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Abstract: The fractional differential equations involving different types of fractional derivatives are
currently used in many fields of science and engineering. Therefore, the first purpose of this study
is to investigate the qualitative properties including the stability, asymptotic stability, as well as
Mittag–Leffler stability of solutions of fractional differential equations with the new generalized
Hattaf fractional derivative, which encompasses the popular forms of fractional derivatives with
non-singular kernels. These qualitative properties are obtained by constructing a suitable Lyapunov
function. Furthermore, the second aim is to develop a new numerical method in order to approximate
the solutions of such types of equations. The developed method recovers the classical Euler numerical
scheme for ordinary differential equations. Finally, the obtained analytical and numerical results are
applied to a biological nonlinear system arising from epidemiology.

Keywords: stability; Hattaf fractional derivative; fractional differential equations; Lyapunov direct
method; numerical method

1. Introduction

Fractional differential equations (FDEs) are the differential equations with non-integer
powers of the differentiation order. In recent years, FDEs have gained importance in
both theoretical and applied aspects of several fields of science and engineering such as
biology [1,2], epidemiology [3–5], control theory [6], viscoelasticity [7], engineering [8],
and bioengineering [9]. For other recent developments in the literature on theoretical and
numerical studies of FDEs, see for example [10–12] for the inverse problem associated with
FDEs, ref. [13] for Hermite–Hadamard-type inequalities, [14–16] for numerical methods of
FDEs, and [17–19] for analytical and numerical solutions of some FDEs.

Currently, stability analysis of FDEs has been investigated by many authors. Li et al. [20]
dealt with the stability of nonlinear dynamic systems describing by the Caputo frac-
tional derivative with a singular kernel [21]. Delavari et al. [22] analyzed the stability
of fractional-order nonlinear systems. They presented an extension of the Lyapunov direct
method for Caputo-type fractional-order systems using Bihari’s and Bellman–Gronwall’s
inequalities [23,24]. The stability of FDEs with Hadamard fractional derivative [25] was in-
vestigated by Wang et al. [26] utilizing a new fractional comparison principle. In [27], the
authors focused on the Ulam stability of a generalized delayed differential equation of
fractional order. A more recent study presented in [28] discussed the Mittag–Leffler stability
of FDEs using the new generalized Hattaf fractional (GHF) derivative [29], which includes
many fractional derivatives available in the literature such as the Caputo–Fabrizio frac-
tional derivative [30], the Atangana–Baleanu fractional derivative [31], and the weighted
Atangana–Baleanu fractional derivative [32]. The stability in the sense of Ulam–Hyers
of FDEs with GHF derivative was studied in [33] using a new version of the Gronwall
inequality. However, this paper extends the fractional comparison principle to the GHF
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derivative and the results related to Mittag–Leffler stability given in [28] using class K
functions. Furthermore, the present paper establishes new interesting results concerning
the stability, as well as the asymptotic stability of FDEs with the GHF derivative by means
of the Lyapunov direct method and class K functions.

On the other hand, numerical methods have become indispensable tools to find the
approximate solutions of both ordinary differential equations (ODEs) and FDEs. Oftentimes,
it is impossible or complicated to find the exact solution for many nonlinear systems
modeling real phenomena. Therefore, the second main objective of this research is to
develop a new numerical method for solving FDEs with the GHF derivative.

The rest of the paper is outlined as follows. Section 2 describes the basic concepts
and extends the fractional comparison principle to the GHF derivative. Section 3 analyzes
the stability, the asymptotic stability, and the Mittag–Leffler stability of FDEs with the
GHF derivative. Section 4 proposes a new numerical method to solve nonlinear FDEs.
Section 5 presents an application of our analytical and numerical results to a biological
system. Finally, the conclusion is given in Section 6.

2. Preliminaries

In this section, we present the necessary concepts and results related to the GHF
derivative that are used throughout this paper.

Definition 1 ([29]). Let α ∈ [0, 1), β, γ > 0, and f ∈ H1(a, b). The GHF derivative of order α in
the Caputo sense of the function f (t) with respect to the weight function w(t) is defined as follows:

CDα,β,γ
a,t,w f (t) =

N(α)

1− α

1
w(t)

∫ t

a
Eβ[−µα(t− τ)γ]

d
dτ

(w f )(τ)dτ, (1)

where w ∈ C1(a, b), w, w′ > 0 on [a,b], N(α) is a normalization function obeying N(0) = N(1) = 1,

µα =
α

1− α
, and Eβ(t) =

+∞

∑
k=0

tk

Γ(βk + 1)
is the Mittag–Leffler function of parameter β.

Some examples of normalization functions are as follows:

• N(α) = 1,

• N(α) = 1− α +
α

Γ(α)
.

The main properties of the GHF derivative defined by (1) are given in detail in [29,34].
Furthermore, (1) is reduced to the Caputo–Fabrizio fractional derivative [30] when w(t) = 1
and β = γ = 1, to the Atangana–Baleanu fractional derivative [31] when w(t) = 1 and
β = γ = α, as well as to the weighted Atangana–Baleanu fractional derivative [32] when
β = γ = α.

Now, denote CDα,β,β
a,t,w by Dα,β

a,w. By [29], the generalized fractional integral associated

with Dα,β
a,w is given by the following definition.

Definition 2 ([29]). The generalized fractional integral operator associated with Dα,β
a,w is defined by

Iα,β
a,w f (t) =

1− α

N(α)
f (t) +

α

N(α)
RLIβ

a,w f (t), (2)

where RLIβ
a,w is the standard weighted Riemann–Liouville fractional integral of order β defined by

RLIβ
a,w f (t) =

1
Γ(β)

1
w(t)

∫ t

a
(t− τ)β−1w(τ) f (τ)dx. (3)

Now, we recall an important theorem that we will need in the following. This theorem
extends the Newton–Leibniz formula introduced in [35,36].
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Theorem 1 ([34]). Let α ∈ [0, 1), β > 0 and f ∈ H1(a, b). Then, we have the following properties:

Iα,β
a,w
(
Dα,β

a,w f
)
(t) = f (t)− w(a) f (a)

w(t)
, (4)

and

Dα,β
a,w
(
Iα,β

a,w f
)
(t) = f (t)− w(a) f (a)

w(t)
. (5)

In addition, we will need the following definition and lemma.

Definition 3. A continuous function ψ : [0,+∞)→ [0,+∞) is said to belong to class K if it is
strictly increasing and ψ(0) = 0.

Lemma 1. (Fractional comparison principle) Let x(t) and y(t) two functions defined on [t0,+∞)

with Dα,β
t0,wx(t) ≥ Dα,β

t0,wy(t) and x(t0) ≥ y(t0). Then, x(t) ≥ y(t), for all t ≥ t0.

Proof. We have Dα,β
t0,wx(t) ≥ Dα,β

t0,wy(t). By applying the fractional Hattaf integral to both
sides of this inequality and using (4), we obtain

x(t)− x(t0)w(t0)

w(t)
≥ y(t)− y(t0)w(t0)

w(t)
,

which leads to

x(t) ≥ y(t) +
w(t0)

(
x(t0)− y(t0

)
w(t)

.

Since x(t0) ≥ y(t0), we deduce that

x(t) ≥ y(t), for all t ≥ t0.

This completes the proof

Remark 1. Lemma 1 extends two results, one presented in Theorem 2.4 of [22] with the Riemann–
Liouville fractional derivative and the other in Lemma 6.1 of [20] with the Caputo fractional derivative.

3. Stability of FDEs with the GHF Derivative

In this section, we study the stability of the following nonautonomous FDE with the
GHF derivative expressed by

Dα,β
0,wx(t) = f (t, x(t)), (6)

where x(t) ∈ IRn is the pseudo-state variable, f : [0,+∞)×Ω→ IRn is a continuous locally
Lipschitz function satisfying in particular f (t, 0) = 0, and Ω is a domain of IRn that contains
the origin x = 0. When f (t, x) = f (x), (6) becomes an autonomous FDE of the form

Dα,β
0,wx(t) = f (x(t)). (7)

Since α ∈ [0, 1), we chose x(0) = x0 as the initial condition for (6) and (7).
First, we give some definitions of stabilities that will be used in the remainder of this

paper. We begin with the definition of stability and asymptotic stability.

Definition 4. Let x = 0 be an equilibrium point for the system (6):

(i) The equilibrium point x = 0 is said to be stable if, for any ε > 0, there exists a η > 0 such that
for each initial condition x(t0) = x0 satisfying ‖x0‖ < η, the solution x(t) of (6) satisfies
‖x(t)‖ < ε for all t ≥ t0. Otherwise, we say that x = 0 is unstable.

(ii) The equilibrium point x = 0 is said to be asymptotically stable if it is stable and lim
t→+∞

x(t) = 0.
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For the Mittag–Leffler stability, we have the following definition.

Definition 5. The trivial solution of (6) is said to be Mittag–Leffler stable if

‖x(t)‖ ≤ [m
(

x(t0)
)
Eβ

(
− λ(t− t0)

β
)
]ν,

where t0 is the initial time, λ ≥ 0, ν > 0, m(0) = 0, m(x) ≥ 0, and m(x) is locally Lipschitz on
x ∈ IRn with the Lipschitz constant m0.

It is very important to note that the Mittag–Leffler stability implies asymptotic stability.

Theorem 2. Let x = 0 be an equilibrium point for the system (6). If there exist a continuously
differentiable function V(t, x) : [0,+∞) × Ω → IR and a class K function ψ satisfying the
following conditions:

V(t, x) ≥ ψ(‖x‖), (8)

Dα,β
0,wV(t, x) ≤ 0, (9)

then x = 0 is locally stable. If (8) and (9) hold globally on IRn, then x = 0 is globally stable.

Proof. According to (9) and Theorem 1, we have

V(t, x(t)) ≤ V(0, x(0))w(0)
w(t)

.

Since w(0) ≤ w(t) for all t ≥ 0, we obtain:

V(t, x(t)) ≤ V(0, x(0)), ∀t ≥ 0.

It follows from (8) that

‖x(t)‖ ≤ ψ−1(V(0, x(0))
)
, ∀t ≥ 0. (10)

Then, the equilibrium x = 0 is stable.

Remark 2. Theorem 2 extends the asymptotical stability result with the Caputo derivative given in
Theorem 3.2 of [37] to the GHF derivative.

Theorem 3. Let x = 0 be an equilibrium point for the system (6). If there exist a continuously
differentiable function V(t, x) : [0,+∞)×Ω→ IR and class K functions ψi (i = 1, 2, 3) satisfying

ψ1(‖x‖) ≤ V(t, x) ≤ ψ2(‖x‖), (11)

Dα,β
0,wV(t, x) ≤ −ψ3(‖x‖), (12)

then x = 0 is asymptotically stable.

Proof. By (11) and (12), we have

Dα,β
0,wV(t, x) ≤ −ψ3 ◦ ψ−1

2
(
V(t, x)

)
.

It follows from the fractional comparison principle presented in Lemma 1 that V(t, x)
is bounded by the nonnegative solution of the following FDE:{

Dα,β
0,wy(t) = −ψ3 ◦ ψ−1

2
(
y(t)

)
,

y(0) = V(0, x(0)).
(13)
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We have Dα,β
0,wy(t) ≤ 0. Then,

y(t) ≤ y(0), ∀t ≥ 0. (14)

If y(0) = 0, then y(t) = 0 for all t ≥ 0.
If y(0) 6= 0, then lim

t→+∞
y(t) = 0. Assume the contrary, then there exists a ε > 0 such

that y(t) ≥ ε for all t ≥ 0. We have

Dα,β
0,wy(t) = −ψ3 ◦ ψ−1

2
(
y(t)

)
≤ −ψ3 ◦ ψ−1

2 (ε)

= −
ψ3 ◦ ψ−1

2 (ε)

y(0)
y(0).

Then
Dα,β

0,wy(t) ≤ −λy(t),

where λ =
ψ3◦ψ−1

2 (ε)
y(0) > 0. By applying Corollary 1 of [28], we obtain

y(t) ≤ y(0)Eβ

(
− αλtβ

N(α) + (1− α)

)
, ∀t ≥ 0.

This is a contradiction. Therefore, it follows from the fractional comparison princi-
ple that

V(t, x(t)) ≤ y(t).

By (11), we obtain
‖x(t)‖ ≤ ψ−1

1
(
y(t)

)
,

which implies that
lim

t→+∞
‖x(t)‖ = 0. (15)

Then, x = 0 is asymptotically stable.

Remark 3. Theorem 3 extends the result of the asymptotic stability with the Caputo fractional
derivative introduced in Theorem 6.2 of [20] to the GHF derivative with a nonsingular kernel.

Theorem 4. Let x = 0 be an equilibrium point for the system (6). If there exist a continuously
differentiable function Let V(t, x) : [0,+∞)×Ω→ IR such that is locally Lipschitz with respect
to x and a class K function ψ satisfying:

k1‖x‖p ≤ V(t, x) ≤ k2ψ(‖x‖), (16)

Dα,β
0,wV(t, x) ≤ −k3ψ(‖x‖), (17)

where k1, k2, k3, and p are arbitrary positive constants, then x = 0 is Mittag–Leffler stable. If (16)
and (17) hold globally on IRn, then x = 0 is globally Mittag–Leffler stable.

Proof. It follows from (16) and (17) that

Dα,β
0,wV(t, x) ≤ − k3

k2
V(t, x).

According to Corollary 1 of [28], we obtain

V(t, x) ≤ V(0, x(0))Eβ

(
− ηtβ

)
,
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where η = k3α
k2 N(α)+k3(1−α)

. Using (16), we obtain

k1‖x(t)‖p ≤ V(0, x(0))Eβ

(
− ηtβ

)
,

which leads to

‖x(t)‖ ≤
[

m
(
x(0)

)
Eβ

(
− ηtβ

)] 1
p

, (18)

where m(x) = V(0,x)
k1

. Therefore, the equilibrium x = 0 is Mittag–Leffler stable.

Remark 4. Theorem 4 generalizes the result concerning the Mittag–Leffler stability presented
in Theorem 3 of [28]. It suffices to take ψ(z) = zq, where z ∈ [0,+∞) and q is an arbitrary
positive constant.

Theorem 5. Let x = 0 be an equilibrium point for the autonomous system (7) and V(x) be
a continuously differentiable function in a neighborhood U ⊂ IRn of the origin satisfying the
following conditions:

(i) V(0) = 0 and V(x) > 0 for all x ∈ U\{0};

(ii) Dα,β
0,wV(x) ≤ 0 for all x ∈ U\{0}.

Then, x = 0 is stable.

Proof. Let ε > 0 such that B(0, ε) ⊂ U, where B(0, ε) denotes the closed ball with center 0
and radius ε be defined by B(0, ε) = {x ∈ IRn : ‖x‖ ≤ ε}. Furthermore, we define the open
ball with center 0 and radius ε by B(0, ε) = {x ∈ IRn : ‖x‖ < ε}.
Since V is continuous on the compact subset S(0, ε) = {x ∈ IRn : ‖x‖ = ε}, we deduce
there exists a x̂ ∈ S(0, ε) such that

V(x̂) = inf
x∈S(0,ε)

V(x) = $. (19)

According to (i), we have $ > 0. Consider the following subset of U:

U1 = {x ∈ B(0, ε) : V(x) < $}. (20)

Then, U1 is a neighborhood of the origin because it is an open ball containing 0.
Let φ(t, x0) be a solution of (7) with initial condition φ(0, x0) = x0 ∈ U1. According to

(ii), we have Dα,β
0,wV

(
φ(t, x0)

)
≤ 0. Then,

V
(
φ(t, x0)

)
≤ V

(
φ(0, x0)

)
= V(x0), for all t ≥ 0.

Hence,
φ(t, x0) 6∈ S(0, ε), for all t ≥ 0. (21)

Indeed, suppose the contrary. Therefore, there exists a t1 ≥ 0 such that φ(t1, x0) ∈ S(0, ε).
This implies that V

(
φ(t1, x0)

)
≥ $. Then, V(x0) ≥ $, which is contradicted with x0 ∈ U1.

Now, we prove that
φ(t, x0) ∈ B(0, ε), for all t ≥ 0. (22)

In fact, assume the contrary. Then, there exists a t2 ≥ 0 such that φ(t2, x0) 6∈ B(0, ε),
which implies that ‖φ(t2, x0)‖ > ε. Let Λ = {t ≥ 0 : ‖φ(t, x0)‖ > ε}. Hence, there
exists a sequence (tn) in {t ≥ 0 : ‖φ(t, x0)‖ > ε} such that lim

n→+∞
tn = Λ. Thus,

lim
n→+∞

‖φ(tn, x0)‖ ≥ ε. Therefore,

‖φ(Λ, x0)‖ ≥ ε. (23)
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For t < Λ, we have ‖φ(t, x0)‖ ≤ ε. Then, lim
t→Λ−

‖φ(t, x0)‖ ≤ ε, which implies that

‖φ(Λ, x0)‖ ≤ ε. (24)

From (23) and (24), we obtain ‖φ(Λ, x0)‖ = ε. This contradicts (21). We conclude
that if any initial condition of System (7) satisfies x0 ∈ U1, then the solution of (7) satisfies
φ(t, x0) ∈ B(0, ε), for all t ≥ 0. This implies that the equilibrium x = 0 of System (7)
is stable.

4. Numerical Scheme

In this section, we introduce a numerical method to approximate the solution of the
FDE with the GHF derivative given in (6).

From Theorem 1, Equation (6) can be converted to the following fractional
integral equation:

x(t)− x(0)w(0)
w(t)

=
1− α

N(α)
f
(
t, x(t)

)
+

α

N(α)Γ(β)

1
w(t)

∫ t

0
(t− τ)β−1w(τ) f

(
τ, x(τ)

)
dτ. (25)

Let tn = nh, where n ∈ IN and h is the time step duration. We have

x(tn+1) =
x0w(0)
w(tn)

+
1− α

N(α)
f
(
tn, x(tn)

)
+

α

N(α)Γ(β)w(tn)

∫ tn+1

0
(tn+1 − τ)β−1w(τ) f

(
τ, x(τ)

)
dτ. (26)

By applying the rectangular integration to the integral in the right-hand side of (26),
we obtain∫ tn+1

0
(tn+1 − τ)β−1w(τ) f

(
τ, x(τ)

)
dτ =

n

∑
k=0

∫ tk+1

tk

(tn+1 − τ)β−1w(τ) f
(
τ, x(τ)

)
dτ

'
n

∑
k=0

w(tk) f
(
tk, x(tk)

) ∫ tk+1

tk

(tn+1 − τ)β−1dτ

=
hβ

β

n

∑
k=0

w(tk) f
(
tk, x(tk)

)
Aβ

n,k,

where

Aβ
n,k = (n− k + 1)β − (n− k)β. (27)

Therefore, we obtain the following numerical scheme:

xn+1 =
x0w(0)
w(tn)

+
1− α

N(α)
f
(
tn, xn

)
(28)

+
αhβ

N(α)Γ(β + 1)w(tn)

n

∑
k=0

w(tk) f
(
tk, xk

)
Aβ

n,k.

Remark 5. If α = β = 1 and w(t) = 1, then (28) becomes

xn+1 = xn + h f
(
tn, xn

)
. (29)
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Hence, the classical Euler numerical scheme for ODEs is recovered. Indeed,

xn+1 = x0 +
h

N(1)Γ(2)

n

∑
k=0

f
(
tk, xk

)
A1

n,k

= x0 + h
n

∑
k=0

f
(
tk, xk

)
= x0 + h

n−1

∑
k=0

f
(
tk, xk

)
+ h f

(
tn, xn

)
= xn + h f

(
tn, xn

)
.

5. Application to Biology

In this section, we apply our main analytical and numerical results to the biological
system describing the dynamics of an epidemic disease:

Dα,β
0,1 S(t) = A− µS(t)− κS(t)I(t),

Dα,β
0,1 E(t) = κS(t)I(t)− (µ + ε)E(t),

Dα,β
0,1 I(t) = εE(t)− (µ + r)I(t),

Dα,β
0,1 R(t) = rI(t)− µR(t),

(30)

where S(t), I(t), and R(t) are the fractions of susceptible, exposed, infectious, and recovered
individuals at time t, respectively. The biological meanings of the parameters are presented
in Table 1.

Table 1. Biological meanings of the parameters of model (30).

Parameter Biological Meaning

A Natality or recruitment rate
µ Natural death rate
κ Transmission rate of disease
ε Transfer rate from class E to class I
r Recovery rate of the infectious individuals

Since the first three equations of (30) do not depend on the last one, System (30) can be
reduced to the following model:

Dα,β
0,1 S(t) = A− µS(t)− κS(t)I(t),

Dα,β
0,1 E(t) = κS(t)I(t)− (µ + ε)E(t),

Dα,β
0,1 I(t) = εE(t)− (µ + r)I(t).

(31)

In fact, when the variable I(t) is determined by (31), then we easily obtain R(t) from
the last equation of (30).

Clearly, Model (31) has a unique disease-free equilibrium Q0 = (S0, 0, 0), where

S0 =
A
µ

. Furthermore, the basic reproduction number of (31) is given by

R0 =
εκS0

(µ + ε)(µ + r)
. (32)

By a simple computation, Model (31) has a unique endemic Q∗ = (S∗, E∗, I∗), where

S∗ =
A

µR0
, E∗ =

µ(µ + r)(R0 − 1)
εκ

and I∗ =
µ(R0 − 1)

κ
.
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Let Ω = {(S, E, I) ∈ IR3
+ : S ≤ S0}. For R0 < 1, construct a Lyapunov function

as follows:
V(S, E, I) = ρ(S0 − S) + E +

µ + ε

2ε
I,

where ρ = 2−R0
2R0

. We have

Dα,β
0,1 V(S, E, I) = −ρDα,β

0,1 S +Dα,β
0,1 E +

µ + ε

2ε
Dα,β

0,1 I

≤ −ρµ(S0 − S)− µ + ε

2
E− (µ + ε)(µ + r)

2ε
(1−R0)I.

Thus,
Dα,β

0,1 V(S, E, I) ≤ −σ1V(S, E, I), (33)

where σ1 = min{µ, µ+ε
2 , (µ + r)(1−R0)}.

Let X = (S, E, I) ∈ IR3 with the norm ‖X‖ = |S|+ |E|+ |I|. Hence,

σ2‖X−Q0‖ ≤ V(S, E, I) ≤ σ3‖X−Q0‖, (34)

where σ2 = min{ρ, 1, µ+ε
2ε } and σ3 = max{ρ, 1, µ+ε

2ε }. By applying Theorem 4, we deduce
that the disease-free equilibrium Q0 of (31) is Mittag–Leffler stable in Ω whenR0 < 1.

ForR0 > 1, consider the following Lyapunov function:

L(S, E, I) = S∗Φ
( S

S∗
)
+ E∗Φ

( E
E∗
)
+

µ + ε

ε
I∗Φ

( I
I∗
)
,

where Φ(z) = z− 1− ln z, for z > 0. It is obvious that Φ(z) attains its global minimum
at z = 1 and Φ(1) = 0. Then, Φ(z) ≥ 0 for all z > 0. Hence, L(S, E, I) ≥ 0 with
L(S∗, E∗, I∗) = 0.

By applying Corollary 2 of [34], we obtain

Dα,β
0,1 L(S, E, I) ≤

(
1− S∗

S
)
Dα,β

0,1 S +
(
1− E∗

E
)
Dα,β

0,1 E +
µ + ε

ε

(
1− I∗

I
)
Dα,β

0,1 I.

Using A = µS∗ + (µ + ε)E∗, κS∗ I∗ = (µ + ε)E∗ and
µ + r

ε
=

E∗

I∗
, we obtain

Dα,β
0,1 L(S, E, I) ≤ −µ

S
(
S− S∗

)2
+ (µ + ε)E∗

(
3− S∗

S
− EI∗

E∗ I
− SE∗ I

S∗EI∗

)
= −µ

S
(
S− S∗

)2 − (µ + ε)E∗
(

Φ
(S∗

S
)
+ Φ

(EI∗

E∗ I
)
+ Φ

( SE∗ I
S∗EI∗

))
.

Hence, Dα,β
0,1 L(S, E, I) ≤ 0 whenR0 > 1. It follows from Theorem 5 that the endemic

equilibrium Q∗ of (31) is stable whenR0 > 1.
In the absence of disease, System (31) reduces to the following linear system:

Dα,β
0,1 S(t) = A− µS(t). (35)

From Lemma 2 of [28], the exact solution of (35) is given by

S(t) =
A
µ
+

N(α)

aα

(
S(0)− A

µ

)
Eβ

(
− αµ

aα
tβ
)
, (36)
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aα = N(α) + µ(1− α). Now, we apply the numerical scheme presented in (28) in order
to approximate the solution of (35). For all numerical simulations, we chose A = 0.01,
µ = 0.01, and the normalization function as follows:

N(α) = 1− α +
α

Γ(α)
. (37)

The comparison between the exact and numerical (approximate) solutions of (35) is
displayed in Figure 1 for different values of α, β, and h.
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Figure 1. The exact and numerical solutions of (35) for different values of α, β, and h.

In the presence of disease, System (31) cannot be solved analytically. Based on our
numerical method, we approximate the solution of (31). Therefore, we chose κ = 0.4,
ε = 0.085, r = 0.095, and β = 0.8. By computation, we have R0 = 3.4085 > 1. In this
case, the solution of (31) converges to the endemic equilibrium Q∗(0.2934, 0.0744, 0.0602),
which biologically means that the disease persists in the population. Figure 2 illustrates
this observation for different values of α.
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Figure 2. The numerical solution of (31) for different values of α.

6. Conclusions

In this paper, we first investigated the qualitative properties of solutions of FDEs
with the new generalized Hattaf fractional derivative, which includes several forms of
fractional derivatives with non-singular kernels such as the Caputo–Fabrizio and Atangana–
Baleanu fractional derivatives. In addition, we proposed a new numerical method to
approximate the solutions of such types of FDEs. The obtained results extend and improve
many results existing in the literature concerning the fractional comparison principle,
stability, asymptotic stability, as well as Mittag–Leffler stability. Furthermore, the proposed
numerical method includes the classical Euler numerical scheme, and it was applied to a
nonlinear system describing the dynamics of an epidemic disease, such as COVID-19.
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