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Abstract: De la Peña 1980 and Puthoff 1987 show that circular orbits in the hydrogen problem of
Stochastic Electrodynamics connect to a stable situation, where the electron neither collapses onto
the nucleus nor gets expelled from the atom. Although the Cole-Zou 2003 simulations support the
stability, our recent numerics always lead to self-ionisation. Here the de la Peña-Puthoff argument is
extended to elliptic orbits. For very eccentric orbits with energy close to zero and angular momentum
below some not-small value, there is on the average a net gain in energy for each revolution, which
explains the self-ionisation. Next, an 1/r2 potential is added, which could stem from a dipolar
deformation of the nuclear charge by the electron at its moving position. This shape retains the
analytical solvability. When it is enough repulsive, the ground state of this modified hydrogen
problem is predicted to be stable. The same conclusions hold for positronium.

Keywords: Stochastic Electrodynamics; hydrogen ground state; stability criterion
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1. Introduction

Stochastic Electrodynamics (SED) is a subquantum theory that considers the quantum vacuum as
a true physical vacuum with its zero-point modes being physical electromagnetic modes (see [1,2]).
By construction, the vacuum is filled with classical electromagnetic modes, each carrying an energy
1
2 h̄ω, where Planck’s constant is a constant of nature characterising the energy stored in these modes.
The task is then to show that SED explains all quantum behaviour of matter at the statistical level. This
has been argued to occur on general grounds [1,2]. SED is not ruled out by Bell’s theorem, since that
has an irreparable fatality, the contextually loophole [3].

Testing the working of SED in special cases is needed to get trust in the theory. Since harmonic
oscillators perform well, several phenemona are explained: van de Waals forces, the logarithm of the
Lamb shift between the hydrogen 1s and 2p states, the Casimir effect, the Unruh effect. A natural next
case is the hydrogen ground state. de la Peña [4] and Puthoff [5,6] demonstrate that circular orbits are
lead to stable atom: they do not fall onto the centre and they do not self-ionise. The SED theory has
been tested numerically on the hydrogen ground state in a 2-d approximation where the orbit remains
in its initial plane. Cole and Zou 2003 observed an encouraging agreement with the result from the
quantum ground state wave function [7]. New simulations have been carried out recently by our
team [8] in a 3d approach, benefiting from a decade of progress in computational and programming
power and employing a few analytical tricks to make the problem tractable in 3d. However, it was
observed that in all runs and all attempts to model the system, there occurred self-ionisation. The latter
fact stems with a theoretical prediction [9]. Boyer puts forward that the problem may lie in relativistic
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effects [10], but taking into account relativistic corrections in our computer code did not change much
and in particular did not cure the self-ionisation [11].

Faced with the renewed finding of self-ionisation, we search a theoretical underpinning for it and
reconsidering the stability argument of de la Peña and Puthoff [4–6], we extend it to include eccentricity.
We derive the gain and loss terms, averaged over the stochastic force and averaged over a full period in
Section 2. In order to study a more general problem with possibly a stable state, we extend in Section 3
the problem with an attractive or repulsive 1/r2 potential. We close with a discussion. In an appendix
we consider the case where both masses are finite, such as the positronium.

2. On the Stability of the Hydrogen Ground State

The nonrelativistic equation of motion of an electron with charge −e around an ion of charge
Ze can be written in a dimensionless form where distances are measured in terms of the Bohr radius
h̄/(αZmec) and times in the Bohr time h̄/α2Z2mec2 [8],

r̈ = − r
r3 − βE + β2...r , β =

√
2
3

α3/2Z, (1)

where α = 1/137 the fine structure constant and E(t) the fluctuating electromagnetic field that lies at
the heart of SED. The term β2...r arises from damping. We consider a time window during which the
orbit remains basically unperturbed and in a plane, which is meaningful because of the small value of
β ∼ Z/2000. The correlator of the E field reads in these units, with a factor

√
3/2 absorbed in E [8],

CE(t− s) = 〈E(t)E(s)〉 = 1× CE(t− s), CE(t− s) =
6
π
< 1
(t− s + iτc)4 . (2)

and it is expected that the cutoff τc ∼ α2Z2, corresponding in physical units to the Compton time
h̄/mec2, can be taken to 0 at the end.

Let at the initial time t0 the orbit lie in the x − y plane, with r = re1(t) where
e1(t) = (cos φ(t), sin φ(t), 0) and likewise e2(t) = (− sin φ(t), cos φ(t), 0). The third unit vector is
e3 = L/L = (0, 0, 1).

The unperturbed orbit can be coded as

r(0)(t) =
L2

1 + ε cos[φ(t)− χ]
, φ̇(t) =

L
r2(t)

=
{1 + ε cos[φ(t)− χ]}2

L3 , (3)

so that ṙ(0)(t) = (ε/L) sin[φ(t)− χ]. Here L, ε and χ are the angular momentum, eccentricity and
angle between long axis and the x-axis, all conserved in the Kepler problem, that is, in the absence of
stochastic fields and damping. The energy of this orbit is E = 1

2 ṙ2 − 1/r = − 1
2 k2 . The parameters ε, k

and L are related by

κ ≡
√

1− ε2, λ ≡ kL, κ = λ. (4)

Let a code the angle φ according to

sin(φ− χ) =
κ sin a

1− ε cos a
, cos(φ− χ) =

cos a− ε

1− ε cos a
, (5)

with inverse

cos a =
cos(φ− χ) + ε

1 + ε cos(φ− χ)
, sin a =

κ sin(φ− χ)

1 + ε cos(φ− χ)
. tan

φ− χ

2
=

√
1 + ε

1− ε
tan

a
2

. (6)
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Here, the trace led to inner products of the e’s with the connection, following from Equation (5),

cos[φ(t)− φ(s)] =
cos(a− b)− ε(cos a + cos b) + ε2(1− sin a sin b)

(1− ε cos a)(1− ε cos b)
,

sin[φ(t)− φ(s)] = κ
sin(a− b)− ε(sin a− sin b)
(1− ε cos a)(1− ε cos b)

, (7)

The orbit may be written in the parametric form

r(0) =
1− ε cos a

k2 , t =
a− ε sin a

k3 , ṙ(0) =
kε sin a

1− ε cos a
. (8)

The angle, starting with φ = 0 at t = 0, evolves as

φ(t) = φa = 2 arctan
1 + ε

κ
tan

a
2
= 2arctan

1 + ε

κ
tan

a
2
+ 2π

⌊
π + a

2π

⌋
, (9)

where arctan takes values between −π/2 and π/2 and is discontinuous at a = (2n + 1)π for integer
n; the floor function bxc delivers the largest integer below x.

2.1. Perturbations Around the Kepler Orbit

The energy changes due to the stochastic field and due to radiation. Due to the small value of α

these effects can be calculated separately. In a perturbation expansion to order β2 the rate of energy
change due to the stochastic field follows from

r(t) = r(0)(t) + βr(1)(t) +O(β2) (10)

as

Ėfield(t) = −βE(t)·[ṙ(0)(t) + βṙ(1)(t)]. (11)

With the leading term vanishing on the average, there remains the statistically averaged energy
gain from the field

〈Ėfield(t)〉 = β2〈E(t)· ṙ(1)(t)〉. (12)

We shall suppose that the stochastic fields and the damping start to act at time t0, which is later
taken to −∞. The solution for the perturbation r(1) has the form

r(1)(t) = −
∫ t

t0

ds G(t, s)·E(s). (13)

with G the Green’s function, to be constructed. Hence the average effect by the field, for times during
which the Kepler orbit is not disturbed much, reads in terms of Ġ(t, s) ≡ ∂tG(t, s),

〈Ėfield(t)〉 = β2
∫ t

t0

ds tr3d[Ġ(t, s)·CE(t− s)] = β2
∫ t

t0

ds tr3d[Ġ(t, s)]CE(t− s). (14)
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2.2. Perturbations of the Orbit

We solve the perturbed Kepler dynamics in the rotating frame where the orbit is decomposed on
the rotating eigenvectors e1,2 and the fixed perpendicular vector e3. The field then has components
E1,2,3(t) = e1,2,3(t)·E(t). The equation r̈1 +∇∇V · r1 = E reads on the comoving basis

r̈1 − r1φ̇2 − 2ṙ2
L
r2 + 2

ṙL
r3 r2 −

2
r3 r1 = E1

r̈2 − r2φ̇2 + 2ṙ1φ̇ + φ̈r1 +
1
r3 r2 = E2 (15)

z̈1 +
1
r3 z1 = E3

Let us search the homogeneous solutions h = (r1, r2, z1). The first is h(1)(t) ∼ ṙ(t). Another
one, h(3), has r1 = 0, r2 ∼ r(t) ∼ ρa. Two further in-plane solutions h(2,4) are more intricate but can
be constructed analytically. h(2) contains oscillations around a term linear in t. For z1 one finds the
solutions r cos φ and r sin φ from components of the orbit on the non-rotating basis. We present these
six homogeneous solutions as

h(1)(t) =
1
ρa

 ε sin a
κ

0

 , h(2)(t) =
1
ρa

 κ2(cos a− ε)− 2ερ2
a

−κ(κ2 + ρa) sin a
0

+ 3ετah(1),

h(3)(t) = ρa

 0
1
0

 , h(4)(t) =
1
ρa

 κ(ε− cos a)
(κ2 + ρa) sin a

0

 , (16)

h(5)(t) = ρa sin φa

 0
0
1

 , h(6)(t) =
ε

κ
ρa cos φa

 0
0
1

 ,

where τa = a− ε sin a = k3t and ρa = dτa/da = 1− ε cos a.
The solution Equation (13) then involves the Greens function G, which on the rotating basis is

denoted as Γ,

Gij(t, s) =
3

∑
k,l=1

e(k)i (t)Γkl(t, s)e(l)j (s) (17)

The conditions G(t, t) = 0 and Ġ(t, t) = 1 imply that also Γ(t, t) = 0 and Γ̇(t, t) = 1. Some effort
leads to the elegant exact solution

Γ(t, s) = ∑
i=1,3,5

h(i)(t)h(i+1)(s)− h(i+1)(t)h(i)(s)
εk3 . (18)

Γ33 comes from the transverse fluctuations, i.e., from h(5,6), with the result

G33 = Γ33 =
(1− ε cos a)(1− ε cos b)

κk3 sin φab =
ρaρb
κk3 sin φab (19)

Here φab = φa − φb with the rotation angle from Equation (9). It is easily verified that
W(t) = Γ̇(t, s)|s→t is a matrix valued Wronskian, that is, it is a constant matrix, indeed equal to 1.
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2.3. Statistical Rate of Energy Change From the Stochastic Field

The field contribution to the energy change reads from Equation (14) (taking from now
on t0 → −∞)

〈Ė 〉field = β2
∫ t

−∞
ds ġ(t, s)CE(t− s), ġ(t, s) ≡ tr3dĠ(t, s)− 3. (20)

where

tr3dG = (Γ11 + Γ22) cos(φt − φs) + (Γ12 − Γ21) sin(φt − φs) + G33. (21)

and the dot denotes differentiation to t. The subtracted term in Equation (20), cancelling Ġ(t, t) = 1,
does not contribute to the integral.

From the result

Ġ33(t, s) = 1 +
cos(a− b)− 1

1− ε cos a
, (22)

an expansion in b near b = a yields, when expressed as a series in t− s,

Ġ33(t, s) = 1− k6(t− s)2

2(1− ε cos a)3 −
ε sin a k9(t− s)3

2(1− ε cos a)5 +O[(t− s)4], (23)

whereas the in-plane part behaves as

tr2dĠ(t, s) = 2 +
k6(t− s)2

2(1− ε cos a)3 +
ε sin a k9(t− s)3

2(1− ε cos a)5 +O[(t− s)4]. (24)

As seen in Equation (25) below, the second and third order terms are potentially dangerous for the
convergence of the integral at s = t, but they are exactly opposite, so that g(t, s) = O[(t− s)4] for
s→ t. This behaviour assures that in the limit τc → 0 the integral

lim
τc→0
<
∫ t

−∞
ds

g(t, s)
(t− s + iτc)4 =

∫ t

−∞
ds

ġ(t, s)
(t− s)4 , (25)

behaves well, as it should, since no subtle short-time effects are expected for the energy absorbed from
the field. The combined effect takes the compact form

g(t, s) ≡ tr3dG(t, s) =
A(a, b) + B(a, b)(a− b− ε sin a + ε sin b)

(1− ε cos a)(1− ε cos b)k3 , (26)

with antisymmetric A and symmetric B,

A(a, b) = 5 sin(a− b) +
1
2

sin 2(a− b) +
3
2

ε2[sin 2a− sin 2b + 2 sin(a− b)]

−2ε[3(sin a− sin b) + sin(a− 2b) + sin(2a− b)], (27)

B(a, b) = −3 cos(a− b) + 3ε2 cos a cos b.

We express the energy gain from the field, averaged over one period, as

〈Ėfield〉 = β2 k9

κ6 (1 +
1
2

ε2) f (κ), (28)
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where

f (κ) =
6κ6

π2(3− κ2)

∫ π

−π
da
∫ a

−∞
db

(1− ε cos a)(1− ε cos b)ġ(t, s)
(a− b− ε sin a + ε sin b)4 . (29)

It is quite a smooth function, ending for circular orbits (ε = 0, κ = 1) at f (1) = 1
2 . The maximal

value at ε = 1, κ = 0 is obtained by scaling a→ κu, b→ κv, which yields for κ → 0

f (0) =
2334

5π2

∫ ∞

−∞
du
∫ u

−∞
dv

5 + 3u2 + 8uv− v2 + 4u3v + u2v2

(1 + u2)2(3 + u2 + uv + v2)4 . (30)

To evaluate this, one may analytically perform the v-integral, which leads to several terms odd
and one even in u, the latter resulting in a result not far above f (1) = 1

2 :

f (0) =
16

5π
√

3
= 0.588084. (31)

Radiative Energy Loss

The loss terms produce a rate of energy loss averaged over one orbit of period P = 2π/k3 equal to

〈Ėrad〉 = β2〈...r · ṙ〉 = −β2〈r̈2〉 = −β2〈f2〉

= −β2〈 1
r4 〉 = −

β2

P

∫ P

0
dt

1
r4 , (32)

where, in the averaging over a full period, we could omit a total derivative. Using dt = dφ/φ̇ = r2dφ/L
and κ = kL this becomes

〈Ėrad〉 = −
β2k3

2πL5

∫ 2π

0
dφ (1 + ε cos φ)2 = −β2k8 3− κ2

2κ5 (33)

Combining gain and loss terms leads to the total energy change

〈Ėtot〉 = β2 k8

2κ6 (2 + ε2)[ k f (κ)− κ]. (34)

For spherical orbits (ε = 0, κ = 1) there is the explicit result, first derived qualitatively by de la
Peña [4] and Puthoff [5,6]:

〈Ėtot〉 = β2k8(
k
2
− 1). (35)

It exhibits stability: for large negative energy E = − 1
2 k2 (k� 1) the energy gain is positive on the

average, preventing collapse on the nucleus. On the other hand, when E is small negative, its average
change is negative, preventing E ≥ 0, i.e., self-ionisation.

But with κ = kL→ 0 at fixed L, Equation (34) yields

〈Ėtot〉 = β2 3k3

2L6 [ f (0)− L]. (36)

Per period in the limit k→ 0 at fixed L this implies a fixed amount,

∆〈Etot〉 = β2 3π

L6 [ f (0)− L]. (37)

In words: each revolution produces, on the average, a finite amount of energy, so that
self-ionisation happens for orbits that have achieved a small k and an L < f (0). The pericentre
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of the orbit lies at rc = (1 − ε)/k2 = L2/(1 + ε) ≈ L2/2. The critical angular momentum
value Lc = f (0) = 0.588057 is not particularly small, and neither is the critical pericentre
rc =

1
2 f 2(0) = 0.172921 = 23.7α.

Figure 1. Distribution of the dimensionless angular momentum L (in units of h̄) from the numerical
simulation of the Stochastic Electrodynamics (SED) reported in ref. [8]. Not much weight lies below
L = 0.588, confirming that when such a value is reached at near-zero energy, self-ionisation may occur
rapidly and the run is ended. Full curve: the distribution of L from the conjecture for the would-be
stable ground state distribution, Equation (68) for d, `0 → 0.

We are faced with the finding that the de la Peña-Puthoff stability argument based on circular
orbits [4–6] does not hold for all orbits, in particular not for very eccentric ones. This is in full accord
with our recent numerical simulations [8]. Here for short times orbits with reasonable statistics were
observed, sometimes going close to the nucleus or near zero energy, followed by recovery towards less
extreme orbits. But at some moment no recovery from a near-zero energy orbit was observed, with
self-ionisation as a result. This characteristic is confirmed by the distribution of the dimensionless
angular momentum L, obtained from these simulations: In Figure 1, hardly any weight of orbits occurs
lies below L < 0.588.

3. Adding an 1/r2 Potential

In the hope of finding some stable behaviour, we extend the problem without spoiling its analytical
solvability. We consider the presence of a “radially-directed dipolar force”, stemming from a potential
Vd(r) = −d/2r2, which has the same form as the angular momentum part L2/2r2 of the kinetic energy.
Such a term may arise from a dipolar force between electron and nucleus, when the deformation of the
nucleus, caused by the electron, is always aligned with the vector between them.

3.1. Analysing the Orbits

In our classical dynamics approach the unperturbed problem has potential V and Newton force f

V(r) = −1
r
− d

2r2 , f = − r
r3 − d

r
r4 , (38)

while the random force and the damping lead to the dynamics

r̈ = − r
r3 − d

r
r4 − βE + β2...r . (39)

For an unperturbed orbit with energy E = 1
2 ṙ2 + V(r) = − 1

2 k2 the radial parametrization is still

r =
1− ε cos a

k2 , k3t = τa ≡ a− ε sin a, (40)
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coded by its eccentricity ε ≡
√

1− κ2. The presence of d in Equation (38) now leads to the connections

λ ≡ kL, λ2 = κ2 + δ, ε2 = 1− λ2 + δ, δ = dk2 (41)

so that now λ 6= κ. The range of ε and κ is, due to the shape of Equation (40), at most the interval
(0,1). In the repulsive case d < 0, the physical ranges are

√
|δ| ≤ κ ≤ 1, and both ε and λ range from

0 to
√

1− |δ|; then the condition |δ| < 1 implies that the orbital energy is bounded from below, viz.
E = −k2/2 > −1/2|δ|.

For the attractive dipolar force, d > 0, ε and κ indeed range between 0 and 1, while λ takes values
between

√
δ and

√
1 + δ. However, now there is a second family of orbits having L <

√
d, where

L2
eff < 0 and ε > 1 (because κ2 < 0). While such orbit are hyperbolic (unbound) for d = 0, they are

bound for d > 0: these low-angular momentum orbits spiral into and and then out of the nucleus and need to
be described within a relativistic framework [12]. This property may explain the Darwin term (a δ(3)(r)
term) in the relativistic corrections to the H ground state, related to our problem with d = α2 > 0, as
an effect of central spiralling.

The relation φ̇ = L/r2 now brings for orbits with Leff > 0

φa = 2µ arctan

√
1 + ε

1− ε
tan

a
2

, µ ≡ λ

κ
=

L
Leff

=
L√

L2 − d
. (42)

One period in a still takes a time P = 2π/k3, but it involves µ turns in φ, where µ is in general
non-integer. For d > 0 each φ-turn takes the shorter time 2π/µk3, so although the solution r(t) remains,
r(t) rotates faster. For d < 0 it rotates slower. For µ 6= 1, sin(φa − φb) and cos(φa − φb) do not reduce
to compact forms like Equation (7).

With f2 = (1/r2 + d/r3)2, the rate of energy loss from Equation (32) generalises to

〈Ėrad〉 = −β2
〈

1
r4 +

2d
r5 +

d2

r6

〉
= −β2k8

(
3− κ2

2κ5 + dk2 5− 3κ2

κ7 + d2k4 35− 30κ2 + 3κ4

8κ9

)
. (43)

The result is obtained using the properties Equation (40) of the orbit.
If d > 0 the orbits with L <

√
d the orbits spiral into and out of the centre. They are described by

the same solution, after adding absolute values to keep dφ/da and dt/da positive,

k2ra = |ρa|, ρa ≡ 1− ε cos a, k3 dt
da

= |ρa|, φ̇ =
k4L
ρ2

a
,

dφ

da
=

kL
|ρa|

. (44)

3.2. Perturbations of the Orbit

The equations for perturbations r̈1 +∇∇V · r1 = E now read on the comoving basis

r̈1 − r1φ̇2 − 2ṙ2
L
r2 + 2

ṙL
r3 r2 − (

2
r3 +

3d
r4 )r1 = E1

r̈2 − r2φ̇2 + 2ṙ1φ̇ + φ̈r1 + (
1
r3 +

d
r4 )r2 = E2 (45)

z̈1 + (
1
r3 +

d
r4 )z1 = E3
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The homogeneous solutions are still explicit,

h(1)(t) =
1
ρa

 ε sin a
κµ

0

 , h(2)(t) =
1
ρa

 κ2(cos a− ε)− 2ερ2
a

−κµ(κ2 + ρa) sin a
0

+ 3ετah(1),

h(3)(t) = ρa

 0
1
0

 , h(4)(t) =
µ

ρa

 κ(ε− cos a)
µ(κ2 + ρa) sin a

0

+ ε
µ2 − 1

κµ
φah(3)(t),

h(5)(t) = ρa sin φa

 0
0
1

 , h(6)(t) =
ε

κµ
ρa cos φa

 0
0
1

 , (46)

where also h(4) picks up a secular term. Indeed, τa = k3t and φa increase indefinitely with time,

τa = a− ε cos a, φa = 2µ arctan
1 + ε

κ
tan

a
2
= µ(ψa + τa), (47)

with ψa ≡ φa/µ− τa a periodic function in a.
The sum rule for the arctangent, arctan u− arctan v = arctan(u− v)/(1 + uv), implies

φab ≡ φa − φb = 2µ arctan
κ sin 1

2 (a− b)
cos 1

2 (a− b)− ε cos 1
2 (a + b)

. (48)

It decomposes as φab = µτab + ψab with τab = τa − τb = k3(t− s) and ψab = ψa − ψb periodic.
The solution Equations (13) and (18) remains valid with transverse sector

G33 = Γ33 =
ρaρb
κµk3 sin φab =

(1− ε cos a)(1− ε cos b)
κµk3 sin φab. (49)

3.3. Statistical Rate of Energy Change from the Stochastic Field

For the field contribution to the energy change we have to inspect the behaviour for s→ t. While
for d = 0 the problematic terms cancel, the problem is real for d 6= 0. The terms now add up to

ġ(t, s) =
d(t− s)2

2r4(t)
+

2dε sin a
3kr6(t)

(t− s)3 +O[(t− s)4]. (50)

To have a well defined τc → 0 limit, this should be regularised. Technically it can be done by
adding at fixed t a contribution to the s-integral, which itself does not contribute to 〈Ė 〉 at finite τc:

g→ greg = g + gsub, gsub(t, s) = −d(t− s)2

2r4(t)
. (51)

For the subtraction of the next order O[(t− s)3] term, we point out that it yields a sin a log τc

divergency, which vanishes when integrating over a full orbit.

3.4. Circular Orbits

At ε = 0 the cubic term of Equation (50) vanishes, so after accounting for Equation (51) the
problem is regular. For d < 0 the maximal k is km = 1/

√
|d|. The total energy loss rate is

〈Ėtot〉 =
1
2

β2k9(1− 6λ2 + 5λ3 + 9λ4 − 12λ5 + 4λ6)− β2k8λ4, λ =
√

1 + dk2, (52)
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which prevents the result passing below the lowest energy coded by k = km and λ = 0. For small k
and hence λ ≈ 1, the loss term dominates, exhibiting de la Peña-Puthoff stability of the atom.

For d > 0

〈Ėtot〉 =
1
2

β2k9(1 + dk2)3/2 − β2k8(1 + dk2)2 = β2 k8

2
(1 + dk2)3/2 (1− 4d)k2 − 4

k + 2
√

1 + dk2
. (53)

At small k this always shows the stability 〈Ėtot〉 < 0. For large-k the stability condition 〈Ėtot〉 > 0
demands that d < 1/4, a condition met curiously already in the quantum approach. So the dipole
force does not essentially modify the stability of circular orbits.

In conclusion, for circular orbits the H-atom retains its de la Peña-Puthoff stability in the presence
of the −d/2r2 potential.

3.5. Very Eccentric Orbits

The d = 0 case (pure hydrogen problem) taught us that the remaining interest lies in the limit of
very eccentric orbits with energy close to zero, where the possibility of self-ionisation looms. In the
limit ε → 1, κ → 0 and small E = − 1

2 k2, we set k = k̄κ, λ = µκ, with the relation µ2 = 1 + dk̄2 from
Equations (40) and (42). Expressed in angular momentum L, Equation (42) gave µ = L/

√
L2 − d =

L/Leff, so that k̄ = 1/
√

L2 − d = 1/Leff.
As usual, the easy part is the loss term, which can be taken directly from Equation (43). It scales

as k3k̄5, which implies in the limit k→ 0 a finite contribution per period P = 2π/k3, as before,

∆Erad = −2πβ2k̄5 12 + 40dk̄2 + 35d2k̄4

8
= −2πβ2k̄5 7− 30µ2 + 35µ4

8
. (54)

The energy gain from the field during one period is

∆Efield =
6β2

π

∫ P/2

−P/2
dt
∫ t

−∞
ds

ġ(t, s)
(t− s)4 =

6β2k6

π

∫ π

−π
da
∫ a

−∞
db

ρaρb ġ(a, b)
τ4

ab
. (55)

We scale a → κx, b → κy. Similar to Equation (37) of the case d = 0, there results per period a
finite limit of the energy gain,

∆Efield = 2πβ2k̄6G(µ), G(µ) =
3

π2

∫ ∞

−∞
dx
∫ x

−∞
dyh(x, y) (56)

Even in this scaling limit this involves a lengthy expression,

h(x, y) =
1

k(x, y)
[hc(x, y) cos φ(x, y) + hs(x, y)

sin φ(x, y)
µ

+ h0(x, y)] + hreg(x, y), (57)

with φ(x, y) = 2µ(arctan x− arctan y) = 2µ arctan x−y
1+xy and numerators

hc = 15 + y6(2µ2 + x2 − 1) + 5y4{x2[−2µ2(x2 + 2) + 2x2 + 5] + 1}
+ 10µ2x(x2 + 1)2y3 + 5y2{x2[−6µ2(x2 + 2) + 4x2 + 11] + 1} (58)

+ 2xy[µ2(19x4 + 30x2 − 5) + 2(x6 + 4x4 + 5x2 + 10)]

+ 5x2[−2µ2(x4 + x2 − 1) + 2x2 + 3]− 10(µ2 − 1)x(x2 + 1)2(y2 + 1)2 arctan
x− y

1 + xy
,
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hs = 4µ2x7 + 10µ2x6y + x5[8µ4 + µ2(26− 10y2) + 5(1 + y2)2]

+ 10x3[−2µ2(−2 + y2) + (1 + y2)2 + µ4(1 + y2)2]− 10µ2x4y[−1 + µ2(3 + y2)]

− 2µ2x2y[−5 + 2y4 + 10µ2(3 + y2)] + 5x[(1 + y2)2 − 2µ2(−3 + 5y2 + 2y4) (59)

+ 2µ4(−1 + 6y2 + 3y4)]− 2µ2y[15− 2y4 + µ2(−5 + 5y2 + 4y4)]

+ 10µ2(µ2 − 1)(1 + x2)2(1 + y2)2 arctan
x− y

1 + xy
,

h0 =
5
(
y2 + 1

)
9 (x2 + 1)

{−2µ2x6 − 12µ2x4 + 4
(

µ2 − 1
)

x3y
(

y2 + 3
)
− 18µ2x2 (60)

+ 12
(

µ2 − 1
)

xy
(

y2 + 3
)
− 2

(
µ2 − 1

)
y2
(

y2 + 3
)2

+ 2x6 + 12x4 + 18x2 − 27
(

x2 + 1
)4
}.

and the common denominator

k(x, y) =
5

2234 (1 + x2)2[3x + x3 − (3y + y3)]4 (61)

For the regulator needed to cancel the (t− s)3 term in Equation (50) we may take

hreg(x, y) =
64(1− µ2)x
3(1 + x2)5

1
(x− y)(x− y + 1)

. (62)

Indeed, when integrating it over y, a logarithmically divergent term appears, but the result
vanishes over a full period, i.e., upon integration over x. Both gain and loss terms being proportional
to k3 implies that per period π ≤ a ≤ π there appears, averaged over disorder and over a period, an
energy change

∆E = 2πβ2
[

k̄6G(µ)− k̄5 12 + 40dk̄2 + 35d2k̄4

8

]
. (63)

Inserting k̄ =
√
(µ2 − 1)/d, this becomes a function of µ alone,

∆E = 2πβ2|µ2 − 1|5/2 7− 30µ2 + 35µ4

8|d|3

[
H(µ)−

√
|d|
]

, H(µ) =
8
√
|µ2 − 1|G(µ)

7− 30µ2 + 35µ4 (64)

Self-ionisation is likely prevented when H(µ) <
√
|d| for all orbits, that is, for all relevant µ.

In the repulsive case d < 0 the range for µ is 0 < µ < 1. Since H(0) = 5.99 and H(1) = 0, our statistical
argument suggest a stable bound state for d < dc = −35.8. This dc is finite, though rather large.

For d > 0 the physical domain is µ2 ≥ 1 and µ2 < 0. For µ2 ≥ 1 we find that H(µ) is an increasing
function. Its asymptotic behaviour can be analyzed. The limit µ→ ∞ describes the orbits with lowest
possible angular momentum Leff = 0, L =

√
d. We can scale y− x → w(1 + x2)/2µ. (The leading

and subleading terms in 1/µ can just be evaluated; for the second order correction a regularisation is
needed, a subtraction of total derivatives of the form d[w + (w3 + w) cos w + (w2 + 1) sin w]/dw, with
coefficients that depend on u.) This ends up with

G(µ) =
35
16

µ3 − 15
8

µ +O( 1
µ
), H(µ) =

1
2
− 1

µ2 +O( 1
µ4 ). (65)

With this shape of H(µ), Equation (64) predicts that these orbits remain stable only for the extremal
value dc =

1
4 , but then Equation (53) predicts that spherical orbits sink to the centre, so no stable cases

are found for d > 0. The role of orbits spiralling into and out of the centre (the regime µ2 < 0) is left as
an open question.
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3.6. Quantum Mechanics

In a quantum approach one would introduce the angular momentum operator L̂2 and an effective
one, L̂2

eff = L̂2 − d, the latter taking the eigenvalues l(l + 1)− d ≡ `l(`l + 1) for l = 0, 1, 2, · · · , so that
`l = − 1

2 + 1
2

√
(2l + 1)2 − 4d. For the ground state the value `0 = − 1

2 + 1
2

√
1− 4d imposes that d ≤ 1

4 .
The nonrelativistic Schrödinger equation for the radial wave function ψ(r) reads

−1
2

ψ′′ − 1
r

ψ′ +
l(l + 1)

2r2 ψ− 1
r

ψ− d
2r2 ψ = Eψ. (66)

For d = α2Z2 it has an analogy with the Schrödinger equation for the spinless relativistic electron
in an H-atom [13]. Indeed, it produces the Dirac square-root formula for the eigenenergies, be it that
the total angular momentum operator J = L + S for the spinning electron is reduced to L and hence its
eigenvalues j→ l. The ground state is

ψ0(r) =
2`0(1 + `0)

−2−`0√
πΓ(2 + 2`0)

r`0 e−r/(1+`0), E0 = − 1
2(1 + `0)2 = − 2

(1 +
√

1− 4d )2
. (67)

It is normalised according to 4π
∫ ∞

0 dr r2ψ2
0(r) = 1. For the relativistic “Klein Gordon” H atom,

d = α2Z2 affects only the relativistic corrections; here we shall keep d as a parameter of order unity,
positive or negative.

3.7. Classical Phase Space Density

If a stationary ground state exists in the SED problem, it should be expressable as a function of
the conserved quantities E and L, more precisely, as functions of R ≡ −1/E and Leff ≡

√
L2 − d. Since

this task was worked out by us for the ground state and excited states of the relativistic hydrogen
atom [13], we can adjust the approach here. For Equation (67) we coin the shape

Ppr(r, p) = f (Leff, R) ≡ C(L2
effR)

2`0 LeffR3e−2R/(1+`0), (68)

Let us verify this and fix the normalisation C; the result will be given in Equation (73). The value
of the Hamiltonian

H =
1
2

p2
r +

L2
eff

2r2 −
1
r
= E = − 1

R
(69)

allows to denote the radial velocity pr and the effective angular momentum Leff =
√

L2 − d as

pr =

√
2(R− r)

rR
cos µ, Leff =

√
2r(R− r)

R
sin µ, (0 ≤ µ ≤ π). (70)

The fact that Leff rather than L itself enters here will imply its presence in Equation (68). (The angle
µ is this section should not be confused with the short hand µ = λ/κ in the remainder of the text.)
As this implies dprdLeff = dR dµ (r/R2), the volume element in momentum space, with 0 ≤ ν ≤ 2π

the azimuthal angle, reads

dVp = dprdp⊥dν p⊥ = dprdLdν
L
r2 = dprdLeffdν

Leff

r2 = dRdµdν
Leff

rR2 . (71)

Using L2
effR = 2r(R− r) sin2 µ, we have∫

dVp Ppr(r, p) = 2πCr2`0

∫ π

0
dµ
∫ ∞

r
dR [2(R− r) sin2 µ]1+2`0 e−2R/`0

= Cπ3/2(1 + `0)
2+2`0 Γ(

3
2
+ 2`0) r2`0 e−2r/`0 . (72)
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Comparing with ψ2
0(r) from Equation (67) we see that it has the proper shape, with

C =
22+6`0

π3(1 + `0)6+4`0 Γ(3 + 4`0)
. (73)

Another quantity of interest is the distribution function of the conserved quantities E and L or
Leff. As worked out in Equations (47)–(49) of Ref. [8], the relation between PELeff

and Ppr = f (E , Leff) is

PELeff
(E , Leff) ≡ 〈δ(E(p, r)− E)δ(Leff(p, r)− Leff)〉 =

25/2π3Leff

|E |3/2 f (E , Leff)

=
29/2+6`0

(1 + `0)6+4`0 Γ(3 + 4`0)

(
L2

eff
|E |

)2`0 L2
eff

|E |9/2 e−2/(1+`0)|E |. (74)

With κ = Leff/Lmax
eff = kLeff, this becomes

PEκ(E , κ) =
dLeff
dκ

PELeff
(E , Leff) =

23+4`0

(1 + `0)6+4`0 Γ(3 + 4`0)

κ2+4`0

|E |6+4`0
e−2/(1+`0)|E |, (75)

which is normalised to unity, when taking all 0 < κ < 1 and 0 < R < ∞.
Despite the setback for the SED program for d = 0 and all d > 0, it would be interesting to test this

distribution for the regime d < dc = −35.8 where a stable ground state of the problem should occur.

4. Discussion

It was put forward by de la Peña 1980 and Puthoff 1987 that circular orbits lead to stability in
the hydrogen problem of Stochastic Electrodynamics (SED) [4–6]. This gave hope for stability of the
full problem, supported by the 2003 Cole-Zou numerical simulations of the dynamics [7]. Our own,
recent simulations improved on these, benefitting from new computer power, new architectures and
analytical tricks. However, it was found that self-ionisation always occurs [8]. This is explained by the
present analytical approach.

We have developed the de la Peña-Puthoff statistical theory, where the average energy gain from
the field per period of the orbit is evaluated and compared with the average energy lost by radiation.
Since both parts are defined by the unperturbed problem, the derivation is elegant and prone for study
by students.

Our approach predicts indeed that with the electron and the nucleus modelled as point
charges, self-ionisation takes place in the SED description of the hydrogen atom. Technically,
the problem arises from orbits with nearly vanishing energy and moderately small angular
momentum, below L = 0.5880h̄ (we restore physical units). The perihelion then lies at distance
rmin = 1

2 (L/h̄)2a0 = 0.173a0 from the nucleus. The speed takes here its maximum of 0.024c, so the
problem likely is insensitive to relativistic corrections, as we verified numerically [11]. Indeed, when
one looks at Figure 1, the problem is not only the self-ionisation for L < 0.588, but moreover that the
whole distribution is different from what one would expect from a conjecture based on the shape of
the quantum ground state wavefunction. Hence if the SED program can be saved, either the gain or
the loss term, or both, need to have a different shape.

Next we have added an−d/2r2 potential, which for d = α2Z2 has connections with the relativistic
H problem for a spinless electron. The problem remains exactly solvable. In the repulsive case d < 0,
|d| > dc = 28.6 we predict stability, which would be an interesting test for our numerical approach.
In the attractive situation d > 0 we always find instability, even without accounting for effects from
orbits which spiral into and out of the origin in a finite time [12]. Those orbits nevertheless offer in
principle a connection with the Darwin term, a relativistic delta-function correction to the Hamiltonian
for the hydrogen problem, so that for some scholars the SED theory will retain a magic spell.
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Our results support the conclusions reached by a number of authors regarding the failure of the
“old” approach in SED to account for atomic stability: atomic orbits are not simply classical orbits
perturbed by the stochastic field [9]. For a proper functioning of SED, an intricate equilibrium state of
both the electron and the stochastic field seems to be needed [1,2,14,15].

Acknowledgments: It is a pleasure to thank Erik van Heusden and Matthew Liska for discussion, and the latter
also for allowing publication of Figure 1.

Conflicts of Interest: The author declares no conflict of interest.

Appendix: The Positronium Problem in SED

According to standard textbooks, a moving point particle with charge q2 creates an electric field

E(r, t) =
q2

4πε0

s
(s · u)3 [(c

2 − u2)u + u(a · s)− a(u · s)] (A1)

where s = r − w(tr) with r the field point where E is considered, w(tr) the position of the point
charge at the retarded time tr = t− s/c and u = c ŝ− v. Next to w, also the velocity v = ẇ and the
acceleration a = ẅ are taken at the retarded time. The magnetic field is B = ŝ× E/c.

For slightly relativistic systems, the E field can be expanded at fixed r in a power series in v/c,

E(r, t) =
q2

4πε0

{
ŝ
s2 +

[v2 − 3(ŝ · v)2] ŝ
2c2s2 − a + (ŝ · a)ŝ

2c2s
+

2ȧ
3c3

}
+ · · · , (A2)

where s = r−w and ŝ = s/s, with now w, v, a and ȧ taken at the non-retarded time t. We used that

t− tr =
s
c

[
1 +

v · ŝ
c

+
v2 + (v · ŝ)2 − s (a · ŝ)

2c2

]
+ · · · . (A3)

The ȧ term in Equation (A2) represents a field that is constant in space; it will decay only at
distances of order a0/Zα, an issue relevant only for relativistic corrections to it, see the analysis in [11].

In SED a pair of charges q1,2 with masses m1,2 will satisfy the Abraham-Lorentz equations
of motion

m1 r̈1 =
q1q2

4πε0

r1 − r2

r3
12

+ q1E⊥(t) +
q1q2

6πε0

...r 2

c3 +
q2

1
6πε0

...r 1

c3 ,

m2 r̈2 =
q1q2

4πε0

r2 − r1

r3
12

+ q2E⊥(t) +
q1q2

6πε0

...r 1

c3 +
q2

2
6πε0

...r 2

c3 , (A4)

where we dropped the 1/c2 terms, because they are small relativistic corrections to the Coulomb force,
but kept the radiation terms and added the radiation self-terms. E⊥(t) is the fluctuating SED field in
the dipole-approximation where its spatial dependence is neglected. In terms of the centre of mass
coordinate R = (m1r1 + m2r2)/M and the mutual coordinate r = r1 − r2 this reads

MR̈ = QE⊥ +
Q

6πε0c3 (Q
...
R + q̄

...r ),

µr̈ =
q1q2

4πε0

r
r3 + q̄ E⊥ +

q̄
6πε0c3 (Q

...
R + q̄

...r ), (A5)

with

Q = q1 + q2, q̄ =
m2q1 −m1q2

m1 + m2
, M = m1 + m2, µ =

m1m2

m1 + m2
. (A6)

For hydrogen and positronium the charges are opposite (Q = 0, q̄ = q1 = −e), so
R(t) = const., which results in an r-dynamics similar to that of one electron around an alkali ion
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of charge q2 = Ze, with its non-zero but negligible centre-of-mass motion and its q̄ ≈ −e, because
m1/m2 = me/AmN � 1.

In conclusion, the results of this paper hold also for positronium after replacing me → µ = 1
2 me,

because the mutual electric fields contain relativistic corrections comparable to the self-damping terms.
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