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Abstract

The Brown-Ravenhall operator was initially proposed as an alternative to describe

the fermion-fermion interaction via Coulomb potential and subject to relativity. This

operator is defined in terms of the associated Dirac operator and the projection onto the

positive spectral subspace of the free Dirac operator. In this paper, we propose to analyze

a modified version of the Brown-Ravenhall operator in two-dimensions. More specifically,

we consider the Brown-Ravenhall operator with a short-range attractive potential given by

a Bessel-Macdonald function (also known as K0-potential) using the Foldy-Wouthuysen

unitary transformation. Initially, we prove that the two-dimensional Brown-Ravenhall

operator with K0-potential is bounded from below when the coupling constant is below a

specified critical value (a property also referred to as stability). A major feature of this

model is the fact that it does not cease to be bounded below even if the coupling constant

is above the specified critical value. We also investigate the nature of the spectrum of
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this operator, in particular the location of the essential spectrum, and the existence of

eigenvalues, which are either isolated from the essential spectrum or embedded in it.

Keywords. Brown-Ravenhall operator, Bessel-Macdonald function, stability, spectral

analysis.

Mathematics Subject Classification (2020). 35P15, 35Q40, 46N50, 81Q10.

1 Introduction

The quantum electrodynamics in three space-time dimensions (QED3) has been drawn

attention, since the works by Schonfeld, Deser, Jackiw and Templeton [1, 2], as a potential the-

oretical framework to be applied to quasi-planar condensed matter systems [3], namely high-Tc
superconductors [4, 5], quantum Hall [6], topological insulators [7], topological superconduc-

tors [8] and graphene [9, 10, 11, 12]. Thenceforth, planar quantum electrodynamics models

have been studied in many physical configurations: small (perturbative) and large (non pertur-

bative) gauge transformations, abelian and non-abelian gauge groups, fermions families, even

or odd under parity, compact space-times, space-times with boundaries, curved space-times,

discrete (lattice) space-times, external fields and finite temperatures. In condensed matter

systems, quasiparticles usually stem from two-particle (Cooper pairs), particle-quasiparticle

(excitons) or two-quasiparticle (bipolarons) non-relativistic bound states.

Regarding the present article and the physics of new “Dirac materials”[13], in particular due

to the importance of the Dirac’s equation in the description of graphene, together with the fact

that there are QED3 models in which, fermion-fermion, fermion-antifermion or antifermion-

antifermion scattering potentials – mediated by massive scalars or vector mesons – can be

attractivea and of K0-type (a Bessel-Macdonald function) [5, 3, 11, 12, 14, 15, 16, 17, 18], here

we propose to discuss quantum relativistic effects by a short-range potential to treat the interac-

tion between fermion-fermion, fermion-antifermion or antifermion-antifermion in d = 2, without

magnetic field. We deal with the potential theory in spaces of Bessel potentials. More specifi-

cally, in this article we study the two-dimensional Brown-Ravenhall operator, i.e., the projection

of the Dirac operator perturbed by a K0-potential (the two-dimensional Brown-Ravenhall op-

erator in d = 2 perturbed by a Coulomb potential has been analyzed by Bouzouina [19] and

Walter [20]). Our main results are as follows: in Section 3, we prove that the Brown-Ravenhall

operator with K0-potential in d = 2 is bounded from below when the coupling constant is below

a specified critical value (a property also referred to as stability). We do this following two

paths: through relativistic Sobolev inequality and relativistic Hardy inequality (also referred

to as Kato inequality). We provide at the end of the article an Appendix A, where we address

the existence of an inequalitiy involving the Hardy and Sobolev relativistic inequalities that

we will call Hardy-Sobolev-Maz’ya type inequality (or HSM-type inequality for brevity). We

also show that the stability of the Brown-Ravenhall operator with K0-potential in d = 2 im-

plies his self-adjointness. Closing this part of the article, we show that the two-dimensional

Brown-Ravenhall operator with K0-potential does not cease to be bounded below even if the

aWhile the obtained scattering potentials for p-wave states showed up repulsives, the s-wave states (angular

momentum state ℓ = 0) show attractive.
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coupling constant is above the specified critical value, showing that a complete implosion will

never occur for two relativistic fermions interacting via an attractive potential of the Bessel-

Macdonald type, unlike to usual Brown-Ravenhall operator with coulombian potential. The

nature of the spectrum of this operator in turn is addressed in Section 4, in particular the

location of the essential spectrum, and the existence of eigenvalues, which are either isolated

from the essential spectrum or embedded in it. The analysis of embedded eigenvalues is based

on a simple abstract virial theorem. Due to the purpose of this paper, for the convenience of

the reader, in Appendix B we gather a few facts about Bessel’s potential class, of which the

potential K0 is part.

Remark 1. The following notations will be used consistently throughout the article: x,y, z, . . .

will denote points of the d-dimensional euclidean space Rd, |x−y| the euclidean distance of the

points x,y, |x| = |x−0|, p, q, . . . points of the dual space, p ·x the inner product of the vectors

p and x. The gradient ∇Ψ of a differentiable function Ψ is ∇Ψ = (∂Ψ/∂x1, . . . , ∂Ψ/∂xd). If

Ψ,Φ ∈ L2(R
d), then we set 〈Ψ,Φ〉 =

∫
Rd Ψ(x)Φ(x) dx. Ψ ∗ Φ will denote the convolution of Ψ

and Φ, Ψ̂ the Fourier transform of Ψ. We are adopting the following convention for the Fourier

transform on Rd:
[
FΨ

]
(p) = Ψ̂(p) =

∫

Rd

ei~
−1

p·xΨ(x) dx , (1.1)

[
F

−1Ψ̂
]
(x) = Ψ(x) =

1

(2π~)d

∫

Rd

e−i~
−1

p·x Ψ̂(p) dp , (1.2)

with Ψ ∈ S (Rd). Here, by S (Rd) we mean the set of all rapidly decreasing functions on Rd.

The ~ is introduced to keep the units consistent with the physical interpretation. Of course,

the invariance of space S (Rd) under the Fourier transform implies that Ψ̂ ∈ S (Rd).

2 The Dirac-Bessel-Macdonald operator restricted to its

positive spectral subspace in d = 2

The Brown-Ravenhall operator [21] was initially proposed as an alternative to describe

the fermion-fermion interaction via Coulomb potential and subject to relativity. This opera-

tor is defined in terms of the associated Dirac operator and the projection onto the positive

spectral subspace of the free Dirac operator. In what follows, we consider a version of the two-

dimensional Brown-Ravenhall operator with the K0-potential (a Bessel-Macdonald function)

B(x) = Λ+

(
D0(x)− γK0(β|x|)

)
Λ+ , (2.1)

where γ is the coupling parameter taken to be non-negative. The constants γ and β shall depend

on some model parameters, like coupling constants, characteristic lengths, mass parameters or

vacuum expectation value of a scalar field. From expression V (x) = −γK0(β|x|) we see that γ
has energy dimension and gives us an energy scale for the interaction among the two particles.

In turn, the parameter β has inverse length dimension, thus fixing a length scale, an interaction

range, which is related to the mass of the boson-mediated quantum exchanged during the two

particle scattering [3, 5, 11, 14, 15, 16, 17, 18]

In (2.1) the notation is as follows:
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1. The operator D0 is the free Dirac operator in d = 2; it is a first order operator acting on

spinor-valued functions Ψ(x) = (ψ1(x), ψ2(x)), with 2 components, of the space variable

x = (x1, x2). We denote by C2 the 2-dimensional complex vector space in which the

values of Ψ(x) lie. D0 has the form

D0 = −i~cσ ·∇+mc2σ3 = −i~c
(
σ1

∂

∂x1
+ σ2

∂

∂x2

)
+mc2σ3 .

where ~ is the Planck constant, m > 0 is the mass of the fermionic particle under consid-

eration, c is the velocity of light and σ = (σ1; σ2) and σ3 are the Pauli 2× 2-matrices

σ1 =



0 1

1 0


 , σ2 =



0 −i

i 0


 , σ3 =



1 0

0 −1


 .

The σj matrices are introduced in view of making the Dirac operator a square root of the

Laplace operator; they satisfy by construction the following anti-commutating relations:

σjσk + σkσj = 2δjk1I2×2 , j, k = 1, 2 .

Remark 2. The free Dirac operator D0 is essentially self-adjoint on the dense subspace

C∞
0 (R2 \ {0};C2) and self-adjoint on the Sobolev space Dom(D0) = H1(R2;C2), its

spectrum is given by

σ(D0) = (−∞,−mc2] ∪ [mc2,+∞) ,

and it has as form domain the space Q(D0) = H1/2(R2;C2) (see for example [22, Chapter

7] for more details on the spaces H1(R2;C2) and H1/2(R2;C2)). Naturally, the negative

spectrum is associated with antiparticles, in relativistic theories.

2. Λ+
def.
= χ(0,∞)

(
D0

)
, where χ(0,∞) is the characteristic function of the interval (0,+∞),

denotes the projection of L2(R
2;C2) onto the positive spectral subspace of D0; namely,

Λ+ =
1

2

(
1I2×2 +

−i~cσ ·∇+mc2σ3√
−~2c2∆+m2c4

)
,

where ∆ is the laplacian operator on R2. Note thatD0Λ+ = Λ+D0 =
√
−~2c2∆+m2c4 Λ+.

The last equality is a consequence of the following fact: in Fourier variables, the projector

Λ+ is a multiplication operator given by the following expression:

Λ̂+ =
1

2

(
1I2×2 +

cσ · p+mc2σ3√
c2 |p|2 +m2c4

)
.

Hence, the Dirac-Bessel-Macdonald operator restricted to its positive spectral subspace,

or the Brown-Ravenhall operator with the K0-potential, is given formally as

B(x) = Λ+

√
−~2c2∆+m2c4 Λ+ − γ Λ+K0(β|x|)Λ+ ,

acting in L2(R
2;C2), or, equivalently

B(x) = Λ+

√
−~2c2∆+m2c4 − γ Λ+K0(β|x|) ,

acting in H+
def.
= Λ+

(
L2(R

2;C2)
)
.
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3 Boundedness from below and all that

In applications it is often very important to determine the lowest point of the spectrum of

a self-adjoint operator. This problem makes sense only if the operator is bounded from below,

since otherwise the spectrum extends to −∞. In this section, we particularly focus on the

problem of the boundedness from below of the Brown-Ravenhall operator with K0-potential,

which is related to the stability of relativistic systems in two dimensions. More precisely, we

are interested in finding the largest value of γ such that the quadratic form 〈Ψ,BΨ〉 is bounded
from below. In effect, we reach this bounded from below through two paths: through relativistic

Sobolev inequality and relativistic Hardy inequality (also referred to as Kato inequality).

3.1 Preamble: reduction of spinors

The first step in order to prove the boundedness from below of the Brown-Ravenhall

operator with K0-potential is a reduction of spinors. We will follow the same strategy as

Zelati-Nolasco [23]: we now introduce the Foldy-Wouthuysen transformation (FW), given by a

unitary transformation UFW which transforms the free Dirac operator into the diagonal form

(see details in [24, the case in d = 1 + 2] and [25, the case in d = 1 + 3])

DFW = UFWD0U
−1
FW =



H0 0

0 −H0


 = σ3H0 ,

where H0
def.
=

√
−~2c2∆+m2c4 is the so-called quasi-relativistic operator (the relativistic (free)

hamiltonian operator). This operator has been extensively studied for a long time (we refer

to [26, 27, 28, 29, 30, 31, 32, 33]).

Remark 3. With the usual quantization rule p 7→ −i~∇, let us recall that to the operator

H0 can be defined for all Ψ ∈ H1(R2;C2) as the inverse Fourier transform of the L2-function√
c2|p|2 +m2c4 Ψ̂(p) (where Ψ̂ denotes the Fourier transform of Ψ). To H0 we can associate

the following quadratic form

q
H
(Φ,Ψ)

def.
= 〈Φ,H0Ψ〉 = 1

(2π~)2

∫

R2

√
c2|p|2 +m2c4 Φ̂(p)Ψ̂(p) dp ,

which can be extended to all functions Φ,Ψ ∈ Q(H0) = H1/2(R2;C2), where

H1/2(R2;C2) =

{
Ψ ∈ L2(R

2;C2) |
∫

R2

(1 + |p|2)1/2 |Ψ̂(p)|2 dp <∞
}
.

It is known thatH0 restricted onC∞
0 (Rd) is essentially self-adjoint, and that σ(H0) = σess(H0) =

[mc2,∞). An excellent mathematical, comprehensive and self-contained analysis of the spectral

properties of the operators B,D0 and H0 (perturbed by the Coulomb potential) can be found

in [34].

Under the FW-transformation the projector Λ+ becomes simply

Λ+FW
def.
= UFWΛ+U

−1
FW =

1

2
(1I2×2 + σ3) .
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Therefore the positive energy subspace for DFW is simply given by

H+ =

{
Ψ =

(
ψ

0

)
∈ L2(R

2;C2) | ψ ∈ L2(R
2;C)

}

In the FW-representation the associated quadratic form acting on H+ is defined by

〈ϕ,BFWψ〉L2(R2;C) = 〈ϕ,H0ψ〉L2(R2;C) + 〈ϕ, VFWψ〉L2(R2;C) , (3.1)

for any ϕ, ψ ∈ H1/2(R2;C), where VFWψ = Q∗UFWV U
−1
FWQψ, with V (x) = −γK0(β|x|) and

Q : C → C
2 , Q(z1) = (z1, 0) ,

Q∗ : C2 → C , Q∗(z1, z2) = z1 ,

so that

〈ϕ,H0ψ〉L2(R2;C) =
〈
Λ+U

−1
FWQϕ,D0Λ+U

−1
FWQψ

〉
L2(R2;C2)

=

〈
Λ+U

−1
FW

(
ϕ

0

)
,D0Λ+U

−1
FW

(
ψ

0

)〉

L2(R2;C2)

,

and

〈ϕ, VFWψ〉L2(R2;C) =
〈
U−1
FWQϕ, V U

−1
FWQψ

〉
L2(R2;C2)

=

〈
Λ+U

−1
FW

(
ϕ

0

)
, V Λ+U

−1
FW

(
ψ

0

)〉

L2(R2;C2)

.

Note that U−1
FWQϕ = Λ+U

−1
FWQϕ ∈ Λ+

(
L2(R

2);C2
)
for any ϕ ∈ L2(R

2;C).

Using the above description, for any ψ in the positive spectral subspace, the expectation of

B in the state Ψ in the FW-representation is associated to the quadratic form

〈ψ,BFWψ〉 = 〈ψ,H0ψ〉 − γ〈ψ,K0(β|x|)ψ〉 . (3.2)

Hence, the transition from Ψ ∈ L2(R
2;C2) to the reduced spinor ψ ∈ L2(R

2;C) through the

introduction of the operator BFW is possible because we are working in H+. The quadratic form

(3.2) defines a self-adjoint operator BFW if we can show that the form 〈ψ,BFWψ〉 is bounded

from below. Of course, 〈Ψ,BΨ〉 is bounded from below if and only if 〈ψ,BFWψ〉 is bounded

from below. In that case, Eq.(3.2) will define a self-adjoint operator BFW.

Remark 4. The K0-potential satisfies the following properties: (P1) K0 ∈ L2(R
2) + L∞(R2)

and (P2) there exists a constant C ∈ (0, 1) such that |γ〈ψ,K0ψ〉| 6 C〈ψ,H0ψ〉, for all ψ ∈
H1/2(R2;C). The validity of (P1) is proven in Lemma 4.2, while (P2) follows from important

known inequalities: the relativistic Sobolev inequality and the relativistic Hardy inequality,

respectively.
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3.2 Boundedness from below via relativistic Sobolev inequality

Our first proof of the boundedness from below of the Brown-Ravenhall operator with K0-

potential is based on the following result (see [35, Theorem 2.1] and [36, Theorem 1.1]):

Theorem 3.1. For d > 2s, let ψ ∈ Hs(Rd) and q = 2d/(d− 2s). Then the following inequality

holds:

‖ψ‖2q 6 Sd,s‖(−∆)s/2ψ‖22 = Sd,s 〈ψ, (−∆)sψ〉 , (3.3)

where

Sd,s = 2−2sπ−sΓ
(
d−2s
2

)

Γ
(
d+2s
2

)
(

Γ(d)

Γ(d/2)

)2s/d

. (3.4)

There is equality in (3.3) if, and only if, ψ(x) = A
(
(x−x0)2+η2)

)−(n−2)/2
, where A ∈ R, η > 0

are fixed constants and with x0 ∈ Rn.

Remark 5. The relativistic Sobolev inequality [22, Theorem 8.3] and [37, Theorem 1.5] is a

particular case of inequality (3.3) when s = 1/2, and for s = 1/2 the best constant of Theorem

3.1 is given in [22].

Remark 6. The idea that every problem in physics can and should be analyzed in terms of

physical dimensions seems to have been missed by many studies like the one covered in this

article. For this reason, from this point on, both in the analysis of the boundedness from below

via relativistic Sobolev inequality, and the subsequent analysis via relativistic Hardy inequality,

we will take into account the physical dimensions. Here, we are adopting the International

System of Units, since we are working explicitly with ~ and c.

A well-known result (see [38, Theorem 1.66]) asserts that Hs(Rd) is continuously embedded

into Lq(R
d) if 0 6 s < d/2 and 2 6 q 6 2d/(d− 2s). In particular, for s = 1/2 and d = 2 this

reads as

H1/2(R2) →֒ Lq(R
2) if 2 6 q 6 4 . (3.5)

Now, let ψ be an arbitrary element in H1/2(R2) and let K0(β|x|) be the Bessel-MacDonald

potential in R2. It is well known that

K0(β|x|) ∈ L1(R
2) ∩ L2(R

2) . (3.6)

Since ψ ∈ L4(R
2), we have that

|ψ|2 ∈ L2(R
2) . (3.7)

From (3.6), (3.7) and Hölder Inequality, we get

K0|ψ|2 ∈ L1(R
2) . (3.8)
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In particular, from (3.8) and Cauchy-Schwarz-Bunjakowski inequality, we have that

〈ψ,K0(β|x|)ψ〉 =
∫

R2

ψ(x)K0(β|x|)ψ(x) dx

=

∫

R2

K0(β|x|)|ψ(x)|2 dx

=

∫

R2

K0(β|x|)|ψ(x)|2 dx (K0 ∈ R)

= 〈K0, |ψ|2〉

6 ‖K0‖2‖|ψ|2‖2 .

Note that

‖|ψ|2‖2 =
(∫

R2

(|ψ(x)|2)2 dx
)1/2

=

(∫

R2

|ψ(x)|4 dx
)1/2

= ‖ψ‖24 ,

From (3.5), we have that ψ ∈ Lq(R
2), for 2 6 q 6 4 since we are taking ψ ∈ H1/2(R2).

Thus, we can conclude that

〈ψ,K0(β|x|)ψ〉 6 ‖K0‖2‖ψ‖24 ,

and, for all ψ ∈ H1/2(R2;C). Accordingly, in the international system of units, the relativistic

Sobolev inequality for c|p| [22, Theorem 8.4] takes the form

‖ψ‖24 6
1

~c
S2,1/2

〈
ψ,

√
−~2c2∆ ψ

〉
, (3.9)

where, according to Eq.(3.4),

S2,1/2 = 2−1π−1/2Γ
(
1
2

)

Γ
(
3
2

)
(
Γ(2)

Γ(1)

)1/2

= π−1/2 (by the particular values of the gamma function) .

Moreover, according the Table of Integrals of Gradshtein-Ryzhik [39, 6.521, 6.∗, p.665], in polar

coordinates,

‖K0‖2 =
(
2π

∫ ∞

0

K2
0 (βr) r dr

)1/2

=
π1/2

β
. (3.10)

Therefore, we have that

〈ψ,K0(β|x|)ψ〉 6
1

~cβ

〈
ψ,

√
−~2c2∆ ψ

〉

6
1

~cβ

〈
ψ,

√
−~2c2∆+m2c4 ψ

〉
. (3.11)

The whole bounded from below problem of the operator BFW is captured in the estimate
〈
ψ,

√
−~2c2∆+m2c4 ψ

〉
− γ〈ψ,K0(β|x|)ψ〉 > 0 , ∀ψ ∈ H1/2(R2;C) ,

8



and leads immediately to the question for what values of γ such an estimate holds. Consequently,

the inequality (3.11) shows that operator BFW is bounded from below if

(
1− γ

1

~cβ

)〈
ψ,

√
−~2c2∆+m2c4 ψ

〉
> 0 ,

In other words, 〈ψ,BFWψ〉 is lower bounded if

γ 6 γSc = ~cβ .

This ends the first proof of the boundedness from below of the Brown-Ravenhall operator with

K0-potential.

3.3 Boundedness from below via relativistic Hardy inequality

Our second proof of the boundedness from below of the Brown-Ravenhall operator with

K0-potential is based on the following result [40, Lemma 8.2]:

Theorem 3.2. Let d > 2, and let ψ be a function in H1/2(Rd). Then there is the strict

inequality

∫

Rd

|ψ(x)|2
|x| dx < H2

d

∫

Rd

|p||ψ̂(p)|2 dp = H2
d

∫

Rd

ψ(x)
√
−∆ ψ(x) dx , (3.12)

where the best possible value of the constant Hd is

Hd =
Γ
(
d−1
4

)
√
2 Γ
(
d+1
4

) .

The equality is only attained if ψ = 0, i.e., for any bigger constant the inequality fails for some

function in H1/2(Rd).

Remark 7. This inequality goes back to Kato [41, Eq.(V.5.33)] and Herbst [28, Theorem 2.5].

See also [42, Theorem 1.7.1].

To apply Theorem 3.2 to our problem, we start using the following rough estimate

K0(β|x|) =
1

2

∫ ∞

0

e−
πβ2|x|2

η e−
η
4π

1

η
dη =

1

2|x|α
∫ ∞

0

|x|α
ηα/2

e−
πβ2|x|2

η e−
η
4π

1

η1−α/2
dη

6
1

2|x|α
(
sup
t>0

tα/2e−πβ
2t

)∫ ∞

0

e−
η
4π

1

η1−α/2
dη . (3.13)

Now, since

(i) tα/2e−πβ
2t > 0 , ∀ t > 0 ,

(ii) lim
t→0+

(
tα/2e−πβ

2t
)
= 0 = lim

t→+∞

(
tα/2e−πβ

2t
)
,

(iii)
d

dt

(
tα/2e−πβ

2t
)
= 0 ⇐⇒ t =

α

2πβ2
,

9



we conclude that

sup
t>0

tα/2e−πβ
2t = tα/2e−πβ

2t
∣∣∣
t= α

2πβ2

=

(
α

2πβ2

)α/2
e−α/2 .

Furthermore, according the Table of Integrals of Gradshtein-Ryzhik [39, 3.381, 4., p.346], it

follows that ∫ ∞

0

e−
η
4π

1

η1−α/2
dη = (4π)α/2Γ(α/2) .

Hence, we have

K0(β|x|) 6
Cα,β
|x|α , (3.14)

where

Cα,β =
1

2

(
α

2πβ2

)α/2
(4π)α/2Γ(α/2)e−α/2 .

If we take α = 1, then, for d = 2, it follows from Eq.(3.12) that in the international system

of units we have

〈ψ,K0(β|x|)ψ〉 =
∫

R2

ψ(x)K0(βx)ψ(x) dx

6
1√
2
Γ(1/2)e−1/2 1

β

∫

R2

|ψ(x)|2
|x| dx

<
1√
2
Γ(1/2)e−1/2

(
Γ(1/4)√
2 Γ(3/4)

)2
1

~cβ

〈
ψ,

√
−~2c2∆ ψ

〉

6
1√
2
Γ(1/2)e−1/2

(
Γ(1/4)√
2Γ(3/4)

)2
1

~cβ

〈
ψ,

√
−~2c2∆+m2c4 ψ

〉
. (3.15)

Note that we can simplify the expression of the constant in front of
〈
ψ,

√
−~2c2∆+m2c4 ψ

〉
,

taking into account the relationship that exists between the gamma function and the beta

function. Indeed, it follows that

1√
2
Γ(1/2)e−1/2

(
Γ(1/4)√
2Γ(3/4)

)2
1

~cβ
=

[B(1/2, 1/4)]2√
8πe

1

~cβ
=

[Γ(1/4)]4

2(2π)3/2e1/2
1

~cβ
.

In the last equality we use the well-known expression

B(x, y) = 2

∫ π/2

0

(cosϕ)2x−1(sinϕ)2y−1 dϕ ,

and the Table of Integrals of Gradshtein-Ryzhik [39, 3.621, 7.∗, p.395] in order to calculate the

value of the function B(1/2, 1/4).

So, again, the bounded from below problem of the operator BFW is simply to show that

inf 〈ψ,BFWψ〉 > 0 ,
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where the infimum is taken over all ψ ∈ H1/2(R2;C). In other words, the operator BFW has to

be positive and, clearly, the necessary condition for stability is captured in the estimate
〈
ψ,

√
−~2c2∆+m2c4 ψ

〉
− γ〈ψ,K0(β|x|)ψ〉 > 0 .

Consequently, the inequality (3.15) shows that operator BFW is bounded from below if
(
1− γ

[Γ(1/4)]4

2(2π)3/2e1/2
1

~cβ

)〈
ψ,

√
−~2c2∆+m2c4 ψ

〉
> 0 .

In other words, 〈ψ,BFWψ〉 is lower bounded if

γ 6 γHc =

(
2(2π)3/2e1/2

[Γ(1/4)]4

)
~cβ .

This ends the second proof of the boundedness from below of the Brown-Ravenhall operator

with K0-potential.

3.4 The self-adjoint realization

The self-adjointness of the operator BFW depends on the basic theorem (see Simon [43,

Theorem II.7] and [44, Theorem 2], and also Reed-Simon [45, Theorem X.17]):

Theorem 3.3 (KLMN Theorem). Let H0 be a positive self-adjoint operator and suppose

〈ψ, V ψ〉 is a symmetric quadratic form such that |V |1/2 6 H
1/2
0 , with Q(V ) ⊃ Q(H0), so

that for some a < 1 and some b ∈ R,

|〈ψ, V ψ〉| 6 a〈ψ,H0ψ〉+ b ‖ψ‖22 .

for all ψ ∈ Q(H0). Then the quadratic form ψ 7→ 〈ψ,H0ψ〉 + 〈ψ, V ψ〉 defined on Q(H0) ∩
Q(V ) ≡ Q(H0) is the form of a self-adjoint operator which is bounded below by −b.

On applying KLMN Theorems we derive

Proposition 3.4. If γ < γc, for γc ∈ {γSc , γHc }, BFW is self-adjoint on the form domain

Q(H0) = H1/2(R2;C) and bounded below by 0.

Proof. For V (x) = −γK0(β|x|) and H0 =
√
−~2c2∆+m2c4, the relativistic inequalities of

Sobolev and Hardy show us that |V |1/2 <H
1/2
0 and that

|〈ψ, V ψ〉| 6 γ

γc
〈ψ,H0ψ〉 (for all ψ ∈ H1/2(R2;C)) .

Therefore, taking into account that γ
γc

6 1, for γc ∈ {γSc , γHc }, if we take γ < γc the hypotheses

of the KLMN Theorem are satisfied and one deduces that the quadratic form (3.2) defined on

Q(H0) ∩ Q(V ) ≡ Q(H0) is the form of the self-adjoint operator, BFW, and the inequality

holds with b = 0, i.e., the quadratic form 〈ψ,BFWψ〉 is bounded below by 0.

Remark 8. For the critical value γ = γc, the Friedrichs Extension Theorem [45, Theorems X.23]

guarantees that the quadratic form (3.2) is a closable quadratic form and its closure is the

quadratic form of a unique self-adjoint operator associated with BFW, which is bounded from

below, and the lower bound of its spectrum is the same lower bound of (3.2).
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3.5 Is 〈ψ,BFWψ〉 unbounded below if γ > γc?

We proved that V (x) = −γK0(β|x|) can be controlled by
√
−~2c2∆+m2c4, if γ is smaller

than γSc , or γ
H
c . But, bearing in mind hypothetical applications of the model presented here

to graphene, or any other two dimensional system, it is important to check if 〈ψ,BFWψ〉 is

unbounded below if γ > γc. For this, we will take the form
∫

R2

{
ψ(x)

√
−~2c2∆+m2c4 ψ(x)− γ ψ(x)K0(β|x|)ψ(x)

}
dx , (3.16)

for all ψ in the form domain of H0+V , and, in particular, for all ψ ∈ S (R2;C). As usual, over

all normalized function ψ(x), we shall replace ψ(x) by the scaled function ψλ(x) = λψ(λx),

for λ > 0. A little computation shows that the normalization is unchanged.

As we explicitly know the function K0 in Fourier space (see Proposition B.7), using Parse-

val’s formula, we can rewrite (3.16) as follows:

1

(2π~)2

∫

R2

√
c2|p|2 +m2c4 |ψ̂(p)|2 dp− γ

(2π~)4

∫

R2

∫

R2

ψ̂(p)
2π~2

|p− q|2 + ~2β2
ψ̂(q) dqdp .

(3.17)

Naturally, in Fourier space, we must replace ψ̂(p) by the scaled function ψ̂λ(p) = λ−1ψ̂(λ−1
p),

for λ > 0 and a little computation shows that, again, the normalization is unchanged. So with

that in mind, it follows that

1

(2π~)2

∫

R2

√
c2|p|2 +m2c4 |ψ̂λ(p)|2 dp− γ

(2π~)4

∫

R2

∫

R2

ψ̂λ(p)
2π~2

|p− q|2 + ~2β2
ψ̂λ(q) dqdp

=
λ

(2π~)2

∫

R2

√
c2|p|2 + m2c4

λ2
|ψ̂(p)|2 dp− γ

(2π~)4

∫

R2

∫

R2

ψ̂(p)
2π~2

|p− q|2 + ~2β2

λ2

ψ̂(q) dqdp .

Now, on allowing λ → ∞, we obtain that the kinetic term will always dominate V (x) =

−γK0(β|x|), regardless of the value of the coupling constant γ. In other words, the quadratic

form 〈ψ,BFWψ〉 does not cease to be bounded below even if γ > γc. This result is a character-

istic of the K0-potential. The reason for this behavior is that, unlike to usual Brown-Ravenhall

operator with coulombian potential, the Brown-Ravenhall operator with K0-potential it is not

homogeneous with respect to scalings of R2, i.e., the kinetic energy does not have the same

behavior under scaling as the Bessel-Macdonald energy for large momenta. Consequently, a

complete implosion will never occur for two relativistic fermions interacting via an attractive

potential of the Bessel-Macdonald type.

Remark 9 (The role of mass in the scaling procedure). Note that we lost the masses in

the scaling procedure. It is irrelevant for the stability problem, but it will determine the energy

once the problem is shown to be stable. Indeed, the simple inequality
√
c2|p|2 +m2c4 > c|p|

shows that stability also holds in the case of non-zero mass whenever it holds with zero mass,

as we have seen through relativistic inequalities of Sobolev and Hardy.

Remark 10 (The atomic collapse in graphene). Non-perfect graphene has additional poten-

tials; a particular case of importance is the presence of an impurity of Coulomb type. In this

case, there are two distinct regimes: the subcritical regime and the supercritical regime. In the
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latter case, when γ > γc, a phenomenon called atomic collapse in graphene occurs. This result

physically means that the electron is pulled into the nucleus of the interstitial atom. The super-

critical instability in the field of a single charged impurity has been extensively studied in the

literature (see [47] and references therein). On the other hand, as we have seen, since the kinetic

energy for large momenta (or for small distances) is always larger than the Bessel-Macdonald

type interaction energy, this implies that the phenomenon of the fall-to-center should not take

place in graphene in the presence of an impurity of Bessel-Macdonald type (a complete implo-

sion would imply the annihilation of matter). Despite this, by Proposition 3.4 and Remark

8, only for values of γ 6 γc the operator BFW is self-adjoint. Thereby, the critical coupling

constant as occurring in this paper can be mathematically thought of as that coupling constant

where a natural definition of self-adjointness ceases to exist. In other words, by analyzing the

underlying trapping mechanism for the model proposed here, a priori, the supercritical insta-

bility in graphene with an impurity of Bessel-Macdonald type should not be necessarily related

to the phenomenon of the fall-to-center, but must be interpreted as the absence of dynamics.

4 Spectral properties of the operator B

In this section, we investigate the nature of the spectrum of the Brown-Ravenhall operator

with K0-potential. We start by locating the essential spectrum, σess(B). Firstly, we note that

the map 〈Ψ,BΨ〉 → 〈ψ,BFWψ〉, where Ψ ∈ L2(R
2;C2) and ψ ∈ L2(R

2;C), determines a unitary

equivalence between the operators B and BFW, hence, they have the same spectral properties.

This leads us to the following result:

Theorem 4.1. Assume that 0 < γ 6 γc. Then for the essential spectrum of the Brown-

Ravenhall operator (2.1) one has σess(B) = σess(BFW) = [mc2,∞).

The proof of Theorem 4.1 depends fundamentally on the following

Lemma 4.2. The potential V (x) = −γK0(β|x|) ∈ L2(R
2) + L∞(R2)ε, where the ε indicates

that for any ε > 0, we can decompose V = V1 + V2 with V1 ∈ L2(R
2) and V2 ∈ L∞(R2), with

‖V2‖∞ < ε.

Proof. For any ε > 0, let χε(|x|) be the function that is 1 on {x | |x| 6 (γε)−1} and that

vanishes outside {x | |x| < 2(γε)−1}. Then, we decompose the potential V (x) as

V (x) = −γχε(|x|)K0(β|x|)− γ
(
1− χε(|x|)

)
K0(β|x|) = V1(x) + V2(x) .

By using the Eq.(3.10), we obtain

‖V1‖2 =
(
γ2
∫

R2

|χε(|x|)K0(β|x|)|2 d2x
)1/2

=

(
2πγ2

∫ ∞

0

χ2
ε(r)K

2
0(βr) r dr

)1/2

<
γπ1/2

β
.

Hence, V1 ∈ L2(R
2). In the sequel we will use the asymptotic behavior of K0, i.e.,

K0(β|x|) ≃
√

π

2β|x| e
−β|x| , |x| → ∞ .
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This implies that V2 is a bounded function vanishing at ∞. So it follows that V2 ∈ L∞(R2),

with

‖V2‖∞ = sup
x∈R2

∣∣γ
(
1− χε(|x|)

)
K0(β|x|)

∣∣ < ε .

Therefore, the potential V (x) = −γK0(β|x|) ∈ L2(R
2) + L∞(R2)ε.

Proof of Theorem 4.1. Let us start by defining BFW0 ≡ H0 =
√
−~2c2∆+m2c4. From Remark

3, we know that σess(BFW0) = [mc2,∞). On the other hand, in order to locate σess(BFW), where

BFW = BFW0 + V (with V (x) = −γK0(β|x|)), we study the resolvent operator (BFW − λ1I)−1

for a some λ /∈ σ(BFW).

By the second resolvent equation, for any value of λ ∈ ρ(BFW) ∩ ρ(BFW0), where ρ(BFW)

and ρ(BFW0) are the resolvent sets of BFW and BFW0, respectively, we have

(BFW − λ1I)−1 − (BFW0 − λ1I)−1 = (BFW − λ1I)−1V (BFW0 − λ1I)−1 , (4.1)

(we recall that since BFW is a positive self-adjoint operator, once 〈ψ,BFWψ〉 is bounded from

below if γ 6 γc, λ ∈ ρ(BFW) if and only if (BFW − λ1I) : Dom(BFW) → H+ is bijective and

its inverse is bounded). We will show that (BFW − λ1I)−1 − (BFW0 − λ1I)−1 is compact as an

operator on L2(R
2;C) and therefore σess(BFW) = σess(BFW0) = [mc2,∞) by Weyl’s criterion [46,

Theorem XIII.14].

In view of the self-adjointness of BFW, the half-planes C± lie in ρ(BFW) and (BFW − λ1I)−1

is bounded by

‖(BFW − λ1I)−1‖ 6 |Imλ|−1 , λ /∈ R ,

(cf. Ref.[48, Corollary 5.7]). Thus, it remains for us to show that V (BFW0 − λ1I)−1 is compact.

Taking into account the basic fact of inclusion [22, Chapter 7],

H1(R2;C) ⊂ H1/2(R2;C) ,

i.e., since the range of (BFW0−λ1I)−1, namely Dom(H0) = H1(R2;C), lies in the form domain

Q(H0) = H1/2(R2;C), we just show that V (x) = −γK0(β|x|) is a compact operator from

H1(R2;C) to L2(R
2;C). This is enough to guarantee that the perturbation V does not modify

the essential spectrum of the operator H . For this we will need the following compactness

theorem, the proof of which can be found in [49, Theorem 1.10].

Theorem 4.3 (Rellich compactness criterion). Let H1
0 (Ω) be the closure of C∞

0 (Ω) in H1(Ω),

where Ω ⊂ Rd is an open and bounded set. Then for any bounded sequence (ψℓ)ℓ∈N in H1
0 (Ω)

there exists a subsequence (ψℓk)k∈N ⊂ (ψℓ)ℓ∈N such that (ψℓk)k∈N converges strongly in L2(Ω).

Remark 11. H1
0 (Ω), with the scalar product 〈 · , · 〉H1(Ω) defined by

〈ψ, ϕ〉H1(Ω) = 〈ψ, ϕ〉L2(Ω) +
d∑

κ=1

〈Dκψ,Dκϕ〉L2(Ω) ,

is a Hilbert space by construction, being a closed subspace of the Hilbert space H1(Ω) (cf. [50,

Lemma 22.1]).
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Returning to the proof of Theorem 4.1, select a sequence (ϕℓ)ℓ∈N ⊂ L2(R
2;C) such that

ϕℓ
w−→ 0. Assume that

ψℓ = (BFW0 − λ1I)−1ϕℓ ,

where ψℓ ∈ Dom(BFW0). The fact that (ϕℓ)ℓ∈N converges weakly implies that (ϕℓ)ℓ∈N is

bounded in L2(R
2;C). As (BFW0 − λ1I)−1 is bounded, the sequence (ψℓ)ℓ∈N is also bounded in

Dom(BFW0) and converges weakly to zero in Dom(BFW0) ⊂ L2(R
2;C).

Now, according to Lemma 4.2, for any ε > 0, we can decompose V as V = V1 + V2, where

V1 ∈ L2(R
2) and V2 ∈ L∞(R2)ε. Then, applying the Hölder Inequality,

‖V2ψℓ‖2 6 ‖V2‖∞‖(BFW0 − λ1I)−1ϕℓ‖2 6 ε‖ϕℓ‖2 , (4.2)

and it follows that ‖V2(BFW0 − λ1I)−1‖ 6 ε. Next, observe that V1 is bounded so that there is

K > 0 such that |V1(x)| 6 K, for all x ∈ R2. Let BR = {x ∈ R2 | |x| < R} be the open ball

with radius R > 0 around zero in R2 and θR ∈ C∞
0 (B2R) be such that 0 6 θR 6 1, θR ↾BR

= 1.

Then, (θRψℓ)ℓ∈N is bounded in H1(B2R;C). We recall that Rellich’s Compactness Theorem

gives us that the inclusion

H1(B2R;C) →֒ L2(B2R;C) ,

is compact. This means that there exists a subsequence (θRψℓk)k∈N ⊂ (θRψℓ)ℓ∈N such that

(θRψℓk)k∈N converges strongly in L2(B2R;C). We shall show that ‖V1ψℓ‖ converges to 0. With

the help of the function θR defined above, it follows that

‖V1ψℓ‖2 6 ‖V1θRψℓ‖2 + ‖V1(1− θR)ψℓ‖2 6 ‖V1θRψℓ‖2 + ‖V1(1− θR)‖‖ψℓ‖2 . (4.3)

The first term can be made smaller than ε by choosing ℓ large since V1 is bounded, i.e., there

is ℓ0 ∈ N such that ‖θRψℓ‖ 6 ε/K for all ℓ > ℓ0. As ψℓ converges weakly to zero, there is

a positive constant M such that ‖ψℓ‖2 6 M . Hence, by assumption, the second term can be

made smaller than ε times a positive constant by choosing R large. Consequently, for ℓ large

enough, the right-hand side of (4.3) is smaller than ε times a positive constant. This implies

that V1ψℓ → 0 in L2(R
2;C) as ℓ → ∞, since ε is arbitrary, and hence V1(BFW0 − λ1I)−1 is

compact.

Finally, by (4.2) we have

‖V (BFW0 − λ1I)−1 − V1(BFW0 − λ1I)−1‖ < ε ,

so V (BFW0 − λ1I)−1 is approximated by compact operators and is itself compact [48, Theorem

9.8]. Thus, we have that (BFW − λ1I)−1 − (BFW0 − λ1I)−1 is equal to the product of a compact

operator and a bounded operator, and since the product of a compact operator with a bounded

operator is compact [48, Theorem 9.5(b)], this proves the required compactness on L2(R
2;C).

This means that BFW and BFW0 have the same essential spectrum by Weyl’s criterion, namely

σess(BFW) = σess(BFW0) = [mc2,∞) [46, Theorem XIII.14].

Possible embedded eigenvalues in the essential spectrum, σess(BFW), are not stable. Unlike

isolated eigenvalues, which are relatively stable under perturbations, embedded eigenvalues
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generically disappear from the spectrum of a self-adjoint operator under perturbations (actually,

they do not disappear but, they become resonances of the operator).b The study of resonances

is closely connected with the absence of eigenvalues in the essential spectrum. In particular,

for operator BFW, there are no eigenvalues embedded in the interior of the essential spectrum

when γ 6 γc, with γc ∈ {γSc , γHc }. This result is proved with the help of the following

Lemma 4.4 (An abstract virial theorem [34], Lemma 3.1.2). Let U (a), a ∈ R+ , be a one

parameter family of unitary operators on a Hilbert space H which converges strongly to the

identity as a → 1. Let T be a self-adjoint operator in H and Ta = f(a)U (a)TU −1(a) where

f(1) = 1 and f ′(1) exists. If ψ ∈ Dom(T ) ∩Dom(Ta) is an eigenvector of T corresponding

to an eigenvalue λ then

lim
a→1

〈
ψa,

[
Ta − T

a− 1

]
ψ

〉
= λf ′(1)‖ψ‖22 ,

where ψa = U (a)ψ.

The use of Lemma 4.4 with T = BFW, f(a) = a, U (a) the unitary operator defined by

U (a)ψ(x) = aψ(ax), combined with Theorem 3.2.3 in Ref [34], which can be adapted to the

case of the operator BFW, guarantees the absence of discrete spectrum in [mc2,∞).

On the other hand, in many applications, a self-adjoint operator has a number of eigenvalues

below the bottom of the essential spectrum. In the sequel, we will show that the stable states

of operator B are represented by eigenvalues lying in the gap of the essential spectrum of BFW,

i.e., in the interval [0, mc2). We recall that the eigenvalues of BFW are characterized by the min-

max principle. This theorem establishes that since BFW is self-adjoint, and if λ1 6 λ2 6 λ3 · · ·
are eigenvalues of BFW below the essential spectrum, respectively, the infimum of the essential

spectrum, once there are no more eigenvalues left, then

λn = inf
ψ,...,ψn−1

sup
ψ∈Ω(ψ1,...,ψn)

〈ψ,BFWψ〉 ,

where Ω(ψ1, . . . , ψn) =
{
ψ ∈ Dom(BFW) | ‖ψ‖2 = 1, ψ ∈ span{ψ1, . . . , ψn}

}
. Hence, if there

exists ψ ∈ Dom(BFW) such that 〈ψ,BFWψ〉 < mc2, then BFW has at least one eigenvalue

below the bottom of the essential spectrum, σess(BFW). Indeed, if this were not true then

σ(BFW)∩ (0, mc2) = ∅ meaning that σ(BFW) ⊂ [mc2,∞). By the spectral theorem, this would

imply that BFW > mc2, i.e., 〈ψ,BFWψ〉 > mc2 for all ψ ∈ Dom(BFW) in contradiction to the

assumption 〈ψ,BFWψ〉 < mc2. Moreover,

〈ψ,BFWψ〉 = 〈ψ,
√
−~2c2∆+m2c4 ψ〉 − γ〈ψ,K0(β|x|)ψ〉

> mc2‖ψ‖22 −
γ

γc
mc2‖ψ‖22

= mc2
(
1− γ

γc

)
‖ψ‖22 .

bAn excellent mathematical, comprehensive and self-contained analysis of quantum resonances can be found

in [48].
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Therefore, for ψ ∈ H1/2(R2;C) (with ‖ψ‖2 = 1) and γ 6 γc, we obtain

〈ψ,BFWψ〉 > mc2
(
1− γ

γc

)
(for γc ∈ {γSc , γHc }) .

Thus in [0, mc2), the spectrum of BFW consists only of eigenvalues. The question arises whether

BFW has a finite or infinite number of eigenvalues? To answer this question it will be sufficient

to take ~ = m = c = 1, when m > 0, because of scaling. As can be seen from (3.14), the

operator
√
−∆+ 1 − γC1,β|x|−1 is an upper bound on the operator BFW (see (3.2)). In turn,

taking into account that
√
−∆+ 1 6 −∆+1 and that−∆−γC1,β |x|−1 has an infinite number of

eigenvalues (see [51, Theorem XI.1.5]), this ensures the existence of infinitely many eigenvalues

smaller than 1 (or rather, smaller than mc2) for BFW for γ 6 γc, with γc ∈ {γSc , γHc }. In

conclusion, all of these observations prove the following

Proposition 4.5. Consider the operator BFW defined by the form in (3.2). If γ 6 γc, with

γc ∈ {γSc , γHc }, then

〈ψ,BFWψ〉 > mc2
(
1− γ

γc

)
, ‖ψ‖2 = 1 .

In [0, mc2), the discrete spectrum {λn}n>1 ∈ σdisc(BFW) = σdisc(B), consists of an infinite

number of isolated eigenvalues of finite multiplicity. Moreover, since the eigenvalues λn are all

smaller than mc2 = inf {σess(BFW)} and since eigenvalues can accumulate only at the essential

spectrum, we have that

λ1 6 · · · 6 λn−1 6 λn → inf {σess(BFW)} = mc2 for n→ +∞ .

Remark 12. Motivated by the conduction properties of graphene discovered and studied in the

last decades, in Proposition 4.5, the velocity of light c could be replaced by the Fermi velocity

in graphene vF ≈ 106m/s = c/300. In this case, the interval [0, mv2F) is associated a mass-gap

effect [52, 53], observed in pure monolayer graphene on substrates. At this point, we also want

to mention a physical situation where resonances have been shown to exist. Considering the

problem of impurity states in the vicinity of the mass-gap on graphene, taking into account the

spin-orbit (SO) interaction, Inglot-Dugaev [54] have shown that even though the internal SO

interaction is relatively small, its effect is crucial because a very small perturbation potential

can create both discrete and resonance impurity states located near the gap.

We conclude with

Proposition 4.6. The operator BFW defined by the form in (3.2) has no eigenvalue at 0 if

γ = γHc .

Proof. Suppose that 0 is an eigenvalue of BFW with corresponding eigenfunction ψ. Since the

right-hand side of

〈ψ,BFWψ〉 = 〈ψ,
√
−~2c2∆+m2c4 ψ〉 − γHc 〈ψ,K0(β|x|)ψ〉 ,

is non-negative, it must be zero. But this would imply that there is equality in (3.12) with

ψ 6= 0, which is not possible.
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Appendix A: Boundedness from below via an HSM-type

inequality

We address in this appendix the existence of an inequalitiy involving the Hardy and Sobolev

relativistic inequalities applied to the Brown-Ravenhall operator BFW with an attractive poten-

tial of the Bessel-Macdonald type. This inequality, that we will call Hardy-Sobolev-Maz’ya type

inequality (or HSM-type inequality for brevity) [42], combines the relativistic Hardy inequality

and relativistic Sobolev inequality. Indeed, from the Hardy and Sobolev relativistic inequalities

for R2

H−2
2

∫

R2

|ψ(x)|2
|x| dx 6

1

~c
〈ψ.

√
−~2c2∆ ψ〉 and S−1

2,1/2‖ψ‖24 6
1

~c
〈ψ,

√
−~2c2∆ ψ〉 ,

it follows that for 0 < α 6 H−2
2

1

~c
〈ψ,

√
−~2c2∆ ψ〉 − α

∫

R2

|ψ(x)|2
|x| dx >

1

~c

(
1− αH2

2

)
〈ψ,

√
−~2c2∆ ψ〉

>
(
1− αH2

2

)
S−1
2,1/2‖ψ‖24 , ψ ∈ H1/2(R2;C) . (A.1)

that is,

1

~c
〈ψ,

√
−~2c2∆ ψ〉 − α

∫

R2

|ψ(x)|2
|x| dx−

(
1− αH2

2

)
S−1
2,1/2‖ψ‖24 > 0 , ψ ∈ H1/2(R2;C) .

The inequality (A.1) says that even when Hardy is subtracted, the operator
√
−~2c2∆ is still

powerful enough to dominate the square of an L4-norm. Therefore, with this result, for the

Brown-Ravenhall operator BFW with an attractive potential of the Bessel-Macdonald type it

follows that

〈ψ,K0(β|x|)ψ〉 6 C−1
α

1

~cβ
〈ψ,

√
−~2c2∆ ψ〉

6 C−1
α

1

~cβ
〈ψ,

√
−~2c2∆+m2c4 ψ〉 , (A.2)

where

Cα = α

√
2e

[Γ(1/2)]2
+

1√
π

(
1− αH2

2

)
S−1
2,1/2 .
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Although the constant Cα is not sharp, we hope to find the best constant Cα optimizing over

the choice of α. Consequently, the inequality (A.2) shows that operator BFW is bounded from

below if
(
1− γ C−1

α

1

~cβ

)〈
ψ,

√
−~2c2∆+m2c4 ψ

〉
> 0 ,

In other words, 〈ψ,BFWψ〉 is lower bounded if

γ 6 γHSM
c = Cα ~cβ .

Appendix B: Bessel potential

For the reader’s possible interest, in this appendix, we have gathered some facts about the

spaces of Bessel potentials. Let us recall that the operator (−∆ + 1I)−s/2, for s > 0, is called

Bessel potential operator. Thus, given any s > 0, the Bessel potencial Gs is defined to be that

function whose Fourier transform Ĝs is given by

Ĝs(p) =
1

(1 + |p|2)s/2 , with p ∈ R
d .

The following is a simple proof of this result for the K0-potential in R2. The proof is based

on the spherical symmetry of the K0-function.

Proposition B.7. Given that K0-potential is spherically symmetric, then

[
FK0

]
(p) = K̂0(p) =

2π~2

|p|2 + ~2β2
.

Proof. Using our Fourier transform convention displayed in Eq.(1.1), we started by writing

K̂0(p) =

∫ ∞

−∞

∫ ∞

−∞

K0

(
β
√
x21 + x22

)
ei~

−1(p1x1+p2x2)dx1dx2 .

For a potential depending only upon r (central force field) it is expedient to introduce polar

coordinates by the formulae x1 = r cos θ, x2 = r sin θ, with r = |x|, and similarly in the

momentum domain by the formulae p1 = p cosϕ, p2 = p sinϕ, with p = |p|. It then follows

that the Fourier transform in d = 2 can be written as

K̂0(p) =

∫ ∞

0

∫ π

−π

K0(βr)e
i~−1pr cos(ϕ−θ)rdrdθ

=

∫ ∞

0

K0(βr)rdr

∫ π

−π

ei~
−1pr cos(ϕ−θ)dθ . (B.1)

Using the integral definition of the zeroth-order Bessel function,

J0(x) =
1

2π

∫ π

−π

eix cos(ϕ−θ)dθ =
1

2π

∫ π

−π

eix cos ηdη ,
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Eq.(B.1) can then be written as

K̂0(p) = 2π

∫ ∞

0

K0(βr)J0(~
−1pr) r dr .

In this way, the conclusion follows from the Table of Integrals of Gradshtein-Ryzhik [39, 6.521,

2.10, p.665].

We quote below without proof the basic properties of Gs relevant to our development (more

details can be found in Refs. [55, 56, 57, 58]):

(i) if s > 0, then Gs is a positive function in L1(R
d) which is analytic except at 0 and is

given by

Gs(x) =
1

2
d+s−2

2 πd/2Γ(s/2)
K d−s

2

(|x|) |x| s−d
2 , (B.2)

where K d−s
2

is the modified Bessel function of the second kind also called Bessel-MacDonald

function and Γ denotes the Gamma function. The Bessel kernel can also be represented for

x ∈ Rd \ {0} by the integral formula

Gs(x) =
1

(4π)s/2Γ(s/2)

∫ ∞

0

e−
π|x|2

η e−
η
4π η−(1+

d−s
2 ) dη . (B.3)

(ii) Gs ∗Gτ = Gs+τ if τ > 0.

(iii) as |x| → 0,

Gs(x) ≃





Γ((d− s)/2)

2sπd/2Γ(s/2)
|x|s−d if 0 < s < d ,

1

2d−1πd/2Γ(d/2)
ln

1

|x| if s = d ,

Γ((d− s)/2)

2dπd/2Γ(s/2)
if s > d .

(iv) as |x| → ∞,

Gs(x) ≃
1

2
d+s−1

2 π
d−1

2 Γ(s/2)
|x| s−d−1

2 e−|x| .

(v) there exists c > 0 such that for all x ∈ Rd and all s ∈ (0, d)

Gs(x) ≃ |x|s−d e−c|x| .

Closely related to the operator (−∆+1I)−s/2 is the Riesz potential operator, (−∆)−s/2, which

has an integral convolution kernel of the form

Gs(x) =
Γ((d− s)/2)

2sπd/2Γ(s/2)
|x|s−d , if 0 < s < d .

The Bessel potential is a potential similar to the Riesz potential but with better decay

properties at infinity. Comparatively, the Yukawa potential is a particular case of a Bessel

potential for s = 2 in d = 3, while the Coulomb potential is an example of a Riesz potential

also in d = 3. Note that according to properties (iii) and (iv), for s = d = 2, the K0-potential

behaves as if it were the Yukawa potential in d = 2 (cf. [59, p.1006, Eq.(2.21a)]). In [35],

Cotsiolis-Tavoularis obtained the best best constants for the inequalities with Riesz, Bessel and

Yukawa potential operators.
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