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On the Stability of Fuzzy Systems
M. A. L. Thathachar and Pramod Viswanath

Abstract—This paper studies the global asymptotic stability
of a class of fuzzy systems. It demonstrates the equivalence of
stability properties of fuzzy systems and linear time invariant
(LTI) switching systems. A necessary condition and a sufficient
condition for the stability of such systems are given, and it is
shown that under the sufficient condition, a common Lyapunov
function exists for the LTI subsystems. A particular case when
the system matrices can be simultaneously transformed to normal
matrices is shown to correspond to the existence of a common
quadratic Lyapunov function. A constructive procedure to check
the possibility of simultaneous transformation to normal matrices
is provided.

Index Terms—Asymptotic stability, switching systems.

I. INTRODUCTION

RECENTLY, fuzzy control is being used in many practical
industrial applications. One of the first questions to be

answered in this context is the stability of the fuzzy system.
In recent literature, Tanaka and Sugeno [3], have provided
a sufficient condition for the asymptotic stability of a fuzzy
system in the sense of Lyapunov through the existence of a
common Lyapunov function for all the subsystems. Tanaka
and Sano [4] have extended this to robust stability in case of
systems with premise-parameter uncertainty. The model of the
fuzzy system, considered in these papers, is that proposed by
Takagi and Sugeno [2], which can be shown to be equivalent
in stability to a switching system with linear time invariant
(LTI) subsystems. These switching systems turn out to be a
particular class among linear time varying (LTV) systems. The
classical theory of LTV systems is discussed in [8, Sec. 9],
and recent advances in LTV systems are in [9]. Narendra and
Balakrishnan [6] have provided a simple sufficient condition
for the stability of the switching system.

This paper discusses some necessary and some sufficient
conditions for global asymptotic stability of a fuzzy system.
Section II defines the fuzzy system model and the model of
the correspondingswitching system and global asymptotic
stability of these systems. Section III shows the equivalence
of these two systems regarding stability, and further sections
consider switching systems only. Section IV discusses the
main results of this paper. A sufficient condition is provided
for the asymptotic stability of the system. It is shown that
when this condition is satisfied, there exists a common Lya-
punov function for the subsystems. Section V deals with a
special case which leads to simultaneous normalization of the
system matrices. In this case, the subsystems have a common

Manuscript received August 25, 1995; revised January 30, 1996.
M. A. L. Thathachar is with the Indian Institute of Science, Bangalore,

560012 India.
P. Viswanath is with the Electrical Engineering and Computer Science

Department, University of California, Berkeley, CA 94720 USA.
Publisher Item Identifier S 1063-6706(97)00037-4.

quadraticLyapunov function. Also, a constructional procedure
is provided to check whether the theorem’s premise is satisfied.
An example illustrates the procedure. This result can be viewed
as a generalization of the result in [6], a sufficient condition
for stability of switching systems.

II. NOTATIONS AND DEFINITIONS

This section outlines the mathematical model of a free
fuzzy system and that of the correspondingswitchingsystem.
Stability of these systems in the asymptotic sense is also
defined.

The Takagi and Sugeno [2] model for the fuzzy system
is chosen. Let the system state vector at time instantbe

where are the state
variables of the system at time instantThen the free fuzzy
system is defined by the implications below

IF is AND AND is

THEN (1)

for Here, is the fuzzy set corresponding to the
state variable and implication
are the system characteristic matrices. Thetruth valueof the
implication at time instant denoted by is defined as

where is the membership function value of the fuzzy
set at the position and is an operator satisfying

Usually is taken to be the minimum operator which gives the
minimum of its operands. Then, at instantthe state vector
is updated according to

(2)

A fuzzy system is completely represented by the set of
characteristic matrices and the fuzzy sets

Corresponding to this free
fuzzy system, a correspondingswitchingsystem is described
below.
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The state update at time instantis given as

(3)

where (i.e., it is one of the matrices ).
Also, define

times

where the Cartesian product is defined to be the multiplication
of matrices in the same order. The following are definitions of
global asymptotic stability of these systems.

Definition 1) The fuzzy system described in (2) is globally
asymptotically stable if

as (4)

or, equivalently, there exists a norm on

as

for all initial values and for all
possible fuzzy sets

.
Definition 2) The switching system described in (3) is

globally asymptotically stable if

as (5)

where Equivalently

as (6)

For any matrix let be the spectral radius of
(i.e., the largest magnitude of the eigen values of). Let

be defined as

Let be a matrix norm on and be the largest
singular value of Then,

(7)

where is the spectral norm on a matrix. Also, let
Let represent the

element where Let denote the conjugate
transpose of

III. EQUIVALENCE OF THE STABILITY

OF SWITCHING AND FUZZY SYSTEMS

This section illustrates the equivalence of the stability of
a fuzzy system and its corresponding switching system. A
necessary condition for stability of either of these systems is
also given. The following theorem illustrates some equivalent
statements about the stability of the switching system. The
proof might be hidden in some textbook; we give it here for
completeness.

Theorem 3.1:The following are equivalent:

1) the switching system in (3) is globally asymptotically
stable as in Definition 2;

2) as ;
3) as .

Proof:
By (6), as By (7), is

a matrix norm and, hence

as

In particular, as Hence

as

(2) (3)
Now

since from [1, Theorem 5.6.9]. Hence

and as
(3) (1)
From [7, Sec. 7.2], is a continuous function of the

elements of Since as , we have

as

Since is a continuous function of

as

hence arriving at (6), which is the required result.
The following theorem illustrates the equivalence of stabil-

ity of a fuzzy system and that of the corresponding switching
system.

Theorem 3.2:A necessary and sufficient condition for the
stability as in Definition 1 of fuzzy system (2) is that the
corresponding switching system (3) be stable, as in Definition
2.

Proof necessity:The fuzzy system in (2) degenerates into
the switching system when or , , and

Thus, the switching system should necessarily
be stable.

Sufficiency: Let the switching system represented by
be stable as in Definition 2. The proof

that fuzzy system is also stable uses the fact that given any
two sequences and in , such that

and as

implies as (8)
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Now, the fuzzy system is stable if and all fuzzy
sets as

i.e.

i.e.

Now

since
Now, since the switching system is stable, by Theorem 3.1

we have as From (8), left-hand side
and the condition for stability (4) is satisfied. Hence, the fuzzy
system too is stable, as in Definition 1.

From now on only the stability of the switching system
is mentioned. The following theorem provides a necessary
condition for the stability of the switching system.

Theorem 3.3:A necessary condition for stability (as in
Definition 2) of the switching system in (3) is that every finite
product sequence of the matrices in be stable, i.e., their
spectral radius is less than one. Equivalently

(9)

Proof: Suppose not. Then,
such that Then, consider the switching
sequence

Then, Clearly, as
since Hence, every finite product sequence of the
matrices has to be stable.

Comment 1:As an immediate consequence of the preced-
ing theorem, the matrices should, themselves,
be necessarily stable (i.e., ).

Comment 2:Also, the result expressed in [3, Theorem 4.3],
a necessary condition for stability that the matrices be pairwise
stable, is evident as a special case of Theorem 3.3 in which

is considered.

IV. A SUFFICIENT CONDITION FOR STABILITY

The following Theorem 4.1 provides a sufficient condition
for stability of (3). Theorem 4.2 shows that when the condition
in Theorem 4.1 is satisfied, there exists a common Lyapunov
function for all the system matrices in However, this
common is not necessarily quadratic.

Theorem 4.1A sufficient condition for stability, as in Def-
inition 2 of the switching system (3), is that there exists a
similarity transformation and a matrix norm
such that

(10)

Proof: Let

(11)

Let

(12)

Also, let be the similarity transformation. Now

from Theorem 5.6.9 in

from and

Hence, and as Hence,
the switching system is asymptotically stable.

Theorem 4.2:If (10) in Theorem 4.1 is satisfied, and the
norm in (10) is an induced norm, then there exists a common
Lyapunov function for all the system matrices in i.e., there
exists a function such that :

• .
• .

Proof: Let the premise in Theorem 4.1 be satisfied and
be the similarity transformation. Let Define

where the vector norm here induces the
matrix norm in (10). Now, since is nonsingular,

when Now, and

where

since and from

This function is the common Lyapunov function.
However, this common Lyapunov function need not be

quadratic, i.e., need not be of the form
where is a positive definite matrix.
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Comment 1:A convenient matrix norm that can be used in
(10) is the spectral norm and is induced from the
Euclidean vector norm. (see [1, 5.5.6]). Hence, in particular,
Theorem 4.1 reduces to the existence of a nonsingular
such that In this case, the common
Lyapunov function in Theorem 4.2 can be chosen to be
quadratic. This is expressed in the following theorem.

Theorem 4.3:The satisfaction of (10) in Theorem 4.1 and
the norm in (10) being the spectral norm (i.e., induced from the
Euclidean vector norm) is a necessary and sufficient condition
for the existence of a common quadratic Lyapunov function
for all the system matrices in i.e., is of the form

where is a positive definite matrix.
Proof necessity:Suppose there exists a common Lya-

punov function for all the system matrices
Since is positive definite nonsingular

where Then

(13)

where is the Euclidean norm.
Since from (13) we have

(14)

where
Since (14) is valid we have

Hence,
Sufficiency: Let nonsingular be such that

Then, choose
where Clearly, is positive definite. Then
the claim is that the common quadratic Lyapunov function
is We prove the claim by
showing that This proof follows the
same pattern as that in Theorem 4.2 by replacing the general
induced norm there by the spectral norm

Comment 2: It is evident that if there exists a matrix norm
such that ; then, the switching system

is stable, since the similarity transformationcan be taken to
be the identity matrix . A convenient norm on the matrix
is the spectral norm equal to the largest singular
value of the operand matrix. In view of the theorem and
comment above, a simplified sufficiency condition, thus, is
that since the spectral norm is the
norm induced from the Euclidean vector norm.

Comment 3: In particular, this motivates interest in normal
matrices as (for these matrices) eigen and singular values co-
incide. If is normal, thereby
satisfying the condition mentioned in the above comment. A
normal matrix is characterized by (see [1,
Sec. 2.5]).

V. SIMULTANEOUS NORMALIZATION

Since the spectral radius is a norm on normal matrices and
spectral radius of each individualmatrix of the subsystems
is necessarily less than unity, simultaneous transformation of

into normal matrices through a similarity
transformation is motivated. The following theorem is a fallout
of the results in the previous section, and the proof follows
from Theorem 4.1 and Comments 2 and 3 on Theorem 4.1.

Theorem 5.1The switching system in (3) is stable if there
exists nonsingular such that is normal and
the spectral radius of each matrix is less than unity.

Since spectral radius of the matrices being less than unity
is a necessary condition for stability, simultaneous similarity
transformation of into normal matrices is
considered. A matrix is said to be normalizable if there
exists nonsingular such that is normal. From [5],

is necessarily of the form where is a
modal matrix of and is a unitary matrix. Let

unitary It can be shown that if
then

is unitary (15)

Evidently, To check for simulta-
neous normalization of the matrices initially,
the problem of pairwise normalization of these matrices is
considered. Once pairwise normalization is achieved, further
conditions can be attached so that simultaneous normalization
is achieved.

From now on, for simplicity, let the matrices
have distinct eigen values. Then the modal matrix of

can be represented as where is the modal
matrix of with normalized columns of right eigen vectors
of is a diagonal matrix with nonzero complex elements
and is the scaling term and is a permutation matrix. Also,

From [5, Theorem 4 and Corollary
1] we have the following.

Theorem 5.2: Let and be two normalizable matrices.
Then they are simultaneously normalizable iff
If and have distinct eigen values, then the above condition
reduces to the existence of two positive definite matrices
and such that

(16)

Now a relationship is developed between pairwise normal-
ization of the matrices and their simultaneous
normalization. Let the matrices be pairwise normalizable and
let the transformation simultaneously normalize the
matrices and Also,

The following theorem now gives the additional
constraints on the transformations so that the matrices are
simultaneously normalizable.

Theorem 5.3:A necessary and sufficient condition for si-
multaneous normalization of the matrices is
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that the matrices should be pairwise normalizable and there
exist fixed in such that

or

a unitary matrix (17)

Proof: If the matrices are simultaneously normalizable
say by a transformation then clearly they are pairwise
normalizable by the same transformation and, also,

is unitary. Hence, only sufficiency is to be proved.
The claim is that the transformation simultaneously

normalizes all the matrices. Now, since and normalize
we have

or

or from

from

where
The condition in Theorem 5.3 involves checking for

being unitary, where are two transformations that
normalize the same matrix. The following theorem provides
conditions on the transformations and for this to occur.

Theorem 5.4Let and be two transformations that
normalize a matrix Let Then,

is unitary iff

(18)

Proof: Now

where Hence, we have

since is a permutation matrix. Now, iff
is also unitary or Since

diagonal, the condition that be unitary reduces to the one
in (18).

The procedure of verifying the satisfiability of Theorem
5.1 is summarized below in two steps. Step 1) checks for
pairwise normalization of the matrices as in [5], and Step 2)
which is carried out upon the success of Step 1) checks for
additional constraints on the similarity transformations so
that simultaneous normalization of the matrices is achieved.

Step 1: The matrices are checked for
pairwise normalization. This is done as in [5]. The conditions
for pairwise normalization of two matrices, say, and

are exposited below. The condition (16) in Theorem
5.2 is to be verified, i.e., and are to be found
such that . As in Theorem 5.2, define

Compute the matrices and

With diag diag
diag and diag as in Theorem 5.2, the
condition is valid iff

(19)

Now define the matrix for every nonzero

(20)

If the values undetermined from (20) can be adjusted such
that has rank one, then the matrices and are
simultaneously normalizable.

Remark 1: A necessary condition for (19) to be satisfied is
that and show the same zero-nonzero pattern and all
nonzero entries satisfy argument arg

Remark 2: If (19) is satisfied, then can be written as

(21)

Hence, is the outer product of two vectors whoseth el-
ements are and
Hence, is a positive rank one matrix. Also, if is a
rank one positive matrix then the system of equations in (19)
have a solution.

Remark 3: Thus, if all the matrices are pairwise normaliz-
able, let the transformation that pairwise normalizesand

be

Then, as constructed in Step 1, corresponds to the outer
product of the vectors whoseth elements are
and

Remark 4: Equation (19) represents an overdetermined set
of equations and does not uniquely determine the scaling
matrices and to the extent of a scaling factor in
the transformations and, it is therefore necessary to check
the conditions of Theorem 5.2 through the matrices

Step 2: Once Step 1 is satisfied, the existence of the matri-
ces is ensured and the matrices are determined as in
Step 1. This step now checks for the satisfiability of (17) in
Theorem 5.3. From Theorem 5.4 the condition (17) simplifies
to the following:

or

As in Remark 3 above, only the outer product of vectors
formed out of these scaling matrices and is
expressed as matrices Hence, this condition simplifies to
the following:

the pair

has a common premultiplying

vector in the outer product representation. (22)

This common premultiplying vector has theth element either
or depending upon which of

the two matrix pairs or satisfies
(22). Appendix A provides a condition on two rank one
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matrices which have a common premultiplying vector
in their vector outer product representation. The Lemma and
the remark that follows it in the Appendix can then be used
to detect the existence of such that (22) is satisfied.

The example below illustrates the application of both the
Steps 1 and 2 in checking for simultaneous normalization of
the matrices

Example 5.1:Let Also let the matrices in be

and

It can be seen that
and are less than unity. Also,

are all greater than unity and, hence,
the simplified sufficient condition in Comment 2 to Theorem
4.1 is not applicable. Now, pairwise normalization of these
matrices is checked as in Step 1.

Step 1: The modal matrices of are, respectively

and

To check for pairwise normalization of , we find
and , respectively, as

Hence, the matrix computed as in (20) and the entry
not found from (20) is adjusted such that has unit rank is

Similarly, and are computed.
Also, are computed. As
before, the matrices and are calculated and

the matrices and are

and

It is seen that the matrices are of rank one
and, hence, the matrices are pairwise normalizable.
Also, the matrices are also of rank one.

Step 2: It is seen that the pair has a common
premultiplying vector in their vector outer product representa-
tion. Thus, can be chosen and (22) is satisfied.
Thus, the matrices are simultaneously normalizable and, hence,
the corresponding switching system is stable.

Comment 4:Simultaneous normalization can be thought
of as an extension of simultaneous diagonalization of the
matrices since diagonal matrices are normal. This case has
been studied in [6] as a class of commuting matrices and
the proof there proceeds by actually constructing a common
Lyapunov matrix. We show that this result follows naturally
in our framework of simultaneously normalizable matrices.
This ties the circle of ideas of demonstrating stability by
showing the existence of or by actually constructing a common
quadratic Lyapunov function for the matrices in

Theorem 5.5 [6]: If the matrices commute
pairwise, then the switching system (3) is stable.

Proof: Let the matrices commute pair-
wise. Then the matrices are simultaneously diagonalizable [1,
Theorem 1.3.12] and, hence, simultaneously normalizable. The
switching system then is evidently stable by Theorem 5.1.

To see this, the matrices are now pairwise diagonalizable
[1, Theorem 1.3.12] and let be the transformation which
diagonalizes both and Here, The claim is
that any of these will simultaneously diagonalize all the
matrices This is seen as shown below.

Now, if diagonalize a matrix , and is any
diagonal matrix, then This is because

where

is diagonal.

Now

(23)

Here, the notation is as previously used.is the modal matrix
of with normalized right eigen vectors of as its columns,

are diagonal scaling matrices with nonzero complex
entries, and are permutation matrices. Now, since
diagonalizes to say we have

from(23).
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Hence, any transformation that diagonalizes and
will also diagonalize the other matrices. Hence, the matrices
are simultaneously diagonalizable.

VI. CONCLUSION

Stability of the Sugeno–Takagi model [2] of a fuzzy system
has been considered in the asymptotic sense. A necessary
condition for the global asymptotic stability which generalizes
a result reported in [3] is given. A sufficient condition is also
provided here for the global asymptotic stability of the system.
A particular case of this sufficient condition, simultaneous
normalization of the system matrices, is considered and a con-
structive procedure to check for simultaneous normalization
is developed. This condition is easily checked using software
utilities such as Matlab. A necessary and sufficient condition
for asymptotic stability is yet elusive and further efforts should
be aimed in this direction. The approach considered in this
paper concentrates only on the consequents of the fuzzy
implication rules and brackets all antecedents together, i.e.,
these results hold for very general systems since stability is
shown for all possible fuzzy sets and membership functions.
A method to take into account the specific knowledge of
antecedents is needed.

APPENDIX A

Given two rank one matrices and , a procedure is
outlined below which checks whether the matrices have a
common premultiplying vector in their vector outer product
representation.

Lemma 1: Let and be rank one
matrices. Then necessary and sufficient conditions on the
matrices so that they may have a common premultiplying
vector in their vector outer product representation are

1) the zero-nonzero pattern of and coincide. Upon a
nonmatch, the column containing the zero that did not
match should all be zero;

2) :

Remark 1: If and have a common premultiplying vec-
tor in their vector outer product representation, then

and The two conditions in the
lemma are evident from this representation.
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