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ON THE STABILITY IN PHASE-LAG HEAT CONDUCTION

WITH TWO TEMPERATURES
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Abstract: We investigate the well-posedness and the stability of the solutions for
several Taylor approximations of the phase-lag two-temperatures equations. We
give conditions on the parameters which guarantee the existence and uniqueness
of solutions as well as the stability and the instability of the solutions for each
approximation.
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1. Introduction

The Fourier formulation to describe heat conduction is widely used by mathematicians, physi-
cists and engineers. In this model, the heat flux is proportional to the temperature’s gradient.
However, this formulation jointly with the usual energy equation (see (3)) leads to the instanta-
neous propagation of heat, a drawback of the model because this fact is incompatible with real
observations. In order to overcome this difficulty, alternative proposals have been stated. For
example, Cattaneo [4] proposed an hyperbolic equation with dissipation. At the end of the 60’s,
Chen and Gurtin [5] introduced the two-temperatures theory which was discussed later by Chen
et al. [6, 7, 32]. Other theories that involved the temperature’s history were stated by Gurtin
[14]. Two more proposals arose in the middle of the 90’s. On the one hand, we can mention the
theory of Green and Naghdi [12, 13] that considers three different cases, one of which coincides
with the Fourier formulation. On the other hand, Tzou proposed a theory in which the heat
flux and the gradient of the temperature have a delay in the constitutive equations [31]. When
this consideration is taken into account, it is usual to speak of phase-lag theories. In that case,
the constitutive equations are given by:

(1) qi(x, t+ τ1) = −kθ,i(x, t+ τ2), k > 0.

Here q = (qi) is the heat flux vector, θ is the temperature and τ1 and τ2 are the delay parameters
which are assumed to be positive. As usual, the notation θ,i means the derivative of θ with respect
to the variable xi, and repeated subscripts means summation. The derivative with respect to
the time will be denoted using a dot over the function.

This equation suggests that the temperature gradient established across a material volume at
position x and time t+ τ2 results in a heat flux to flow at a different time t+ τ1. These delays
can be understood in terms of the microstructure of the medium.
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In 2007, Choudhuri [8] proposed an extension of Tzou’s theory in which the heat flux is described
using the following constitutive equations:

(2) qi(x, t+ τ1) = −k1α,i(x, t+ τ3)− k2θ,i(x, t+ τ2),

where α̇ = θ. Here, α is the thermal displacement introduced by Green and Naghdi and τ3 is
another delay parameter.

These two aforementioned theories have several derivations when the heat flux and the gradients
of the temperature and the thermal displacement are replaced by Taylor approximations. In
fact, one can think that Choudhuri’s proposal aims to recover Green and Naghdi theories when
different Taylor approximations are considered. This new approach gives rise to different equa-
tions (depending on the selected Taylor approximation) to describe heat conduction that have
been analyzed by many authors (see, for example, [1, 3, 15, 18, 21, 24, 25, 26, 27, 28, 29, 33]).

It is worth noting that both proposals, those of Tzou and Choudhuri, lead to ill-posed problems
in the sense of Hadamard. To be more precise, it has been shown in a recent paper that,
combining either equation ((1) or (2), respectively) with the energy equation

(3) c θ̇ + div q = 0, (c > 0)

there exists a sequence of elements in the point spectrum such that its real part tends to infinity
[9].

In order to obtain a heat conduction theory with delays but without such an explosive be-
havior, Quintanilla [22, 23] combined the delay parameters of Tzou and Choudhuri with the
two-temperatures theory proposed by Chen and Gurtin. The basic constitutive equations read

(4) qi(x, t+ τ1) = −k1β,i(x, t+ τ3)− k2T,i(x, t+ τ2),

where α = β − a∆β, θ = T − a∆T and a is a positive constant.

In these cases, there are uniqueness of the solutions and continuous dependence with respect to
the parameters of the system of equations. Therefore, it seems that these new proposals are on
the right way to better describe the heat conduction phenomenon.

In this work we investigate the well-posedness and the stability of the solutions for several ap-
proximations (in the Taylor sense) for the equations proposed by Quintanilla. It is worth noting
that the phase-lag with two-temperatures theories for heat conduction have been extensively
considered in the literature (see [2, 10, 11, 16, 19, 20, 30] among others).

We study three different cases. In the first one we take k1 = 0, a second-order approximation of
qi and a first-order approximation of T . In the second case, we assume that k1 and k2 are both
positive and we approximate qi, T and β by their first-order Taylor approximations. Finally, in
the third case, the heat flux vector is approximated by its second-order Taylor approximation
while first-order is taken to approximate β and T . We want to recall here that similar studies
for the Tzou and Choudhuri theories have been developed [3, 21, 25, 26, 27].

For each case we need to set initial and boundary conditions. The boundary conditions can be
the same for the three of them. However, the initial conditions will be given individually for
each case.

Let B be a three-dimensional bounded domain with boundary smooth enough to apply the
divergence theorem. From the definition of θ, it is clear that

(5)

∫
B
θ2dV =

∫
B

(
T 2 + 2a|∇T |2 + a2|∆T |2

)
dV
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when we assume null Dirichlet boundary conditions. Therefore, taking into account the Poincaré
inequality, we have

(6)

∫
B
θ2dV ≈

∫
B

(|∇T |2 + |∆T |2)dV.

In this paper we assume that the delay parameters τ1, τ2 and τ3 are nonnegative and, in each
section, we will impose several conditions on them to guarantee the stability or instability of the
solutions. A similar assumption is made on k1 and k2.

2. First case

In this first case we assume that k1 = 0 and k2 > 0 in the basic constitutive equations and,
consequently, we do not care about function β. We take a second-order Taylor approximation
for the heat flux qi and a first-order Taylor approximation for the inductive temperature T .
Hence, we obtain the following approximate equations for our model:

(7) qi(x, t+ τ1) ≈ qi(x) + τ1q̇i(x) +
τ21
2 q̈i(x),

T (x, t+ τ2) ≈ T (x) + τ2Ṫ (x).

Replacing the above expressions into the constitutive equations, we obtain the partial differential
equation

(8) c

(
θ̇ + τ1θ̈ +

τ2
1

2

...
θ

)
= k2(∆T + τ2∆Ṫ )

whose solutions we want to study.

To have a well-posed problem we need to impose initial and boundary conditions. We assume
null Dirichlet boundary conditions, that is,

(9) T (x, t) = 0 for x ∈ ∂B and t > 0.

As far as the initial conditions are concerned, we assume that

(10) T (x, 0) = T0(x), Ṫ (x, 0) = T1(x), T̈ (x, 0) = T2(x) for x ∈ B.

2.1. Well-posedness. We now show that the problem determined by equation (8), the bound-
ary conditions (9) and the initial conditions (10) is well-posed in the sense of Hadamard. It is
worth pointing out that we do not impose any condition on the coefficients τ1, τ2 and neither on
k2 apart from the one proposed in the introduction.

We will transform the given problem into an abstract problem involving a convenient Hilbert
space. First, we note that Id−a∆ : T → T −a∆T = θ is an isomorphism on W 2,2(B)∩W 1,2

0 (B)

and takes values in L2(B), where W 2,2(B),W 1,2
0 (B) and L2(B) are the usual Hilbert spaces.

We shall denote by Φ(θ) = T the inverse operator.

We will work in the Hilbert space

(11) H = L2(B)× L2(B)× L2(B).

We need to introduce a suitable notation to work in H. Let us denote by (θ, θ{1}, θ{2}) the
elements in H. We consider the usual inner product in the Hilbert space H.
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To propose a synthetic expression to the above problem, we define the operators:

(12) A∗(θ) =
2k2

cτ2
1

∆Φ(θ), B∗(θ{1}) =
2k2τ2

cτ2
1

∆Φ(θ{1})− 2

τ2
1

θ{1}, C(θ{2}) = − 2

τ2
1

θ{2}.

Therefore, our problem can be written as

(13)
dU

dt
= AU, U(0) = (θ0, θ

{1}
0 , θ

{2}
0 ),

where θ0 = T0 − a∆T0, θ
{1}
0 = T1 − a∆T1, θ

{2}
0 = T2 − a∆T2 and

(14) A =

 0 Id 0
0 0 Id
A∗ B∗ C

 .

We will prove that A generates a quasi-contractive semigroup. We first note that the domain,
D, of A agrees with the whole Hilbert space H and then it is dense.

Lemma 2.1. There exists a positive constant K such that

(15) 〈AU,U〉 ≤ K||U ||2,
for every U ∈ D.

Proof. Notice that from relation (5) or (6) it is easy to see that the operators A∗, B∗ and C
are bounded in L2(B). The proof of the lemma is a direct consequence of this fact. �

Lemma 2.2. There exists a positive constant δ large enough such that δId−A is exhaustive.

Proof. We consider (f1, f2, f3) ∈ H. We must prove that the system

δθ − θ{1} = f1

δθ{1} − θ{2} = f2

δθ{2} −A∗(θ)−B∗(θ{1})− C(θ{2}) = f3


has a solution in H. After substitution we obtain the equation:

(16) δ3θ −A∗(θ)− δB∗(θ)− δ2C(θ) = δ2f1 + δf2 + f3 −B∗(f1)− δC(f1)− C(f2).

We first note that the right-hand side of (16) is in L2(B). As the operators A∗, B∗ and C are
bounded, we see that the bilinear form

(17) M(θ1, θ2) = 〈δ3θ1 −A∗(θ1)− δB∗(θ1)− δ2C(θ1), θ2〉
is bounded. Moreover, it is coercive for δ large enough. Therefore, equation (16) has a solution.

Then, we can also obtain the values for θ{1} and θ{2} and the lemma is proved. �

In view of the Lumer-Phillips corollary to the Hille-Yosida theorem we can state the following
result (see [17], page 136).

Theorem 2.3. The operator A generates a quasi-contractive semigroup in H.

As a consequence, we obtain the existence and uniqueness of solutions to our problem.

Theorem 2.4. For any U(0) ∈ H, there exists a unique solution to the problem determined by
(8)–(10) such that U(t) ∈ C1([0, t1],H).

Remark 2.5. The continuous dependence of solutions on initial data and supply terms (in case
they were assumed) can also be obtained.

These facts prove that the problem is well-posed in the sense of Hadamard.
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2.2. On the stability. The spectral analysis of the equation can give some information on the
behavior of the solutions with respect to time. In fact, we have the following result.

Theorem 2.6. (1) Let us assume that 2ac + k2(2τ2 − τ1) > 0. Then the point spectrum
of the problem determined by Equation (8), the boundary conditions (9) and the initial
conditions (10) lies on the left-hand side of the line <z = −ε, where ε is a positive real
number.

(2) Let us assume that 2ac+k2(2τ2−τ1) < 0. Then the solutions to the above stated problem
are unstable.

Proof. Let us assume that there are solutions of Equation (8) with the boundary conditions
(9) of the form Tn(x, t) = eωtφn(x), with ∆φn(x) +λnφn(x) = 0 and λn > 0. Replacing Tn(x, t)
in Equation (8) and making the corresponding calculations we get the following equation:

etωφn(x)
(
cτ2

1 (aλn + 1)ω3 + 2cτ1(aλn + 1)ω2 + (2c(aλn + 1) + 2k2λnτ2)ω + 2k2λn
)

= 0.

Denote by p(ω) the third-order polynomial inside brackets in the left-hand side of the above
equation. We are going to prove that for ε small enough the elements of the point spectrum are
located at the left side of the vertical line <(z) = −ε. To do so, we replace ω by ω − ε in p(ω)
and study its roots.

We recall the Routh–Hurwitz criterium. It assesses that all roots of the polynomial

a0x
3 + a1x

2 + a2x+ a3

have negative real part if and only if ai > 0, for i = 0, 1, 2, 3, and d = a1a2 − a0a3 > 0.

In our case, the explicit expressions of the coefficients of p(ω − ε) are as follows:

a0 = cτ2
1 (aλn + 1),

a1 = 2cτ1(aλn + 1)− 3cτ2
1 (aλn + 1)ε,

a2 = 2c(aλn + 1) + 2k2λnτ2 − 4cτ1(aλn + 1)ε+ 3cτ2
1 (aλn + 1)ε2,

a3 = 2k2λn − (2c(aλn + 1) + 2k2λnτ2) ε+ 2cτ1(aλn + 1)ε2 − cτ2
1 (aλn + 1)ε3.

In view of the assumptions on the constitutive coefficients and being λn > 0, it is clear that
ai > 0 for all i and for ε small enough. Nevertheless, the sign of d depends on the relations
among the coefficients. In fact,

d = 2c(aλn + 1)τ1

((
2ac+ k2(2τ2 − τ1)

)
λn + 2c

)
+ ε(λ2

nS1 + λnS2 + S3),

where Si, i = 1, 2, 3, are polynomial functions involving the coefficients of the system and ε.

Notice that, for ε small enough, whenever 2ac+k2(2τ2−τ1) > 0, we have d > 0 and, consequently,
all the roots of p(ω) have negative real parts. This proves the first part of the theorem.

Moreover, if 2ac+ k2(2τ2 − τ1) < 0, then instability of the solutions can be shown. In that case
we take ε = 0 and λn large enough to guarantee that there are solutions of the polynomial p(ω)
with positive real parts. This proves the second part of the theorem. �

From the previous theorem, one suspects that whenever the condition 2ac + k2(2τ2 − τ1) > 0
holds, exponential stability of solutions would be obtained. We will use the energy method to
prove the exponential stability of the solutions assuming that 2τ2 − τ1 > 0. Notice that, as k2,
a and c are assumed to be positive, this is a stronger condition than 2ac+ k2(2τ2 − τ1) > 0.

Theorem 2.7. Let us assume that 2τ2 − τ1 > 0. Then the solutions to the problem determined
by Equation (8), the boundary conditions (9) and the initial conditions (10) are exponentially
stable.
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Proof. Let us denote f̃ = f + τ1ḟ +
τ21
2 f̈ . We define the following function:

E(t) =
1

2

∫
B

(
cθ̃2 + k2(τ1 + τ2)

(
|∇T |2 + a(∆T )2

)
+ k2τ

2
1

(
∇T∇Ṫ + a∆T∆Ṫ

)
+
k2τ

2
1 τ2

2

(
|∇Ṫ |2 + a(∆Ṫ )2

))
dV.

(18)

Notice that E(t) is positive, since the quadratic form with matrix

A = k2

(
τ1 + τ2

τ21
2

τ21
2

τ21 τ2
2

)

is positive definite: its determinant is
k22τ

2
1

4

(
τ1(2τ2 − τ1) + 2τ2

2

)
, which is positive because of the

assumption 2τ2 − τ1 > 0. Moreover, this energy function is equivalent to∫
B

(
θ2 + θ̇2 + θ̈2

)
dV.

Our next aim is to compute the time derivative of E(t). Direct calculations give

E′(t) = −k2

∫
B

(
|∇T |2 + a(∆T )2

)
dV − k2τ1

2
(2τ2 − τ1)

∫
B

(
|∇Ṫ |2 + a(∆Ṫ )2

)
dV.

There is still one part of E(t) that needs to be controlled. To do so, we consider

G1(t) =

∫
B

(
c

τ2
1

|θ̇|2 +
c

2
|θ̈|2 +

2k2

τ2
1

(∇Ṫ∇T + a∆Ṫ∆T ) +
k2τ2

τ2
1

(|∇Ṫ |2 + a|∆Ṫ |2)

)
dV.

The derivative of G1(t) is given by

G′1(t) =

∫
B

(
−2c

τ1
θ̈2 +

2k2

τ2
1

(
|∇Ṫ |2 + a(∆Ṫ )2

))
dV.

Therefore, for ε small enough, we take E + εG1, which is equivalent to E. That is, there exist
two positive constants M1 and M2 such that

M1E(t) ≤ E(t) + εG1(t) ≤M2E(t).

From the previous calculations we also have

E′(t) + εG′1(t) ≤ −δ∗E(t),

for an appropriate positive constant δ∗. Therefore, a usual argument involving several equivalent
energy functions proves the exponential stability of the solutions. �

3. Second case

In this section we assume that k1 > 0 and k2 > 0. We take a first-order Taylor approximation
for qi, for β and for T . Therefore, we assume that

(19)

qi(x, t+ τ1) ≈ qi(x) + τ1q̇i(x),

β(x, t+ τ3) ≈ β(x) + τ3β̇(x),

T (x, t+ τ2) ≈ T (x) + τ2Ṫ (x).
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Substituting these expressions into the constitutive equations, we obtain the following partial
differential equation:

(20) c
(
θ̈ + τ1

...
θ
)

= k1∆T + τ4∆Ṫ + k2τ2∆T̈ ,

where τ4 = τ3k1 + k2.

We assume the same boundary and initial conditions as in the previous section.

3.1. Well-posedness. The arguments proposed in subsection 2.1 can be adapted to this case to
obtain again a result on the existence, uniqueness and continuous dependence of solutions. We
do not repeat all the procedure because it is very similar to the one done before. Nevertheless,
we state the definition of the new operators A∗, B∗ and C for this situation (we abuse a little
bit the notation and denote the operators as in subsection 2.1):

(21) A∗(θ) =
k1

cτ1
∆Φ(θ), B∗(θ{1}) =

τ4

cτ1
∆Φ(θ{1}), C(θ{2}) = −k2τ2

cτ1
∆Φ(θ{2})− 1

τ1
θ{2}.

Therefore, we can prove:

Theorem 3.1. The operator A, defined as in (14), generates a quasi-contractive semigroup in
H.

As a consequence, we obtain the following result:

Theorem 3.2. For any U(0) ∈ H, there exists a unique solution to the problem defined by Equa-
tion (20) with boundary conditions (9) and initial conditions (10) such that U(t) ∈ C1([0, t1],H).

This fact proves the well-posedness of the problem.

Let us highlight the fact that no other condition on the parameters τ1, k1, τ2, k2 and τ4 has been
assumed apart from the one proposed in the introduction.

3.2. On the stability. As above, a spectral analysis gives some clues on the conditions on the
coefficients to get the exponential stability.

Theorem 3.3. (1) Let us assume that τ4 − k1τ1 > 0. Then the solutions to the problem
determined by Equation (20), the boundary conditions (9) and the initial conditions (10)
are exponentially stable.

(2) Let us assume that τ4 − k1τ1 < 0. Then there exist domains B such that the solutions
are unstable.

(3) Les us assume that k2τ2τ4 + ac(τ4 − k1τ1) < 0. Then the solutions are unstable.

Proof. We first prove the first claim.

We proceed as in Section 2, defining an appropriate energy function for the equation. We abuse
a little bit the notation and denote it by E(t) again:

E(t) =
1

2

∫
B

(
c(θ̇ + τ1θ̈)

2 + k1

(
|∇T + τ1∇Ṫ |2

)
+ a(∆T + τ1(∆Ṫ )2

)
+
(
τ1(τ4 − k1τ1) + k2τ2

)(
|∇Ṫ |2 + a(∆Ṫ )2

))
dV,

(22)

which, taking into account that τ4 − k1τ1 > 0, defines a function that is equivalent to∫
B

(
θ2 + θ̇2 + θ̈2

)
dV.
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Direct calculations give

E′(t) = −(τ4 − k1τ1)

∫
B

(
|∇Ṫ |2 + a(∆Ṫ )2

)
dV − k2τ1τ2

∫
B

(
|∇T̈ |2 + a(∆T̈ )2

)
dV.

As in the previous case, we need an auxiliary function. We define

G2(t) =

∫
B

(
cθ(θ̇ + τ1θ̈) +

τ4

2

(
|∇T |2 + a(∆T )2

)
+ k2τ2

(
∇T∇Ṫ + a∆T∆Ṫ

))
dV.

We now compute the time derivative of G2(t):

G′2(t) =

∫
B

(
−k1

(
|∇T |2 + a(∆T )2

)
+ cθ̇(θ̇ + τ1θ̈) + k2τ2

(
|∇Ṫ |2 + a(∆Ṫ )2

))
dV.

Therefore, as in the previous section, we consider for ε > 0 small enough the function E(t) +
εG2(t), which is equivalent to E(t). As above, we have the inequality E′(t) + εG′2(t) ≤ −δ∗E(t),
which proves the exponential stability of the solutions.

We now concentrate on the second claim of the theorem. Assuming that there are solutions of the
form Tn(x, t) = eωtφn(x) with ∆φn(x)+λnφn(x) = 0 and λn > 0, replacing Tn(x, t) in Equation
(20) and making the corresponding calculations, we obtain again a third-order polynomial,

b0x
3 + b1x

2 + b2x+ b3

with positive coefficients,

b0 = cτ1(aλn + 1),
b1 = c+ λn(ac+ k2τ2),
b2 = τ4λn,
b3 = k1λn.

To apply the Routh–Hurwitz criterium we also compute d′ = b1b2 − b0b3:

d′ = λ2
n

(
k2τ2τ4 + ac(τ4 − k1τ1)

)
+ λnc(τ4 − k1τ1).

If τ4 − k1τ1 < 0, instability is obtained, because d′ can be negative for λn small enough.

The third assertion of the theorem is straightforward from the expression of d′. �

Remark 3.4. When τ4 = k1τ1 it is possible to also prove the exponential stability. We consider
another auxiliary function:

H1(t) = −
∫
B

(
∇T∇Ṫ + a∆T∆Ṫ

)
dV.

Therefore, for ε small enough we take E(t)+ εG2(t)+ ε3/4H1(t) which is equivalent to E. Notice
that

H ′1(t) = −
∫
B

(
∇Ṫ∇Ṫ + a∆Ṫ∆Ṫ +∇T∇T̈ + a∆T∆T̈

)
dV.

Hence, it can be shown that E′(t) + εG′2(t) + ε3/4H ′1(t) ≤ −δ′E(t) using usual arguments again.
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4. Third case

We assume again that k1 > 0 and k2 > 0, but we now take a second-order Taylor approximation
for qi and a first-order Taylor approximations for β and T :

(23)
qi(x, t+ τ1) ≈ qi(x) + τ1q̇i(x) +

τ21
2 q̈i(x),

β(x, t+ τ3) ≈ β(x) + τ3β̇(x),

T (x, t+ τ2) ≈ T (x) + τ2Ṫ (x).

Therefore, replacing these expressions into the constitutive equations, we obtain the following
partial differential equation:

(24) c

(
θ̈ + τ1

...
θ +

τ2
1

2

....
θ

)
= k1∆T + τ4∆Ṫ + k2τ2∆T̈ ,

where (as in the previous section) τ4 = τ3k1 + k2.

We assume null Dirichlet boundary conditions (9). As initial conditions, we impose (10), but
also

(25)
...
T (x, 0) = T3(x) for x ∈ B.

4.1. Well-posedness. The arguments proposed in subsection 2.1 can be adapted again to this
new setting. However, there are some differences which will be pointed out.

The first thing to take into account is that the problem is of fourth-order with respect to time.
Therefore, we will need to work in the following Hilbert space (to simplify the notation we denote
it again by H):

(26) H = L2(B)× L2(B)× L2(B)× L2(B).

The elements in this space will be denoted by (θ, θ{1}, θ{2}, θ{3}). We will work with the operators
(we abuse the notation again)

(27)
A∗(θ) = 2k1

cτ21
∆Φ(θ), B∗(θ{1}) = 2τ4

cτ21
∆Φ(θ{1}),

C(θ{2}) = −2k2τ2
cτ21

∆Φ(θ{2})− 2
τ21
θ{2}, D(θ{3}) = − 2

τ1
θ{3}.

We can state the problem in the form

(28)
dU

dt
= AU, U(0) = (θ0, θ

{1}
0 , θ

{2}
0 , θ

{3}
0 ),

where θ0, θ
{1}
0 , θ

{2}
0 are defined as in subsection 2.1, θ

{3}
0 = T3 − a∆T3 and

A =


0 Id 0 0
0 0 Id 0
0 0 0 Id
A∗ B∗ C D


The domain of this operator is the whole Hilbert space H and being the operators A∗, B∗, C,
and D bounded in L2(B), we can obtain an inequality similar to that given in (15).

To prove that the operator A generates a quasi-contractive semigroup and the existence and
uniqueness theorem we need to show that δId−A is exhaustive (as in Lemma 2.2). Hence, we
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consider an element (f1, f2, f3, f4) ∈ H and we have to prove that the system

δθ − θ{1} = f1

δθ{1} − θ{2} = f2

δθ{2} − θ{3} = f3

δθ{3} −A∗(θ)−B∗(θ{1})− C(θ{2})−D(θ{3}) = f4


has a solution in H.

After substitution we obtain that

δ4θ −A∗(θ)− δB∗(θ)− δ2C(θ)− δ3D(θ) =

δ3f1 + δ2f2 + δf3 + f4 −B∗(f1)− δC(f1)− δ2D(f1)− C(f2)− δD(f2)−D(f3).
(29)

An argument similar to the one proposed to solve equation (16) can be used to prove the existence

of a solution θ to this equation in L2(B). Hence we can obtain the solutions for θ{1}, θ{2}, θ{3}.
Therefore, we have obtained the following result.

Theorem 4.1. The operator A generates a quasi-contractive semigroup.

As a consequence, we obtain the existence and uniqueness of solutions.

Theorem 4.2. For any U(0) ∈ H, there exists a unique solution to the problem determined by
Equation (24), boundary conditions (9) and initial conditions (10) and (25) such that U(t) ∈
C1([0, t1],H).

Summarizing: we see that the problem considered in this section is well-posed in the sense of
Hadamard without imposing any other condition on the sign of τ1, τ2, k1, k2 and τ4 apart from
the ones proposed in the introduction.

4.2. On the stability. We now study the time behavior of the solutions to this problem.

Theorem 4.3. (1) Let us assume that 2(ac+k2τ2)τ4 > 2ack1τ1 +τ1τ
2
4 and τ4 > k1τ1. Then

the point spectrum of the problem determined by Equation (24), the boundary conditions
(9) and the initial conditions (10) and (25) lies on the left-hand side of the line <z = −ε,
where ε is a positive real number.

(2) Let us assume that τ4 < k1τ1. Then there exist domains B such that the solutions to the
above stated problem are unstable.

(3) Les us assume that 2(ac + k2τ2)τ4 < 2ack1τ1 + τ1τ
2
4 . Then the solutions to the above

stated problem are unstable.

Proof. As in the previous sections, we first make a spectral analysis to get some possi-
ble conditions on the coefficients for the exponential stability. We now obtain a fourth-order
polynomial

c0x
4 + c1x

3 + c2x
2 + c3x+ c4

whose coefficients are

c0 = cτ2
1 (1 + aλn),

c1 = 2cτ1(1 + aλn)(1− 2ετ1),
c2 = 2c(1 + aλn) + 2k2τ2λn − 6c(1 + aλn)τ1ε+ 6c(1 + aλn)τ2

1 ε
2,

c3 = 2λnτ4 − 2ε (2c (aλn + 1) + 2k2λnτ2) + 6cτ1ε
2 (aλn + 1)− 4cτ1

2ε3 (aλn + 1) ,
c4 = 2k1λn − 2τ4λnε+ (2c (aλn + 1) + 2k2λnτ2) ε2 − 2cτ1ε

3 (aλn + 1) + cτ1
2ε4 (aλn + 1) .

We note that ci > 0 for all i when ε is small enough.
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We now apply the Routh–Hurwitz criterium to locate the elements on the point spectrum. We
have to study the sign of the determinants of four different matrices

D1 = (c1/c0), D2 =

(
c1 c0

c3 c2

)
, D3 =

 c1 c0 0
c3 c2 c1

0 c4 c3

 and D4 =


c1 c0 0 0
c3 c2 c1 c0

0 c4 c3 c2

0 0 0 c4

 .

For ε small enough, it is clear that the determinant of D1 is positive: detD1 = 2/τ1 − 4ε.

The determinant of D2 is given by

detD2 =
(
2acτ1(2ac+2k2τ2−τ1τ4 +q1(ε)

)
λ2
n+
(
2cτ1(4ac+2k2τ2−τ1τ4 +q2(ε)

)
λn+4c2τ1 +q3(ε),

where the qi(ε) are polynomials of ε depending on the parameters and such that qi(0) = 0.

In view of the first assumption on the parameters, it is clear that detD2 > 0 for ε small enough.

The determinant of D3 is a little bit more complicated. It is a third-order polynomial of λn
given by

detD3 =
(
4acτ1(2acτ4 + 2k2τ2τ4 − 2ack1τ1 − τ1τ

2
4 ) + r1(ε)

)
λ3
n

+
(
4cτ1(4acτ4 + 2k2τ2τ4 − 4ack1τ1 − τ1τ

2
4 ) + r2(ε)

)
λ2
n

+
(
8c2τ1(τ4 − k1τ1) + r3(ε)

)
λn + r4(ε),

where the ri(ε) are polynomials of ε depending on the parameters and such that ri(0) = 0.

Again, in view of the hypotheses on the coefficients, detD3 > 0 for ε small enough. The sign of
detD4 coincides with the sign of detD3 when ε is small enough and, therefore, we do not need
to compute it. This proves the first claim of the theorem.

To prove the second claim we can consider detD3 with ε = 0. When we assume that τ4 < k1τ1,
this determinant is negative for λn small enough.

Finally, the third claim also follows by considering detD3 with ε = 0. As we can take λn as
large as necessary, this determinant will be negative. �

As in the previous sections, we will prove the exponential stability using energy methods under
the assumptions proposed above. As the conditions on the coefficients are fairly complicated,
we will consider stronger but easier ones: τ4 > k1τ1 and 2k2τ2 > τ1τ4.

Theorem 4.4. Let us assume that τ4 > k1τ1 and 2k2τ2 > τ1τ4. Then the solutions to the
problem determined by Equation (24), the boundary conditions (9) and the initial conditions
(10) and (25) are exponentially stable.

Proof. We define the energy function (that we again denote by E(t))

E(t) =
1

2

∫
B

(
c(

˙̃
θ)2 + k1

(
|∇(T + τ1Ṫ +

τ2
1

2
T̈ )|2 + a|∆(T + τ1Ṫ +

τ2
1

2
T̈ )|2

)
+τ1(τ4 − k1τ1)

(
|∇(Ṫ +

τ2
1

2
T̈ )|2 + a|∆(Ṫ +

τ2
1

2
T̈ )|2

)
+

+(k2τ2 − k1
τ2

1

2
)
(
|∇Ṫ |2 + a|∆Ṫ |2

)
+
τ2

1

2

(
k2τ2 −

τ1τ4

2

)(
|∇T̈ |2 + a|∆T̈ |2

))
dV.

(30)
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Direct calculations give

E′(t) = −(τ4 − k1τ1)

∫
B

(
|∇Ṫ |2 + a|∆Ṫ |2

)
dV − τ1

(
k2τ2 −

τ1τ4

2

) ∫
B

(
|∇T̈ |2 + a|∆T̈ |2

)
dV,

which, taking into account the assumptions on the coefficients, is negative.

We also consider

G3(t) =
1

2

∫
B

(
τ2

1

2
c(

...
θ )2 + c(θ̈)2 + k2τ2

(
|∇T̈ |2 + a|∆T̈ |2

)
+ 2τ4

(
∇Ṫ∇T̈ + a∆Ṫ∆T̈

)
+2k1

(
∇T∇T̈ + a∆T∆T̈

))
dV

(31)

and

G4(t) =
τ4

2

∫
B

((
|∇T |2 + a|∆T |2

)
+ k2τ2

(
∇T∇Ṫ + a∆T∆Ṫ

)
+ cθ

˙̃
θ
)
dV.(32)

Computing the time derivatives of both functions we obtain

G′3(t) = −τ1c

∫
B
|
...
θ |2dV +

∫
B

(
τ4

(
|∇T̈ |2 + a|∆T̈ |2

)
+ k1

(
∇Ṫ∇T̈ + a∆Ṫ∆T̈

))
dV

and

G′4(t) = −k1

∫
B

(
|∇T |2+a|∆T |2

)
dV +k2τ2

∫
B

((
|∇Ṫ |2 + a|∆Ṫ |2

)
+ c|θ̇|2 + cτ1θ̇θ̈ + c

τ2
1

2
θ̇
...
θ

)
dV.

Hence, if we consider ε2G4(t) +G3(t), we can see that

ε2G
′
4(t) +G′3(t) ≤ −ε2k1

∫
B

(
|∇T |2 + a|∆T |2

)
dV − cτ1

2

∫
B
|
...
θ |2dV

+C∗
∫
B

(
|∇Ṫ |2 + a|∆Ṫ |2 + |∇T̈ |2 + a|∆T̈ |2

)
dV,

where C∗ is a computable positive constant.

Finally, if we consider E + ε
(
G3 + ε2G4

)
, which is equivalent to E, we can obtain the desired

inequality. �
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