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Abstract

The Brown-Ravenhall operator was initially proposed as an alternative to describe
the fermion-fermion interaction via Coulomb potential and subject to relativity. This
operator is defined in terms of the associated Dirac operator and the projection onto the
positive spectral subspace of the free Dirac operator. In this paper, we propose to analyze
a modified version of the Brown-Ravenhall operator in two-dimensions. More specifically,
we consider the Brown-Ravenhall operator with a short-range attractive potential given by
a Bessel-Macdonald function (also known as Ky-potential) using the Foldy-Wouthuysen
unitary transformation. Initially, we prove that the two-dimensional Brown-Ravenhall
operator with Ky-potential is bounded from below when the coupling constant is below a
specified critical value (a property also referred to as stability). A major feature of this
model is the fact that it does not cease to be bounded below even if the coupling constant

is above the specified critical value. We also investigate the nature of the spectrum of
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this operator, in particular the location of the essential spectrum, and the existence of
eigenvalues, which are either isolated from the essential spectrum or embedded in it.

Keywords. Brown-Ravenhall operator, Bessel-Macdonald function, stability, spectral
analysis.
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1 Introduction

The quantum electrodynamics in three space-time dimensions (QEDj3) has been drawn
attention, since the works by Schonfeld, Deser, Jackiw and Templeton [1, 2], as a potential the-
oretical framework to be applied to quasi-planar condensed matter systems [3], namely high-T,
superconductors [4, 5], quantum Hall [6], topological insulators [7], topological superconduc-
tors [8] and graphene [9, 10, 11, 12]. Thenceforth, planar quantum electrodynamics models
have been studied in many physical configurations: small (perturbative) and large (non pertur-
bative) gauge transformations, abelian and non-abelian gauge groups, fermions families, even
or odd under parity, compact space-times, space-times with boundaries, curved space-times,
discrete (lattice) space-times, external fields and finite temperatures. In condensed matter
systems, quasiparticles usually stem from two-particle (Cooper pairs), particle-quasiparticle
(excitons) or two-quasiparticle (bipolarons) non-relativistic bound states.

Regarding the present article and the physics of new “Dirac materials”[13], in particular due
to the importance of the Dirac’s equation in the description of graphene, together with the fact
that there are QED3; models in which, fermion-fermion, fermion-antifermion or antifermion-
antifermion scattering potentials — mediated by massive scalars or vector mesons — can be
attractive® and of Ky-type (a Bessel-Macdonald function) [5, 3, 11, 12, 14, 15, 16, 17, 18], here
we propose to discuss quantum relativistic effects by a short-range potential to treat the interac-
tion between fermion-fermion, fermion-antifermion or antifermion-antifermion in d = 2, without
magnetic field. We deal with the potential theory in spaces of Bessel potentials. More specifi-
cally, in this article we study the two-dimensional Brown-Ravenhall operator, i.e., the projection
of the Dirac operator perturbed by a Ky-potential (the two-dimensional Brown-Ravenhall op-
erator in d = 2 perturbed by a Coulomb potential has been analyzed by Bouzouina [19] and
Walter [20]). Our main results are as follows: in Section 3, we prove that the Brown-Ravenhall
operator with Ky-potential in d = 2 is bounded from below when the coupling constant is below
a specified critical value (a property also referred to as stability). We do this following two
paths: through relativistic Sobolev inequality and relativistic Hardy inequality (also referred
to as Kato inequality). We provide at the end of the article an Appendix A, where we address
the existence of an inequalitiy involving the Hardy and Sobolev relativistic inequalities that
we will call Hardy-Sobolev-Maz’ya type inequality (or HSM-type inequality for brevity). We
also show that the stability of the Brown-Ravenhall operator with Ky-potential in d = 2 im-
plies his self-adjointness. Closing this part of the article, we show that the two-dimensional

Brown-Ravenhall operator with Ky-potential does not cease to be bounded below even if the

2While the obtained scattering potentials for p-wave states showed up repulsives, the s-wave states (angular
momentum state £ = 0) show attractive.



coupling constant is above the specified critical value, showing that a complete implosion will
never occur for two relativistic fermions interacting via an attractive potential of the Bessel-
Macdonald type, unlike to usual Brown-Ravenhall operator with coulombian potential. The
nature of the spectrum of this operator in turn is addressed in Section 4, in particular the
location of the essential spectrum, and the existence of eigenvalues, which are either isolated
from the essential spectrum or embedded in it. The analysis of embedded eigenvalues is based
on a simple abstract virial theorem. Due to the purpose of this paper, for the convenience of
the reader, in Appendix B we gather a few facts about Bessel’s potential class, of which the

potential K is part.

Remark 1. The following notations will be used consistently throughout the article: x,y, z, ...
will denote points of the d-dimensional euclidean space R?, |z — y| the euclidean distance of the
points x,y, || = |£—0|, p,q, ... points of the dual space, p-x the inner product of the vectors
p and x. The gradient VU of a differentiable function ¥ is VU = (0¥ /0xy,...,0V/0x,). If
U, ® € Ly(R?), then we set (U, @) = [, ¥(z)®(z)dz. U * P will denote the convolution of ¥
and P, U the Fourier transform of U. We are adopting the following convention for the Fourier

transform on R<:

[ZU](p) = V(p) = /R NP (@) d (1.1)
(7710 (x) = U(x) = ﬁ /R d e P Y (p)dp | (1.2)

with U € .(R%). Here, by .%(R%) we mean the set of all rapidly decreasing functions on R%.
The A is introduced to keep the units consistent with the physical interpretation. Of course,

the invariance of space .#(R%) under the Fourier transform implies that ¥ € .%(R¢).

2 The Dirac-Bessel-Macdonald operator restricted to its

positive spectral subspace in d = 2

The Brown-Ravenhall operator [21] was initially proposed as an alternative to describe
the fermion-fermion interaction via Coulomb potential and subject to relativity. This opera-
tor is defined in terms of the associated Dirac operator and the projection onto the positive
spectral subspace of the free Dirac operator. In what follows, we consider a version of the two-
dimensional Brown-Ravenhall operator with the Ky-potential (a Bessel-Macdonald function)

B(z) = A (Do(x) — vEo(Blz|)) A (2.1)

where 7 is the coupling parameter taken to be non-negative. The constants v and [ shall depend
on some model parameters, like coupling constants, characteristic lengths, mass parameters or
vacuum expectation value of a scalar field. From expression V(x) = —vKo(B|x|) we see that
has energy dimension and gives us an energy scale for the interaction among the two particles.
In turn, the parameter 3 has inverse length dimension, thus fixing a length scale, an interaction
range, which is related to the mass of the boson-mediated quantum exchanged during the two
particle scattering [3, 5, 11, 14, 15, 16, 17, 18]
In (2.1) the notation is as follows:



1. The operator Dy is the free Dirac operator in d = 2; it is a first order operator acting on
spinor-valued functions W(x) = (¢ (), ¥2(x)), with 2 components, of the space variable
x = (71,73). We denote by C? the 2-dimensional complex vector space in which the
values of W(x) lie. Dy has the form

0
Dy = —ihico -V + mcoy = —ike (a + 02—) +mcos .

18—$’1 6262

where A is the Planck constant, m > 0 is the mass of the fermionic particle under consid-
eration, ¢ is the velocity of light and o = (01; 02) and o3 are the Pauli 2 x 2-matrices
0 1 0 — 1 0
01 = ) 09 = ) 03 =
10 v 0 0 -1
The o; matrices are introduced in view of making the Dirac operator a square root of the

Laplace operator; they satisfy by construction the following anti-commutating relations:
Ujak+akaj:25jk]12x2 y j,k:1,2

Remark 2. The free Dirac operator D is essentially self-adjoint on the dense subspace
Cs°(R? \ {0}; C?) and self-adjoint on the Sobolev space Dom(Dy) = H'(R?; C?), its
spectrum is given by

o(Dy) = (—o0, —mc*] U [mc?, +00) ,
and it has as form domain the space Q(Dy) = H/?(R?; C?) (see for example [22, Chapter
7] for more details on the spaces H'(R?;C?) and H'/?(R?;C?)). Naturally, the negative
spectrum is associated with antiparticles, in relativistic theories.

2. Ay def. X(0,00) (’DO), where X(0,) is the characteristic function of the interval (0, +00),

denotes the projection of Ly(R?*;C?) onto the positive spectral subspace of Dy; namely,
1 —ihco -V + mc?os
A+ =5 ]I2><2
2 VvV —h2c2 A + m2c!
where A is the laplacian operator on R%. Note that DA, = A, Dy = vV—h2c2 A + m2ct A,

The last equality is a consequence of the following fact: in Fourier variables, the projector

A, is a multiplication operator given by the following expression:

~ 1 co-p+mcto
A+:—<]I2x2+ P 3)-

9 /c2 [P + m2c

Hence, the Dirac-Bessel-Macdonald operator restricted to its positive spectral subspace,

or the Brown-Ravenhall operator with the Ky-potential, is given formally as

B(x) = AV —R22 A +m2ct Ay — AL Ko(Blz|)Ay

acting in Ly(R?; C?), or, equivalently

B(z) = AV —h2c2 A+ m2ct — v Ay Ko(Blz])

def.

acting in 2, = AL (Ly(R?% C?)).



3 Boundedness from below and all that

In applications it is often very important to determine the lowest point of the spectrum of
a self-adjoint operator. This problem makes sense only if the operator is bounded from below,
since otherwise the spectrum extends to —oo. In this section, we particularly focus on the
problem of the boundedness from below of the Brown-Ravenhall operator with Ky-potential,
which is related to the stability of relativistic systems in two dimensions. More precisely, we
are interested in finding the largest value of  such that the quadratic form (¥, BU) is bounded
from below. In effect, we reach this bounded from below through two paths: through relativistic
Sobolev inequality and relativistic Hardy inequality (also referred to as Kato inequality).

3.1 Preamble: reduction of spinors

The first step in order to prove the boundedness from below of the Brown-Ravenhall
operator with Ky-potential is a reduction of spinors. We will follow the same strategy as
Zelati-Nolasco [23]: we now introduce the Foldy- Wouthuysen transformation (FW), given by a
unitary transformation Upw which transforms the free Dirac operator into the diagonal form
(see details in [24, the case in d = 1+ 2] and [25, the case in d = 1 + 3])

) H, 0
Drw = UrwDoUpy = =o03Ho ,
0 —H,

where Ho S V/—h2Z A £ m2c* is the so-called quasi-relativistic operator (the relativistic (free)
hamiltonian operator). This operator has been extensively studied for a long time (we refer
to [26, 27, 28, 29, 30, 31, 32, 33]).

Remark 3. With the usual quantization rule p — —ihV | let us recall that to the operator
H, can be defined for all ¥ € H'(R? C?) as the inverse Fourier transform of the Lo-function

Zp2 + m2c* W(p) (where ¥ denotes the Fourier transform of W). To H, we can associate
the following quadratic form

def. 1 = ~
O T) = (P Py = - 2|2 204 $(p) W
0 (0 0) (0. H08) = o | /TP )T (p) dp
which can be extended to all functions ®, ¥ € Q(H,o) = H'/?(R?;C?), where
HY2(R?,C?) = {xp € Ly(R?,C?) | / (1+ [p]>)Y2 |W(p)|? dp < oo} .
R2

It is known that H, restricted on C5°(R?) is essentially self-adjoint, and that o(Hg) = 0ess(Ho) =
[mc?, 00). An excellent mathematical, comprehensive and self-contained analysis of the spectral
properties of the operators B, Dy and H, (perturbed by the Coulomb potential) can be found
in [34].

Under the FW-transformation the projector A, becomes simply

def.

Arw ZF UpwA Unyy = = (Tguo + 03)

| —



Therefore the positive energy subspace for Dgyw is simply given by
I = {\11 = (‘g) € Ly(R%;C?) | ¢ € LQ(R2;C)}
In the FW-representation the associated quadratic form acting on 7, is defined by
(0, Brw¥) L, m20) = <9077'101P>L2(R2;<c) + (o, Vewd) 1o ®20) (3.1)

for any ¢, € HY?(R?;C), where Vw1 = Q*UpwV U Qv, with V(x) = —yKy(B|x|) and

Q:C—C*, Qz)=(21,0),

Q :C*=C, Q(2,%)=2n,
so that

<S07 %0¢>L2(R2;C) = <A+UFT\71VQ()0a D0A+ UFTVIVQQ/)>L2 (R2;C2)

= A+Ul~“_vlv ” >D0A+UF_VlV v )
0 0 Ly(R2;C2)

<90a VFW¢>L2(R2;C) = <UFTV1VQ§07 VUF_VlVQ,le)>L2(R2;C2)

— (o (F) vasuss (Y .
0 0 Ly (R2;C2)

Note that UpwQp = A UpwQp € Ay (L2(R?); C?) for any ¢ € Ly(R?; C).
Using the above description, for any v in the positive spectral subspace, the expectation of

and

B in the state ¥ in the FW-representation is associated to the quadratic form

(0, Brw) = (¥, Hoto) — (¥, Ko(Blz|)v) - (3.2)

Hence, the transition from ¥ € Ly(R?; C?) to the reduced spinor 1) € Ly(R?; C) through the
introduction of the operator Bew is possible because we are working in 77, . The quadratic form
(3.2) defines a self-adjoint operator Brw if we can show that the form (¢, Bpw)) is bounded
from below. Of course, (¥, B¥) is bounded from below if and only if (¢, Bpw) is bounded
from below. In that case, Eq.(3.2) will define a self-adjoint operator Bry.

Remark 4. The Ky-potential satisfies the following properties: (P1) Ky € La(R?) + L. (R?)
and (P2) there exists a constant C' € (0, 1) such that |y{y, Ko)| < C{y, Hot)), for all ¢ €
H'2(R?;C). The validity of (P1) is proven in Lemma 4.2, while (P2) follows from important
known inequalities: the relativistic Sobolev inequality and the relativistic Hardy inequality,
respectively.



3.2 Boundedness from below via relativistic Sobolev inequality

Our first proof of the boundedness from below of the Brown-Ravenhall operator with K-
potential is based on the following result (see [35, Theorem 2.1] and [36, Theorem 1.1]):

Theorem 3.1. Ford > 2s, let € H*(R?) and ¢ = 2d/(d —2s). Then the following inequality
holds:

9117 < Sasll(=A) 295 = Sas (¥, (L)) (3.3)
where
_ o0—2s —SF(d_QS) F<d) 2e/d
Sis=2""n F(CH}S) (F(dm) : (3.4)

There is equality in (3.3) if, and only if, ¥(z) = A((z — x0)? +n2))_(n_2)/2, where A € R, n >0

are fized constants and with o € R™.

Remark 5. The relativistic Sobolev inequality [22, Theorem 8.3] and [37, Theorem 1.5] is a
particular case of inequality (3.3) when s = 1/2, and for s = 1/2 the best constant of Theorem
3.1 is given in [22].

Remark 6. The idea that every problem in physics can and should be analyzed in terms of
physical dimensions seems to have been missed by many studies like the one covered in this
article. For this reason, from this point on, both in the analysis of the boundedness from below
via relativistic Sobolev inequality, and the subsequent analysis via relativistic Hardy inequality,
we will take into account the physical dimensions. Here, we are adopting the International

System of Units, since we are working explicitly with A and c.

A well-known result (see [38, Theorem 1.66]) asserts that H*(R?) is continuously embedded
into L,(R?) if 0 < s < d/2 and 2 < ¢ < 2d/(d — 2s). In particular, for s = 1/2 and d = 2 this
reads as

HY2(R?) — L,(R?) if 2<q<4. (3.5)

Now, let ¢ be an arbitrary element in H/?(R?) and let Ky(3|z|) be the Bessel-MacDonald
potential in R2. Tt is well known that

Ko(Blzl) € Li(R*) N Ly(R?) . (3.6)
Since 1 € Ly(R?), we have that
[¥[> € Ly(R?) . (3.7)
From (3.6), (3.7) and Holder Inequality, we get

Kolv|* € L (R?) . (3.8)



In particular, from (3.8) and Cauchy-Schwarz-Bunjakowski inequality, we have that

(. Ka(Blal)e) = [ T@)KoBlzie) da
- [ Ka(Blallv@) do

- [ RGlahv@de (Koc®

= (Ko, |¢[*)
< || Koll2ll|]?]]2 -

o= ([ gw@prae) = ([ o) =,

From (3.5), we have that ¢ € L,(R?), for 2 < ¢ < 4 since we are taking v € HY?(R?).
Thus, we can conclude that

Note that

(¥, Ko(Blz|)) < [ Koll2ll¥lli .

and, for all ¢» € H'/?(R?;C). Accordingly, in the international system of units, the relativistic
Sobolev inequality for ¢|p| [22, Theorem 8.4] takes the form

1
112 < —=Saye (¥, VIPEA W) (3.9)

where, according to Eq.(3.4),

L(3) (T(2))"
So1/2 = 217T1/2T§) (—) S (by the particular values of the gamma function) .
2

(1)
Moreover, according the Table of Integrals of Gradshtein-Ryzhik [39, 6.521, 6.*, p.665], in polar
coordinates,

oo 1/2 1/2
| Kolls = (zw/o Kg(ﬁr)rdr) - % . (3.10)
Therefore, we have that
(0 Kol Ble) < s (0. VB v)
hlﬁ <’(/J V—=h2c2A + m2ct @Z)> . (3.11)

The whole bounded from below problem of the operator Bgyw is captured in the estimate

(6, TRPER TG 0) =10, Ko(Blal)v) > 0, Vi € HY2(REC)



and leads immediately to the question for what values of v such an estimate holds. Consequently,
the inequality (3.11) shows that operator Brw is bounded from below if

1
IV 22 204 ) >
(1 fyhcﬁ) <1/1,\/ h2c2 A + m?2c 1/1> >0,
In other words, (¢, Bpw1) is lower bounded if

v <78 =hef

This ends the first proof of the boundedness from below of the Brown-Ravenhall operator with

Ky-potential.

3.3 Boundedness from below via relativistic Hardy inequality

Our second proof of the boundedness from below of the Brown-Ravenhall operator with
Ky-potential is based on the following result [40, Lemma 8.2]:

Theorem 3.2. Let d > 2, and let ¢ be a function in HY?(R?). Then there is the strict
imequality

[ L@ 4 g [ wliwr i =4 [ SV BRu@de, @12

Ed
where the best possible value of the constant Hy is

INC
Ha= oDy -
()
The equality is only attained if 1b = 0, i.e., for any bigger constant the inequality fails for some
function in HY?(R9).
Remark 7. This inequality goes back to Kato [41, Eq.(V.5.33)] and Herbst [28, Theorem 2.5].
See also [42, Theorem 1.7.1].

To apply Theorem 3.2 to our problem, we start using the following rough estimate

1 [ _=8%=? 4, 1 1 ©e|® == o, 1
K = — 4am —d = 4 d
o(Blzxl) 2/0 € Toe n U 2‘w|a/0 na/2e Te ni—o/2 n

1 2 < 1
< a/2 —mpt -1
= 2 (iggt ‘ ) /0 © ntme/? dn. (313)

Now, since
(i) %™t >0, Vt>0,
(i) lim (ta/%ffﬁ%) —0= lim (ta/%*“ﬁ?t) ,
t—0t t—+o00

«

Lo d af2 B2t
(111)£<t/e ):()(:)tzﬁ,



we conclude that

sup ta/26—7r62t — toz/26—7r62t
t>0

a /2
= e o2
t=52 27 32

Furthermore, according the Table of Integrals of Gradshtein-Ryzhik [39, 3.381, 4., p.346], it
follows that

00 . 1 N
/ [ W d’f} = (47T) /2T(0z/2) .
0

Hence, we have

Cap

Ko(fla) < 152

(3.14)

where

a/2
Cap = Li e (47)°’T (a/2)e /% .
@ 2 \ 2732

If we take @ = 1, then, for d = 2, it follows from Eq.(3.12) that in the international system
of units we have

(0. Ka(Blal)v) = [ (@) Ka(pa)il@) da

< LF(1/2)6*1/21 M dx

V2 B Jr |zl
I'(1/4)
V2I(3/4
r'(1/4)
V2T (3/4

< LF(1/2)e—1/2 (

NG) )) hiﬂ (. V=FERv)

1
< —=I(1/2)e ? <
NG (1/2)
Note that we can simplify the expression of the constant in front of <@/}, VvV —h2c2A + m2ch @Z)>,
taking into account the relationship that exists between the gamma function and the beta
function. Indeed, it follows that

1 L T4 N T [B(1/2,1/4)P 1 L/ 1
ﬁf(l/Q)e / <\/§r(3/4))

heB St hcB  2(2m)32% 2 heB
In the last equality we use the well-known expression

)) hiﬁ <1p, V—h2c2A + m?2ch zp> . (3.15)

w/2
Bla,y) = 2 / (cos )™ (sin )2 dip |
0

and the Table of Integrals of Gradshtein-Ryzhik [39, 3.621, 7.*, p.395] in order to calculate the
value of the function B(1/2,1/4).

So, again, the bounded from below problem of the operator By is simply to show that

inf <1/1,BFW¢> 2 0 )

10



where the infimum is taken over all ¢ € H'/2(R?;C). In other words, the operator Bgw has to

be positive and, clearly, the necessary condition for stability is captured in the estimate

<¢, \/—ﬁ202 A + m?2ct 1/}> — 7<1p7 Ko(ﬁ‘wbq/;) >0.

Consequently, the inequality (3.15) shows that operator Bgw is bounded from below if

[F(1/4)]4 1 2 9 2 4
(1 ~ 22wy hcﬁ) (v VRER T v) > 0.

In other words, (¢, Bpw) is lower bounded if
2(27T)3/261/2
<t = (5L —— ) hep .
v<at = ()

This ends the second proof of the boundedness from below of the Brown-Ravenhall operator

with Ky-potential.

3.4 The self-adjoint realization

The self-adjointness of the operator Bpw depends on the basic theorem (see Simon [43,
Theorem I1.7] and [44, Theorem 2], and also Reed-Simon [45, Theorem X.17]):

Theorem 3.3 (KLMN Theorem). Let Hy be a positive self-adjoint operator and suppose
(Y, V) is a symmetric quadratic form such that |V|'/? < 7-[(1)/2, with Q(V) D Q(Ho), so
that for some a < 1 and some b € R,

(0, V)| < aly, Hot) + |93 -

for all ¢ € Q(Hy). Then the quadratic form ¢ — (¥, Ho) + (¥, V) defined on Q(Hgo) N
(V) = Q(Ho) is the form of a self-adjoint operator which is bounded below by —b.

On applying KLMN Theorems we derive

Proposition 3.4. If v < 7., for v. € {75,7}, Brw is self-adjoint on the form domain
D (Ho) = HY?3(R?;,C) and bounded below by 0.

Proof. For V(z) = —yKo(B|x|) and Ho = vV —h2c2 A + m2c4, the relativistic inequalities of
Sobolev and Hardy show us that |[V]/? < ’H(l)/ * and that

(1, V)| < (1, Hot)  (for all o € H'*(R*C)) .

A
Ve
Therefore, taking into account that % < 1, for v, € {75,~4}, if we take v < 7. the hypotheses
of the KLMN Theorem are satisfied and one deduces that the quadratic form (3.2) defined on
N(Ho) N Q(V) = Q(H,o) is the form of the self-adjoint operator, Brw, and the inequality
holds with b = 0, i.e., the quadratic form (¥, Bpw) is bounded below by 0. O

Remark 8. For the critical value v = ., the Friedrichs Extension Theorem [45, Theorems X.23]
guarantees that the quadratic form (3.2) is a closable quadratic form and its closure is the
quadratic form of a unique self-adjoint operator associated with Bgyw, which is bounded from

below, and the lower bound of its spectrum is the same lower bound of (3.2).

11



3.5 Is (v, Bpw?) unbounded below if v > 7.7

We proved that V(z) = —yKo(B|z|) can be controlled by v/ —h2c2 A + m2c?, if ~y is smaller
than 7S, or . But, bearing in mind hypothetical applications of the model presented here

to graphene, or any other two dimensional system, it is important to check if (1, Bpw)) is
unbounded below if v > .. For this, we will take the form

[ (P 5wt v(e) - @) K(Blal)i(e) f do (3.16)

for all ¢ in the form domain of Hq+ V', and, in particular, for all ¢» € .(R?*; C). As usual, over
all normalized function (x), we shall replace ¥(x) by the scaled function ¥, (x) = Ap(A\x),
for A > 0. A little computation shows that the normalization is unchanged.

As we explicitly know the function Ky in Fourier space (see Proposition B.7), using Parse-

val’s formula, we can rewrite (3.16) as follows:

1 ~ — 2 h2 R
i o VP ) ap = s [ G s ) dadp
(3.17)

Naturally, in Fourier space, we must replace @/Z)\(p) by the scaled function ’(z}\)\(p) = A*I@/Z;()\*lp),
for A > 0 and a little computation shows that, again, the normalization is unchanged. So with
that in mind, it follows that

1 - = owh2 -
o [ VAT — e [ e ) dadp

P — q|? + h?p?

A / ) m2ct ~ 7y = 21 h? ~
— g el S ek - s [ S > Dla) dadp .
(27Th)2 R2 )\2 (27T7:L)4 R2 JR2 |p — q|2 + %

Now, on allowing A — oo, we obtain that the kinetic term will always dominate V(x) =

—vKo(B|z|), regardless of the value of the coupling constant . In other words, the quadratic
form (¢, Bpwt) does not cease to be bounded below even if v > ~.. This result is a character-
istic of the Ky-potential. The reason for this behavior is that, unlike to usual Brown-Ravenhall
operator with coulombian potential, the Brown-Ravenhall operator with Ky-potential it is not
homogeneous with respect to scalings of R2, i.e., the kinetic energy does not have the same
behavior under scaling as the Bessel-Macdonald energy for large momenta. Consequently, a
complete implosion will never occur for two relativistic fermions interacting via an attractive
potential of the Bessel-Macdonald type.

Remark 9 (The role of mass in the scaling procedure). Note that we lost the masses in
the scaling procedure. It is irrelevant for the stability problem, but it will determine the energy
once the problem is shown to be stable. Indeed, the simple inequality \/c?|p|? + m?ct > ¢|p|
shows that stability also holds in the case of non-zero mass whenever it holds with zero mass,

as we have seen through relativistic inequalities of Sobolev and Hardy.

Remark 10 (The atomic collapse in graphene). Non-perfect graphene has additional poten-
tials; a particular case of importance is the presence of an impurity of Coulomb type. In this

case, there are two distinct regimes: the subcritical regime and the supercritical regime. In the
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latter case, when v > 7., a phenomenon called atomic collapse in graphene occurs. This result
physically means that the electron is pulled into the nucleus of the interstitial atom. The super-
critical instability in the field of a single charged impurity has been extensively studied in the
literature (see [47] and references therein). On the other hand, as we have seen, since the kinetic
energy for large momenta (or for small distances) is always larger than the Bessel-Macdonald
type interaction energy, this implies that the phenomenon of the fall-to-center should not take
place in graphene in the presence of an impurity of Bessel-Macdonald type (a complete implo-
sion would imply the annihilation of matter). Despite this, by Proposition 3.4 and Remark
8, only for values of v < 7. the operator Brw is self-adjoint. Thereby, the critical coupling
constant as occurring in this paper can be mathematically thought of as that coupling constant
where a natural definition of self-adjointness ceases to exist. In other words, by analyzing the
underlying trapping mechanism for the model proposed here, a priori, the supercritical insta-
bility in graphene with an impurity of Bessel-Macdonald type should not be necessarily related
to the phenomenon of the fall-to-center, but must be interpreted as the absence of dynamics.

4 Spectral properties of the operator B

In this section, we investigate the nature of the spectrum of the Brown-Ravenhall operator
with Ky-potential. We start by locating the essential spectrum, oes(B). Firstly, we note that
the map (U, BU) — (¢, Bpwt)), where U € Ly(R?; C?) and ¢ € Ly(R?; C), determines a unitary
equivalence between the operators B and Bpyw, hence, they have the same spectral properties.
This leads us to the following result:

Theorem 4.1. Assume that 0 < v < ~.. Then for the essential spectrum of the Brown-

Ravenhall operator (2.1) one has Oess(B) = Oess(Brw) = [mc?, 00).

The proof of Theorem 4.1 depends fundamentally on the following

Lemma 4.2. The potential V(x) = —vKo(B|z|) € Ly(R?) + Loo(R?)., where the € indicates
that for any € > 0, we can decompose V.= Vi + Vo with V| € Ly(R?) and Vo € Lo (R?), with
[Valloe <&

Proof. For any € > 0, let x.(]Jx|) be the function that is 1 on {x | |&| < (ye)~!} and that
vanishes outside {x | |z| < 2(ye)~'}. Then, we decompose the potential V(x) as

V() = —yxe(|z)) Ko(Blz]) — (1 - xe(|2])) Ko(Bl]) = Vi(z) + V() .
By using the Eq.(3.10), we obtain

1/2

1/2 00 1/2 -
Vill2 = (72/ |X5(|$|)Ko(5|a:|)|2d2m) = (27T72/ X?(T)Kg(ﬁr)rdr) < 5
R2 0

Hence, V| € Ly(R?). In the sequel we will use the asymptotic behavior of Ky, i.e.,

T Bl

Ko(Ble) =[5 e

x| — oo .
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This implies that V5 is a bounded function vanishing at co. So it follows that V3 € Ly (R?),
with

Valloo = s;g?h(l — Xe([z])) Ko(Blz])| <& .

Therefore, the potential V(x) = —yKy(B|x|) € Lo(R?) + Lo (R?).. O

Proof of Theorem 4.1. Let us start by defining Brwo = Ho = vV —h2c2 A + m2c*. From Remark
3, we know that e (Brwo) = [mc?, 00). On the other hand, in order to locate e (Brw), where
Brw = Brwo + V (with V(x) = —vKy(8|x|)), we study the resolvent operator (Bpw — A1)t
for a some A ¢ o(Bpw).

By the second resolvent equation, for any value of A € p(Brw) N p(Brwo), where p(Brw)
and p(Brwo) are the resolvent sets of Brw and Bpwo, respectively, we have

(Brw — A ™ — (Bpwo — A ™ = (Bpw — AT) "V (Bpwo — AI) ! (4.1)

(we recall that since Bpw is a positive self-adjoint operator, once (¢, Bpw)) is bounded from
below if 7 < 7., A € p(Bpw) if and only if (Bpw — A1) : Dom(Bpw) — £, is bijective and
its inverse is bounded). We will show that (Bpw — AT)™! — (Bpwo — A) ™! is compact as an
operator on Ly(R?; C) and therefore oo (Brw) = Cess(Brwo) = [mc?
Theorem XIII.14].

In view of the self-adjointness of Bryw, the half-planes C.. lie in p(Bpw) and (Bpw — AT) ™!

,00) by Weyl’s criterion [46,

is bounded by
I(Bew =A< AT, A¢R,

(cf. Ref.[48, Corollary 5.7]). Thus, it remains for us to show that V(Bpwo — A)~! is compact.
Taking into account the basic fact of inclusion [22, Chapter 7],

HY(R?* C) c HY*(R*%C)

i.e., since the range of (Bpwo— A1), namely Dom(H,) = H'(R?* C), lies in the form domain
0 (Hy) = HY?(R?,C), we just show that V(x) = —yKo(B|x|) is a compact operator from
H'(R? C) to Ly(R* C). This is enough to guarantee that the perturbation V' does not modify
the essential spectrum of the operator H. For this we will need the following compactness
theorem, the proof of which can be found in [49, Theorem 1.10].

Theorem 4.3 (Rellich compactness criterion). Let Hj () be the closure of C3°(Q) in H'(Q),
where Q C R is an open and bounded set. Then for any bounded sequence (1y)sen in HE(Q)
there exists a subsequence (Y, )ken C (Ve)een such that (e, )ken converges strongly in Lo(2).

Remark 11. H}(Q), with the scalar product (-, - ) g1 () defined by

d
(W, 0 o) = (U, @) a@ + Y _(Dwth, Du@) 1o -

k=1

is a Hilbert space by construction, being a closed subspace of the Hilbert space H'(Q) (cf. [50,
Lemma 22.1]).
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Returning to the proof of Theorem 4.1, select a sequence (p;)eny C Lo(R?; C) such that
@0y — 0. Assume that

Y= (Brwo — A1) 'y

where ¢, € Dom(Bpwg). The fact that (pg)een converges weakly implies that (¢g)een is
bounded in Ly(R?* C). As (Brwo — AI)~! is bounded, the sequence (ty)sen is also bounded in
Dom(Brwo) and converges weakly to zero in ® om(Brwg) C L2(R?; C).

Now, according to Lemma 4.2, for any € > 0, we can decompose V as V = Vi + V5, where
Vi € Ly(R?) and V, € Lo (R?).. Then, applying the Holder Inequality,

Vatbellz < [[Valloo | (Bewo — AL) el < ellepell2 (4.2)

and it follows that ||Va(Brwo — AT) 7| < &. Next, observe that V; is bounded so that there is
K > 0 such that |Vi(z)| < K, for all x € R?. Let Bg = {x € R? | || < R} be the open ball
with radius R > 0 around zero in R? and 6 € C5°(Bsg) be such that 0 < 0g < 1, O [B,= 1.
Then, (Orv¢)een is bounded in H'(Bsyg;C). We recall that Rellich’s Compactness Theorem
gives us that the inclusion

Hl(BgR;(C) — Lo(Bag; C)

is compact. This means that there exists a subsequence (6rtr, )ren C (Or1r)een such that
(Orve, Jken converges strongly in Lo(Bag; C). We shall show that [|[Vi1),|| converges to 0. With
the help of the function 0z defined above, it follows that

Vidbellz < IViOrebell2 + IVA(1 = Or)dbell2 < IViOrWell2 + IVA(1 = Or)|l[[4bel2 - (4.3)

The first term can be made smaller than £ by choosing ¢ large since V; is bounded, i.e., there
is lop € N such that [|#riy| < ¢/K for all £ > {,. As 1), converges weakly to zero, there is
a positive constant M such that |[¢y|s < M. Hence, by assumption, the second term can be
made smaller than ¢ times a positive constant by choosing R large. Consequently, for ¢ large
enough, the right-hand side of (4.3) is smaller than e times a positive constant. This implies
that Vit — 0 in Ly(R?%, C) as ¢ — oo, since ¢ is arbitrary, and hence V;(Bpwo — M) is
compact.
Finally, by (4.2) we have

||V(BFWO - A]I)_l - %(BFWO - A]I)_1|| <eg,

so V(Bpwo — AT)~! is approximated by compact operators and is itself compact [48, Theorem
9.8]. Thus, we have that (Bpw — AI)™! — (Bpwo — A) ™! is equal to the product of a compact
operator and a bounded operator, and since the product of a compact operator with a bounded
operator is compact [48, Theorem 9.5(b)], this proves the required compactness on Ly(R?; C).
This means that Bpw and Brwo have the same essential spectrum by Weyl’s criterion, namely
Ooss(Brw) = Oess(Brwo) = [mc?, 00) [46, Theorem XII1.14]. O

Possible embedded eigenvalues in the essential spectrum, e (Brw), are not stable. Unlike

isolated eigenvalues, which are relatively stable under perturbations, embedded eigenvalues
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generically disappear from the spectrum of a self-adjoint operator under perturbations (actually,
they do not disappear but, they become resonances of the operator).” The study of resonances
is closely connected with the absence of eigenvalues in the essential spectrum. In particular,
for operator Bgyw, there are no eigenvalues embedded in the interior of the essential spectrum
when v < 7., with v, € {v5,77}. This result is proved with the help of the following

Lemma 4.4 (An abstract virial theorem [34], Lemma 3.1.2). Let % (a), a € Ry , be a one
parameter family of unitary operators on a Hilbert space € which converges strongly to the
identity as a — 1. Let T be a self-adjoint operator in S and T, = f(a)% (a)T% *(a) where
f(1) =1 and f'(1) exists. If Y € Dom(T) N Dom(1,) is an eigenvector of T corresponding
to an eigenvalue A then

xné%{%{%ﬁ¢>=Afuww@,

li
a—1
where Y, = U (a).

The use of Lemma 4.4 with T' = Bpw, f(a) = a, % (a) the unitary operator defined by
U (a)Y(x) = ayp(ax), combined with Theorem 3.2.3 in Ref [34], which can be adapted to the
case of the operator Bryw, guarantees the absence of discrete spectrum in [mc?, 0o).

On the other hand, in many applications, a self-adjoint operator has a number of eigenvalues
below the bottom of the essential spectrum. In the sequel, we will show that the stable states
of operator B are represented by eigenvalues lying in the gap of the essential spectrum of Bgwy,
i.e., in the interval [0, mc?). We recall that the eigenvalues of Bpw are characterized by the min-
mazx principle. This theorem establishes that since Bpw is self-adjoint, and if A\ < Ay < Ag---
are eigenvalues of Brw below the essential spectrum, respectively, the infimum of the essential

spectrum, once there are no more eigenvalues left, then

A, = iInf sup <1/}’ BFW¢> ’
Poes¥n—1 Q1. 0n)

where Q(¢1,...,¢,) = {¢ € Dom(Brw) | ||l = 1,¢ € span{¢n,...,¢¥,}}. Hence, if there
exists ¥ € Dom(Brw) such that (¢, Bpw1) < mc?, then Bpw has at least one eigenvalue
below the bottom of the essential spectrum, ces(Bpw). Indeed, if this were not true then
o(Brw)N (0, mc?) = @ meaning that o(Brw) C [mc?, 00). By the spectral theorem, this would
imply that Bew = mc?, i.e., (1, Bpwt) = mc? for all ¢ € ® om(Bpw) in contradiction to the

assumption (v, Bpw1) < mc?. Moreover,

(¥, Brwy) = (¥, V=122 A+ m2ct ) — (3, Ko(Bz])¥)

y
> me?|¥l5 — —-me?|[v ]
C

fy
S (I

b An excellent mathematical, comprehensive and self-contained analysis of quantum resonances can be found
in [48].
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Therefore, for ¢ € HY/2(R% C) (with ||¢||s = 1) and v < 7., we obtain

(¥, Bpwtb) > mc? (1 — l) (for ve € {72,~}) .

C

Thus in [0, mc?), the spectrum of Bpw consists only of eigenvalues. The question arises whether
Brw has a finite or infinite number of eigenvalues? To answer this question it will be sufficient
to take A = m = ¢ = 1, when m > 0, because of scaling. As can be seen from (3.14), the
operator v/—A + 1 — vCy g|z|~! is an upper bound on the operator Brw (see (3.2)). In turn,
taking into account that v/—=A + 1 < —A+1 and that —A—~C} z|z|~! has an infinite number of
eigenvalues (see [51, Theorem XI.1.5]), this ensures the existence of infinitely many eigenvalues
smaller than 1 (or rather, smaller than mc?) for Bpw for v < 7., with 7. € {75,77}. In

conclusion, all of these observations prove the following

Proposition 4.5. Consider the operator Bpw defined by the form in (3.2). If v < 7., with
e € {7872}, then

(¢, Bewtp) = mc? <1 — %) =1

C

In [0,mc?), the discrete spectrum {M\,}ns1 € Odgisc(Brw) = 0aisc(B), consists of an infinite
number of isolated eigenvalues of finite multiplicity. Moreover, since the eigenvalues \,, are all

2

smaller than mc* = inf {oes(Brw)} and since eigenvalues can accumulate only at the essential

spectrum, we have that

M << A1 < Ay = inf {0es(Brw)} = me? for n — 400 .

Remark 12. Motivated by the conduction properties of graphene discovered and studied in the
last decades, in Proposition 4.5, the velocity of light ¢ could be replaced by the Fermi velocity
in graphene vp & 109m/s = ¢/300. In this case, the interval [0, mv3) is associated a mass-gap
effect [52, 53], observed in pure monolayer graphene on substrates. At this point, we also want
to mention a physical situation where resonances have been shown to exist. Considering the
problem of impurity states in the vicinity of the mass-gap on graphene, taking into account the
spin-orbit (SO) interaction, Inglot-Dugaev [54] have shown that even though the internal SO
interaction is relatively small, its effect is crucial because a very small perturbation potential

can create both discrete and resonance impurity states located near the gap.

We conclude with

Proposition 4.6. The operator Bpw defined by the form in (3.2) has no eigenvalue at 0 if
_H
7 - fYC :

Proof. Suppose that 0 is an eigenvalue of Brw with corresponding eigenfunction 1. Since the
right-hand side of

(0, Bewt)) = (Y, V=122 A+ m2ct o) — 7, Ko(Blz|)v) |

is non-negative, it must be zero. But this would imply that there is equality in (3.12) with
1 # 0, which is not possible. O
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Appendix A: Boundedness from below via an HSM-type
inequality

We address in this appendix the existence of an inequalitiy involving the Hardy and Sobolev
relativistic inequalities applied to the Brown-Ravenhall operator Bgw with an attractive poten-
tial of the Bessel-Macdonald type. This inequality, that we will call Hardy-Sobolev-Maz’ya type
inequality (or HSM-type inequality for brevity) [42], combines the relativistic Hardy inequality
and relativistic Sobolev inequality. Indeed, from the Hardy and Sobolev relativistic inequalities
for R?

it [ R g < LoV TRER ) and SN < otV RIR )

g2 |T|

it follows that for 0 < a < Hy?

L vmen e —a [ PO s L arg) v

g2 | T| h_

> (1—aM3) S, llel; v e HAR:C) . (A1)

that is,

1 2

(W VRPEAY) —a % dae — (1 — aH3) S, Lll0li >0, e H([R%:C) .
c rR2 | ’

The inequality (A.1) says that even when Hardy is subtracted, the operator v/—h%c?A is still

powerful enough to dominate the square of an Ls-norm. Therefore, with this result, for the

Brown-Ravenhall operator Bryw with an attractive potential of the Bessel-Macdonald type it

follows that

(0, Ko(Blz|)v) < Ci'— (v, V=R A o)

1

<C (), V=h2cEA + m2ct o) | (A.2)

«

1
hefs
1
hefs

where

1— oﬂ—[%) 8;11/2 )



Although the constant C, is not sharp, we hope to find the best constant C, optimizing over
the choice of a. Consequently, the inequality (A.2) shows that operator Brw is bounded from
below if

<1 —fyCJ%) <1/1,\/—ﬁ202A—|—m204 1/1> >0,

In other words, (¢, Bpw1) is lower bounded if

v < AM = Co i

Appendix B: Bessel potential

For the reader’s possible interest, in this appendix, we have gathered some facts about the
spaces of Bessel potentials. Let us recall that the operator (—A 4 1)~*/2, for s > 0, is called
Bessel potential operator. Thus, given any s > 0, the Bessel potencial G, is defined to be that
function whose Fourier transform G, is given by

~ 1

Gs(p) = (

— —_ _ withpeR?.
T+ pP) 7 !

The following is a simple proof of this result for the Ky-potential in R?. The proof is based

on the spherical symmetry of the Ky-function.

Proposition B.7. Given that Ky-potential is spherically symmetric, then

2mh?

[Z Ko (p) = Ko(p) = PPt

Proof. Using our Fourier transform convention displayed in Eq.(1.1), we started by writing

[A(O(p) :/ / Ko(ﬁ x% —|—;L’%)eihil(pllerme)diL’ldiL’g .

For a potential depending only upon r (central force field) it is expedient to introduce polar
coordinates by the formulae x; = rcosf, xs = rsinf, with r = |z|, and similarly in the
momentum domain by the formulae p; = pcosg, po = psinp, with p = |p|. It then follows

that the Fourier transform in d = 2 can be written as

~

Ko(p) :/ / Ko(ﬁr)eih_lp”cos(”’e)rdrde
0 -7

:/ KO(BT)TdT/ e tpreose=0) g (B.1)
0 —T

Using the integral definition of the zeroth-order Bessel function,

1 (" . 1 [ .
JO (.T) / et cos(apr)de - / ol cos ndn :

" or o 2 J_,
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Eq.(B.1) can then be written as

I?O(p) =27 /OOO Ko(Br)Jo(R™tpr) rdr .

In this way, the conclusion follows from the Table of Integrals of Gradshtein-Ryzhik [39, 6.521,
210 p.665]. O

We quote below without proof the basic properties of G relevant to our development (more
details can be found in Refs. [55, 56, 57, 58]):
(i) if s > 0, then G, is a positive function in L;(R?) which is analytic except at 0 and is
given by
1 s—d
Gy(x) = — Ka(|x|) x| 2 B.2
@) = Sy K el (5.2

where K des is the modified Bessel function of the second kind also called Bessel-MacDonald

function and I' denotes the Gamma function. The Bessel kernel can also be represented for
x € R?\ {0} by the integral formula

B 1 ©_ xl=? _n(14853)
Gs(x) = (42T (3)2) /0 e e iy dn . (B.3)
(i) Gy % Gy = Gypr if 7> 0

(i7i) as |x| — 0,

(P((d—5)/2)

257/2T (s /2)
1 1 .

Gs(x) ~ TR (d]2) lnm if s=d,

L((d—5)/2)

e if 0<s<d,

if s>d.
| 24ndT(s/2) " °
(i) as || — oo,
1 s—d—
Go(@) = —=— | el

275 12 I(s/2)
(v) there exists ¢ > 0 such that for all z € R? and all s € (0, d)
Gy(x) ~ |z|*~ L e clel

Closely related to the operator (—A+1)~*/2 is the Riesz potential operator, (—A)~*/2, which
has an integral convolution kernel of the form

_P((d=19)/2) | sa
Gs(x) = 27971 (5/2) ||

The Bessel potential is a potential similar to the Riesz potential but with better decay

, if 0<s<d.

properties at infinity. Comparatively, the Yukawa potential is a particular case of a Bessel
potential for s = 2 in d = 3, while the Coulomb potential is an example of a Riesz potential
also in d = 3. Note that according to properties (ii7) and (iv), for s = d = 2, the Ky-potential
behaves as if it were the Yukawa potential in d = 2 (c¢f. [59, p.1006, Eq.(2.21a)]). In [35],
Cotsiolis-Tavoularis obtained the best best constants for the inequalities with Riesz, Bessel and

Yukawa potential operators.
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