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ABSTRACT

In this thesis we consider the questions of stability of systems
described by stochastic nonlinear Volterra integral equations. Parti-
cularly the following types of stability are treated in great detail :

(i) stability in the mean m(m > 1),

(ii) asymptotic stability in the mean m(m > 1),

(iii) almost sure Lp (p = 1) stability - and

(iv) almost sure asymptotic stability,

In section 2.2 we consider the existence and uniqueness of the
solution of the system in a sufficiently general Banach space containing
Lm(Q, B,pn) (m > 1) spaces and establish the stability of the system S

(the system under consideration) in the sense (i).

In section 2.4 the above results are then used to prove the ‘
asymptotic stability in the meé.n m(m =1) (ref. ii) of the system S.
For illustration, the results of section 2.2 are used to study the
stability of a distributed parameter system with a random boundary condition.
In section 3.2 the question of the existence of a solution of the
s'y-rsifem S in Lp (p = 1) spaces for almost all w ¢  is considered.
This gives us the almost sure Lp(p = 1) stability (ref. iii).

In section 3.4 this result is then used to prove the almost sure
asymptotic stability (ref. iv) of the system S.

For illustration of the results of sections 2.4 and 3.2
several examples, which include a system described by a Volterra integral
equation of the third kind excited by the Wiener process, are presented.
An example of a feedback control system containing a nonlinear amplifier

with random gain is considered in detail.
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INTRODUCTION
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Since Lyapunov presented his fundamental meinoir (1892, in Russian)
(18], the questions of both deterministic stability and stochastic stability

have aroused the interest of many investigators from different disciplines of

natural and social sciences. It may be said that Lyapunov is the true

founder of modern stability theory. In Lyapunov's fundamental memoir, he
dealt with stability by two distinct methods. His so-called first method
presupposes an explicit known solution and is only applicable to some
restricted but important cases. As against this the second or direct method
. of Liyapunov is of greater generality and power and above all does not require

the knowledge of the solutions themselves.

In recent years a great deal of interest has been given in the study

of stability theory by using functional analysis as the principal tool.

BECTLND TR

Loosely speaking, stability is concerned with the behavior of a

dynamical system relative to certain parameters suchas,the initial condition, __

8
i

ks

the time parameter etc. . In general, the concepts of stochastic stability
can be derived by a combination of the concepts of deterministic Lyapunov
stability and the various modes of convergence found in measure theory.

The following modes of convergence are well-known in measure theory,
(i) uniform convergence,

(ii) almost uniform convergence,
(iii) convergence almost everywhere (almost surely),
(iv) convergénce in the mean m(m > 1), and

(v) convergence in measure (in probability).

It is clear that one has at least five times as many concepts of stochastic
stability as there are in the deterministic case. For illustration, a
systematic account of various forms of stochastic stability are presented

in the following table:
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It is interesting to note (see table) that the concepts of stability
for stochastic systems appearing in column p are those which are

closest to those for deterministic systems,
In this thesis we have only considered the following types of stability:

(i) stability in the mean m(m > 1) (a0, table i; definition 2.4),

(ii) asymptotic stability in the mean m(m > 1) (Yo, table {i;

definition 2.7),
(iii) almost sure LP(RO) (p = 1) stability (B v, table 1; definition 3.1),
and (iv) almost sure asymptotic stability (Y v, table 1; definition 3.3).

Furthermore, two new stability concepts for stochastic systems have been
introduced. They are stated in definition 2.3 and definition 2.6. The
corresponding results are given in theorem 2.1 and theorem 2.5. From
these, we derive the results on the stability in the mean m(m = 1) and the

asymptotic stability in the mean M (m 2> 1).

To étudy the other concepts of stability for stochastic systems, one ¢

can easily derive their corresponding definitions.

In the rest of this chapter, we shall briefly discuss some of the
Xknown results in this area and the results that we have obtained.
In 1969 , Tsokos [20] proved the existence and uniqueness of solution

of a specific class of stochastic Volterra integral equations of the form,

W1: x(t;w) = h(t;w) + ‘ft K(t, o) f(7,x(1;w))dr t '2 0
o

in the B-space C(Ro, LZ(Q, 8, 1)) (definition 2.2 with m = 2).

However, in many practical situations the nonlinear no-memory part
of the system S (chapter 2) is a stochastic operator rather than a deter-
ministic one. Moreover, the system S may have a unique solution in some
B-spaces Cq(Ro,Lm(Q, B,u)m > 1 (definition 2.1) but not in the B-space
C(Ro, LZ(Q, B,n)) (definition 2.2 with m = 2), Therefore in this thesis

we have considered system S containing stochastic nonlinear operator f -

and the stability of the corresponding system in the B-space Cq(Ro,Lrn(Q, B, #))mz 1.
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Recently, Ahmed used in his papers [1] and [2] =~ Schauder's
fixed point theorem to establish the Lp(p = 1) stability of a class of

nonlinear deterministic feedback systems described by
t

W,: x(t) = ut) - N[ K(t, ) i(1,x(1) dr
o]

2

1

t
yt) = [ K(t, 1) £(1,%x (7)) dr

In [2], he also presented certain sufficient conditions for the
asymptotic stability of a class of systems described by
t
War x(t) = ult) - N[Ot t-7) £(1,x(T)) d1
o
t
yit) = [ K(t,t-7) (7, x(1)) dT.
o

In 1969 , Ahmed [3] used - Schauder's fixed point theorem to
establish the existence of a random solution in Lp(p = 1) spaces of stochastic ‘

integral equations of the following class:

W4: u=v+XAau=B°_u

where

n
J'n.... ILn(olt; Tl""'rn).f u(o, -ri)d'r‘....d'rn
1 7 i=t

tels= t,T]

(Agu) (t) =

ﬁMa

and o is an element of a probability (measure) space (Z,S, ).

Moreover, in [3] he also pointed out that under certain conditions
a random Banach fixed point theorem can be used to prove the existence and
uniqueness of random solution of the random integral equation W 4

In chapter 3 of this thesis the author has extended part of the
results of [1] and [2] to the stochastic case.

Morozan [17] used the method of Lyapunov function to ivestigate

certain problems on stability of the trivial solution of a class of stochastic

discrete systems described by

W ox (@) = f(x (), 0) n=1,2,3,.... .
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Sufficient conditions for the following results can be found in [17] :

(i) almost surely attractive with respect to _94_ N Ll(Q)
[theorem 3, 177 ;

(ii) almost surely attractive with respect to ﬂ_ and also
attractive in Lp( p > 1) with respect to ﬁ (theorem 4, 17]

(iii) uniformly stable in LZ(Q) with respect todd &{x:x € LZ(Q), % "25 H1
[theorem 6, 17]

and (iv) asympiotically stable in mean square [theorem 7, 17].

However, there exist many other interesting results on stability
theory as discussed by Sandberg [19], Desoer and Wu [10] and others.
In this thesis the results of our investigation are presented in

chapter 2 and chapter 3 as described in the abstract.
Note: Throughout this thesis the following notations are used:

Lm(Q, B, ) signifies the space of B-measurable and mth power

p-integrable functions on Q.

L (R ) signifies the space of Liebesgue measurable and pthpower Lebesgue
P o©

|avanes EoTAm

integrable functions on R Alo, »).



CHAPTER 2

STABILITY IN THE MEAN m (m >1) AND ASYMPTOTIC
STABILITY IN THE MEAN m(m = 1).




2.1: INTRODUCTION

In this chapter we consider the questions of stochastic stability
((i) stability in the mean m(m = 1) and, (ii) asymptotic stability in
the mean m(m > 1)) of a class of nonlinear stochastic integral equations

of Volterra type of the form:

t
St x(t @) =hit; ©) + A [ K(t, ; 0) f(1,x(1;0),0) d7, tER_A [0,%),
where
(i) w €Q, Qbeing the supporting set of the probability space (2, B, )

induced jointly by the random processes h, K and f:

(ii) X : Ro ® 2—R is the unknown random process, where the nota-

tion ® is used to denote the Cartesian product;

S (iii) h: R0 ® Q—R is the stochastic free term;

" (iv) K: Ro ® Ro ® —-R is the stochastic kernel :
(v) f: Ro @ R® Q—>R is a random function;
(vi) A is a real-valued constant.

It may be mentioned that a large class of stochastic ordinary
differential equations as well as stochastic partial differential equations
can be transformed into a stochastic integral equation of the form S.
Further, a large class of stochastic feedback control systems also can be

represented by an integral equation S .

2.2, EX]:.STENCE AND UNIQUENESS OF SOLUTION.

The purpose of this section is to show the existence and uniqueness

of the solytion of the:system S.
It is assumed in this section that (i) the stochastic kernel K(t, 7; w)

is a measurable function defined on Q2 forall (t, )€ A A {tir):0sT<t <},

and is a measurable function on the triangle A for almost all w ¢ Q;
an;l (ii) £(t, z,w) is 2 measurable function on Ro ® Q for every fixed

ZERA (-o,0) .



-7 -

For the proof of the existence and uniqueness of solution of the

system S, we need the following preparation.

Definition 2.1:

Cr:l1 A Cq(Ro,Lm(ﬂ, B, 1)) denotes the Banach space of all measura-

ble functions from Ro into L &,8,p) (m=1) sothat

xgt; w}

ts:;; “ a(t) “m < o, where q(t) is a positive continuous
o
. m 1/m
function on Ro and || - “m A [J'Q |-1 dpw)} .

The norm in the space C:ln is defined by

1
=1 = sup { o ECIR) R
c:ln teR_ q(t) m

Remark: It can be verified that for any positive continuous function q \

and for any m > 1 C;n is a Banach space.

Lemma 2.1: Suppose there exist a positive continuous function q on Ro’
a non-negative measurable function g on Ro’ a non-negative B-measurable
function Af(w) on 2 and 2 number a > o so that the function f appearing
in the definition of the system S satisfies the following properties:
. . f(t,o,w) m 1/m
@  sup { [ | 20 1m g 3P o ma
£ g(t)
t ER,

(ii) forallx, y€ R andforall t ¢ Ro
att) | £(t,x,0) - £(t,y,0) | = Alo) glt) | x-y]|

and (iii)) p {w e: Af(oa) >a} =0. Then for every x ¢ C;n ,

f(t, x(tiw),w) (™ 1/m
:ZPR {J‘Q | e | dmw)}’ < «; and for everyt €R_
o
(¢, x(t;0), @) - £(t, y(ti0), @) | _ .. lbe(tse0) - y(ts0) ||

g(t) qa(t)
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Proof: The proof follows from the well -known Minkowski's inequality.

Lemma 2.2: Let (Ro, A,M) be a Lebesgue measure space; let x(t;») be

a measurable function of t GRO with values in the Banach space Lm(ﬂ, B, ) (m=1);

and let “x(t;w) “m be a measurable and M-integrable real valued function

on R . Then
o

HIB x(t;w)dt “m < IB I| x(t;0) "niit’ for every BcA,
Proof: (Yosida [22],pp. 133, Th. 1, Cor. 1) .

Theorem 2.1: Consider the system S and suppose there exist a positive

continuous function q on Ro and a non-negative measurable function g

on R0 and a number H > 0 so that

m
Ah : hGCq;

t
AK : -ro | K(t, 7;0) "w g(T)dt < Hq(t)for every (t,T)e A A ‘

A {(t,'r):os"rst{mi;

and that f satisfies the hypothesis (i), (ii) and (iii) of lemma 2.1 and
suppose that ])\] a H < 1. Then the system S has a unique solution
m
xeC .
q
Proof: Let us define an operator | on the B-space C:ln by

t
(Ux)(t;w) = h(t;w) + N\ ‘ro K{t, o) f(7,x(T;0),w) dT for t € Ro' (2.1)

we R and h € C;n.

We show that the operator U : C;n-——> Czn and that it is a
contraction.
B Using Minkowski's inequality it follows from L.emma 2.2 that for

every finite t

t
Il ux(t;w) ||ms [Ih(t;w) ||m + Ny jo | Kt, m;0) I, &(m)dr (2.2)
where yA sup { [ | %%”‘L&lm du'(w)}i/m

t ERO
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Since f satisfies the properties (i), (ii) and (iii) of lemma 2. i1, it follows
from that lemma that y < . Thus by use of the assumption AKwe have
forte Ro

(IVESCAD] s i)l + N vHa®). (2.3)
Therefore

Ux(t;w) h(t;w)
su s su + |\ yH, 2.4

where by hypothesis Ah’ the first term on the right hand side of the

inequality (2.4) is finite and |\| yH is also finite. Thus Ux € C;n for

every x¢ C;n. Therefore (: cg-‘—.cg‘.

For the proof of the contraction property, let us consider x, y¢ C;n.

For every t < » it follows from lemma 2.2 that
t

I (ux -untsse) | s IN [ IKE, o) | (T, x(150),0)-(1, y(T0),0) ||_dT ‘
(2.5)

Clearly

£(r, x(7;0),0)(1,y(T;0), w) K
g(T) m

. g(T)dr. (2.6)

It follows from lemma 2.1 that for every x,y € Crcrl1

.
Jux-ty)to) [| s 7] 5 I, me) - |l

f(t,x(t:w), w)-£(t,y(t:0),w) x(t;w) -y(t;w) 2
tsg%cl)l 5(t) I s @ tsg%l(l) a®) I, @7

Therefore

‘ t
ltue-unie) I s M e sup (| SEDES 40K, ne) | ginar €
(o]

xto)-y(toly 4 5 g
m

<[\ a H q(t) tstéPRo{ I a(t)

and consequently

(!L’E"!l}f)(t"") a s x(t;w)-y(t;w)
tsgﬁoill a(t) I3 = In Ht‘é%{ | o I3

i.e. hy=-uy ]Ean s\ aeH |x- ylb;n . (2.9)

A e M s ST AN oL e 3 RS T T T ATy Gt b g AP
S s T e ke i e R e e o e o S S S E R i SIS D s
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Since by hypothesis l)\l a H < 1, the inequality (2.9) shows that |J is a con-
traction. Therefore by Banach fixed point theorem [ 13, pp. 190] there

exists one and only one solution of the system S in C:ln.

Before we present certain special cases of theorem 2.1 we need

the following definition.

Definition 2.2 c™ AC (Ro, Lm(Q, B, 1)) denotes the Banach space of all mea-

surable functions x from Ro into Lm(ﬂ, B,1) (m=1) so that

sup {[o | x(t0) |7 dp @)}/ ™ < w,
te Ro

The norm in the space c™ is defined by

I= | cm * tsg%o{ ettso) || 3

PR
S

that all the hypotheses of theorem 2.1 hold with q(t) = 1. Then there exists

SR eSS

Corollary 2.1.1: Consider the random integral equation S and suppose \

a unique solution x ¢ Cm.

Proof: In the case q(t) =z 1, the B-space C;ncoincides with the B-anace
c™ as defined before. Thus the proof follows from that of theorem 2. 1.
Remark: Form =2 and {(t,x,w) =£(t ,x) (i.e. when f is a fixed real
valued function defined on R ® R) the result of corollary 2.1.1 is equi-

valent to that of theorem 3.2¢ Tsokos [20] .

Corollary 2.1.2; Consider the random integral equation S and suppose
that all the hypotheses of theorem 2.1 hold with g(t) = 1. Then there exists

. . m
a unique solution x ¢ C':l .

Corollary 2.1.3:  Consider the random integral equation S and suppose

that all the hypotheses of theorem 2.1 hold with g(t) = 1 and q(t) = 1.

Then there exists a unique.solution x ¢ C ,

Remark: For m =2 and f(t,x,w) = £(t,x) the result of corollary 2,1.3 is
equivalent to that of corollary 3.2.1 of Tsokos [20].
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Theorem 2.2: Consider the system S and suppose there exist a

number H > 0 and a positive continuous function q on Ro so that

A, : foreveryte R, [|K(t,7; w) | sH: qt)
k o ©
for all +e€[0,t], i
m

and, Ah. h e C(l .

Furthermore, suppose that the function f satisfies the hypotheses
(i), (ii) and (iii) of lemma 2.1. Then ifmthe function g appearing in the

g 4

lemma 2.1 belongs to Ll(Ro)and Ais such that | \|a H J‘o g(t)dt < 1,

the system S has a unique solution x € C;n .
Proof: This proof is analogous to that of theorem 2. 1.

Corollary 2.2.1: Consider the system S and suppose that all of the

hypothesis of the theorem 2.2 hold with q(t) = 1. Then there exists a

unique solution x ¢ Cm.

Remark: For m =2 and {(t,x,w) = £(t,x) the result of corollary 2.2.1 is

equivalent to that of corollary 3.2.2 of Tsokos [20] .

Theorem 2.3: Consider the system S and suppose there exist two positive

~8(t-1) and;

numbers H and § so that for every (t, 1) € A, ﬁK(t,#;w’) ﬂw < H-e
'h ~€Cn'§ Moreover, if the function fsatisﬁes the hypotheses (i), (ii) and (iii) of
lemma 2.1 with q(t) = { and the function g appearing in the lemma 2. 1
is bounded almost everywhere on Ro’ then the system S has a unique

solution x ¢ C™ if M| @ is sufficiently small.
Proof: The proof is similar to that given for theorem 2. 1.

In order to study the questions of stability of the system S, we need
the following definitions:

Definition 2.3: The system S is said to be stable in the sense of

m . m
C AC(R,L (8, 1) if the solution x € C~ whenever the

stochastic free term h ¢ C;n .
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Definition 2.4: The system S is said to be stable in the mean m(m>1)

if the solution x ¢ Cm whenever the stochastic free term h € Cm.

It is clear that the system S is stable in the mean m(m >1) if it

has a solution x ¢ C:ln with q(t) being any positive bounded continuous

function. Note that it is not essential that q(t) = 1

In the rest of this section we generalize the main result of Tsokos [20]

In his main theorem,Tsokos considered the existence and uniqueness of
solution of the system S in the B-space D contained in a locally convex
topological space E2 A E (RO,LZ(Q, B, 1)) under the assumption that the
nonlinear operator f is deterministic. We consider the same problem and
present a proof of the existence and uniqueness of the solution of the system S
in a B-space Dc E (Ro,Lm(Q, B,1)) m 2 1 without requiring f to be deter-

ministic. Before we discuss this generalized result we need the following

1%

preparation.

Definition 2.5: E™ A E(Ro, Lm(ﬂ, B. 1)) denotes the space of all continuous

functions from Ro into Lm(Q, B, ) (m >1) with the topology of uniform
convergence on every finite interval [ 0,T] for T >0. This topology is
defined by a family of semi-norms {Nn} in which

1/m
Ny =[xt = sup {fokto) [ aue)} L n=1,2,.... .
Equipped with this family of semi-norms the space E™ becomes a locally

convex linear topological space [22,pp. 24-26] .

Lemma 2.3: Let T be a continuous linear operator from E™ (m > 1)

into itself. Suppose that B and D are Banach spaces such that B,D cE™
and that TB ¢ D. Then T is a continuous linear operator from B to D.

The lemma follows easily from the closed-graph theorem [12,pp.217].

Remark: Since the continuity of the linear operator T implies its bounded-

ness, we can find a constant L > 0 such that

ITx Iy s L fhell-
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Theorem 2.4: Consider the system S and suppose that the‘following

conditions are satisfied: (i) the stochastic kernel K(t, ;w) is an essen-

tially bounded p-measurable function on @ for every (t,7) € A A

A {(t,7):0<sT<st<w]}, (ii) B and D are Banach spaces such that

B,Dc E ‘and that TB cD, where T is defined by
t

(Tu) (t;w0) = fo K(t, ;o) u(T;0) d7 for u € B, and (iii).‘f,w: x(t;w) —»

f(t, x(t; w), ®) is an operator on D with values in B, and satisfies the

following Lipschitz condition
¥ J £t x(t;0), w)-1(t, y(t;0), 0) llg s o || x(t;w)-y(t;0) Ip.

for x, y € D. Then the system S has.a unique solution x € D for every

h € D and every \ such that |-)\|a. L < i, where L. is the norm of the operator T.

Proof: Let us define an operator {J on the B-space D by
t .
(Ux)(t;w) = hit;w) + N [ K(t, n0) £(1,%(1;0), ©) dr (2. 10)

for tERo, WEN and he D.

We show that the operator |J: D—D and that it is a contraction.

By assumption (iii), f(T,x(T;w),w) € B for every x ¢ D. It is easily
shown that T is continuous from E™ into E™ ., Thus, from

lemma 2.3 we see that T is a continuous operator from the Banach space

B into D, which implies that we can find a constant L > 0 such that
el =Ll

That is,
t

i J'OK(t,'r;co) f('r,x('r;w),w)d'r“D sL || £(t,x(t;0),) ||B. o (2.11)

Using condition (iii) and the hypothesis that h ¢ D it follows from
Minkowski's inequality and the inequality (2. 11) that
Hu=llps bl +L M e =]y +5 |2 It 0,0 |5 < = (2.12)

Therefore U: D——sD .
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For the proof of the contraction property, let us consider

x, y € D, thus we have
t

(UxE0)-(Uydto)= & [ K(t, no)£{1,x (0),0)-£(1,y(n0),0)]dr  (2.13)

By assumptions (ii) and (iii), [£( T, X(T;0),w)-f(1,y(T0),w)] € B. From

lemma 2.3 we have

Tux-uylly s & A ]t x(t0),0) - £t yito)w) llg- (2. 14)

By the Lipschitz condition given in (iii), we have

lux-uyllp < M Le llx -y |y (2.15)
The condition a || L' < 1 implies that the operator | is a

contraction operator. Therefore by Banach fixed -point theorem there exists

a unique solution x € D.

2.3: ILLUSTRATIVE EXAMPLES.

For illustration, some examples are presented below. Example 2.1
illustrates stability in the sense of C:l(mz 1) and examples 2.2 and 2.3

illustrate stability in the mean m(m > 1).

Example 2.1 Consider one-dimensional heat-conduction in a semi-infinite

medium governed by the equation [ 7, pp 235-236] .

Bzx ox
L > = —2 | 04 <w,t>0, ©(2.16)
2 at
ol
T: . X ' ' -
xw(&,o) =0, 0 ¢ < o, - (2.17)
wa _
—Sab_ = - Gw(t,xw), for t > o, (2. 18)
L=o0 ' '
where
L =  thermal diffusion coefficient of the solid,
N =  temperature of the surface of the body measured from

absolute zero,

¢
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ox
X

ol

=  thermal gradient at the surface, evaluated in the direction
of the interior normal of the solid.

The function Gw(t,x) is assumed to be a measurable function on Q @ Ro for

-

every fixed x ¢ R, where Q is the supporting set of the‘probability space
(2, 8 , i) induced by the random boundary condition (2.18). Itis a

result that the solution of (2. 16) satisfying the initial condition (2.17) and
the boundary condition (2. 18) is given by

{ t Gw('r,xw(o,'r)) . __&E____
xw(&,t) = 72 J‘ 172 © 4L(t-17) dr. (2.19)

(m L) ° (t-7)
Hence xw(!,, t) is known for all values of {and t if xw(o,’c) is known.

A nonlinear random integral equation for xw(o,t) is obtained by setting

4=o0 in (2.19) t Gw('r,xw(o, 7))

i
x (o,t) =
- (" ("L)iTZ J’o (t_T)i/Z‘

dr (2.20)

Suppose that the random function Gw(t,x) satisfies the following conditions: \
(i) there exists a B-measurable function a(w) independent of

x,y € R so that
le(t,x)-Gw(t,y) |s a(w) |x-y | for allte R (2.21)

and (ii) there exist o< a < » and b > o so that

p{w: a(w) >a} =0 and that II Gw(t’x) “ cm < o« with qt) = ebt t >o0.
q

Then the system T has a unique random solution xw(l, ,t) € C:ln if —

Jib

<1,

Remark: It is interesting to note that for the example under consideration
we can prove the existence and uniqueness of solution of the system S

in ¢™ for only an appropriate positive continuous function q on Ro.
q

“

Example 2.2: Consider the stochastic system described by the Volterra

integral equation of the third kind of the form:
t

W p () x(te) = hit;e) + X [ K(t, 10) £(1,%(1;0),0) dT
for t € Ro and w € Q.

Suppose that the stochastic kernel K has the form

K(t, ;0) = a(w)(t-1) sin [:(_w;] or a(w) ¢ sin 'f:(-w'; 1, (the second being the
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impulse response of a random osc111ator), and that the function f has
the form f(t,z,w) = tan [b(w) ‘2] for any z¢ R.
Suppose there exists a non-negative measurable function p on

Ro satisfying the following properties:

12 |
()  sup {4y} <=  and;
tE€R
_ o
2 -
(ii) sup { } < o. Furthermore, let x be the unknown
ter P (®)
o

random process defined on Ro ®  where (2, B, p) is the probability space
corresponding to the process h and the random variables a and b;
let h be the Wiener process satisfying the property that h(0;w) = 0 with
probability one; and let \ be a sufficiently small real number representing
the gain of the feedback loop. '

The random variables a(w) and b(w) are assumed to be essentially \

bounded B-measurable functions defined on Q .
Since the random function £(t,z,w) is taken as tan 1[b(oo)' z],it

follows from the mean value theorem that for all u, v € R and every t € Ro’

|£(t,u,0) - £(t,v,0) |s]b (@] |u-v]. (2.22)

If the stochastic kernel K{t, r;w)is taken as a(w)"(t-T)" sm[ ( ) ]

with a(w) as definedabove, then

I Ket, ze) || = la@l]] - (t-7). (2.23)
Thus ¢
I IRG ol ar s 3 lla@)]_- | (2.24)
o
Since h(t;w) is the Wiener process satisfying the pfoPerty that

h(o ;w) = 0 with probability one, we have for every t ¢ R ’

T i/m 1/2
| Bl y : T (m+1)) :

b (t) m”rﬂ—- ' b (£)

(2.25)
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12
Therefore, by the assumption that sup { } < =, we have
ter P®
h(t:w °
sup {|| —5-2;1 llm} <w . (2.26)
teR P
o
Then it can be shown that the operator || defined on the B-space c™ by
h(t;w)
(Ux) (t:w) = o * N (t) J“ K(t, 20) f(1; x(m;0),0) dT (2.27)
has the properties :
i) y: ct—sc™

and (@) Jux-wligm s o Ixyllom

where a A { A ] '“b(“’)“co ‘“a(w)“eo 2 1
° 2 t €R p(t) :
o

Since all the quantities in the parenthesis except -)\ are finite, we
can find a N sufficiently small so that a < 1. This leads to the contraction
property for the operator |J. Therefore by Banach fixed point theorem
there exists a unique solution in C™'. Thus the system W is stable in

the mean m(m > 1) (definition 2.4)

Example 2.3: Consider a simple example of a time varying system

(Fig. 1).

f o 1

_;ﬁ s+b(w))(s+1)

h(t:w)

 J

]\4

Fig, 1
Suppose that the zero-memory nonlinear element f is an amplifier with

random gain which can degenerate into a relay, (for example, f(t,x, w) =

tan” [a(w) x]) and that the stochastic kernel K is of the form
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' 1 ~(t- - -
K(t, 1) m [e (¢ T)-e blw)t T)] for osTst< ®

=0 elsewhere.

m m
Moreover, we assume that h €C" (that is sup J‘Q | bit,0)| dp (©) < ®),
t >0

and that \ is a sufficiently small real number.

The random variable a(w)is asumed to be an essentially bounded
B-measurable function, and the random variable b is assumed to have

the following uniform probability density function

Pb(Y) 1 ' for all y ¢[1,2]

(2.28)

Pb(y) 0 - for y £[1,2]

Using the mean value theorem the random function' f has the following
properties:

. | tan-ia(w)'x - tan-la(co)'y | <|a (w)]- lx-y] (2.29)
for all x, y ¢ R, where a(w)is as described above. For every u and
v € Cm, it follows from the property of the functipn a(w) and the inequality
(2.29) that

I tan-ia(w)'u(t;w) - tan-ia(w)-. vit) || s la (v ]|m- flu(t; w)-v(t;w) "m

(2.30)
for every fixed t ¢ Ro’ where | a () ]L < o .

Since the stochastic kernel K is of the form'

Lt Be)-T)

blw)-1 ] with b having the probability

K(t, nw) =

density function as defined in (2.28), we have

o~ (Bl@)-1)(t-7)

-(t- 1
“ K(t,'f; w) Hm = e ( T') “ b(w) -1 "co
< (t-7)- e &7 (2.31)
Thus t [ _g
j‘o I K¢, no)f|_dr < j‘o E* e ° dg = 1, (2.32)
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Therefore all the hypothesis of corollary (2.1,3) hold, thus
it follows from that corollary that the system under consideration
has a unique solution x € Cm. Therefore, by definition 2.4, the

system is stable in the mean m(m > 1).

" AN e o s e e v T e R e —
R S R N e R T

2.4: ASYMPTOTIC STABILITY IN THE
MEAN m (m > 1),

In many problems the asymptotic behavior of the solution of the

SRR e A

system is of greater practical interest. In this section we present
sufficient conditions for asymptotic stability in themean m(m > 1) of the

system S, For this, we need the following preparation.

Definition 2.6: The system S is said to be asymptotically stable in
c™a Cy Ry L (@, 8 1)m > 1) if the solution x € c;n and has the

qQ - . 1/m
property that lim { J‘ | (o) |™ dju(w)} fm_ 0 whenever the
t—o Q q(t) h(t:w) »
stochas;:/ic free term h ¢ Can and. has the property thatt_l_i’r;l { fgl J—’_q(t) rn ‘
dp (w)} 7= 0,

Definition 2.7: The system S is said to be asymptotically stable in the

mean m(m > 1) if the solution x € C@ A C(Ro, Lm(Q, B,i1)) (m > 1) and has

. m 1/m_ .
the property that lj’m {J'Q | x(t;0) | dww)} "= -0 whenever the stoiyrll}lastlc

free term h ¢ C™ and has the property that lim { ] |h(tw) lmdp(w)} = 0.
t—’” Q

It is clear that the system S is asymptotically stable in the mean

m(m >1) if it has a solution x ¢ C;n and has the property that

. i/m .
im { J‘Q I :‘-{-(Eq%:)-)— lm dp(w)} = 0 with q(t) being any positive bounded
-+ 0

continuous function. Note that it is not essential that q(t) = 1.

Lemma 2.4: Consider the function D(t) on Ro given by
t

D(t) = [ K{t,t-7) V(1) dr . (2.33)
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Suppose that {j‘o |K(t,g)] “dg}  “A Kt) ¢ L (R ) and is bounded
uniformly on R and that V(t) € L (R ) where L + L =1
° P, © P, 1
(p2> 1). Then lim |D(t)]| = o,
t - 1/
1,

t q
. 2 A
Proof: Sin f 11t €R , K(t,
ince forallt €R_, { J‘ol (t,e)] “deg A K(t) € L,(R )

and is bounded uniformly on Ro and V(t) € L_ (R ), there exists, for
. )

2
every € > 0, a T0 = T0 (e) € Ro such that for all t > T0
t q q
2 € 2

. [ K&E) ]| “de s (55)
o
P p
i t 2 2 (2.34)
[ Ive|® & < 5
& where ® P i/p
2 2
Pa{f Iv@l* ag
t-T q 1/q
e o 2 2
Q A su f K(t, ds}
& swp {f IRt | "ag
4 Therefore by the estimates (2.34) and the fact that Q is bounded
? it follows from Holder's inequality that for t > ZTo we have
8 t
4
Ipt)] = | [ Kit,t-1) V(1) dr |
o
, 1/
/9, T P P2
; t %2 2 .70 2
s UpRe ol T (f v ] Tag) 4
t-T Q, 1i/q, t p, 1i/p
! 2 2 2 2
£ (f CIR®9] %an “(f, 1V@] %) %
! o (o]
< € _ : (2.35)

Since € > o is arbitrary, this completes the proof of the lemma.

For convenience we introduce the following notations:

’

. m ”m A : '
(i) {Js; IX(t;w)I dp(w)] = ”x(t;w) "rné x(t) for tERO a,;gd X€ C:ln .

.. m /m A ' :
(i) ([ Mo duw)] = [jhite) L Ah(t) fort ¢ R_and x ¢ c™,
Q o q

..m 14 :
and  (iii) {J;z £t x(t;0) )] dp(w) e | £(t, x(t;0), ) ]Lnévx(t)forteRoa.ndxe c;n.
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The above abbreviations are used throughout this section without
further mention.

Theorem 2.5: Consider the system S and suppose that all the hypotheses

of theorem 2.1 hold, and that there exists a real valued measurable function
a(t;w) on R, ® Q satisfying the following properties:

@) flato) || 4 o) € Lp, R withm =1, p, > 1,

and (ii) for almost all w € and for almost all t € Ro
£t z,0) | < Ja(t;o) |+ |1 (w)] | 2]
where z ¢ R and M(w) is an essentially bounded measurable function defined

on 2. Further, assume that the functions h,K and g, satisfy the following

properties:

A
Aa : h(t) ¢ Lp (Ro)

h 2
Aot IRt w0 | = K%, t-r)
t q, 1/q, A
Ap = {[ K, g)] “agy A K(t)e L (R )and is
c 9 o

bounded uniformly on R
o

t P, 1/p2 A

Ay v Lo el an A gme L ®)

|
1
‘where ‘1——+-1—=—;1—+—=1and(p12p2>1).

A A

. h(t . . . x(t) -

Then lim AlE) = 0 implies that lim =0 .
t—vo { q(t) } P t—o {q(t) }

Proof: By theorem 2.1, the system S has a unique solution x ¢ C;n such

that ¢

x(t;0) = hit;e) + N [ K(t, 150) £(1,%(7;0),0) d7.
o

A
Therefore, in case thn}o q(t) = 0, we have tlirg x(t) = o,
— —

thus we exclude this case.
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Using hypothesis Aﬁ and A/g\ we have for each t € R
: o

Ko(t.g) € Lq [o,t) and g(t) ¢ Lp [o,t). Thus by lemma 2.2 we have for

everyteRo.2 2

A A A A
x(t) < ht) + |N] yK(). g(t) (2.36)

I, x(ti0), 0) ||

where y A sup {

2(t) }] <o (lemma 2.1).
t ERO

. A A A
Since hit) € LPZ(RO), K(t) € Lqi(Ro) and g(t) ¢ Lp1 (Ro),

we have 1/p

A Pp /P :
TRECIR

® A P @ q 1/q
s{f 1hw) %a ey () 1Re) ey L
(o] (o]

© 1
) |§(t)|p1dt} /P1< o .
(2.37)
Thus for this x ¢ Cfln it follows from the definition for Vx, the hypothesis
on f(i and ii of this theorem) and the estimate (2.37) that ‘
i/p o p, 1/p o o P, 1/p
sl lew] fary % @l o) 150 %) ..

| (2.38)
‘ This implies that Vx(t) € Lp (Ro) for the solution x of the system S

@ p2
{j‘o |Vx(t)[ -dt})

satisfying the inequality (2. 3';).

Using Minkowski's inequality, lemma 2.2 and hypothesis A o itis
K

easily verified that for every finite t,

A A
x(t) s h(t) + |\]. D(t) (2.39)

t
where D(t) = [ K°(t,t-7) vV (r)dr -
(o]

By hypothesis Af( and the fact that Vxe Lp (Ro) it follows from
lemma 2.4 that lim D(t) = 0. Therefore if lim —%L = 0 then
two tsrw a(t)
Yim | X
q(t)

t—.(ﬂ
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Remark: It is important to note that the system S under the hypothesis
of theorem 2.5 is only asymptotlcally stable in Cq (m > 1), This is due

to the fact that lim {EQL = 0 does not imply that lim )?(t) =0
t o (t) t -

since q need not be finite.

Corollary 2.5.1: Consider the system S and suppose that all the

hypotheses of theorem 2.5 hold with q(t) =1. Then lim X(t) = 0 if
-
lim h(t) =0,

t—so

Remark: Corollary 2.5.1 implies that the system S is asymptotically
stable in the mean m(m > 1). Moreover, the result of theorem 2.5 is based

on theorem 2.1 and the result of corollary 2.5.1 is based on corollary 2.1, 1.

Corollary 2.5.2: Consider the system S and suppose that all the

hypotheses of corollary 2.1,2 hold, and that there exists a real valued

measurable function a(t;w) on R0 ® Q@ satisfying the following properties:

@ o)) A a) ELp (Rg) with m>1, p, > 1 N

and (ii) for almost all w ¢ Q ‘and for almost all t ¢ Ro

Mt z,0) | s Ja(to) |+ | nw) | -] 2]

where z-€ R and 7(w) is an essentially bounded measurable function
defined on Q. Further, assume that the functions h and K satisfy the
following additional properties:

A
Ap : hit) € Lp (R )

2
t
o] (o)
Aot | Kt mw) || =K (t,t-7) and {f, 1K (t8)|ag) GLPZ(RO);
Ap ([ 1Kt 8)| “dgy AK(t) €L (R ) and is bounded
]
uniformly on Ro
where 1 + L =1 (2>1).
) A qZ ' Qt
Then lim Bt) = 0 iympijes that 1im =8 -
t+o q(t) t—so d(t)

Corollary 2.5.3: Consider the system S and suppose that all the hypotheées

A
of corollary 2.5.2 hold with q(t) = 1. Then lim %(t)= 0 if lim h(t) = 0 .
t—o twro
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Remark: Corollary 2.5.3 implies that the system S is asymptotically

stable in the mean m(m » 1). Moreover, the result of corollary 2.5.2 is
based on corollary 2.1.2 and the result of corollary 2.5.3 is based on

corollary 2.1.3,

Theorem 2.6 Consider the system S and suppose that all the hypotheses
of theorem 2.2 hold, and that there exists a real valued measurable
function a(t;w) on Ro ® Q satisfying the following properties:

(i) | a(t;0) “m A gt) € Lpz(Ro) withm 21, p, > {;
and (ii) for almost all w € @ and for almost all t ¢ Ro

[(t,z,0) |< |ao)] + | @) | ]z |

where z €R and 1) (w) is an essentially bounded measurable function defined

on Q. Further, assume that the functions h, Kand g satsify the ‘

following additional properties:
A
AR RO €L (R

Ago: Kt mo) || =K°(t,t-1);

K®
t q 1/q A

Ar o ([ Kt glzdg} zAK(t)eL (R ) and is

K . o H ey qi o

bounded uniformly on Ro ;

t 'pz 1/p2 A
An (T) dr A g(t)eL (R)
g+ U e } p, o
1 1 1 1
where — + — = — . — + — =1 and (p, 2p,>1).
Py 4 P P 1z

[y A
h(t . . . x(t)
Th 1i ;_.Ll =0 implies that lim }] =o0.
oo tm o fo®)) P em {5

Proof: This proof is analogous to that of theorem 2.5,
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Corollary 2.6, 1: Consider the random integral equation S and

suppose that all the hypotheses of theorem 2.6 hold with q(t) = 1. ‘Then
Jim 2(t) =0 if lim h(t) = 0.

te—so t—o

Remark: Corollary 2.6.1 implies that the system S is asymptotically
stable in the mean m(m > 1). Moreover, the result of theorem 2.6 is
based on theorem 2.2 and the result of corollary 2.6.1 is based on

corollary 2.2.1.

Theorem 2.7: Consider the randon: integral equation S and suppose that

all the hypotheses of theorem 2.3 hold, and that there exists a real valued

measurable function a(t;w) on'Ro ® Q satisfying the following properties:

i) | et \Ln A f(t) € Lp (R ) withm =1, p, > 1 ;

2
and (ii) for almost all w €  and for almost all t ¢ Ro \
? ' | £(t, z,00) | < lat;o)] + M |*]2]
| where z.¢ R and T (w) is an essentially bounded measurable function

2 defined on Q. Further, assume that the functions h and K satisfy the

following additional properties:

A
AAa : Dhit) ¢ Lp (Ro) ;

h 2
o} t o
Ago: I K(t, T;0) “m A K (t,T) and {jo\ K(t,7)|dr} ¢ LPZ(RO);
Ly
{ here — + — =1 > 1.
where P, a, P,

A ' 'S
Then lim h(t) = 0 implies that lim x(t) = 0.

t—o t o

; Proof: The proof is similar to that given for theorem 2.5.

Remark: Theorem 2.7 implies that the system S is asymptotically
stable in the mean m(m > 1). Moreover, the result of theorem 2.7

is based on theorem 2.3.
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2.5! AN ILLUSTRATIVE EXAMPLE,

Example 2.4: Consider the stochastic system W as in example 2.2

and suppose that all the hypothesis of example 2.2 hold with p (t) =(6+t°’),
where &6 > 0 and a > 2. Then we can prove that the system under '

consideration is asymptotically stable in the mean m(m >1 ).

In example 2.2, we have shown that the system W has a unique
solution x ¢ C™. Thus, by use of Minkowski's inequality and lemma 2.2,

it is easily verified that for any t ¢ Ro we have

A A |
x(t) < h(t) + ]} H(t), (2.40)
a
5+t
where ﬁ(t) A M‘m and
6+t
H(t) & [ | K, o) [ £(r,x(r;0),0) |ar.
x o
Using inequality (2.24), we have for any t € RO ‘7 .
‘ a(w) '
H(t) < vy —ﬂ————“l . ¢ (2.41)

2

where “ a(w) “m < o and y A sug{ “ f(t, x(t;w),w) “m} < @
te

for x ¢ Cm as already shown in example 2.2. Thus, it can be

;:' h - -

i easily verified that 1:lim x(t) = 0. Therefore, by definition 2.7,
-0

the system W is asymptotically stable in the mean m (m > 1).
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3.1: INTRODUCTION

In this chapter we consider the questions of (i) almost sure
Lp(p 2 1) stability ; and (ii) almost sure asymptotic stability of the

same system as considered in the previous chapter.

3.2: ALMOST SURE Lp(p > 1) STABILITY

In this section we are interested in the question of the existence

of a solution x(t;w) eLp (Ro) for almost all w € R, where Q is the
supporting set of the probability space (R, g, ) @2s defined pefore.

It is assumed in this section that (i) the kernel K(t, w) is a

.%1 measurable function on the triangle A A {(t,7): 0 <7<t <w } for

A

j, almost all o € Q2 and is a measurable function on Q for all

t,1)edA & {(t,T):0STst <o }; and (ii) the function f(t,x,w) is

> measurable in t on Ro for almost every w € 2 and for each fixed

XxX€ RA (-», +»)and is continuous in x on R for almost all t € Ro and

for almost all w € 2 and is measurable in w on 2 for almostall t ¢ R0 and \
for each x ¢R( Carathéodory condition [15, pp. 20J)-

For convenience we introduce. the following notations:
(1) x(tw) & x (t)
() hitw) & h (t)
(iii) f(t,x,0) A fw(t,x)
and (iv) K(t,mw) & K (t, 7).

For the proof of the almostsure _-LP (p = 1) stability of the system S,

we need the following preparation.

Definition 3.1: The system S is said to be almost surely L (p > 1)
stable if its solution x has the property that p {w ¢ Q: Ji{ lx(t ) Pdt< »}= 1
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whenever the stochastic free term h has the property that

p{weR: J‘ |h(t;w)\pdt<w} = 1,
R
o

Lemma 3.1: Suppose there exist real numbers a >1 and P, 2 1, an

essentially bounded B-measurable function N{w) on © and a real valued
non-negative measurable function r(t;w) on R0 ® 2 satisfying the

following properties:

P
(i) IR |r(t;w)| 2dt: is an essentially bounded B-measurable

o
function on '

and (ii) for almost all w €  and for almost all t € Ro

| fw(t,z)l s r(tw) + ‘N(w)“ z ]a for any z € R. Then for almost all

w € Q@ the random operator f .ma.ps L (R )into L. (R )andis
w P, © p, ©

continuous and bounded, where P =2Pp, -
Proof: Since all the hypotheses of lemma 3.1 hold for almost all « € Q,
there exists a set Qo c Q so that p.(S'ZO) = () and that all the hypotheses

of this lemma hold for every w ¢ Qo. Thus for every w € Qo’ we proceed

with the proof of the lemma as follows:

Forall we¢ Qo the first and the third assertions of the lemma

follows from the inequality

i/p o

2 - P, A, py; afp
< { | Iro)] @ty “rN@) | l=)] ety
o . o

P, 1
{IR |£ (£, z(t)) | "at}
o

(3.1)

which implies that forall w€ Q ,f: L (R )~sL_ ‘R ) and is bounded.
. o’ w Tp, o p," o

1 2

The first in turn implies continuity (Krasnoselskii, [15, th 2.1, pp. 227])

of the operator f for every w G.QO. Therefore, for almost all w € Q the
w

random operator £ maps L_ (R )into L. (R ) and is continuous and bounded.
[5) P1 o pz o
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' With the help of this lemma, we can prove the following result; we need

the following:

Definition 3.2: An operator A mapping a Banach space B1 into a Banach

is said to be completely continuous on D c B { if it is continuous

space B2
on D and AD is a compact subset of B2 whenever D is bounded .

Theorem 3.1: Let the kernel Km(t’ ) satisfy the following properties

(1) Kw(t’ T) is a measurable function on A A {(t,M:0 g7t <=}

for almost all 16 Q and is a measurable function on Q forany(t,T) € A;
and  (if) forpy +d = 1, g ™
: - 2
t .
K (t) & {J’o ]Kw(t, )| “dr} € Lpl(Ro) for almost all w €9 ;
and let fw satisfy the hypotheses of lemma 3.1. Then the operator Aw
t

defined by (wa)(t) = Io Kw(t’ T) fw('r ,%(7)) d7 maps Lpl(Ro) into itself
for almost all w €2 and that it is completely continuous on Lp (Ro) for

1 )
almost all w Q. ' ‘

Proof: Since all the hypotheses of this theorem hold for almost all w € £,

there exists a common set Ql c  so that p(ﬂi) = () .
Then the hypotheses of this theorem hold for every w ¢ Q {° Thus we

proceed with the proof of the theorem as follows:

‘: | . For every w e 91. fw : Lpi(Ro)——.Lpz(Ro) (lemma 3.1),
Further,

(g laxwm] 1dt} 1 o 1B ©] "y e 1€ &) “at)

’ 0 ° (3.2)

for every w 691 and for all x ELpi(RO)' Thus the operator Aco maps LpiRo)
: into itself for every w ¢ 91 or in other words, the operator Aw maps L (Ro)
1

i into itself almost surely.

i For the proof of complete continuity we must prove that for every

‘& W eﬂl, Aw is continuous (on Lp (Ro)) and compact (i.e. maps every
" . i
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bounded set in Lp (Ro) into' a compact set in Lp (Ro)). For every
i 1
w EN { the continuity of the operator Aw follows from that of the

operator f‘.0 and the inequality

pi 1/P1 A P1 1/P1 PZ 1/P
{ jRol (A x)0)-(A y)NB) | "at} s { J”Rol K ()] dty = { jRo\(fwx)(t)-(fwy)ml dt}
(3.3)
It remains to prove the compactness. Let D1 ch (Ro) be bounded.
1
Since for all weQi by lemma 3.1 £ : 1. (R )=—»L (R ) andis
w p, o o
1 2 p 1/p2
bounded, there exists d € [0, ) so that sup {J‘R (£ x)(t) | zdt} <d, .
o

xeD1

Define D, = {z =fx:x€D,}. Clearly D, c L, (R )is bounded and
2 W W 1 P, ©

since for P, > 1, Lp is a reflexive Banach space D‘2 is weakly compact \
for every w € 2

2

1.
If P, = 1 then we may assume that' the operator fo) satisfies the additional

property that for every € > o there exists a § > o such that

P2
Jelf tx(t)] “dt <€ forallx ¢ D, and allwe Q,

whenever the Lebesgue measure of the set E R0 is less than 6 .
1 D2 is a weakly (sequentially) compact
subset of Lp (Ro) = Li(Ro) (Dunford 11, th. 9, pp. 292]). Thus for every

w € Ql , D2 is = weakly sequentially compact. Now for every w 691’ let

{ zz = fmxn: xn € Di} c D, be any sequence. It is clear that for almost

2

every t € Ro and for every w € Q1

t
yo(t) = [ K (t, 1)z (t)dr (3.4)

is defined. Further it follows from the assurhptions on K that for

almost every t€ Rdandforevery w €2y, Kw (t,T) € qu [o,t) .



Ay 00 2R

-39 -

‘ Therefore, since for every w ¢ Ql DZ is weakly (sequentially) compact,
. m, n o
: there is a subsequence {zw } (m = n,n,,.. .) of {zw} and z €L (RO)
i so that for almost all t ¢ Ro and for every o 691 2
m t m t o o
Yo ®0& [(K (6 m)z (r)dr—f K (t,7)z (1)dTA y (), (3.5)
' o

Therefore for every w € 91, lim (y;n(t) - y: (t)) = 0 almost everywhere

f MN—sx
i ‘on R0 and consequently for every w ¢ 521
P
R . m o] 1
nlll-r:lm |yw (t) - Y, t)} " =0 a.e on Ro . (3.6)

A
Further, for every w € Qi’ ]yzl(t)- yZ(t)] < Kw(t)(d1+ I z:: “PZ) (3.7)

uniformly with respect to m and for almost all t ¢ Ro' By hypotheses,

ﬁ € L (R )for every w ¢ 2, and therefore {ym- yo}eL {(R)
© {. ©° 1 . © W o

Pt Py X
for every w ¢ Ql . TN
i

Thus, for every w ¢ Qi' the function on the right hand side of the

inequality (3.7) provides the dominating function required for the well _

i known Lebesgue dominated convergence theorem to hold. Therefore by

application of this thebrem we have for every w ¢ Ql

i
i3
K7
i
3
i
i
b
B
Y
b
iy
i

- P P
m (o} 1 m o {
i -4 - = 1. - - ) '
; o .ﬁ{olvw (t)-y,, ©)] “dt ‘ﬁ{omm,‘m' Yo ) -y, ()] dt=0. (3.8)

Therefore y:n.r.l___.y:) for every w ¢ S21 in the strong topology of Lp (Ro)
1
and it follows from the equality yz = Y:; - y::l+ ygl and the uniform

:

| boundedness of the sequence {zln }cL 1(3 R )and consequently that of

3 2

i m R ) (o]

] {Yw } e L(Pio that v, € Lp1 (Ro). Thus for every w ¢ Ql ' Ale c Lp(lRo)

is compact whenever D1 c L'p(Rgis bounded. Therefore the random
1
operator A is completely continuous on Lp (Ro) almost surely.
w

AN O AN

JE

Using lemma 3.1 and theorem 3.1, wé prove the following.
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Theorem 3.2: Consider the system S and suppose that all the

hypothesesof theorem 3.1 hold, Furthermore, for an arbitrary but

. 1/p
fixed r € (0, ) suppose that the ball S, = {x€ L (R )i [J‘R | x(t) ipidt] sir}

is given and that for almost all w € Q the functmn a (r)A sup {J‘ }A xu:)} dt} P1
R

g X €S
o

. . * =
is defined. Suppose there exists an r > 0 such that A *defmed by

N . A sup {])\l p{w: a (r*) <‘)\} } = 1} is greater than zero. Then
for every § < r¥ - x x 2y (r*) pa.e.and for any stochastic free term

h S . -:f S 4 i
we 8 a.e.,for ec Lpi(RO) the system S has a solution xwe Sr*

for almost all w € Q.

Proof: Since all the hypotheses of this theorem hold for almost all w € Q,
we can find a common set QZ c R sothat p (QZ) = () and that for every
w € ©, all the hypotheses of this theorem hold. \

Therefore for a positive finite number r* as defined in the hypotheses of

the theorem, there exists a Ir* > 0 so that for all we 92 the random
&
function aw(r*) satisfies the property that aw(r*) < Xr

¥k -
i Ha %
Consequently for every hw € Se (for all ® ¢ Qz) with ™ 6< r¥- )\r* am(r )
] (for all w €& QZ), the operator Bw (hw’ . ) defined on LP1 (R ) by o, 1/p1
h h h, , B h dt %
Bw (hw’ Xx) A ho) + )\wa as the property that f{fR | ( %) | } <r
o

for all x € Sr* c Lpi(RO)" any{\l< )\r* and all ® eQ Thus, for all w éQz, the

operator Bw(hw’ .) maps the ball Sr « © Lp (Ro) into a subset of

e S, . 1 —
i S .« for every ho) € Se (for all © € Q,) and for any |\| < Mo

Since for every w € Qz the operator Aw is completeiy continuous
(theorem 3.1) on Lp (Ro)’ it is clear that for every w € QZ’ the operator
2 B (h, -)is also completely continuous for every fixed hw belonging to
i w

the set Se for all we Q Thus by Schauder fixed point principle

5
(Krasnoselskii and Rutickii [16, pp. 209 ]) there is at least one solution
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xw € Sr* for every w ¢ 92 . In other words, for almost all w €

¥ the system S has a soluti .
: ystem olution xwe Sr*

Thus, it follows from definition 3.1 and theorem 3.2 that the

system S is almost surely Lp (p =1) stable.

3.3: ANILLUSTRATIVE EXAMPLE

B AR 5 : T
B N R

Example 3.1:

Let us consider one dimensional heat-conduction in a semi-infinite .

medium governed by the equations (2.16), (2.17) and (2. 18) (example 2.1).

As in example 2.1, the solution of (2. 16) satisfying the initial
condition (2.17) and the boundary condition (2. 18) is given by the

expression (2.19). It is assumed in this example that the expression (2. 18)

satisfies the random Stefan-Boltzmann condition [ 7, pp 235-236] ,
. _ 4 4, o \
i.c. Gw(t,X) = N [qw (t) - x7] (3.10)

for almost all w ¢ R, almost all t ¢ Ro and any x ¢ R.

AT L

where
i (i) N is a given constant

(ii) 9, (t) is the temperature of the surrounding medium and is

assumed to be a measurable function on R ® © such that for every finite

’ interval I ¢ R J'I lq (1:)[pi dt < b <« = for almost all w ¢ 2, where

% P, € (8,=). It: is not difficult to verify that for almost all w € Q the

:}_‘) . .

3 - t Gw('r, x(7))

i = e g

g random operator Aw defined by (wa)(t) Jlo (t-1)1/2 T

§ maps L _(I) (8 < Py < ) into itself and is completely continuous

4 Py

3 on L (I) (theorem 3.1).

4 Py

% Suppose there exists an arbitrary but fixed r € (o, ) such that

% p{we: L . -—1-—i-/2 } = 1, where for almost all we Q
2 (x) (v L)
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i/p

Py 1
a (r) & supsr{fl' Iwa(t)l dt} W1th' S.Af{xe L, (1)

X €
t/p

1

P
i |
[ fI Ix(t)] ~ dt] sr<ol and L is as in example 2.1, then

by use of theorem 3.2, equation 2.20 has a solution X, (o,t) e S c L. (1)
r

i

(8 < Py < o) for almostall w € Q. Therefore, it is clear that the

system under considerztion also has a solution xw (4,t)eS cL (1) for
r

each ¢ € [ 0,o) and for almostall we Q.

3.4: ALMOST SURE ASYMPTOTIC STABILITY

1

It appears to the author that the almost sure asymptotic stability

isby far the most important of all the concepts of stochastic stability.

This is due to the fact that when one observes the motion of a random

dynamical system it is an individual sample path which is observed

rather than its mean.

In order to study the question of the almost sure asymptotic stability

of the system S, we need the following preparation.

Definition 3.3 : The system S is said to be almost surely asymptotically

stable if its solution x has the property that p {w ¢Q:

limt

whenever the free random process h has the property that

p {we @ .l_i_r—nt lh(t;w)|°= 0} = 1.

| %(t;0) | = 03=1

Lemma 3.2: Consider the random function D(t;w) on Ro ®Q givén by

t
D(t;w) = J‘o K (tt-7) V (1)dr

t

A
Suppose that for almost all w € 2,K (t) & {J‘o le(t’ ™|

q
sz}

i/q

(3.13)

2
eL 1(Ro) and
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.

is bounded uniformly on R0 and that for almost all w € Q ’Vo)(t) € Lp(Ro),
. 2

[

{ ' .
where — + — =1 (p, >1). Then lim |D (t})] = .0 for
P, 9, 2= tw @

almost all we Q.

Proof:  Since all the hypotheses of this lemma hold for almost all

w €N, there exists a set Q3 c 2 sothat p (93) = | (2) and that the

r . hypotheses of this lemma hold for every w ¢ 93. Thus for a fixed but arbitrarywc¢ 93,

: the prooffollows fromlemma 2. 4. Sincethisistrue for everyw €9, the proof
] is complete. '

For convenience we recall the following notations introduced in 3.2:
i () x(tw) & x (8

E (ii) h(t;w) A hw(t)

(iii) £t x(t0),0) A £ (t,x (t)

and  (iv) K(t,7,0) & K (t71). . \

Theorem 3.3: <Consider the system S and suppose that all the hypotheses

"of theorem 3.2 hold and that for almost all w € Q

14 L

on R and further Kw(t’ 7 is of the form K(t,t-7; w) A Kw(t,t--r ) .
o

Then if the free random process h has the property that

: : lim, =01=1 the corresponding solution x
: B {w €Q: lim, | hw(t)‘ } co p g
has the property that p {w € Q: lim; | xw(t)l =0 }= 1.

Proof:  Since all the hypotheses of theorem 3.2 are satisfied the system

S has a solution X, € Sr* for almost all we Q.

e et Y S
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A Yhin:

By lemma 3.1, for almost all & ¢ €, the random operator f
W

maps L (Ro) into Lp (Ro) and is continuous and bounded, where
1 2
Py = 2P

Fym

Let t
D (t) & J‘o K (t, 1) £(1,x(7;0),0)dT .

Using the hypofheses on the stochastic kernel K, it follows from

lemma 3.2 that lim | Dw(t) | =0 for almostall we Q. Since the

t —ex

stochastic free term h has the property that p {w € Q: lim, |h(t;w) |= 03 =1,
the solution x of the system S has the property that
p{weq: limt | x(t;w)] =03 =1.

It follows from the definition 3.2 and the theorem 3.3 that

; the system S is almost surely asymptotically stable. ‘

Remarks: It is interesting to mention that the function f appearing

in the system S satisfies only the conditions stated in lemma 3.1,

it is notnecessaryto impose a sector condition [6, pp.7 10]6ra Lipschitz condition.

In fact given the system S with f and K satisfying only the
conditions as stated in the letnma 3.1 and theorem 3.1 the only choice

left to the designer is the value of the feedback gain factor \.

Thus, it is more appropriate to express the stability criterion
of a system in termsofa certain admissibility criteria . Precisely,
corresponding to a given system S, the quadruple {S, V, Vi, Vo }
is said to be admissible if there exists a nonempty (in general) linear
topological vector space V and two non-empty classes Vi ,Vo <V so

V  is defined.
o

that the map S : Vi

Therefore, for the feedback control system S with fand K

satisfying only the conditions of lemma 3.1 and theorem 3.1, it follows

from theorem 3.2 that the quadruple {5, Lp (Ro), Se , Sr* }is admissible ,

b5
R
1
S

1
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where ,

. p, 1l/p,
the set S A {he¢ Lpi(Ro): {J‘Ro |h(t)]| “at} s 0)

‘ P
1
and the set 5 A {x ¢ Lpl(Ro) : {jRo ‘x(t)]' dat} “srx},
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In this thesis we considered the questions of stability of systems
described by stochastic nonlinear Volterra integral equations. Particularly

the following types of stability were treated in great detail:
(i) stability in the mean m(m > 1),

(ii)  asymptotic stability in the mean m(m » 1),

(iii) almost sure Lp(p = 1) stability

and (iv) almost sure asymptotic stability.

TR

It is important to mention that a large class of stochastic ordinary

differential equations and stochastic partial differential equations can be

reduced to the stochastic integral equation considered in this thesis.

RREEIET R

Furthermore, the results of this thesis can be extended to multivariable

Jr4;
=

—
i

systems without much difficulty.

SRR

It is interesting to mention that Lp(p = 1) stability in the mean

m(m 21) (B ¢, table 1, chapter 1) may also be of great practical

SRS

interest. Similarly the questions of stability in the senses of stability in
probability (a &, table 1, chapter 1); Lp(p > 1) stability in probability
(B 6, table 1, chapter 1) and asymptotic stability in probability ( y 6,
table 1, chapter 1) may have theoretical interest. These questions were

not considered in this thesis.
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