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With the neglect of the translational motion of the bubble, approximate solutions may be found for the
rate of solution by diffusion of a gas bubble in an ündersaturated liquid-gas solution; approximate solutions
are als6 presented for the rate of growth of a bubble in an oversaturated liquid-gas solution. The effect of
surface tension on the- diffusion process is also considered.

INTRODUCTION

THE stability of gas bubbles in a liquid-gas solution
is of concern in several problems of physical in-

terest. Among these may be mentioned the extinction
of sound or light in water by air bubbles, and the diffu-
sion of air into the bubbles formed in the cavitating
flow of a liquid.'

A gas bubble in a liquid-gas solution will grow or
shrink by diffusion according as the solution is over-
saturated or undersaturated. The resulting motion of
the bubble boundary introduces a transport term in
the diffusion equation which makes it very difficult to
obtain an analytic solution. This effect of the motion
of the medium on the diffusion process is neglected in
the following analysis; the resulting approximation,
however, is uite good. The physical reason for the ac-
curacy of the approximation is that the concentration
of dissolved gas in the liquid surrounding the bubble is
much smaller than the gas density in the bubble, and
the region in the solution around the bubble through
which the diffusion -process takes place is very soon
much larger than the bubble itself. Under this circum-
stance, the size of the bubble is of little consequence so
far as the configuration of the surrounding concentra-
tion in the solution is concerned. The- bubble size is
important only insofar as it determines the interfacial
area across which the mass transfer between phases
takes place.

A more significant effect on the accuracy of the nu-
merical results obtained here arises from translatory
motion of a gas bubble in a liquid. Consider, for ex-
ample, the motiOn due to buQyancy of an air bubble of
density p in water of density p'. The buoyant force is

- F(4x/3)g(p'p)R3,
1 See M. S Plesset, J. App: Mech. 16, 277 (1949).

where g is the acceleration of gravity and R is the
bubble radius. The terminal velocity of rise of the
bubble, v, is attained when this force is balanced by the
force of resistance which is given approximately by
Rybczynski's formula2 'to be -

- 2'+3,h
FR=ólri.&'Rv -

3z'+ 3/h

where ' is the coefficient of viscosity of the liquid and
is the coefficient of viscosity of the gas. The terminal

veloéity is found at once and, since p/p' and are
small, it has very nearly the- value- -

vm (l/3)(pF//h)R2. -

Thus, an air bubble of radius R 1O cm has a ter
minal velocity of rise in water v = 3 X 10 cm/sec. Even
this slow motion through the diffusion atmosphere
around the bubble is sufficient to produce some slight
acceleration of the diffusion process. Hence, the diffu-
sion rates deduced here will be somewhat low.

A summary of the results is contained in Tables I,
II and in Figs. 1-4.

MATHEIV14TICL SOLUTION OF THE
DIFFUSION PROBLEM

Let us suppose that at the initial time I = 0 a spherical
gas bubble of radius R0 is placed in a liquid-gas solution
in which the concentration of dissolved gas is uniform
and equal to c. The solution will be assumed to be at
constant temperature and pressure, an4- the dissolved
gas concentration for a saturated solution at this tem-
perature and pressure will be denoted by c8. The center

2See H. Lamb, Hydrodynamics, 6th edition (Cambridge 'Uni-
versity Press, London, 1932), p. 601. Rybczynski's formula should
be used here rather than Stokes' formula, since the latter applies
strictly to a rigid sphere in a fluid medium:
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TABLE I. Times for complete solution of air bubbles in water. 1.0

R,101cm Ri =itr cm Rs=10' cm
T TA T5 TAX10sTSX1OZTAX1O-i TsX1O

(sec.) (sec.) (lee.) (sec.) (sec.) (sec.) (sec.)

0 1.05 1.25 1.17 1.25 1.24 1.25 1.25
025 1.44 l.7 1A6 1.67 1.64 1.67 1.66
0;50 2.21 2.50 1.96 2.50 2.41 2.50 2.49
0.75 4.58 5.00 2.99 5.00 4.60 5.00 4.95
1.00 is 6.63 is 58.8 is 580

The tabulated Values are the times, in seconds. required for air 'bObbles
to dissolve completely in air-water solutions at 22°C. R, is the initial radius
of the bubble. f is the ratio of the dissolved concentration of air in the
solution ci to the dissolved concentration for a saturated lolution c.. T is
time calculated from the complete solution of Eqs. (17) with surface
tension nelected TA is the time calculated from the approximation to
Eq. (17) given in Eq. (16) i'hich also neglects surface tension; T is the
time calculated including surface tension effects under the same approxima-
tion as is used n obtaining T4 so that the effects of surface tension are
noted by comparison of T and TA. It should be remarked that T and TA
are proportional to R5.

TABLE IL Times of growth of air bubbles in
water from R0 to bR5.

= 10-1 cm Ro l02 cm
T TA T TAXl0' TXl0'I (see.) (see.) (see.) (sec.) (see.)

1.25 466 496 567 496 501
1.50 228 248 266 248 249
1.75 149 165 174 165 166
2.00 110 124 129 124 124
5.00 24.6 30.9 31.7 30.9 31.0

The tabulated values are the times, in seconds, required for air bubbles
in an air water solution at 22 C to grow from & to bR8 The ratio of the
dissolved concentration to the dissolved concentration for .a saturated
solution is 1. T is calculated from complete solution of Eqs. (24) which
neglects surface tension; TA is calculated from the approximate solution
of Eq. (23) which also neglects surface tension; and T5 is the time calcu-
lated with the'same approximation exce,t that the, effect of surface t&nsion
is included.

of the gas bubble will be assumed to be at rest, arid it
will be taken as the origin of a spherical polar co-
ordinate system. At any time 1>0 when the bubble
radius is R, the dissolved gas concentration c at a point
in the solution at a distance r from the. origin 'is tO be
found from the diffusion equation

(1)

where IC is the coefficient of diffusivjy of the gas in the
v c liquid. The transport term, j&, in which u is the

velocity produced in the medium by bubble growth or
shrinkage, has been omitted from the left-hand side of
Eq. (1) A spherically symmetric solution, .c(r, i), of
Fq. (1) is to be found whic1i satisfies the following
conditions:

c(r, 0)=c, r>.R; limcfr, 1)r=c1, 1>0; (2a)

c(R, 1)=c8, 1>0. (2b)

It is convenient to introduce' the dependent variable

u=r(c-c5) (3)

hi place. of c so that Eq. (1) 'becomes

au/at = Kau/ar2, (4)

0 ac a aff aa
x

FIG. 1. Radius-time relation for dissolving bubbles neglecting
surface tension. The ordinate, e, is the ratio of the bubble radius
to its initial radius, and the abscissa, x, is a dimensionless variable
proportional to the square root of the time (compare Eq. (13)).
The solid curve is' the approximate quasi-static solution of Eq.
(16) which, in this dimensionless form, gives the radius-time be-
havior for any type of gas bubble in any undersaturated solution.
The dashed curves come from the more. accurate Eqs. (17) and
depend in form on the ratio of the saturated dissolved-gas con-
centration to the gas density (c8/p); the value used in these curves
is c8/p=0.02, which is the value for an air-water solution at 22°C.
f is the ratio of the initial dissolved-Sir concentration to the con-
centration at saturation.

with initial and boundary conditions

u(r, 0)=rô, (5a)

u(R, 1) = 0. (5b)

The constant t has, of course, the. value (ci- c5). One

c:l6
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FIG. 2. Radius-time relation for growing bubbles neglecting
surface tension. The solid curve is the approximate quasi-static
solutiOn of Eq., (23) and gives in dimensionless form the radius-
time behavior for a bubble growing in any oversaturated solution;
The dashed curves are the more accurate solution of Eqs. (24).
The dimensionless variables s and x are defined in Eq. (21); 1 is
the ratio of the dissolved-gas concentration to the concentration
at saturation. For the dashed curves, it has been assumed that
c./p=0.02.
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FIG. Radius-time relation for dissolving bubbles with and
wuI]tout surface tension. The solid curve gives the radius-time
behavior for a gas bubble in an undersaturated solution with sur-
face tension neglected (Eq. (16)). The dashed curves include the
effect of surface tension and are drawn for an initial bubble radius
R010' cm; the surface tension constant is for an air-water
combiñatibn, and c/p=O.O2.

need only make a linear shift in the r-coordinate by

in order to make the problem identical with a familiar
problem in heat conduction which has the solution3

o
u(r, l)= . (R±'){exp (')2/4itJ

2(irict) o

exp[ (+')2/4Kti}dE'. (6)

The quantity of interest is the concentration gradient
at r=R. One finds directly frOm (6) that

(au/or)R=ô{1+R/(irKt);

and, since (äc/ôr) , = (au/ar) R/R, one has

1 1

+
R R (ii-id)

Thus, the mass flow into the bubble per unit time has
the value

dm /t9c\ 1 1

=4IrR2K( =4irR2 + . . (8)
dl \&r/a R (1rKt)

Now Eq. (8) is a solution of the diffusion problem which
is valid only fOr a stationary bubble boundary. It is,
however, as has been discussed above, a reasonable
physical approximation to use this result for a bubble
boundary which changes in time by diffusion. Then,
if p is the density of the gas in the bubble, one has

drn/dl = 4irR2p(dR/dl), (9)

See, for example, H. S. Carslaw, Introduction to the Mathe-
m&ical Theory of the Condiscti&n of Heat in Solids (Dover Publica-
tions, New York 1945), p. 158.

(7)
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Ftc. 4.)Radius-tirne relation for growing bubbles with and with-
ou&irface tension. The solid curve gives the radius-time behavior
for a gas bubble in an oversaturated solution with surface tension
neglected (Eq. (23)). The dashed curves include the effect of sur-
face tension; for these curves the initial bubble radius has been
taken to be l0 cm; the surface tension constant is that of an air-
water combination; and c,/p='O.02.
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so that, from Eq. (8),

dR Köl 1-=- + (10)'
dl p R (lrKt)1

In addition to the coefficient of diffusivity, K, the physi-
cal constants which enter are the ratio of the saturated
dissolved gas concentration to the gas density

d= c8/p,

and the ratio of the initial dissolved gas concentration
to the concentration at saturation

1= ci/c,.

The differential Eq. (10) is readily solved, and the two
cases of an undersaturated solution, 0f< 1, and of an
oversaturated solution, f> 1, will be considered sepa-
rately.

Bubble Dissolving in an Undersaturated Solution

Equation (10) may be written in the form

dR 1 1=a
dl R (ir,ct)

where now a is a positive constant with the value

a=K(c,c1)/p=Icd(lf). (12)

It is convenient to put Eq. (11) in dimensionless form.
With

=R/Ro, x2= (2a/R02)t, (13)

the differential equation becomes

d/dx= x/e-2y, (14)

ae 04 Qz 0.8 1.0
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where

2irp
(15)

(18)

(22)

The approximate solution obtained with the neglect
of -y is

2_ i+2; (23)

and the accurate solution of Eq. (20) is readily found
tobe

=e72{cosh[(l+72)zJ
sinh[(1±2)4z]I; (24a)

x= e(1---y2) sinh[(1+'j2)z. (24b)

A graphical comparison of the solutions given by Eq.
(23) and Eqs. (24) is given in Fig. 2, and it is evident
from both solutions that varies linearly with x when
x is large. In fact, one finds from Eqs. (24)

e, x>>1: (25)

A tabulation of the times of growth from R0 to bR0
for air bubbles in water at 22°C is presented in Table II.

EFFECT OF SIFACE TENSION ON THE DIFFUSION

If the surface tension cOnstant for the given gas-
liquid combination is o, then the equation of state for
a gas bubble of radius R in a liquid at pressure p, and
temperature T, is

p±2cr/R= (B/M)p(R)T (26)

where p(R) is the gas density in the bubble, M is the
molecular weight of the gas, and B is the universal gas
constant. Thus,

M 2Mcrl
p(R)'p±---- -,

BT BTR
- =p()+r/R, (27)

where p( ) is the density of the gas under the same
conditions of pressure and temperature with a gas-
liquid interface of zero curvature, and

= 2M/BT. (28)

The mass of gas in the bubble is

4ir 4ir 4ir
rn=R3p(R)=--R3p(oo)-l----R2r (29)

3 3 3
so that

dm dR 2i--4wR2 p()+ . (30)
dl dl 3R

Equation (30) now replaces Eq. (9). The equality of
(8) and (30) gives the differential equation for the
bubble radius

dR ,(cc,) 1 1-= + . (31)
dl p( )±2r/3R R (1rKt)

The dissolved concentration, c8, which is in equilibrium

It is to be noted that the constant y is in general small
compared to x/e when enough time has elapsed for
significant diffusion to take place, so that an approxi-
mate solution may be obtained by neglecting . This
neglect is equivalent to omitting the second term of
Eq. (11) in which, the time appears explicitly. This
approximate solution is

=1 x. (16)

A solution to the complete equation may also be readily
found. Since Eq. (14) is homogeneous, it is convenient
to express the solution in parametric form. One then
finds in a straightforward maer that
e=erz{cos[(1_.ni2)zJ

_y(1_72) sinE(1-72)zJ}; (17a)

x=e(1_72)_sin[(1_y2)z. (17b)

The scale of the parameter z has been fixed so that
z = 0 when x =0 and = 1. A cOmparison of the approxi-
mate solution (16) with the accurate solution (17) is
given graphically in Fig. 1, and it is evident that the
approximation is fairly good. Herein is contained a justi-
fication of the remark in the introduction that the
diffusion concentration c is rapidly adjusted to a quasi-
static distribution.

The time required for a bubble to dissolve completely
is given from Eq (16) by x=1, and from Eqs. (17) by
x=exp[_y(1_y2)cos_1y]. In either case, the time
for complete solution is proportional to R02. Some nu-
merical values for times of complete solution are given
in Table I for air bubbles in water where the constants
have been fixed by taking K=2X1O5 cm2 sec., and
from the solubility of air at 22°C, c8/p= 0.02.

Bubble Growth in an Ovérsaturated Solution

For this case, Eq. (10) may be written in the form

dR 1 1a +
dl R (irict)

where the positive constant a now has the value

a=K(cIc3)/p_Kd(J-1). (19)

The differential equation may again be put into di-
mensionless form

d/dx= (x/c)+2y (20)

by the substitutions

=R/Ro; x2=(2a/R02)/. (21)

The constant y now is given by

(ci_c)
- 2irp



with the gas density p(R), is given by

(32)

where the value of d is the same as that used in the
previous formulation since it may be shown that d is
not affected by surface tension effects. As before, the
initial dissolved concentration, c, is conveniently ex-
pressed in terms off by the relation

An approximate solution corresponding to Eqs. (16)
and (23) except for the inclusion of surface tension is
found by neglecting the small constant b in Eq. (36).
This solution is

1 1 21
1e2-2o1 I(1)Lif 3J

22 1 1 21 a+(1f)+I-- In1fLlf 3 o+(1J)
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1f). (38)

When 0f<1, one may put
x2 =x'2(1 f) (39a)

in Eq. (38). The resulting function (x) when R0= 10
cm is compared graphically in Fig. 3 with the corre-
sponding solution without surface tension given by
Eq. (16). The time of complete solution with surface
tension is given in Table I for air bubbles in water,
where as before the constants have the values K= 2
X10-5 cm2 sec.', d=0.02.

Whenf> 1, the substitution

x2=x'2(J-1) (39b)

may be used in Eq. (38) andthe resulting function (x)
for R0= 10 cm is compared graphically in Fig. 4
with the corresponding solution without surface ten-
sion given, by Eq. (23). Numerical values for the growth
of -air bubbles in oversaturated water with the effect
of surface tension included are given in Table II.

The special case 1=1 is of interest. If surface tension
is neglected, a bubble of any radius would be stable
against diffusion in a saturated solution. Such a bubble
actually dissolves because of surface tension, and its
behavior in time is found by putting 1=1 in Eq. (36).
The solution with neglect of the term containing the
constant b is

1 e+ ô(1 - ) = (3ô/2)x'2, (40)

and the time to complete solution is given by

x'=(2/33)(1±ô). (41)

Numerical values determined from Eq. (41) are given
in Table I where the constants have the values appro-
priate for air bubbles in water at 22°C.,

c1/p(oo)=fd. (33)

Equation (31) may now be written

dR 1f+r/(Rp(co))íl 1
(34)-Kd ± ,

dl 1+2T/(3Rp()) I R (7rKl)

and the following dimensionless variables

e=R/Ro, x'2 (2,cd/R02)l,

put this equation in the form

d (1f)±/e x'

(35)

+2b , (36)
dx' 1±2/3

where
ô=r/[Rop()], b=(d/2ir). (37)


