = 1, 2), respectively. And the output
of firm 𝑖 is determined by the prices of the goods produced
by firm 𝑖 and its rival through an inverse demand function,
which has the form [27]

𝑞𝑖 = 𝑎𝑖 − 𝑏𝑖𝑝𝑖 − 𝑏𝑗𝑝𝑗 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗 (1)

where 𝑎𝑖 > 0 represent the market sizes and 𝑏𝑖 > 0, 𝑏𝑗 > 0 are
the price sensitivity of consumers.

As we know, the spillover of knowledge is always
inevitable in the process of R&D. That is, the R&D results of
firm 𝑖 not only can reduce the production cost of its own,
but also can reduce the production cost of its rival. So if
we suppose 𝑥𝑖 and 𝑥𝑗 are the R&D efforts of firms 𝑖 and 𝑗,
respectively, then the effective marginal cost of firm 𝑖 with
R&D efforts can be given as

𝐶𝑖 (𝑥𝑖, 𝑥𝑗) = 𝑐𝑖 − 𝑥𝑖 − 𝛽𝑥𝑗, 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗 (2)

where 𝑐𝑖 > 0 represents the unit cost of produced goods
without R&D efforts. If we assume that the two firms have
equal knowledge levels when they are not engaged in R&D,
that is, the productive efficiency of these two firms is the same,
then we can let 𝑐𝑖 = 𝑐. And 𝛽 ∈ [0, 1] is related to the R&D
spillover. If 𝛽 = 0, it means that the technology between firms
is completely confidential and the R&D spillover is ignored.
And if 𝛽 = 1, it means that R&D technology is fully shared
among competing firms. In this paper, we only consider the
intermediate condition 0 < 𝛽 < 1.

However, the firms have to pay certain R&D expenditures
when they conduct R&Dactivities. And theR&Dexpenditure
can be assumed to be a quadratic function of R&D effort 𝑥𝑖,
which reflects the decreasing returns to R&D effort. And the
R&D expenditure of firm 𝑖 can be given as

𝑔 (𝑥𝑖) = 12𝛾𝑥𝑖2, 𝑖 = 1, 2 (3)

where 𝛾 > 0 is the cost parameter of firm’s technological
innovation, which indicates the efficiency of using or pro-
ducing the unique technology or knowledge resources for
an enterprise. The smaller the parameter 𝛾, the stronger the
innovation ability of firm 𝑖.

The individual profit of firm 𝑖 can be given as 𝜋𝑖 = (𝑝𝑖 −𝐶𝑖)𝑞𝑖 −𝑔(𝑥𝑖), (𝑖 = 1, 2).Through substituting (2) and (3) into𝜋𝑖, we can get

𝜋1 = [𝑝1 − (𝑐 − 𝑥1 − 𝛽𝑥2)] 𝑞1 − 12𝛾𝑥12 (4)

𝜋2 = [𝑝2 − (𝑐 − 𝑥2 − 𝛽𝑥1)] 𝑞2 − 12𝛾𝑥22 (5)

For convenience, the parameters 𝑎1 and 𝑎2 are set as the
same in the following discussion. That is, 𝑎1 = 𝑎2 = 𝑎. And
the similar hypothesis is also imposed on parameters 𝑏1 and𝑏2; it means that 𝑏1 = 𝑏2 = 𝑏. The marginal profit of firm 𝑖
can be obtained by taking the first derivative of profits 𝜋𝑖 with
respect to prices 𝑝𝑖 (𝑖 = 1, 2). That is,

𝜕𝜋1𝜕𝑝1 = 𝑎 − 𝑏 (𝑝1 + 𝑝2) − 𝑏 (𝑝1 − 𝑐 + 𝑥1 + 𝛽𝑥2) (6)

𝜕𝜋2𝜕𝑝2 = 𝑎 − 𝑏 (𝑝1 + 𝑝2) − 𝑏 (𝑝2 − 𝑐 + 𝑥2 + 𝛽𝑥1) (7)

Through solving the first order conditions 𝜕𝜋𝑖/𝜕𝑝𝑖 =0 (𝑖 = 1, 2), we can get the optimal prices of products
produced by firm 1 and firm 2, respectively. And they are
given as

𝑝∗1 = 𝑎 + 𝑏𝑐 + 𝑏 (1 − 2𝛽) 𝑥2 + 𝑏 (𝛽 − 2) 𝑥13𝑏 (8)

𝑝∗2 = 𝑎 + 𝑏𝑐 + 𝑏 (1 − 2𝛽) 𝑥1 + 𝑏 (𝛽 − 2) 𝑥23𝑏 (9)

By substituting (8) and (9) into (1), the optimal quantity
of firm 𝑖 can be obtained,

𝑞∗𝑖 = 𝑎 − 2𝑏𝑐 + 𝑏 (𝛽 + 1) (𝑥𝑖 + 𝑥𝑗)3 , 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗 (10)

Then the profit of firm 𝑖 can be obtained by substituting
(8), (9), and (10) into (4) and (5), respectively.

𝜋1 = [𝑎 − 2𝑏𝑐 + 𝑏 (𝛽 + 1) (𝑥1 + 𝑥2)]9𝑏
2 − 12𝛾𝑥12 (11)

𝜋2 = [𝑎 − 2𝑏𝑐 + 𝑏 (𝛽 + 1) (𝑥2 + 𝑥1)]9𝑏
2 − 12𝛾𝑥22 (12)

Since, as we have assumed, the two firms choose collab-
oration in the production level, we consider the joint profit,
namely, Π = 𝜋1 + 𝜋2. By combining equation (11) and (12),
the specific forms of the joint profit of these two firms can be
given.

Π = 2 [𝑎 − 2𝑏𝑐 + 𝑏 (𝛽 + 1) (𝑥1 + 𝑥2)]9𝑏
2 − 12𝛾𝑥12

− 12𝛾𝑥22
(13)
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The marginal joint marginal profits of each firm can be
obtained by taking the first derivative of joint profit Π with
respect to the R&D efforts 𝑥𝑖 (𝑖 = 1, 2). That is,

𝜕Π𝜕𝑥1 =
4𝑏9 (𝛽 + 1)2 (𝑥1 + 𝑥2) + 49 (𝑎 − 2𝑏𝑐) (𝛽 + 1)
− 𝛾𝑥1

(14)

𝜕Π𝜕𝑥2 =
4𝑏9 (𝛽 + 1)2 (𝑥1 + 𝑥2) + 49 (𝑎 − 2𝑏𝑐) (𝛽 + 1)
− 𝛾𝑥2

(15)

As we have presumed above, the two firms choose to
cooperate in the production level. Therefore, they will share
the market information in order to improve their joint profit.
However, the two firms will not share the information in
the R&D level, as they are competitive in this process. And
the decision-making of them cannot be completely rational,
due to the lack of market information. So, the firms are not
able to optimize their joint profit with respect to the R&D
effort in one shot. They can only adjust their R&D strategies
over time towards an optimal strategy along a direction of
local estimation of the expected profits gradient, according
to gradient adjustmentmechanism. For a detailed description
of the economic rationale of the gradient adjustment mecha-
nism we refer to the description in [37].

According to the gradient adjustment mechanism, we
know that if firm 𝑖 has positive marginal profit in period 𝑡,
it will increase its R&D effort in period t+1. On the contrary,
if its marginal profit is negative, it will reduce its R&D effort.
In the actual market, the firm dynamically adjusts its strategy
at each discrete time, and the resulting dynamical system can
be described by the following couple of equations:

𝑥1 (𝑡 + 1) = 𝑥1 (𝑡) + 𝛼1𝑥1 (𝑡) 𝜕Π𝜕𝑥1
𝑥2 (𝑡 + 1) = 𝑥2 (𝑡) + 𝛼2𝑥2 (𝑡) 𝜕Π𝜕𝑥2

(16)

where 𝑥𝑖 = 𝑥𝑖(𝑡) (𝑖 = 1, 2) is the R&D effort of firm 𝑖 at
discrete time periods 𝑡 = 0, 1, 2 ⋅ ⋅ ⋅ and 𝛼𝑖 > 0 (𝑖 = 1, 2) is
the speed of adjustment for firm 𝑖 (𝑖 = 1, 2). The dynamic
game model can be obtained by substituting equations (14)
and (15) into (16).

𝑥1 (𝑡 + 1) = 𝑥1 (𝑡) + 𝛼1𝑥1 (𝑡)
⋅ [4𝑏9 (𝛽 + 1)2 (𝑥1 (𝑡) + 𝑥2 (𝑡))
+ 49 (𝑎 − 2𝑏𝑐) (𝛽 + 1) − 𝛾𝑥1 (𝑡)]

𝑥2 (𝑡 + 1) = 𝑥2 (𝑡) + 𝛼2𝑥2 (𝑡)
⋅ [4𝑏9 (𝛽 + 1)2 (𝑥1 (𝑡) + 𝑥2 (𝑡))
+ 49 (𝑎 − 2𝑏𝑐) (𝛽 + 1) − 𝛾𝑥2 (𝑡)]

(17)

3. Stability Analysis of Equilibrium Point

In this section, the local stability around the equilibrium
point will be analyzed through Jury condition [38]. The
equilibrium points of system (17) can be solved by setting𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) = 𝑥𝑖, that is,

𝑥1 + 𝛼1𝑥1 [4𝑏9 (𝛽 + 1)2 (𝑥1 + 𝑥2)
+ 49 (𝑎 − 2𝑏𝑐) (𝛽 + 1) − 𝛾𝑥1] = 𝑥1

𝑥2 + 𝛼2𝑥2 [4𝑏9 (𝛽 + 1)2 (𝑥1 + 𝑥2)
+ 49 (𝑎 − 2𝑏𝑐) (𝛽 + 1) − 𝛾𝑥2] = 𝑥2

(18)

Through solving the above nonlinear algebraic equations,
four equilibrium points of system (17) can be obtained,

𝐸0 = (0, 0) ,
𝐸1 = (0, 4𝐴9𝛾 − 4𝐵𝑏) ,
𝐸2 = ( 4𝐴9𝛾 − 4𝐵𝑏, 0) ,
𝐸3 = ( 4𝐴9𝛾 − 8𝐵𝑏, 4𝐴9𝛾 − 8𝐵𝑏)

(19)

where 𝐴 = (𝑎 − 2𝑏𝑐)(1 + 𝛽), 𝐵 = (𝛽 + 1)2. The equilibrium
points 𝐸0, 𝐸1, and 𝐸2 are called boundary equilibrium points
as they locate at the coordinate axes. And the equilibrium
point 𝐸3 is called interior equilibrium point, which is also
the unique Nash equilibrium. Obviously, if we assume the
parameters meet the conditions as 𝑎 > 2𝑏𝑐 and 9𝛾 > 8𝐵𝑏,
then the economic meaningfulness of these equilibria can be
guaranteed.

It is obvious that all the coordinate axes 𝑥𝑖 (𝑖 = 1, 2) are
invariant sub-manifold of system (17), since 𝑥𝑖(𝑡) = 0 implies𝑥𝑖(𝑡 + 1) = 0. It means that any initial conditions starting
from coordinate axis will stay on the coordinate axis forever
after any time of iteration. And this situation can be regarded
as the market competitors have degenerated from duopoly to
monopoly. Or we can say that one of the firms has gone out of
themarket.The eventuality inwhich one firmexits themarket
and how the dynamics behave have been discussed by Gori et
al. [38]. At this moment, the system (17) can be rewritten as a
one-dimensional map,

𝑥𝑖 = [1 + 49 (𝑎 − 2𝑏𝑐) (𝛽 + 1) 𝛼𝑖] 𝑥𝑖
− 𝛼𝑖9 [9𝛾 − 4 (𝛽 + 1)2 𝑏] 𝑥𝑖2

(20)

where 𝑥𝑖 represents the evolution operator of 𝑥𝑖. The above

equation is obtained by letting 𝑥𝑖 = 𝑥𝑖(𝑡 + 1) and 𝑥𝑗(𝑡) =𝑥𝑗(𝑡 + 1) = 0 in system (17), where 𝑖, 𝑗 = 1, 2 and 𝑖 ̸= 𝑗.
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Obviously, the above equation is conjugate to the famous
Logistic map 𝑙 = 𝜏𝑙(1 − 𝑙) topologically through a proper
linear transformation, which is given as

𝑥𝑖 = 9 + 4 (𝑎 − 2𝑏𝑐) (𝛽 + 1)
𝛼𝑖 [9𝛾 − 4 (𝛽 + 1)2 𝑏] 𝑙 (21)

and the corresponding value of 𝜏 is
𝜏 = 1 + 49 (𝑎 − 2𝑏𝑐) (𝛽 + 1) 𝛼𝑖 (22)

As all the boundary equilibrium points locate on
the coordinate axes of (𝑥1, 𝑥2), the stability of all the
boundary equilibrium points of system (17) is equivalent
to the corresponding points of the Logistic map. Accord-
ing to the stability theory, the local stability of an equi-
librium point can be determined by analyzing the eigen-
values of Jacobian matrix of system (17) evaluated at the
equilibrium point on the complex plane. The Jacobian
matrix of system (17) at any point (𝑥1, 𝑥2) can be given
as

𝐽 (𝑥1, 𝑥2) = [[
[
1 + 𝛼1 [49𝐵𝑏 (2𝑥1 + 𝑥2) + 4𝐴9 − 2𝛾𝑥1] 49𝐵𝑏𝛼1𝑥149𝐵𝑏𝛼2𝑥2 1 + 𝛼2 [49𝐵𝑏 (𝑥1 + 2𝑥2) + 4𝐴9 − 2𝛾𝑥2]

]]
]

(23)

Proposition 1. The trivial equilibrium point 𝐸0 is an unstable
node.

Proof. At the trivial equilibrium point 𝐸0 = (0, 0), the
Jacobian matrix (23) becomes a diagonal matrix, which can
be given as

𝐽 (𝐸0) = [[
[
1 + 𝛼1 4𝐴9 0

0 1 + 𝛼2 4𝐴9
]]
]

(24)

Therefore the eigenvalues of this diagonal matrix are the
diagonal entries, which are 𝜆1 = 1 + 𝛼1(4𝐴/9) and 𝜆2 = 1 +𝛼2(4𝐴/9). According to the nonnegativity condition 𝑎 > 2𝑏𝑐,
we know that 𝐴 > 0. And thus, both of the eigenvalues are
larger than the unity, that is, 𝜆1 > 1 and 𝜆2 > 1. And hence
the trivial equilibrium point 𝐸0 is an unstable node along the
direction of the coordinate axes.

In the actual market, 𝐸0 = (0, 0) is on behalf of the
zero R&D efforts of these two firms. It is obvious that this
boundary equilibrium means that there is no investment
in R&D for both firms. And if the initial condition is
chosen from the coordinate axes of the plane (𝑥1, 𝑥2) (except
the origin (0, 0)), the system will eventually evolve to the
equilibrium point 𝐸1 or 𝐸2 as 𝐸0 = (0, 0) is a repelling
node. However, the system will stay at 𝐸0 forever, if the
initial condition is chosen as (0, 0), even though the trivial
equilibrium 𝐸0 is unstable.
Proposition2. Theboundary equilibriums point𝐸1 is a saddle
point when 𝛼2 < 9/2𝐴. But 𝐸1 is an unstable node when 𝛼2 >9/2𝐴.
Proof. At the boundary equilibrium point 𝐸1 = (0, 4𝐴/(9𝛾 −4𝐵𝑏)), the Jacobian matrix (23) becomes a lower triangular
matrix, which is given as

𝐽 (𝐸1) = [[[
[
1 + 𝛼1 4𝐴9𝛾 − 4𝐵𝑏𝛾 0

16𝐴9 (9𝛾 − 4𝐵𝑏)𝐵𝑏𝛼2 1 − 𝛼2 4𝐴9
]]]
]

(25)

The eigenvalues of this lower triangular matrix are given by
the diagonal entries 𝜆1 = 1+𝛼1(4𝐴/(9𝛾−4𝐵𝑏))𝛾 and 𝜆2 = 1−𝛼2(4𝐴/9).Through the assumption given above, we know that9𝛾 > 8𝐵𝑏, so 𝜆1 > 1. Again with the nonnegative condition
we know that 𝐴 > 0, so 𝜆2 < 1 will also be satisfied. However,
when 𝛼2 > 9/2𝐴, the eigenvalue 𝜆2 will be less than -1, so the
boundary equilibrium point is an unstable node. But when𝛼2 < 9/2𝐴, the eigenvalue 𝜆2 will be located in the unit circle,
so the boundary equilibrium point 𝐸1 is an unstable saddle.

It is clear that the boundary equilibrium point 𝐸1 =(0, 4𝐴/(9𝛾 − 4𝐵𝑏)) presents that only firm 2 conducts R&D,
while firm 1 is eliminated or left out of the competitive market
and therefore it can be viewed as a single monopoly market.
As the equilibrium point 𝐸2 is symmetric with 𝐸1 in the
rectangular coordinate system, the stability analysis of 𝐸2
is very similar to that of 𝐸1 and is not repeated. In order
to analyze the stability of the Nash equilibrium point, the
following proposition is firstly given.

Proposition 3. The Neimark-Sacker bifurcation cannot occur
at the Nash equilibrium point 𝐸3.
Proof. At the Nash equilibrium point 𝐸3, the Jacobian matrix
becomes the following form:

𝐽 (𝐸3) = [1 − 𝛼1𝐶𝐷 4𝐶𝐵𝑏𝛼14𝐶𝐵𝑏𝛼2 1 − 𝛼2𝐶𝐷] (26)

where 𝐶 = 4𝐴/9(9𝛾 − 8𝐵𝑏) and 𝐷 = 9𝛾 − 4𝐵𝑏. Let Tr(𝐸3)
and Det(𝐸3) be the trace and the determinant of the Jacobian
matrix 𝐽(𝐸3), respectively. The following equation gives the
characteristic equation of matrix 𝐽(𝐸3):

𝜆2 − Tr (𝐸3) 𝜆 +Det (𝐸3) = 0 (27)

where the trace and the determinant of the Jacobian matrix
are given as

Tr (𝐸3) = 2 − (𝛼1 + 𝛼2) 𝐶𝐷 (28)

Det (𝐸3) = 1 − (𝛼1 + 𝛼2) 𝐶𝐷 + 4𝐴𝐶𝛾𝛼1𝛼2 (29)
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According to Eq. (28) and Eq. (29), the discriminant of the
characteristic polynomial is given as

(Tr)2 − 4Det = ( 4𝐴9 (9𝛾 − 8𝐵𝑏))
2

⋅ [(𝛼1 − 𝛼2)2 (9𝛾 − 4𝐵𝑏)2 + (8𝐵𝑏)2 𝛼1𝛼2]
(30)

As the parameters 𝛼1 and 𝛼2 meet 𝛼1 > 0 and 𝛼2 > 0,
the discriminant of the characteristic polynomial will be
always nonnegative. It means that there is no complex root
for this quadratic equation. And hence, the Neimark-Sacker
bifurcation cannot occur.

Proposition 4. TheuniqueNash equilibrium𝐸3 is stablewhen
the system parameters meet the following conditions:

𝐴 [2𝐴𝛼1𝛼2𝛾 − (9𝛾 − 4𝐵𝑏) (𝛼1 + 𝛼2)]
> 4.5 (9𝛾 − 8𝐵𝑏) (31)

Proof. According to the Jury condition [38], the Nash equi-
librium point 𝐸3 is local asymptotic stable if and only if all
the following conditions are satisfied.

(i) 1 − Tr +Det = 4𝐴𝐶𝛾𝛼1𝛼2 > 0
(ii) 1 + Tr +Det

= 4 − 2 (𝛼1 + 𝛼2) 𝐶𝐷 + 4𝐴𝐶𝛾𝛼1𝛼2 > 0
(iii) 1 −Det = (𝛼1 + 𝛼2) 𝐶𝐷 − 4𝐴𝐶𝛾𝛼1𝛼2 > 0

(32)

The condition (i) apparently holds as all the parameters𝐴, 𝐶, 𝛾, 𝛼1, and 𝛼2 are all positive. And the condition (iii) is
unnecessary as a consequence of Proposition 3. In order to
solve the inequality (ii), we let 1 + tr +Det = 0. And then the
following threshold of 𝛼1 can be gained through solving the
given equation.

𝛼∗1 = 𝐶𝐷𝛼2 − 2𝐶 (2𝐴𝛾𝛼2 − 𝐷)
= 2𝐴 (9𝛾 − 4𝐵𝑏) 𝛼2 − 9 (9𝛾 − 8𝐵𝑏)2𝐴 [2𝐴𝛾𝛼2 − (9𝛾 − 4𝐵𝑏)]

(33)

And the inequality (ii) gives 𝛼1 > 𝛼∗1 . Through the dis-
cussion given above, the stability region of Nash equilibrium
point can be given as

𝐴 [2𝐴𝛼1𝛼2𝛾 − (9𝛾 − 4𝐵𝑏) (𝛼1 + 𝛼2)]
> 4.5 (9𝛾 − 8𝐵𝑏) (34)

In system (17), the equilibrium 𝐸3 is stable when the
parameters satisfy the stability condition, while, when one
or more parameters violate the stability condition, the Nash
equilibrium 𝐸3 will lose its stability through some types of
bifurcation. In the next section, the stability of the equi-
librium point is studied using numerical simulation. Then
the bifurcation with varying parameters and the complex
dynamical behaviors of this system when the equilibrium
point loses its stability are also analyzed.

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1


2

0.1 0.2 0.3 0.4 0.5
1

Figure 1: The stability region of the Nash equilibrium point 𝐸3 on
the parameter plane (𝛼1, 𝛼2).

4. Bifurcation Analysis Using Numerical
Simulation

In this section, somenumerical simulationswill be conducted
in order to analyze the stability of the equilibrium point and
the complex dynamical behaviors of system (17).

Firstly, the system parameters are fixed as 𝑎 = 7.12,𝑏 = 0.024, 𝑐 = 0.98, 𝛽 = 0.38, and 𝛾 = 0.44, and
the initial condition is chosen as (𝑥1, 𝑥2) = (2.33, 1.3). The
stability region of the Nash equilibrium point 𝐸3 is given
in Figure 1. In Figure 1, the area with dark color represents
the stability region of 𝐸3, while the white area represents
the instability region of 𝐸3. We can also see from Figure 1
that the stability region is situated on the lower left corner
of this figure. The shape of the stability region just likes a
curved edge rectangle in the parameter plane of (𝛼1, 𝛼2). And
the boundary between stability region and instability region
corresponds to a bifurcation curve. As there is no possibility
for Neimark-Sacker bifurcation, this bifurcation curve refers
to a period doubling bifurcation curve. It means that if the
parameter 𝛼1 or/and 𝛼2 cross this curve into the white area
from the dark area, then a period doubling bifurcation occurs.
The endpoints of this bifurcation curve also can be solved
through the equation 1 + Tr + Det = 0, if we let 𝛼1 = 0 and𝛼2 = 0 in this equation, respectively. And the coordinate axis
of these two endpoints can be given as

𝐴1 = ( 9 (9𝛾 − 8𝐵𝑏)
2𝐴 (9𝛾 − 4𝐵𝑏) , 0) ,

𝐴2 = (0, 9 (9𝛾 − 8𝐵𝑏)2𝐴 (9𝛾 − 4𝐵𝑏))
(35)

In order to further analyze the influence of the system
parameters on the stability region of the Nash equilibrium
point 𝐸3 on the plane (𝛼1, 𝛼2), the stability curves with
different values of 𝛾 are plotted in the plane (𝛼1, 𝛼2). For
example, if we fix all the other parameters as 𝑎 = 7.12,𝑏 = 0.024, 𝑐 = 0.98, and 𝛽 = 0.38, the value of parameter𝛾 is chosen as 0.1, 0.44, and 1.0, respectively. The stability
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Figure 2: The stability curves of the Nash equilibrium point 𝐸3 on
the parameter plane (𝛼1, 𝛼2) with different values of 𝛾.

curves in the parameter plane (𝛼1, 𝛼2) with different values
of 𝛾 are shown in Figure 2. In Figure 2, the stability curves
with black color, blue color, and red color represent 𝛾 = 0.1,𝛾 = 0.44, and 𝛾 = 1.0, respectively. And the area formed
by these stability curves and coordinate axes are the stability
regions with different values of 𝛾. From Figure 2 we can see
that the stability region increases very quickly as the value of𝛾 increases from 0.1 to 0.44. However, the change of stability
region is very small when 𝛾 increases from 0.44 to 1.0. In fact,
there is hardly any change in the stability region as 𝛾 continues
to increase further. And the shape of stability curve is also
changing as 𝛾 varies; see Figure 2 for details.

The above analysis is mainly about the stability region of
the Nash equilibrium point in the parameter plane (𝛼1, 𝛼2).
However, the complex dynamical behaviors outside the sta-
bility region have not been revealed. In order to analyze the
complex dynamical behaviors of system (17) when the Nash
equilibrium point loses its stability, the bifurcation diagram
is employed in this article. However, the tool we used here
is not only the one-parameter bifurcation diagram but also
two-parameter bifurcation diagram, in order to analyze the
complex dynamical behavior of system (17) in depth.

Figures 3(a) and 3(b) show the two-parameter bifurcation
diagram with fixed parameter as 𝑎 = 7.12, 𝑏 = 0.024,𝑐 = 0.98, 𝛽 = 0.38, and 𝛾 = 0.44 and initial conditions as(𝑥1, 𝑥2) = (2.33, 1.3) in the parameter plane of (𝛼1, 𝛼2). The
different colors in these figures represent different number
of points of the numerically evaluated attractor, which can
be seen from the color bar in the right of these figures.
In Figure 3(a) deep yellow represents the period-1 attractor,
which is the stability region of the Nash equilibrium point.
Furthermore, the deep yellow region in Figure 3(a) also
corresponds to the stability region in Figure 1. The dark
green color represents the region of period-2 attractor. And
the yellow color represents the region of period-4 attractor,
and so on. From Figures 3(a) and 3(b), we can see that the
systemwill lose stability through period doubling bifurcation

as one/both of the parameters 𝛼𝑖, 𝑖 = 1, 2, increase. In
particular, in the black region the trajectories either converge
toward a large period attractor, a chaotic or quasi-periodic
one or they diverge. It is worth pointing out that the quasi-
periodic attractor is a special attractor, which will arise after
the Neimark-Sacker bifurcation. And the largest Lyapunov
exponent equals zeros, if the system is in a quasi-periodic
state.

Figure 3(b) is a partial enlargement of Figure 3(a). From
Figure 3(b), we can find some fractal structures. And sym-
metry of these figures can also be detected. It also means that
the symmetry of parameters 𝛼1 and 𝛼2 also exists in system
(17). Therefore, only the changes of dynamical behavior with
parameter 𝛼1 are studied in this article. There is no need for
us to study the effects of parameter 𝛼2 on system (17) due to
the symmetry.

If we fix the value of 𝛼2 as 𝛼2 = 0.4 in Figure 3(a),
the detailed dynamical behavior of system (17) can be found
in Figures 4(a) and 4(b). In Figures 4(a) and 4(b), the
one-parameter bifurcation diagram and the corresponding
largest Lyapunov exponent are given, where the bifurcation
parameter is chosen as the speed of adjustment of firm 1.
And the parameters chosen in Figure 4 are same with those
of Figure 3(a). From Figure 4(a), we can see that the Nash
equilibrium point is stable when 𝛼1 ∈ [0, 0.41]. At about𝛼1 = 0.41, the Nash equilibrium point loses its stability
through a period doubling bifurcation, and a stable state of
period-2 appears. As the value of 𝛼1 further increases, the
stable period-2 orbit loses its stability again, and a period-
4 cycle arises, and so on. At last, the system enters into
chaos. However, some periodic windows can also be found
in the chaotic region, which can be seen from Figure 4(a).
Through the above analysis, a common conclusion can be
gained that the speed of adjustment plays a vital role in
system (17). In other words, smaller speed of adjustment
means more stable R&D investments and more stable market
environment. In fact, the R&D investments for firms can
exhibit a more stable behavior if the reaction speeds for them
to the market information are slow enough. Another useful
tool to analyze the complex dynamical behavior is the largest
Lyapunov exponent. The largest Lyapunov exponent diagram
can be used to show the degree of separation of nonlinear
system variables running over time, and it can also be used
to prove whether the system is chaotic. When the system is in
a stable state, the largest Lyapunov exponent is less than zero.
While the system enters chaos, its largest Lyapunov exponent
is greater than zero. In Figure 4(b), the largest Lyapunov
exponent diagram corresponding to Figure 4(a) is plotted.
The evolution process of system (17) is confirmed again.

Moreover, the role of parameter 𝛾 is also very important
for the system (17). If we fix the parameter sets as 𝑎 = 2.679,𝑏 = 0.061, 𝑐 = 0.105, 𝛼1 = 0.666, and 𝛽 = 0.375, the two-
parameter bifurcation diagrams with parameters 𝛼2 and 𝛾 are
shown in Figures 3(c) and 3(d). In Figures 3(c) and 3(d), the
initial conditions are chosen as𝑥1 = 6.15 and𝑥2 = 5.75. From
Figure 3(c), we can see that the dynamical behaviors of system
(17) are very complex, when the value of parameter 𝛼2 meets𝛼2 > 1.4 (to be honest, this value is not very accurate), while,
if 𝛼2 < 1.4, we can see that the system is in a chaotic state
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Figure 3: (a) The two-parameter bifurcation diagram in the parameter plane (𝛼1, 𝛼2) with fixed parameters as 𝑎 = 7.12, 𝑏 = 0.024, 𝑐 = 0.98,𝛽 = 0.38, and 𝛾 = 0.44. (b) Partial enlargement of (a). (c) The two-parameter bifurcation diagram in the parameter plane (𝛾, 𝛼2) with fixed
parameters as 𝑎 = 2.679, 𝑏 = 0.061, 𝑐 = 0.105, 𝛼1 = 0.666, and 𝛽 = 0.375. (d) Partial enlargement of (c).

when the value of parameter 𝛾 is relatively small. And then
the stable periodic states will arise. However, the system will
lose stability again, when the value of 𝛾 is large enough. And
the escaping trajectories will appear. Figure 3(d) is the partial
enlargement of Figure 3(c). Although Figure 3(c) looks ugly,
Figure 3(d) does show a good fractal structure. Furthermore,
if we fix the value of𝛼2 as𝛼2 = 0.9 in Figures 3(c) and 3(d), the
one-parameter bifurcation diagram is given in Figure 4(c).
From Figure 4(c), we can see that the system is in a chaotic
state when 𝛾 < 0.19225. And then a multi-periodic window
appears. The chaotic window reappears, subsequently. But
when the value of 𝛾 meets 𝛾 ≈ 0.1994, the system enters a
multi-periodic state again. And then a secondary Neimark-
Sacker bifurcation occurs at 𝛾 ≈ 0.211. The Nash equilibrium
point becomes stable at 𝛾 ≈ 0.3. Finally, the Nash equilibrium
point loses its stability again at 𝛾 ≈ 0.58, and the escaping
trajectories arise. The escaping trajectory cannot be detected,
as the value(s) of 𝑥1 or/and 𝑥2 will go to infinity. Such changes
can also be seen from the corresponding largest Lyapunov
exponent diagram, which is given in Figure 4(d).

In order to further explain the influence of parameter 𝛾 on
system (17), the two-dimensional bifurcation diagram with

different parameter sets is given in Figure 5. The parameters
are chosen as 𝑎 = 7.12, 𝑏 = 0.024, 𝑐 = 0.98, and 𝛽 = 0.38,
which are same with those of Figure 3(a). But the value of
parameter 𝛾 is different from Figure 3(a). In Figures 5(a) and
5(b), the value of 𝛾 is chosen as 𝛾 = 0.1, and Figure 5(b) is the
partial enlargement of Figure 5(a). However, the value of 𝛾 is
chosen as 𝛾 = 1.0 in Figures 5(c) and 5(d), and Figure 5(d)
is the corresponding partial enlargement of Figure 5(c). By
comparing Figures 3(a) and 5, we can see that the Nash
equilibrium point always loses its stability through a period
doubling bifurcation, and then a period-2 cycle appears. After
that the system enters to chaotic state through a series of
period doubling bifurcation. The detailed bifurcation process
can be found in Figure 6(a), where the parameters are same
with Figure 5(a) except that the value of 𝛼2 is fixed as 𝛼2 =0.345. From Figure 6(a), a clear secondary Neimark-Sacker
bifurcation can be found. In addition, we can also find the
existence of periodic windows on the way to chaos.

From Figures 3(a) and 5, we can also see that the
parameter window into quasi-periodic state becomes very
narrow when 𝛾 increases to some certain value. When 𝛾 =1.0, the parameter window of Neimark-Sacker bifurcation is
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Figure 4: (a) The one-parameter bifurcation diagram with 𝑎 = 7.12, 𝑏 = 0.024, 𝑐 = 0.98, 𝛽 = 0.38, 𝛾 = 0.44, and 𝛼2 = 0.4, where the
bifurcation parameter is chosen as 𝛼1. (b) The corresponding largest Lyapunov exponent of (a). (c) The one-parameter bifurcation diagram
with 𝑎 = 2.679, 𝑏 = 0.061, 𝑐 = 0.105, 𝛼1 = 0.666, and 𝛼2 = 0.9, where the bifurcation parameter is chosen as 𝛾. (d) The corresponding largest
Lyapunov exponent of (c).

even hard to observe; see Figure 5(c). But this phenomenon
can be revealed from the partial enlargement of Figure 5(c);
see Figure 5(d).

The symmetry structure and fractal structure can also be
observed from Figures 3(a) and 5. As the value of 𝛾 increases,
the fractal structure of these figures has also changed. But
the symmetry structure of all the figures will never change.
This phenomenon also directly reflects the symmetry of
parameters 𝛼1 and 𝛼2. In addition, we can also find that
there are a lot of sparse black points, which have covered the
light blue area and the yellow area in the upper right corner
of Figure 5(d). Here, these sparse black points are called
noisy points, as they have affected the beauty of Figure 5(d).
However, the presence of the noisy points often implies
the coexistence of multiple attractors. And the problem of
coexistence of attractors will be discussed in the following
section.

Theparameter 𝛾plays a very important role in the analysis
of high-tech enterprises and it can reflect the R&D capability
of enterprises. The smaller value of parameter 𝛾 means
the stronger innovation ability of enterprises. The following

analysis is mainly focused on the influence of parameter 𝛾
on the dynamical behaviors and profits of firms in the given
model. To be specific, the equilibrium profits and the average
profits of firm 1 and firm2will be discussed in order to enclose
the relation between parameter 𝛾 and the behaviors of firms.
The equilibrium profits of firm 𝑖 can be gained by substituting
the value of 𝐸3 into (11) and (12), respectively. The specific
mathematical expressions of equilibrium profits will be given
as

𝜋(𝐸𝑞)1 = 𝜋(𝐸𝑞)2
= 9 [𝛾 (𝑎 − 2𝑏𝑐)]2 − 8𝛾𝑏 [(𝑎 − 2𝑏𝑐) (𝛽 + 1)]2

𝑏 [9𝛾 − 8 (𝛽 + 1)2 𝑏]2
(36)

And the average profits of firm 1 and firm 2 can be
calculated through the mean value of the profit of firm 𝑖 at
different period. The detailed expressions of average profits
of firm 1 and firm 2 can be written as



10 Discrete Dynamics in Nature and Society

1

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1
0.1 0.2 0.3 0.4 0.5


2

30

25

20

15

10

5

(a)

1

0.44

0.42

0.4

0.38

0.36

0.34

0.32

0.3

0.28

0.3 0.35 0.4 0.45


2

30

25

20

15

10

5

(b)

1

0.7

0.6

0.5

0.4

0.3

0.2

0.1
0.70.60.50.40.30.20.1


2

30

25

20

15

10

5

(c)

1

0.6

0.59

0.58

0.57

0.56

0.55

0.54

0.53
0.590.580.570.560.550.540.53


2

30

25

20

15

10

5

(d)

Figure 5:The two-parameter bifurcation diagram in the parameter plane (𝛼1, 𝛼2) with fixed parameters as 𝑎 = 7.12, 𝑏 = 0.024, 𝑐 = 0.98, and𝛽 = 0.38. (a)The two-parameter bifurcation diagram with 𝛾 = 0.1. (b) Partial enlargement of (a). (c)The two-parameter bifurcation diagram
with 𝛾 = 1.0. (d) Partial enlargement of (c).

𝜋(𝐴V)1 = 1𝑛
𝑛∑
𝑡=1
{[𝑎 − 2𝑏𝑐 + 𝑏 (𝛽 + 1) (𝑥1 (𝑡) + 𝑥2 (𝑡))]9𝑏

2

− 12𝛾𝑥21 (𝑡)}

𝜋(𝐴V)2 = 1𝑛
𝑛∑
𝑡=1
{[𝑎 − 2𝑏𝑐 + 𝑏 (𝛽 + 1) (𝑥1 (𝑡) + 𝑥2 (𝑡))]9𝑏

2

− 12𝛾𝑥22 (𝑡)}

(37)

where 𝑛 is the number of iteration. In the following numerical
simulation, the value of 𝑛 is chosen as 𝑛 = 5000. Figure 6 gives
the one-parameter bifurcation diagrams, the corresponding
equilibrium profits, and average profits of firm 1 and firm 2,
where the blue color corresponds to firm 1, while the red color
represents firm 2. In Figure 6, the fixed parameters are given
as 𝑎 = 7.12, 𝑏 = 0.024, 𝑐 = 0.98, 𝛽 = 0.38, and 𝛼2 = 0.345.
However, the value of 𝛾 is fixed as 𝛾 = 0.1, 𝛾 = 0.44, and𝛾 = 1.0, respectively. From the value of 𝐸3, we can see that

the R&D efforts of firm 1 and firm 2 are equal at the Nash
equilibrium point. And thus the equilibrium profits are same
as well for firm 1 and firm 2. This phenomenon can also be
seen from Figure 6. However, the R&D efforts and average
profits of firm 1 and firm 2 are no longer equal anymore, once
the Nash equilibrium point loses its stability, as 𝛼1 increases.
Through comparing Figures 6(b), 6(d), and 6(f), we can find
that the average profits will fall when the value of 𝛾 increases.
It is easy to understand that larger value of 𝛾 represents a
lower R&D capability, so the profits will fall with increasing of𝛾. And the amplitude of fluctuation of R&D efforts is smaller
for firm with slower speed of adjustment; see Figures 6(a),
6(c), and 6(e).

From Figure 6, we can see that the average profits would
be smaller than the equilibrium profits when the Nash
equilibrium point loses stability. However, the average profits
are close to the equilibrium profits, if the firm’s speed of
adjustment is large enough; see Figures 6(d) and 6(f). It is
worth pointing out that the average profit is even higher
than the equilibrium profit for the firm with large speed
of adjustment, once the system enters into chaos; see the
blue curves in Figures 6(d) and 6(f), while the average profit
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Figure 6: The one-parameter bifurcation diagrams, corresponding equilibrium profits, and average profits of firm 1 and firm 2 with fixed
parameters as 𝑎 = 7.12, 𝑏 = 0.024, 𝑐 = 0.98,𝛽 = 0.38, and𝛼2 = 0.345, where the blue color corresponds to firm 1, while the red color represents
that of firm 2. (a) The one-parameter bifurcation diagram when 𝛾 = 0.1. (b) The equilibrium profits and average profits corresponding to
(a). (c) The one-parameter bifurcation diagram when 𝛾 = 0.44. (d) The equilibrium profits and average profits corresponding to (c). (e) The
one-parameter bifurcation diagram when 𝛾 = 1.0. (f) The equilibrium profits and average profits corresponding to (e).
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Figure 7: The one-parameter bifurcation diagram with 𝑎 = 7.12, 𝑏 = 0.024, 𝑐 = 0.98, 𝛽 = 0.38, 𝛾 = 0.44, and 𝛼1 = 𝛼2 = 𝛼. (a) The one-
parameter bifurcation diagram in relation to 𝛼 with initial conditions (𝑥1, 𝑥2) = (2.33, 1.3); (b) The one-parameter bifurcation diagram in
relation to 𝛼 with initial conditions (𝑥1, 𝑥2) = (2.33, 2.3).

of another firm fluctuates very fierce and is far below its
equilibrium profit; see the red curves in Figures 6(d) and
6(f). This phenomenon can be concluded as chaos is usually
harmful to the entire market, but firms with large speed of
adjustment sometimes can even benefit from chaos.

5. Multistability

As we have noticed, there are some noisy points in the upper
right corner of Figure 5(d). These noisy points are probably
caused by the coexistence of multiple attractors as we have
mentioned above. To give a more explicit picture about
this problem, the one-parameter bifurcation diagrams with
different initial conditions are plotted if we fix the parameters
as 𝑎 = 7.12, 𝑏 = 0.024, 𝑐 = 0.98, 𝛽 = 0.38, and 𝛾 = 0.44
and choose the parameter 𝛼1 = 𝛼2 = 𝛼 as the bifurcation
parameter. The one-parameter bifurcation diagrams with
initial conditions (𝑥1, 𝑥2) = (2.33, 1.3) and (𝑥1, 𝑥2) =(2.33, 2.3) are given in Figures 7(a) and 7(b), respectively.
The differences between these two figures are very clear. In
order to highlight these differences, the bifurcation diagrams
are plotted with different colors. In Figure 7(a), a period
doubling bifurcation firstly happens at 𝛼 ≈ 0.4175, and then
a Neimark-Sacker bifurcation arises at 𝛼 ≈ 0.51175. Later, a
period-2 point appears again. After that the system enters into
chaos through a period doubling bifurcation. In Figure 7(b),
the dynamical behavior of system (17) is relatively simple, but
a transcritical bifurcation can be observed.

In Figure 7, different colors represent different meanings.
From left to right, there is no coexistence attractor in the
red region. Blue corresponds to the coexistence of attractors.
Three different forms of coexistence of multiple attractors,
which are the coexistence of two period-2 attractors, the
coexistence of a period-2 attractor with a 2-cyclic attractor,
and the coexistence of a period-2 attractor with a chaotic
attractor, can be found in the blue region. However, the
coexistence of multiple attractors will disappear again in the
green area.

The multi-stability in economic system has a very impor-
tant research meaning. In fact, the choices of initial con-
ditions are very crucial for firms in the real market. As
the system we built here can be regarded as a repeated
process, the state of firms at time 𝑡 can be considered as the
initial conditions for firms at time t+1. Furthermore, once
the initial conditions are given for system (17), the long and
asymptotic behaviors of this system after many iterations can
be predicted. All the time, a recognized tool to analyze the
coexistence of attractors is the basin of attraction. And thus,
the basin of attraction is employed in our article. Firstly, the
definition of basin of attraction is given here.

Suppose there is an attractor of a nonlinear system, which
can be expressed by 𝐴. Then all the basins of attractor 𝐴 can
be written as B(𝐴) = ⋃∞𝑛=0 𝑇−𝑛(𝑈(𝐴)), where 𝑈(𝐴) is the
immediate basin of 𝐴. Obviously, 𝑈(𝐴) ⊆ B(𝐴), and the
points mapped to 𝑈(𝐴) after a finite number of iterations
also belong to B(𝐴). 𝑇−𝑛(𝑥) represents the set of rank-n
preimages of 𝑥.The basin of attraction can be divided into the
attractor, domain of attraction, and domain of escape. And
the domain of attraction refers to the set of initial conditions
that converge to the same attractor after a series of iterations.
The domain of attraction can be divided into connected sets
and nonconnected sets. The domain of escape refers to the
set of initial conditions that diverge to infinity after a series of
iterations. If we fix the parameters as 𝑎 = 7.12, 𝑏 = 0.024,𝑐 = 0.98, 𝛽 = 0.38, 𝛾 = 0.44, 𝛼1 = 0.41844, and 𝛼2 =0.4184, a typical basin of attraction of system (17) is given
in Figure 8. In Figure 8, the domain of attraction and the
escaping domain are represented by yellow area and dark blue
area, respectively.

As it can be seen from Figure 8, the shape of the basin

of Nash equilibrium point is a quadrilateral 𝑂𝑂1−1𝑂3−1𝑂2−1,
where 𝑂 = (0, 0) is the origin of coordinate axis and the

rest vertices of this quadrilateral 𝑂1−1, 𝑂2−1, and 𝑂3−1 are the
rank-1 preimages of the origin 𝑂 = (0, 0). It is clear that the
points of 𝑂1−1 and 𝑂2−1 are located on the horizontal axis 𝑥1
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and the vertical axis 𝑥2, respectively. And their coordinates
can be gained through solving the algebraic equation 𝑥𝑖 = 0
in formula (20), which are given as

𝑂1−1 = ( 9 + 4𝐴𝛼1(9𝛾 − 4𝐵𝑏) 𝛼1 , 0) ,
𝑂2−1 = (0, 9 + 4𝐴𝛼2(9𝛾 − 4𝐵𝑏) 𝛼2)

(38)

For the convenience of analysis, the line-segments 𝑂𝑂1−1
and 𝑂𝑂2−1 are labeled as 𝜔1 and 𝜔2, i.e., 𝑂𝑂𝑖−1 = 𝜔𝑖, 𝑖 = 1, 2.
And the rank-1 preimages of 𝜔𝑖, 𝑖 = 1, 2, are labeled as 𝜔−11
and 𝜔−12 , respectively. The rank-1 preimages of 𝜔𝑖, 𝑖 = 1, 2,
can be understood as a set of all the preimages of the points on𝜔𝑖, 𝑖 = 1, 2. In order to get the coordinates of points located

on 𝜔−11 , it is supposed that the coordinate of any point on𝜔1 can be represented as (𝑥, 0); then the preimages of (𝑥, 0)
should satisfy the following equations:

𝑥1 [1 + 𝛼1 (4𝑏9 (𝛽 + 1)2 (𝑥1 + 𝑥2)
+ 49 (𝑎 − 2𝑏𝑐) (𝛽 + 1) − 𝛾𝑥1)] = 𝑥

𝑥2 [1 + 𝛼2 (4𝑏9 (𝛽 + 1)2 (𝑥1 + 𝑥2)
+ 49 (𝑎 − 2𝑏𝑐) (𝛽 + 1) − 𝛾𝑥2)] = 0

(39)

From the second equation of (39) we can find that the
rank-1 preimage of 𝜔1 should meet 𝑥2 = 0 or the linear
function given below:

𝑥2 = 4𝐵𝑏9𝛾 − 4𝐵𝑏𝑥1 + 9 + 4𝐴𝛼2(9𝛾 − 4𝐵𝑏) 𝛼2 (40)

The function 𝑥2 = 0 represents that 𝜔1 is one of the rank-
1 preimages of itself. However, the linear function (40) gives

another rank-1 preimage of 𝜔1, that is, 𝜔−11 . Through similar

method, the coordinates of points located on 𝜔−12 also can be
solved. And the following linear function can determine the

straight line 𝜔−12 :
𝑥1 = 4𝐵𝑏9𝛾 − 4𝐵𝑏𝑥2 + 9 + 4𝐴𝛼1(9𝛾 − 4𝐵𝑏) 𝛼1 (41)

It is obvious that the line determined by (40) and the line

determined by (41) have a unique intersection 𝑂3−1, which is
one of the rank-1 preimages of the origin 𝑂 = (0, 0). The

coordinate of point 𝑂3−1 can be gained through solving the
combination of (40) and (41), which can be represented as

𝑂3−1 = (4𝐵𝑏 (𝛼1 − 𝛼2) + 9𝛾𝛼2 + 4𝐴𝛾𝛼1𝛼2(9𝛾 − 8𝐵𝑏) 𝛾𝛼1𝛼2 ,
4𝐵𝑏 (𝛼2 − 𝛼1) + 9𝛾𝛼1 + 4𝐴𝛾𝛼1𝛼2(9𝛾 − 8𝐵𝑏) 𝛾𝛼1𝛼2 )

(42)

A more intuitive explanation of the points 𝑂, 𝑂1−1, 𝑂2−1,𝑂3−1 and these straight lines 𝜔1, 𝜔2, 𝜔−11 and 𝜔−12 can be found
in Figure 8. It is clear that the boundaries of the attracting
domain of the Nash equilibrium point 𝐸3 are constituted by

these lines. And the points 𝑂, 𝑂1−1, 𝑂2−1, and 𝑂3−1 are just
the intersections of these straight lines. From the detailed
expressions of (40) and (41), we find that the structure of
domain of attraction is related to the system parameters. Any
change in these parameters will lead to changes of structure
of basins.

For example, we fix all the parameters as 𝑎 = 7.12,𝑏 = 0.024, 𝑐 = 0.98, 𝛽 = 0.38, and 𝛾 = 0.44, which
are same with the parameters given in Figure 7. And the
parameter 𝛼 = 𝛼1 = 𝛼2 ∈ [0.53325, 0.60275] varies. Firstly,
the parameter 𝛼 is fixed as 0.53325, and the corresponding
basins can be found in Figure 9(a). At this very moment, a
chaotic attractor coexists with a period-2 cycle.The attracting
domain of the chaotic attractor is represented by yellow
color, and the attracting domain of the period-2 cycle is
represented by light green, while the dark blue area means
the domain of escaping. And the shape of Figure 9(a) is
just like a quadrilateral “sieve” with fractal structure. As
parameter 𝛼 further increases to 0.55675, the chaotic attractor
enlarges, but the fractal structure of the attracting basin has
hardly changed. The chaotic attractor has almost contacted
with its attracting domain; see Figure 9(b). It means that a
global bifurcation called “contact bifurcation” will arise. In
Figure 9(c), the parameter 𝛼 is fixed as 0.557, we can find that
both the chaotic attractor and its corresponding domain of
attraction have been destroyed, and the destroyed attractor
will fill the whole domain of attraction. This phenomenon
can also be observed from the time series plot, which is
given in Figure 10. In Figure 10, the values of parameters
are same with those in Figure 9(c) and the initial conditions
are chosen as (2.33, 1.3). We can find that the evolution is
disorderly in Figure 10. Comparing Figures 9(b) and 9(c), it
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Figure 9: Basins of attraction and coexisting attractors of system (17) with 𝑎 = 7.12, 𝑏 = 0.024, 𝑐 = 0.98, 𝛽 = 0.38, 𝛾 = 0.44, and 𝛼 = 𝛼1 =𝛼2 ∈ [0.53325, 0.60275], where different colors represent attracting domains of different attractors. (a) 𝛼 = 0.53325; (b) 𝛼 = 0.55675; (c)𝛼 = 0.557; (d) 𝛼 = 0.58117; (e) 𝛼 = 0.58225; (f) 𝛼 = 0.58525; (g) 𝛼 = 0.6025; (h) 𝛼 = 0.60275.
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can be found that the truth of the matter is that the attracting
basin of the “dead” chaotic attractor is also occupied by the
period-2 attractor. We refer to the long-run transition as the
“ghost” of the destroyed attractor; see Bischi, etc. [17, 39]
for more detail. Furthermore, if we choose 𝛼 as 0.58117, it
can be found that the “ghost” of the destroyed attractor
still exists, and the coexistence of a period-4 point (red
points in Figure 9(d)) and an 8-piece quasi-periodic attractor
(black cycle in Figure 9(d)) can be found. But the attracting
domain of the period-4 points is confined to the diagonal.
As 𝛼 further increases to 0.58225, the 8-piece quasi-periodic
attractor has evolved into a 4-piece quasi-periodic attractor.
The coexisting period-4 attractor is hard to distinguish from
the quasi-periodic attractor; see Figure 9(e). As 𝛼 continues
to increase, the 4-piece quasi-periodic attractor becomes
a 4-piece chaotic attractor. And some disconnected sets
arise in the attracting basins of these two attractors; see
Figure 9(f). The 4-piece chaotic attractor starts to contact
with its attracting domain.Thismeans that global bifurcation
occurs, and the structure of attracting domain will change
once again; see Figure 9(g). In Figure 9(g), we fix the value of𝛼 as 0.6025, and the coexistence of a 4-piece chaotic attractor
and a multi-periodic cycle in the diagonal can be found.
The attracting basin of the multi-periodic cycle is only the
diagonal line. With a further increase of the parameter 𝛼,
the 4-piece chaotic attractor starts to merge into a one-piece
chaotic attractor at 𝛼 = 0.60275; see Figure 9(h). However, a
weak chaotic attractor is beginning to appear on the diagonal,
too. And its attracting domain is just the diagonal line.

In Figure 9, the multistability of system (17) with 𝛼1 =𝛼2 has been discussed. Then, the cases with 𝛼1 ̸= 𝛼2 will
be discussed. Firstly, the parameter sets are fixed as 𝑎 =4.19, 𝑏 = 0.04, 𝑐 = 0.13, 𝛽 = 0.32, and 𝛾 = 0.098,
and the parameters 𝛼1 and 𝛼2 are chosen as the bifurcation
parameters. In Figure 11(a), a two-parameter bifurcation
diagram is plotted. And the local enlargement of Figure 11(a)
is given in Figure 11(b). The noisy points can be found
in the lower right corner of Figure 11(b). In the previous
section, we havementioned that these noisy points are related
with the coexistence of attractors. To throw further light on

this problem, the values of 𝛼1 and 𝛼2 are chosen as 0.524
and 0.2037, respectively. This set of parameter corresponds
to the overlapping region of fluorescein and turquoise in
Figure 11(b). The basins of attraction at this set of parameters
are given in Figure 11(c). From Figure 11(c), we can find that
there are two attractors coexisting: one is a period-2 cycle
(labeled by 𝐴2), and the other is a period-6 cycle (labeled
by 𝐵6). The immediate basin of 𝐴2 is the area where 𝐴2
locates, while the total basin of 𝐴2, which can be written as
B(𝐴2) = ⋃∞𝑛=0(𝑈(𝐴2)), is the entire region with light blue.
In fact, the light blue region occupies the vast majority of
the feasible region; see Figure 11(c). Accordingly, the total
basin of 𝐵6 is very sparse, which can be represented as
B(𝐵6) = ⋃∞𝑛=0(𝑈(𝐵6)) and is expressed with yellow color in
Figure 11(c). The feasible region can be represented as F =
B(𝐴2) ∪ B(𝐵6) = ⋃∞𝑛=0(𝑈(𝐴2)) ∪ ⋃∞𝑛=0(𝑈(𝐵6)).

If the values of𝛼1 and𝛼2 are changed to 0.5665 and 0.2037,
respectively, other coexisting attractors can be found, see
Figure 11(d), where a period-4 cycle (labeled by 𝐴4) coexists
with a chaotic attractor constituted by 7-pieces (labeled by𝐵7). In Figure 11(d), the total basin of 𝐴4 is the area of
light blue, and the total basin of 𝐵7 is the area of yellow. In
Figure 11(d), the yellow region is further increased, while the
light blue region is reduced compared with Figure 11(c). The
feasible regions F are the total basins of these two attractors.
The shape of Figure 11(d) is similar to that of Figure 11(c), and
it is just like a knife coin in ancient China.

It is generally known that the critical set is the primary
tool to analyze the topological structure of attracting basin in
noninvertible maps. If we let 𝑥𝑖(𝑡 + 1) = 𝑥𝑖, 𝑥𝑖(𝑡) = 𝑥𝑖 in
system (17), and solve the algebraic equations about 𝑥1 and𝑥2, which are given as

𝑥1 [1 + 𝛼1 (4𝑏9 (𝛽 + 1)2 (𝑥1 + 𝑥2)
+ 49 (𝑎 − 2𝑏𝑐) (𝛽 + 1) − 𝛾𝑥1)] = 𝑥1

𝑥2 [1 + 𝛼2 (4𝑏9 (𝛽 + 1)2 (𝑥1 + 𝑥2)
+ 49 (𝑎 − 2𝑏𝑐) (𝛽 + 1) − 𝛾𝑥2)] = 𝑥2

(43)

Then, the rank-1 preimages of point (𝑥1, 𝑥2) can be obtained.

Actually, the preimages of point (𝑥1, 𝑥2) may be more than
one, as the nonlinear equations (43) are constituted by
two quadratic equations. And therefore, the system can be
regarded as a two-dimensional noninvertible map, which can
be abbreviated as (𝑥1, 𝑥2) = 𝑇(𝑥1, 𝑥2). The noninvertible
map represents many-to-one. It means that the image of two
distinct points on the two-dimensional plane may be same.
That is, even if (𝑥1, 𝑥2) ̸= (𝑦1, 𝑦2), 𝑇(𝑥1, 𝑥2) may be equal
to 𝑇(𝑦1, 𝑦2), too. In fact, if we solve the nonlinear algebraic
equations (43), there are maybe four, maybe two, or even no
solutions for equations (43) in the real field. And the critical
curves can be used to divide the phase space into the regions
called 𝑍4,𝑍2, and 𝑍0. The symbol 𝑍𝑖 represents the region in
phase space, where the points have 𝑖 preimages.Theboundary
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Figure 11: (a) The two-parameter bifurcation diagram in the parameter plane (𝛼1, 𝛼2) with fixed parameters as 𝑎 = 4.19, 𝑏 = 0.04, 𝑐 = 0.13,𝛽 = 0.32, and 𝛾 = 0.098. (b) Partial enlargement of (a). (c)The basin of attraction, where a period-2 cycle coexists with a period-6 cycle when𝛼1 = 0.524 and 𝛼2 = 0.2037. (d) The basin of attraction, where a period-4 cycle coexists with a 7-piece chaotic attractor when 𝛼1 = 0.5665
and 𝛼2 = 0.2037.

of these regions, also called critical curves, can be denoted
as 𝐿𝐶. Suppose that 𝐿𝐶−1 are the preimages sets of points
on 𝐿𝐶, that is, 𝐿𝐶 = 𝑇(𝐿𝐶−1). And 𝐿𝐶−1 can be defined
as a locus of the points where the determination of Jacobian
matrix vanishes, that is,

𝐿𝐶−1 ⊆ 𝐽0 = {𝑥1, 𝑥2 ∈ R
2 | det 𝐽 (𝑥1, 𝑥2) = 0} (44)

As the Jacobian matrix of system (17) has given in (23),
thus the points on 𝐿𝐶−1 can be determined by the following
equation:

𝐸 (𝑥12 + 𝑥22) + 𝐹𝑥1𝑥2 + 𝐺 (𝑥1 + 𝑥2) + 𝐻1𝑥1 + 𝐻2𝑥2
+ 𝐼 = 0 (45)

where 𝐸 = 8𝐵𝑏[4𝐵𝑏− 9𝛾]𝛼1𝛼2/81, 𝐹 = 4[4𝐵𝑏 − 9𝛾]2𝛼1𝛼2/81,𝐺 = 4𝐴[12𝐵𝑏−18𝛾]𝛼1𝛼2/81,𝐻1 = (2(4𝐵𝑏−9𝛾)𝛼1+4𝐵𝑏𝛼2)/9,𝐻2 = (2(4𝐵𝑏 − 9𝛾)𝛼2 + 4𝐵𝑏𝛼1)/9, and 𝐼 = (9 + 4𝐴𝛼1)(9 +4𝐴𝛼2)/81.
It can be found that there are two branches in 𝐿𝐶−1, i.e.,𝐿𝐶(𝑎)−1 and 𝐿𝐶(𝑏)−1 . Therefore, there are also two branches in𝐿𝐶, that is, 𝐿𝐶(𝑎) = 𝑇(𝐿𝐶(𝑎)−1 ) and 𝐿𝐶(𝑏) = 𝑇(𝐿𝐶(𝑏)−1 ). A more

intuitive image of 𝐿𝐶 and 𝐿𝐶−1 can be found in Figure 12.The
sketch of 𝐿𝐶−1 has been given in Figure 12(a), while the sketch
of 𝐿𝐶 has been given in Figure 12(b). In Figure 12(b), we find

that the branch 𝐿𝐶(𝑎) separates 𝑍2 from 𝑍0, while the other
branch 𝐿𝐶(𝑏) separates 𝑍2 from 𝑍4. For example, the origin

point 𝑂 = (0, 0) has four preimages as 𝑂𝑖−1, 𝑖 = 1, 2, 3 and
itself, so the origin 𝑂 ∈ 𝑍4.

In the above discussion, the coexistence of attractors in
system (17) has been shown. However, another interesting
phenomenon in the basin of attraction called “hole” byBischi,
etc., [40] can be found in system (17). The formation mecha-
nism of these holes and their evolutions will be discussed in
the following through the critical curves, whichwe have given
above.

First of all, the two-parameter bifurcation diagram is
given in Figure 13, where the parameters are fixed as 𝑎 = 1.95,𝑏 = 0.044, 𝑐 = 1.58, 𝛽 = 0.9, and 𝛾 = 0.77. The specific
meaning of the color in Figure 13 can be referred to the color
bar in the right side of these figures. Figure 13(b) is the local
enlargement of Figure 13(a).The obvious fractal structure can
be found in these two figures. But there are also a lot of noisy
points in these figures, which have already affected the beauty
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Figure 12: (a) The sketch of 𝐿𝐶−1 with 𝑎 = 1.95, 𝑏 = 0.044, 𝑐 = 1.58, 𝛽 = 0.9, 𝛾 = 0.77, 𝛼1 = 1.57, and 𝛼2 = 1.625. (b) Critical curves𝐿𝐶 = 𝑇(𝐿𝐶−1). The curve 𝐿𝐶(𝑎) separates 𝑍2 from 𝑍0, and the other curve 𝐿𝐶(𝑏) separates 𝑍2 from 𝑍4.
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Figure 13: (a) The two-parameter bifurcation diagram in the parameter plane (𝛼1, 𝛼2) with fixed parameters as 𝑎 = 1.95, 𝑏 = 0.044, 𝑐 = 1.58,𝛽 = 0.9, and 𝛾 = 0.77. (b) Partial enlargement of (a).

of these figures. Similarly, these noisy points also give us the
information of the coexistence of multiple attractors.

As a matter of fact, if we fix 𝛼1 and 𝛼2 as 1.572 and 1.4893,
the basin of attraction is given in Figure 14(a). The rough
boundaries of feasible region can be determined using Eqs.
(40) and (41), but there is also a small gap in the feasible
region; see the topmost of Figure 14(a) for detail. And the

boundary of basin is tangent to the critical curve 𝐿𝐶(𝑎) at
the gap. No coexisting of attractors can be found at such
a situation. Only one chaotic attractor exists in the feasible
region. That is, the feasible region is just the attracting basin

of that chaotic attractor. The critical curve 𝐿𝐶(𝑎) is also the
boundary of that chaotic attractor. It means that the chaotic
attractor has contacted with the boundary of its attracting
domain; then a contact bifurcation will happen soon.

When 𝛼2 increases to 1.49, the contact bifurcation hap-
pens and the chaotic attractor disappears. And the feasible
region is full of the “ghost” of the disappeared attractor; see

Figure 14(b). At the same time, the critical curve 𝐿𝐶(𝑎) starts

intersecting with the gap, and a very tiny hole 𝐻0 in the

infeasible region arises. As the critical curve 𝐿𝐶(𝑎) separates
the phase space into 𝑍0 and 𝑍2, so the closed hole𝐻0 should
have two preimages. And the two preimages of𝐻0, which are
represented as 𝐻(1)−1 and 𝐻(2)−1 , form another two holes in the

feasible region; see Figure 14(b) for detail. The holes𝐻(1)−1 and𝐻(2)−1 lie in the 𝑍4 region, which is different from the research
result of other scholars [40]. Therefore, there should be four
preimages for the hole𝐻(1)−1 and𝐻(2)−1 , respectively. One of the
preimages of hole 𝐻(1)−1 and 𝐻(2)−1 is given as 𝐻(1)−2 and 𝐻(2)−2 ,
respectively. And other preimages are too small to see.

As 𝛼2 further increases to 1.52, the main hole𝐻0 becomes
larger than that of Figure 14(b), and more holes arise. These
holes can be regarded as the rank-k (k=0,1,2,. . .) preimages
of 𝐻0; see Figure 14(c). By comparison with Figure 14(b),
the “ghost” of chaotic attractor has disappeared and a new
period-2 cycle emerges in Figure 14(c). With a further
increase of 𝛼2 to 1.62, the main hole 𝐻0 is getting larger,
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Figure 14: The corresponding basin of attraction for different values of 𝛼2, and the parameters are fixed as 𝑎 = 1.95, 𝑏 = 0.044, 𝑐 = 1.58,𝛽 = 0.9, 𝛾 = 0.77, and 𝛼1 = 1.572. (a) 𝛼2 = 1.4893: a chaotic attractor and its attracting domain. (b) When the parameter 𝛼2 is equal to
1.49, a few holes start to arise in the feasible region. (c) At 𝛼2 = 1.52, more holes arise. (d) At 𝛼2 = 1.62, the fractal structure of the attracting
domain is very obvious, and many small holes are interconnected to larger holes. (e) A chaotic attractor and its attracting domain when we
fix parameter 𝛼2 as 1.679, and the chaotic attractor starts to contact with the boundary of its basin; a global bifurcation will happen. (f) At𝛼2 = 1.6815, the chaotic attractor disappears and the ghost of its basin is still surviving.

and the preimages of 𝐻0 are going to get bigger, too. In the
meanwhile, the attractor has evolved from a period-2 cycle
to a period-4 cycle; see Figure 14(d). It is very clear that the
holes in the feasible region will grow bigger and bigger and
burst into larger holes, as the main hole 𝐻0 is no longer

closed; see Figure 14(e). In Figure 14(e), we can see that the
number of holes has been reduced, but the scale of these holes
has increased. Furthermore, a chaotic attractor arises when𝛼2 = 1.679. However, the newborn chaotic attractor is going
to die, as there is no place for it to live. And then a contact
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bifurcation happens at 𝛼2 = 1.6815, the newborn chaotic
attractor has already died, and only its ghost still remains in
the feasible region; see Figure 14(f).

6. Conclusion

In this paper, a two-stage dynamical duopoly game of R&D
competition between two high-tech enterprises is studied. At
the first stage, both firms that conduct R&D so as to reduce
their production cost and improve the quality of products
compete in the R&D level. And at the second stage, both
firms choose cooperation and pursue the maximization of
joint profit. And then, the existence and stability of all the
equilibrium points are discussed. It has been proved that the
boundary equilibrium points are always unstable, and the
Nash equilibrium point is stable only when the parameters
meet some conditions. The stability region of Nash equilib-
riumpoint is derived through Jury condition.Wefind that the
Neimark-Sacker bifurcation cannot occur as both eigenvalues
of the Jacobian matrix at Nash equilibrium point are always
real numbers. And a numerical simulation is employed in
order to check the theoretical results. The stability region is
plotted numerically with different values of parameter 𝛾. We
find that the stability region is easy to be influenced by the
parameter 𝛾. The stability region is bigger when the value of𝛾 is larger. But the stability region will not change when the
parameter 𝛾 is large enough. We also find that the parameter
window into quasi-periodic state becomes very narrow when𝛾 increases to some certain value. In addition, the influence
of adjusting speed on the system is also discussed in this
paper.

Another topic of this paper is the multi-stability. The
multistability always implies path-dependence, which means
the long run behavior of firms is deeply influenced by
historical accidents. That is, a small perturbation of initial
conditions will affect the evolution of the system. And hence,
the choice of initial conditions plays a very important role in
the long run of the built system. For the sake of analyzing the
effect of initial conditions on the long run evolution of the
system, the basin of attraction is employed. In this research,
the two-parameter bifurcation diagram is used to find the
coexistence of multiple attractors. We found that there exist
noisy points in the two-parameter bifurcation diagram, when
the phenomenon of coexistence of multiple attractors arises.
And then the coexistence of multi-attractors is studied with
two different cases: 𝛼1 = 𝛼2 and 𝛼1 ̸= 𝛼2, respectively.
Our research result shows that the topological structures of
these two cases are totally different. The global bifurcation,
such as “contact” bifurcation, and the phenomenon of “holes”
in attracting basins have been found through numerical
simulation. And at last, the formation mechanisms of these
phenomena have been analyzed through critical curves and
noninvertible maps.

Data Availability

All the authors solemnly declare that there is no data used to
support the findings of this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This project is supported by the Talents’ Innovation and
Entrepreneurship Project of Lanzhou City (Project 2015-RC-
3), the Young Scholars Science Foundation of Lanzhou Jiao-
tong University (Project No. 2015029), and the Foundation
of Humanities and Social Sciences from the Ministry of
Education of China (Project No. 15YJC820007).

References

[1] C. d’Aspremont and A. Jacquemin, “Cooperative and nonco-
operative R & D in duopoly with spillovers,” The American
Economic Review, vol. 78, no. 5, pp. 1133–1137, 1988.

[2] M.Kamien, E. Muller, and I. Zang, “Research joint ventures and
R&D cartels,”The American Economic Review, vol. 82, no. 5, pp.
1293–1306, 1992.

[3] S. Ziss, “Strategic RDwith spillovers, collusion and welfare,”The
Journal of Industrial Economics, vol. 42, no. 4, pp. 375–393, 1994.

[4] R. Amir, “Modelling imperfectly appropriable R&D via
spillovers,” International Journal of Industrial Organization, vol.
18, no. 7, pp. 1013–1032, 2000.

[5] L. Lambertini, F. Lotti, and E. Santarelli, “Infra-industry
spillovers and R&D cooperation: theory and evidence,” Eco-
nomics of Innovation and New Technology, vol. 13, no. 4, pp. 311–
328, 2004.

[6] Y. Katsoulacos and D. Ulph, “Endogenous spillovers and the
performance of research joint ventures,” The Journal of Indus-
trial Economics, vol. 46, no. 3, pp. 333–357, 1998.

[7] X. Yin, “Asymmetric research joint ventures and market con-
centration,” Japanese Economic Review, vol. 50, no. 3, pp. 309–
320, 1999.

[8] G. Atallah, “R&D cooperation with asymmetric spillovers,”
Canadian Journal of Economics, vol. 38, no. 3, pp. 919–936, 2005.

[9] G. I. Bischi and F. Lamantia, “A dynamic model of oligopoly
with R&D externalities along networks. Part I,” Mathematics
and Computers in Simulation, vol. 84, pp. 51–65, 2012.

[10] G. I. Bischi and F. Lamantia, “A dynamic model of oligopoly
with R&D externalities along networks. Part II,” Mathematics
and Computers in Simulation, vol. 84, pp. 66–82, 2012.

[11] Y. Zhang, W. Zhou, T. Chu, Y. Chu, and J. Yu, “Complex
dynamics analysis for a two-stage Cournot duopoly game of
semi-collusion in production,”Nonlinear Dynamics, vol. 91, no.
2, pp. 819–835, 2018.

[12] J. Ford, “Chaos: solving the unsolvab, predicting the unpre-
dictable,” Chaos, Solitons and Fractals, vol. 2, pp. 1–52, 1986.

[13] G.-I. Bischi and U. Merlone, “Global dynamics in binary choice
models with social influence,” The Journal of Mathematical
Sociology, vol. 33, no. 4, pp. 277–302, 2009.

[14] L. Gori, L. Guerrini, and M. Sodini, “Time delays, population,
and economic development,” Chaos: An Interdisciplinary Jour-
nal of Nonlinear Science, vol. 28, no. 5, p. 055909, 2018.

[15] P. Gangopadhyay, “Dynamics ofmergers, bifurcation and chaos:
a new framework,” Physica A: Statistical Mechanics and its
Applications, vol. 403, pp. 293–307, 2014.



20 Discrete Dynamics in Nature and Society

[16] J. S. Cánovas, A. Panchuk, and T. Puu, “Asymptotic dynamics
of a piecewise smooth map modelling a competitive market,”
Mathematics and Computers in Simulation, vol. 117, pp. 20–38,
2015.

[17] G. I. Bischi and L. Cerboni Baiardi, “A dynamic marketing
model with best reply and inertia,” Chaos, Solitons & Fractals,
vol. 79, pp. 145–156, 2015.

[18] T. Li and J. Ma, “Complexity analysis of dual-channel game
model with different managers’ business objectives,” Communi-
cations in Nonlinear Science and Numerical Simulation, vol. 20,
no. 1, pp. 199–208, 2015.

[19] F. Cavalli and A. Naimzada, “Complex dynamics and multi-
stability with increasing rationality in market games,” Chaos,
Solitons & Fractals, vol. 93, pp. 151–161, 2016.

[20] F. Cavalli, A.Naimzada, and F. Tramontana, “Nonlinear dynam-
ics and global analysis of a heterogeneous Cournot duopoly
with a local monopolistic approach versus a gradient rule with
endogenous reactivity,” Communications in Nonlinear Science
and Numerical Simulation, vol. 23, no. 1–3, pp. 245–262, 2015.

[21] J. Andaluz, A. A. Elsadany, and G. Jarne, “Nonlinear Cournot
and Bertrand-type dynamic triopoly with differentiated prod-
ucts and heterogeneous expectations,” Mathematics and Com-
puters in Simulation, vol. 132, pp. 86–99, 2017.

[22] L. Fanti, L. Gori, C. Mammana, and E. Michetti, “The dynamics
of a Bertrand duopoly with differentiated products: synchro-
nization, intermittency and global dynamics,” Chaos, Solitons &
Fractals, vol. 52, no. 1, pp. 73–86, 2013.

[23] S. Brianzoni, L. Gori, and E. Michetti, “Dynamics of a Bertrand
duopoly with differentiated products and nonlinear costs:
analysis, comparisons and new evidences,” Chaos, Solitons &
Fractals, vol. 79, pp. 191–203, 2015.

[24] W. Yu and Y. Yu, “The complexion of dynamic duopoly game
with horizontal differentiated products,” Economic Modelling,
vol. 41, pp. 289–297, 2014.

[25] A. Agliari, A. K. Naimzada, and N. Pecora, “Nonlinear dynam-
ics of a cournot duopoly game with differentiated products,”
Applied Mathematics and Computation, vol. 281, pp. 1–15, 2016.

[26] C. L. Baiardi and A. K. Naimzada, “Experimental oligopolies
modeling: a dynamic approach based on heterogeneous behav-
iors,” Communications in Nonlinear Science and Numerical
Simulation, vol. 58, pp. 47–61, 2018.

[27] Y. Huang, L. Liu, and E. Qi, “The dynamic decision in risk-
averse complementary product manufacturers with corporate
social responsibility,” Kybernetes, vol. 45, no. 2, pp. 244–265,
2016.

[28] T. Dubiel-Teleszynski, “Nonlinear dynamics in a heterogeneous
duopoly game with adjusting players and diseconomies of
scale,” Communications in Nonlinear Science and Numerical
Simulation, vol. 16, no. 1, pp. 296–308, 2011.

[29] F. Tramontana and A. E. A. Elsadany, “Heterogeneous triopoly
game with isoelastic demand function,” Nonlinear Dynamics,
vol. 68, no. 1-2, pp. 187–193, 2012.

[30] L. Shi, Z. Sheng, and F. Xu, “Complexity analysis of remanufac-
turing duopoly game with different competition strategies and
heterogeneous players,” Nonlinear Dynamics, vol. 82, no. 3, pp.
1081–1092, 2015.

[31] F. Cavalli and A. Naimzada, “A Cournot duopoly game with
heterogeneous players: nonlinear dynamics of the gradient rule
versus local monopolistic approach,” Applied Mathematics and
Computation, vol. 249, pp. 382–388, 2014.

[32] Z. Ding, X. Zhu, and S. Jiang, “Dynamical Cournot game
with bounded rationality and time delay for marginal profit,”
Mathematics and Computers in Simulation, vol. 100, pp. 1–12,
2014.

[33] A. Matsumoto, C. Chiarella, and F. Szidarovszky, “Dynamic
monopoly with bounded continuously distributed delay,” Cha-
os, Solitons & Fractals, vol. 47, pp. 66–72, 2013.

[34] G. I. Bischi, C. Mammana, and L. Gardini, “Multistability and
cyclic attractors in duopoly games,” Chaos, Solitons & Fractals,
vol. 11, no. 4, pp. 543–564, 2000.

[35] H. N. Agiza, G. I. Bischi, and M. Kopel, “Multistability in a
dynamic Cournot game with three oligopolists,” Mathematics
and Computers in Simulation, vol. 51, no. 1-2, pp. 63–90, 1999.

[36] L. Gori and M. Sodini, “Price competition in a nonlinear
differentiated duopoly,” Chaos, Solitons & Fractals, vol. 104, pp.
557–567, 2017.

[37] F. Cavalli and A. Naimzada, “Effect of price elasticity of demand
in monopolies with gradient adjustment,” Chaos, Solitons &
Fractals, vol. 76, pp. 47–55, 2015.

[38] L. Gori, N. Pecora, and M. Sodini, “Market share delegation
in a nonlinear duopoly with quantity competition: the role of
dynamic entry barriers,” Journal of Evolutionary Economics, vol.
27, no. 5, pp. 905–931, 2017.

[39] G. I. Bischi and M. Kopel, “Multistability and path dependence
in a dynamic brand competition model,” Chaos, Solitons &
Fractals, vol. 18, no. 3, pp. 561–576, 2003.

[40] G. I. Bischi and A. Naimzada, “Global analysis of a dynamic
duopoly game with bounded rationality,” Advances in Dynamic
Games and Applications, vol. 5, pp. 361–385, 2000.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 

Journal of 

Mathematics and 

Mathematical 

Sciences

Hindawi

www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

nalysNumerical AnalysisNumerical AnalysisericalNumerical AnalysisNumerical AnalysisericNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Discrete Dynamics in 
Nature and Society

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Differential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

