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On the Stability of Fuzzy Systems
M. A. L. Thathachar and Pramod Viswanath

Abstract—This paper studies the global asymptotic stability quadraticLyapunov function. Also, a constructional procedure
of a class of fuzzy systems. It demonstrates the equivalence ofis provided to check whether the theorem’s premise is satisfied.
stability properties of fuzzy systems and linear time invariant A example illustrates the procedure. This result can be viewed

(LTI) switching systems. A necessary condition and a sufficient . . . o
condition for the stability of such systems are given, and it is as a generalization of the result in [6], a sufficient condition

shown that under the sufficient condition, a common Lyapunov for stability of switching systems.
function exists for the LTI subsystems. A particular case when
the system matrices can be simultaneously transformed to normal
matrices is shown to correspond to the existence of a common Il. NOTATIONS AND DEFINITIONS

guadratic Lyapunov function. A constructive procedure to check This section outlines the mathematical model of a free

the possibility of simultaneous transformation to normal matrices fuzzy system and that of the correspondawjtchingsystem.

is provided. Stability of these systems in the asymptotic sense is also
Index Terms—Asymptotic stability, switching systems. defined.
The Takagi and Sugeno [2] model for the fuzzy system
|. INTRODUCTION is chosen. Let the system state vector at time instaiie

. _  T(k) = [x1(k) ... 2o (K)]T wherez (k) -- -z, (k) are the state
R ECENTLY, fuzzy control is being used in many practical 5 igples of the system at time instdntThen the free fuzzy
industrial applications. One of the first questions to b§’ystem is defined by the implications below
answered in this context is the stability of the fuzzy system:

In recent literature, Tanaka and Sugeno [3], have provided  R‘: IF(x;(k)isS{,AND ---AND z,(k)isS!)

a sufficient condition for the asymptotic stability of a fuzzy THENZ(k + 1) = A;3(k) 1)
system in the sense of Lyapunov through the existence of a

common Lyapunov function for all the subsystems. Tanaker i = 1.-- N. Here,S! is the fuzzy set corresponding to the
and Sano [4] have extended this to robust stability in case Qfte variabler; and implicationR!. A; € R™™ i=1...N
systems with premise-parameter uncertainty. The model of th& the system characteristic matrices. Tfueh value of the

fuzzy system, considered in these papers, is that proposedlication R* at time instank: denoted byw; (k) is defined as
Takagi and Sugeno [2], which can be shown to be equivalent

in stability to aswitching system with linear time invariant wi(k) = Npsi (@1(k)), -+ sy (@n(k))
(LTI) subsystems. These switching systems turn out to be a ] ] )
particular class among linear time varying (LTV) systems. TH¥Nere us(x) is the membership function value of the fuzzy
classical theory of LTV systems is discussed in [8, Sec. §i€tS at the positionz and A is an operator satisfying
and recent advances in LTV systems are in [9]. Narendra and . >
) / A 1. < v Ay, -+, 1) >0.
Balakrishnan [6] have provided a simple sufficient condition win (l, + 1) 2 Alh tn)

for the stability of the switching system. Usually A is taken to be the minimum operator which gives the

This paper discusses some necessary and some sufficigiimum of its operands. Then, at instanthe state vector
conditions for global asymptotic stability of a fuzzy systems ypdated according to

Section Il defines the fuzzy system model and the model of
the correspondingswitching system and global asymptotic N

stability of these systems. Section Il shows the equivalence < (k) Z_(k)>
of these two systems regarding stability, and further sections z(k + 1) =
consider switching systems only. Section IV discusses the

main results of this paper. A sufficient condition is provided sz

i=1

for the asymptotic stability of the system. It is shown that N =t
when this condition is satisfied, there exists a common Lya- _ Zai(k)Aﬁ(k) (k) = w;(k) e
punov function for the subsystems. Section V deals with a ~ ’ N
special case which leads to simultaneous normalization of the Zwi(k)
system matrices. In this case, the subsystems have a common i=1
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The state update at time instaints given as Theorem 3.1:The following are equivalent:
_ o 1) the switching system in (3) is globally asymptotically
ok +1) = Az(k) 3) stable as in Definition 2;
where A € A (i.e., it is one of the matriced;, Ay, - -, 4,).  2) o(Ax) — 0ask — oo;
Also, defineVk > 1 3) p(Ar) — 0 ask — oo.
B Proof: (1) = (2)
Ap=AXAX XA By (6), A{k) = 0 ask — oo; A(k) € Ax. By (7), o(.) is
rtimes a matrix norm and, hence

where the Cartesian product is defined to be the multiplication
of matrices in the same order. The following are definitions of o(A(k)) =0 as k—oo; VA(k) € Ag.
global asymptotic stability of these systems.
Definition 1) The fuzzy system described in (2) is globallyn Particular, max.4(x)e 4, [0(A(k))] — 0 ask — oo. Hence

asymptotically stable if
o(Ap) — 0; as k— oo.

(k) —0 as k— oo 4)
or, equivalently, there exist$- ||, @ norm on u
R 2)— 3
Now
|Z(k)|| =0 as k— oo
o o(Ag) = max{c(A4): A € Ay
for all initial valuesz(0) € R™ and for all > max {p(A): A € A}
possible fuzzy setsS? Vi = 1.--N,Vj = = IaxApA): k
1.---n. .
Definition 2) The switching system described in (3) i§|nce||A|| 2 p(4) from [1, Theorem 5.6.9]. Hence
globally asymptotically stable if
o(Ax) Z p(Ar) 20, VEk =1
z(k+1) = A(k)z(0) — 0
as k—oo; VE(0) €R™ (5) andp(Ay) — 0ask — co. |
. 3)—@1)
where A(k) € Ax. Equivalently From [7, Sec. 7.2]p(A) is a continuous function of the
A(k) =0 as k—oo; A(k)€ A (6) elements ofd. Sincep(A;) — 0 ask — oo, we have
For any matrixA € R™, let p(A) be the spectral radius of p(A(k)) -0 as k—oo; VAE) € Ag.
A (i.e., the largest magnitude of the eigen values4df Let
p(Ay) be defined as Since p(A(k)) is a continuous function oft(k)
Ap) = max {p(A): A € Ay},
PA) teld) ) A(R) =0 as k—oo; VA(K) € Ay
Let || - || be a matrix norm orfR™ and o(A4) be the largest
singular value ofA. Then, hence arriving at (6), which is the required result. n
pn The following theorem illustrates the equivalence of stabil-
o(A) =/p(ATA) ity of a fuzzy system and that of the corresponding switching
= ||A| |sp (7) system.
_ _ Theorem 3.2:A necessary and sufficient condition for the
where || - || is the spectral norm on a matrix. Also, letstability as in Definition 1 of fuzzy system (2) is that the

o(Ax) = max{o(A): A € Ai}. Let (4);; represent the corresponding switching system (3) be stable, as in Definition
elementa;; where A = [a,;]. Let A* denote the conjugate 2

transpose ofA. Proof necessity:The fuzzy system in (2) degenerates into
the switching system whea; = 1 or0,¢ = 1---N, and

[ll. EQUIVALENCE OF THE STABILITY v, w; = 1. Thus, the switching system should necessarily
OF SWITCHING AND Fuzzy SYSTEMS be stable. [ |

This section illustrates the equivalence of the stability of Sufficiency:Let the switching system represented by
a fuzzy system and its corresponding switching system. A = 141,-+, An} be stable as in Definition 2. The proof
necessary condition for stability of either of these systems!2at fuzzy system is also stable uses the fact that given any
also given. The following theorem illustrates some equivalef¥© Seauences, andb in R, such that
statements about the stability of the switching system. The
proof might be hidden in some textbook; we give it here for llaxl| = |[bx|]| Vi 2 K and ar —0 as k— oo
completeness. impliesby, — 0 as k — oo. (8)
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Now, the fuzzy system is stable ¥iz(0) € R™ and all fuzzy IV. A SUFFICIENT CONDITION FOR STABILITY
setsS},i =1---N,j=1---n,ask — o0 The following Theorem 4.1 provides a sufficient condition
(k) —0 for stability of (3). Theorem 4.2 shows that when the condition
N N in Theorem 4.1 is satisfied, there exists a common Lyapunov
<Z ai, (k — 1)Aik> <Z o, (O)Ah)x(o) -0 function V() for all the system matrices id. However, this
P izl commonV (Z) is not necessarily quadratic.

Z i, (k= 1)A;, Z i, (0)A; inition 2 of the switching system (3), is that there exists a

N N Theorem 4.1A sufficient condition for stability, as in Def-
ie., | —0 nion- : _
similarity transformationS € R**™ and a matrix norni| - ||

ip=1 i1=1

e > i (k—1) i, (0)A;, - Ay —0. such that
iyt =1---N ||S_1AS|| < 17 \V/A c .A (10)
Now
Proof: Let
S i (0) o (k= DAy, - A
g1t =L N sp = InaX{”S_lASH; VA € ./4} <1. (11)
< Y @0 e (k= DAL Al Let
ipevip=1--N
ipeevip=1--N
< Y @0 (k-1 Also, let S be the similarity transformation. NoWA(k) € Ay
i1, =1 N
x max {o(A; A, - Ai)} p(A(R)) =p(Ai A, -+ Ai)
01,02, ik :p(S_lAilAiz .. A”S)
i1, i =1--N .
from Theorem 5.6.9 ifl
= o(Ax) ]

<NIS7rAL S| NIST AL ST+ (IS8 44, S]]

sinceX; —1.yo;, = 1;¥V) =1---k, ‘
ey ’ <" from (11) and(12)

Now, since the switching system is stable, by Theorem 3.1
we haves(A;) — 0 ask — oco. From (8), left-hand side- 0

k.
and the condition for stability (4) is satisfied. Hence, the fuzf%ence’_p(“‘,‘k) <in<landp(Ay) — 0 ask — oco. Hence,
system too is stable, as in Definition 1. m the switching system is asymptotically stable. [ |

From now on only the stability of the switching system The'orem 4_.2:|f (_10) in Theorem 4.1 is satlsfled, and the
is mentioned. The following theorem provides a necessd??rm in (10) is an induced norm, then the_re e_X'S_tS a common
condition for the stability of the switching system. Ly(_":lpunov funf:tlon for all the system matrices.iyy i.e., there

Theorem 3.3:A necessary condition for stability (as in€XiSts a functionV: R" — R¥ such that/A € A:

Definition 2) of the switching system in (3) is that every finite * V(Z(k)) > 0,z(k) # 0.
product sequence of the matrices it be stable, i.e., their * AV(Z(k)) = V(Az(k)) — V(z(k)) <O VE > 0.
spectral radius is less than one. Equivalently Proof: Let the premise in Theorem 4.1 be satisfied and
S be the similarity transformation. Lef) = S~!. Define
A <1 Vk 2 1. ©) V(z(k)) = ||Qz(k)||? where the vector norm here induces the
Proof: Suppose not. TherjA; = A; Ay, -+ A;, € A, matrix norm in (10). Now, sincé is nonsingulary (z(k)) #
such thatp(A;, A;, -+ A;,) > 1. Then, consider the switching0 whenz(k) # 0. Now, VA € A andz(k) # 0,

sequence
AV (@(k)) = |Qz(k + 1)II* — ||Qz(k)||?

Tk +1) = Ai A, -+~ Ay w(k). =lQAz(k)|]> - ||QzE(k)|

Then,z(k +m = 1) = A"Z(k). Clearly,z(k) /# 0 ask — oo = |QASH(E)||% = |[(k)||?
sincep(A;) > 1. Hence, every finite product sequence of the hereni(l) — OF (ke
matrices has to be stable. n wherey(k) = Qz(k)
Comment 1:As an immediate consequence of the preced- <[|STLAS|P IR — [lg(k)]]?
ing theorem, the matriced,, A,, - - -, A,, should, themselves, < 0 sincez(k) # 0 and from(10)
be necessarily stable (i.e2(A;)<1Vi=1---N).
Comment 2: Also, the result expressed in [3, Theorem 4.3]This function is the common Lyapunov function. [ |

a necessary condition for stability that the matrices be pairwiseHowever, this common Lyapunov function need not be
stable, is evident as a special case of Theorem 3.3 in whighadratic, i.e.V(z(k)) need not be of the forr& (k) Pz (k)
p(Az) is considered. where P is a positive definite matrix.
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Comment 1:A convenient matrix norm that can be used in V. SIMULTANEOUS NORMALIZATION

(10) is the spectral nor)- ||, = o(-) and is induced from the  gjnce the spectral radius is a norm on normal matrices and
Euclidean vector norm. (see [1, 5.5.6]). Hence, in particulalpecira| radius of each individualmatrix of the subsystems
Theorem 4.1 1reduces to the existence of a nonsinglilaris necessarily less than unity, simultaneous transformation of
such thato(S™ AS) <1;¥A € A. In this case, the common 4., _ 1...x into normal matrices through a similarity
Lyapunov function in Theorem 4.2 can be chosen 10 he,nsformation is motivated. The following theorem is a fallout
quadratic. This is expressed in the following theorem. of the results in the previous section, and the proof follows
Theorem 4.3:The satisfaction of (10) in Theorem 4.1 and,,m Theorem 4.1 and Comments 2 and 3 on Theorem 4.1.
the norm in (10) being the spectral norm (i.e., induced from the Thaorem 5.1The switching system in (3) is stable if there

Euclidean vector norm) is a necessary and sufficient conditigQicts nonsingula$ such thatS—1 AS is normalvA € A and

for the existence of a common quadratic Lyapunov functiqpe spectral radius of each matrikis less than unity.

for all the system matrices ind, i.e., V(Z) is of the form -

o ; o o :

7" Pz where P is a positive definite matrix. Since spectral radius of the matrices being less than unity
Proof n(_ace55|t_y.SupE$se_ there exists a common Lyay 5 necessary condition for stability, simultaneous similarity

punov functionV(z) = == Pz for all the system matrices ansformation of4;,i = 1---N into normal matrices is

ATE A. Since P is positive definite3S nonsingular>P” = congidered. A matrix4 is said to be normalizable if there

Q" Q where@ = 57" Then exists nonsingulas such thatS—!AS is normal. From [5],

V(Z(k)) :f([f)TPf S is necessarily of the formS = T.,U where T, is a
=7 (k)T QT Q(k) modal matrix of A and U is a unitary matrix. Let\y =
P {S71AS:S = T4U;U unitary}. It can be shown that if
where]|| - || is the Euclidean norm. . ) )
Since AV (z(k)) <0,¥z(k) € R", from (13) we have Na={U"MU:Uis unitary}. (15)
vAde A Evidently, p(A) = p(M); M € N4. To check for simulta-
|Qz(k + 1)|| - [|Qz(k)|| <O neous normalization of the matricey,i = 1--- N, initially,
[|QAZ(K)|| — ||Qz(k)|| <0 the problem of pairwise normalization of these matrices is
1QASF(E)|| = |[7(k)|| <0 (14) considered. Once pairwise normalization is achieved, further
conditions can be attached so that simultaneous normalization
whereg(k) = Qz(k). is achieved.
Since (14) is validvg(k) # 0, we have From now on, for simplicity, let the matrice$;,i =1--- N
|QAST(K)| have distinct eigen values. Then the modal matfix of
_sup el 1<0 A can be represented §%, K 4 M4 whereT, is the modal
y(k)#0 matrix of A with normalized columns of right eigen vectors
Hence,o(S71AS)<1VA € A. m of A, K, is a diagonal matrix with nonzero complex elements
Sufficiency:Let S nonsingular be such thatand is the scaling term and 4 is a permutation matrix. Also,
o(S71AS)<1 VA € A. Then, chooseP = QTQ MsM% = M3IM,4 =1 From [5 Theorem 4 and Corollary
where Q = S~!. Clearly, P is positive definite. Then 1] we have the following.
the claim is that the common quadratic Lyapunov function Theorem 5.2: Letd and B be two normalizable matrices.
is V(z) = ' Pz = ||Qz(k)||*>. We prove the claim by Then they are simultaneously normalizableliffT = TT7,.

showing thatAV (z(k)) < 0 YA € A. This proof follows the If A andB have distinct eigen values, then the above condition
same pattern as that in Theorem 4.2 by replacing the gengraluces to the existence of two positive definite matribes

induced norm there by the spectral nosrfy). m and D, such that
Comment 2:1t is evident that if there exists a matrix norm o
|| - || such that||A|| < 1;¥A € A; then, the switching system D1 =QD,Q* Q=T;'Ts
is stable, since the similarity transformatiéncan be taken to Dy =KsK%; D,=KpK5g. (16)
be the identity matrixI. A convenient norm on the matrix
is the spectral norm| - ||s, equal to the largest singular ]

value of the operand matrix. In view of the theorem and Now a relationship is developed between pairwise normal-
comment above, a simplified sufficiency condition, thus, igation of the matricesi;,« = 1--- N and their simultaneous
that o(A) <1;VA € A sinces(-) the spectral norm is the normalization. Let the matrices be pairwise normalizable and
norm induced from the Euclidean vector norm. let the transformatiord, ;, i # j simultaneously normalize the
Comment 3:In particular, this motivates interest in normaimatricesA; and 4;,Vi,j = 1.--- N. Also, S;; = 5;;,Vi,5 =
matrices as (for these matrices) eigen and singular values te-- N. The following theorem now gives the additional
incide. If M is normal,p(M) < 1,0(M) = p(M) < 1, thereby constraints on the transformations so that the matrices are
satisfying the condition mentioned in the above comment. éimultaneously normalizable.
normal matrix}/ is characterized by M* = M*M (see [1, Theorem 5.3:A necessary and sufficient condition for si-
Sec. 2.5)). multaneous normalization of the matricgs,i = 1--- N is
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that the matrices should be pairwise normalizable and theeg,]. With K, = diag{as}, K4,, = diag{by}, D1 =
exist fixedly,lz in 1---N such that diag{|ax|?} and Do = diag{|bx|?}, as in Theorem 5.2, the
Sl_lllzslli or Sl:lleIZi condition D; = QD-,Q* is valid iff

= U; a unitary matrix Vi =1---N. (17) |0k |*skm = qrm|bm|* Vh,m =1---n. (19)
Proof: If the matrices are simultaneously normalizabl®low define the matrixz;,;, = [rxm] for every nonzeray,,
say by a transformatiod then clearly they are pairwise . Skm (20)
normalizable by the same transformation and, gy —! = Tl = Grm

1 is unitary. Hence, only sufficiency is to be proved.
The claim is that the transformatiof,;, simultaneously
normalizes all the matrices. Now, sing; and.S;,; normalize

If the values undetermined from (20) can be adjusted such
that R;,;, has rank one, then the matricels, and 4;, are

A we haveVi — 1..- N simultaneously normalizable. [ |
" Remark 1: A necessary condition for (19) to be satisfied is
Si 1 AiSua, =S SuMy, S Su,  or that  and Q*~! show the same zero-nonzero pattern and all
Sl—ll SzziMiSI_;Szlzz nonzero entries satisfy argumest,,,) = arg(qum)-
el ot S Remark 2: If (19) is satisfied, therR?;,;, can be written as
=U;M3 U7 or UM3zU;" from(17) )
:MAi ENAZ- from (15) Tkm = %, Vk,m =1---n. (21)
k

1 2
thr:eMAﬁéijglAﬁ if] {\rﬁ* rem 5.3 involv heckin Tls. Hence,R;,, is the outer product of two vectors whosth el-
e conditio eorem 5.3 involves checking 8 S2  oments arghe|? = (K, Jax|? and1/ax|? = 1/[(K.a,, a2

being _unitary, whereS, S, are two transformations thatHence,Rlllz is a positive rank one matrix. Also, Ry, is a
&ank one positive matrix then the system of equations in (19)
have a solution.

Remark 3: Thus, if all the matrices are pairwise normaliz-
able, let the transformation that pairwise normalizgsand

conditions on the transformatiorts and.S, for this to occur.
Theorem 5.4Let S; and S, bg two transformations that
normalize a matrixd. Let S; = TAK;M;U;,i = 1,2. Then,

ST, is unitary iff A, be
Kl = (K24l Vi=1---n. 18 . . . . . . .. ..
il =1l ¥ =teeem (8 sy = oK) M) Ui) = T, K M)V ).
Proof. Now Then, as constructed in Step R;; corresponds to the outer
STLSy = (T4 K M UL) (T a Ko MyUs) product of the vectors whodeh elements are/|(K; (25) )x|*
. 9
= Uy ME DM,U and |(£;(27))uxl*. _
1 2ve Remark 4: Equation (19) represents an overdetermined set
where D = Kl_lKQ. Hence, we have of equations and does not uniquely determine the scaling

1 1 s matricesk;(ij) and K;(ij) to the extent of a scaling factor in
(577 52)(S1752) the transformations);; and, it is therefore necessary to check
= (U M{ DMyUs)(Uf M DM, Us)* the conditions of Theorem 5.2 through the matriégs.
= UfMlTDD*Ml U, Step 2: Once Step 1 is satisfied, the existence of the matri-
— *DD*T cessS;; is ensured and the matricég; are determined as in
-l ! Step 1. This step now checks for the satisfiability of (17) in
since M, is a permutation matrix. NonDD*ﬁl — 7 iff Theorem 5.3. From Theorem 5.4 the condition (17) simplifies

D is also unitary orDD* = I. SinceD = K{ 'K, K;,K, t© the following:
gliagonal, the condition thab be unitary reduces to the one Vi=1---N,3l,ls 3 |K;, (I1l)| = |Ki(113)] or
g ; 1 (uda)| = | 1)

The procedure of verifying the satisfiability of Theorem f2 1172 20l
5.1 is summarized below in two steps. Step 1) checks f&s in Remark 3 above, only the outer product of vectors
pairwise normalization of the matrices as in [5], and Step #rmed out of these scaling matricéds;(:ij) and K;(ij) is
which is carried out upon the success of Step 1) checks xpressed as matricés;. Hence, this condition simplifies to
additional constraints on the similarity transformatidf)s so the following:
that simultaneous normalization of the matrices is achieved. .

Step 1: The matricesA;,i = 1---N are checked for Vi=1---N, 30,1 > the pair(Ry,q,, Fy,i)
pairwise normalization. This is done as in [5]. The conditions (Riz1,, Ri,s) has a common premultiplying
for pairwise normalization of two matrices, say,;, and vector in the outer product representation.  (22)
A;, are exposited below. The condition (16) in Theorem o . )

5.2 is to be verified, i.e.k( 4, and K4 are to be found This commonQpremuItlpIymg vec2:tor has t_hth element glther
such thatTs, T3, = Ta,, T3, - As in Theorem 5.2, define (K2, (Ial2))5517 or [(K, (1hl2))5]° depending upon which of

a1 . _ the two matrix pairs(Ry,i,, Ry i) or (R, ,Ry,:) satisfies
_ 1 _ x—1 _ 1z 4y 2l 4Uai
@ =T T4, Compute the matriced = [gy] andQ™™* = (22). Appendix A provides a condition on two rank one
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matrices P, Q which have a common premultiplying vectorthe matricesR;s and R,z are

in their vector outer product representation. The Lemma and
the remark that follows it in the Appendix can then be used

to detect the existence &f, [, such that (22) is satisfied. m

The example below illustrates the application of both the L -
Steps 1 and 2 in checking for simultaneous normalization of 1075 1.075 1.05

the matricesA € A.
Example 5.1:Let N = n = 3. Also let the matrices itd be

—-1.9 03 0.5 47 -19 =01
A =1|-48 1.1 1.0 Ay = |-111 —-48 0.1
-72 26 03 —12.3 —-5.8 0.1

and

1.7 -0.433 —-0.033
A3 =122 -02 -0.1
14 -0.5 0.6

It can be seen thai(A;) = 0.781; p(A2) = 0.985; p(As) =
0.728 and are less than unity. Alse{A4;) = 9.327;0(A,) =

(1132 1.132 1.105]
Ri3=|0956 0956 0.933| and
0,956 0.956  0.933

Rz =|1.075 1.075 1.05 |.
0.896  0.896 0.875

It is seen that the matriceR;,, Ro3, 13 are of rank one
and, hence, the matricel , A;, Az are pairwise normalizable.
Also, the matrices,;, R32, %31 are also of rank one.

Step 2: It is seen that the paiff2;2, R;3) has a common
premultiplying vector in their vector outer product representa-
tion. Thus,l; = 1,l; = 2 can be chosen and (22) is satisfied.
Thus, the matrices are simultaneously normalizable and, hence,
the corresponding switching system is stable.

Comment 4: Simultaneous normalization can be thought
of as an extension of simultaneous diagonalization of the
matrices since diagonal matrices are normal. This case has
been studied in [6] as a class of commuting matrices and

18.882;5(A3) = 3.177 are all greater than unity and, hencey,e proof there proceeds by actually constructing a common
the simplified sufficient condition in Comment 2 to Theorenyanunov matrix. We show that this result follows naturally
4.1 is not applicable. Now, pairwise normalization of thes§ oyr framework of simultaneously normalizable matrices.

matrices is checked as in Step 1.
Step 1: The modal matrices afi;, A5, A3 are, respectively

[0.220  0.33/0.689  0.333/—1.69
T4, = 0.688 0.667/1.689 —.667/—1.689
0.688  0.667/2.33  0.667/—2.33
[0.224/0.561 0.224/—0.561 0.408
T4, = | 0.57/0364 0.57/—0.364 0.817
0.791/0.703  0.791/-0.703 0.408

and

0.341/-1.82 0.341/1.18 0.218
T4, = |0.763/—1.997 0.763/1.997 0.436
0.55/-2.337  0.55/2.337 0.873

To crleck for pairwise normalization of,, A,, we findQ» =
T4, and Q}3*, respectively, as

[0.689/—0.225 0.689/0.225 0
0.53/-1.45  0.53/2.14  0.685/-1.226
| 0.53/-2.14  0.53/1.45  0.685/1.226
[0.726/—0.225 0.726/0.225 0
0.471/-1.45 0.471/2.14 0.73/-1.226
| 0471/-2.14  0.471/1.45  0.73/1.226

Hence, the matrix?,;, computed as in (20) and the entry;
not found from (20) is adjusted such th&t. has unit rank is

1.053 1.053 1.263
Rip = ]0.889 0.889 1.067
0.889 0.889 1.067

Similarly, Q23 = 7774, andQs; = T T4, are computed.
Also, Q21 = QT , Q13 = Q31, Q32 = Q54 are computed. As

before, the matrice®z3, Ro1, R32 and Rs; are calculated and

This ties the circle of ideas of demonstrating stability by
showing the existence of or by actually constructing a common
quadratic Lyapunov function for the matrices.ih

Theorem 5.5 [6]: If the matricesA4;,i = 1--- N commute
pairwise, then the switching system (3) is stable.

Proof: Let the matricesA;, As,--- A4, commute pair-
wise. Then the matrices are simultaneously diagonalizable [1,
Theorem 1.3.12] and, hence, simultaneously normalizable. The
switching system then is evidently stable by Theorem 5.1.

To see this, the matrices are now pairwise diagonalizable
[1, Theorem 1.3.12] and lef;; be the transformation which
diagonalizes bott¥; and 4;. Here, S;; = S;;. The claim is
that any of theses;; will simultaneously diagonalize all the
matricesA;,i = 1-.-N. This is seen as shown below.

Now, if 51,5, diagonalize a matrix4, and D is any
diagonal matrix, thers; 'S, DS; 1S, = D. This is because

STLSy = (T4 K M) (T4 Ko My)
IMlTDlgMQ, where
Do IKl_lKQ is diagonal.
Now

ST18,DS51S, = MT Dy, MyDME DMy
=M{'D ;DD M,
=D. (23)

Here, the notation is as previously uséd. is the modal matrix
of A with normalized right eigen vectors of as its columns,
K, K, are diagonal scaling matrices with nonzero complex
entries, and\{;, M, are permutation matrices. Now, singg;
diagonalizesd; to sayD;, we haveVi = 1-.- N,

SitAiSui, = Sit SuiDiSitSua,

=D, from(23).
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Hence, any transformatia$t, ;, that diagonalizesi;, and A,, Lemma l:Let P = [p;;] and Q = [g;;] be rank one
will also diagonalize the other matrices. Hence, the matricegtrices. Then necessary and sufficient conditions on the
are simultaneously diagonalizable. B matrices so that they may have a common premultiplying

vector in their vector outer product representation are

1) the zero-nonzero pattern ¢f and @@ coincide. Upon a
VI. CONCLUSION nonmatch, the column containing the zero that did not
Stability of the Sugeno—Takagi model [2] of a fuzzy system  match should all be zero;

has been considered in the asymptotic sense. A necessa) Vj = 1---n:
condition for the global asymptotic stability which generalizes
a result reported in [3] is given. A sufficient condition is also
provided here for the global asymptotic stability of the system. o
A particular case of this sufficient condition, simultaneous Rémark 1:1f 2 and@ have a common premultiplying vec-
normalization of the system matrices, is considered and a c&f- in their vector outer product representation, thenb, ¢ €
structive procedure to check for simultaneous normalizatidh’ > £ = ab® and @ = ac’. The two conditions in the
is developed. This condition is easily checked using softwal@nma are evident from this representation.
utilities such as Matlab. A necessary and sufficient condition
for asymptotic stability is yet elusive and further efforts should
be aimed in this direction. The approach considered in thig] r. A. Horn and C. R. JohnsomMatrix Analysis Cambridge: Cam-
paper concentrates only on the consequents of the fuzz%/] _kFridTgek Univ. S’riﬂss,sl%& - dentification of Svst di
implication rules and brackets all antecedents together, |e[ abplia"’t‘%ngrt'o mddeﬁr?geg‘r’]’d Co“nztfgléEeé‘T'r'gﬁs'f’gygt.’S&Z;”mcsyg:m'S
these results hold for very general systems since stability iS vol. SMC-15, pp. 116-132, Jan./Feb. 1985.
shown for all possible fuzzy sets and membership functiond3! K. Tanak?and M. Sugeno, “Stability analysis and design of fuzzy control
A method to take into account the specific knowledge Ofy ¥ Sanaxa and 1. Sanc, A 16bust aiabiization problem of fuzzy control

antecedents is needed. systems and its application to backing up control of a truck-trailer,”
IEEE Trans. Fuzzy Syswol. 2, pp. 119-133, May 1994.
[5] C. Pommer and W. Kliem, “Simultaneously normalizable matrices,”
Linear Algebra Applicat.vol. 94, pp. 113-125, Sept. 1987.

Vi:1---n, qij;é(), Zﬁzkj.
ij
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