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Abstract— This paper is dedicated to the stability analysis of
nonlinear sampled-data systems, which are affine in the input.
Assuming that a stabilizing continuous-time controller exists
and it is implemented digitally, we intend to provide sufficient
asymptotic/exponential stability conditions for the sampled-data
system. This allows to find an estimate of the upper bound
on the asynchronous sampling periods. The stability analysis
problem is formulated both globally and locally. The main idea
of the paper is to address the stability problem in the framework
of dissipativity theory. Furthermore, the result is particularized
for the class of polynomial input-affine sampled-data systems,

where stability may be tested numerically using sum of squares
decomposition and semidefinite programming.

Index Terms— Sampled-data control, control affine nonlinear
systems, stability analysis, dissipativity.

I. INTRODUCTION

The stability of nonlinear sampled-data systems is a chal-

lenging problem. It is of great interest since in applications

practical controllers are often implemented digitally. For the

case of nonlinear systems, the emulation approach is often

considered [1]. In this approach, a continuous-time controller

is designed, next it is implemented using a sample-and-hold

device. Intuitively, the sampling period must be chosen small

enough to ensure the stability. A quantitative estimation of

the so-called maximum allowable sampling period MASP is

very important from the practical point of view, and several

works in the literature target this problem (see for example

[1], [2] and [3]).

The case of linear sampled-data systems has been ex-

tensively studied. For the input delay approach, based on

Lyapunov-Krasovskii functionals, see [4], [5] and [6]. The

works in [7] and [8] use tools from robust control theory.

A polytopic approximation of the discrete-time model is

used in [9] and [10] to handle the sampling effect based

on Lyapunov-Razumikhin functions.
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Signaux et Systèmes, European Embedded Control Institute (EECI),
SUPELEC, 3 rue Joliot Curie, 91192 Gif-sur-Yvette, France.
lamnabhi@lss.supelec.fr

For the case of nonlinear systems, we cite as follows

some recent works. In [1], the authors specialized the results

on generic Networked Control Systems (NCSs), for the

particular case of sampled-data systems; local and global

stability conditions are presented based on the hybrid systems

theory. In [11], asymptotic stability of NCSs is studied

using the same hybrid systems formulation; the Lyapunov

functions are constructed with a sum of squares (SOS) tech-

niques. The input delay approach is explored in [2] for the

nonlinear case. A method for finding a control strategy that

guarantees robust global stabilization of nonlinear sampled-

data systems is presented in [3], based on the notion of

sequential reachability.

The notion of dissipativity was introduced by [12]. Since

its introduction, the dissipativity theory has been attracting

an increasing attention, it can be used to study stability,

passivity, robustness and other analysis and design problems.

It was motivated by passivity properties of electrical circuits,

and it can be seen as a generalized notion of abstract energy

for dynamical systems. Recently, local asymptotic stability

of bilinear sampled-data systems controlled by a linear state

feedback has been considered in [13], using the analysis

of contractive invariant sets and the dissipativity theory.

The obtained results are promising compared to the existing

literature [14]. However, the extension for generic nonlinear

systems does not seem to be trivial.

The purpose of this work is to extend our previous result

in [13], concerning the analysis of bilinear sampled-data

systems, to the case of input-affine nonlinear sampled-data

systems. Conditions are presented for both asymptotic and

exponential stability. Dissipativity based conditions are used

to estimate the MASP. The robustness with respect to the

sampling jitters is considered. The result is shown to be

applicable for local and global analysis. Additionally, we

study the particular case of polynomial systems, where SOS

techniques are used to derive storage and supply functions.

We apply the result to a benchmark example from the

literature to show the usefulness of the proposed stability

conditions.

The remainder of the paper is organized as follows: the

problem under study is introduced in Section II; in Section III

the system is represented by an equivalent model which

is useful for our dissipativity analysis; sufficient conditions

for the asymptotic/exponential stability of affine nonlinear

sampled-data systems is given in Section IV; finally, an

illustrative example is presented in Section V.

Basic definitions and notation: R
n is the n-dimensional

euclidean space. The set of real matrices of dimension n×m
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- ẋ = f (x)+ g(x)u

SH K(x(tk))

x(t)u(t)

Fig. 1. The sampled-data feedback control of an affine nonlinear system.

is denoted by R
n×m. The euclidean norm is denoted by | · |.

For a signal x(·), we denote by ‖x‖ the L2 norm of x(·), and

‖∆‖ is the L2-induced norm of the operator ∆. The transpose

of a vector or a matrix A is denoted by AT . For P ∈ R
n×n,

P > 0 means that it is a positive definite, and P ≥ 0 means

that it is positive semi-definite matrix. The notation p(x) ∈
R[x] with x ∈ R

n, denotes that p(x) belongs to the set of

polynomials in the variables {x1,x2, · · · ,xn} with coefficients

in R. For x1,x2 ∈ R
n, (x1,x2) denotes [xT

1 ,x
T
2 ]

T . A function

β : R≥0 → R≥0 is said to be of class K if it is continuous,

zero at zero and strictly increasing. It is said to be of class

K∞ if it is of class K, and it is unbounded. A function β :

R≥0 ×R≥0 → R≥0 is said to be of class KL if β (·, t) is

of class K for each t ≥ 0, and β (s, ·) is non-increasing and

satisfies limt→∞ β (s, t) = 0 for each s ≥ 0.

II. PROBLEM FORMULATION

Consider the affine nonlinear control system given by

ẋ(t) = f
(

x(t)
)

+ g
(

x(t)
)

u(t), ∀t > t0, x(t0) = x0. (1)

where x(t) ∈ R
n and u(t) ∈ R

m are the state and the input

respectively. The functions f : Rn → R
n with f (0) = 0, and

g : Rn×m → R
n are sufficiently smooth to make the system

well defined, i.e. for any x(t0) and any admissible u(·),
the existence and uniqueness of a solution is ensured on

[t0,∞). We suppose that a continuous-time controller u(t) =
K
(

x(t)
)

stabilizes the equilibrium x= 0 of the system, where

K : Rn → R
m is a continuously differentiable function. We

consider the following notions of stability

Definition 2.1: The equilibrium point x = 0 of (1) is

locally uniformly asymptotically stable in a neighbourhood L
of the equilibrium, if there exists a class KL function β (·, ·),
such that

|x(t)| ≤ β (|x(t0)|, t − t0), ∀t ≥ t0, ∀x(t0) ∈ L. (2)

The equilibrium point x = 0 is globally uniformly asymptot-

ically stable if (2) is satisfied for any initial state x(t0) ∈R
n.

Definition 2.2: the equilibrium point x= 0 of (1) is locally

exponentially stable in a neighbourhoodL of the equilibrium,

if (2) is satisfied with

β (s, t) = cse−λ t , c > 0, λ > 0

and it is globally exponentially stable if this condition is

satisfied for any initial state x(t0) ∈R
n.

�

-

{

ẋ = fn(x)+gn(x)w

y = ∂ K
∂ x

ẋ

∆sh

y(t)w(t)

Fig. 2. The equivalent representation of the sampled-data system (3).

We consider the emulation of the controller u = K(x) with

the following assumptions:

• the set of uncertain sampling instants {0 = t0 < t1, . . . <
tk < .. .} satisfies

0 < tk+1 − tk ≤ hmax, ∀k ∈ N,

for a given upper bound on the sampling periods hmax,

and

lim
k→∞

tk = ∞;

• the control input is then calculated form the sampled-

data state

u(t) = K
(

x(tk)
)

, ∀t ∈ [tk, tk+1).

Under these assumptions, we obtain a closed-loop

sampled-data system (Fig.1)

ẋ(t) = f
(

x(t)
)

+ g
(

x(t)
)

K
(

x(tk)
)

,

∀t ∈ [tk, tk+1), k ∈ N. (3)

Problem: Find a criterion for the local and global asymp-

totic/exponential stability of the equilibrium point x = 0 of

the sampled-data system (3).

III. ROBUSTNESS ANALYSIS REPRESENTATION

Note that the system (3) can be written

ẋ(t) = fn(x(t))+ gn(x(t))w(t), ∀t ∈ [tk, tk+1), k ∈N, (4)

where fn(x) = f (x) + g(x)K(x), gn(x) = g(x) and w(t) =
K
(

x(tk)
)

−K
(

x(t)
)

. Note that fn(x) represents the dynamics

of the nominal continuous-time closed-loop system, i.e. the

dynamics without the sampled-data implementation. This

shows that the sampled-data system (3) can be represented

by the equivalent feedback connection of
{

ẋ = fn(x)+ gn(x)w,

y = ∂K
∂x

ẋ,
(5)

with the operator ∆sh : y → w

w(t) = (∆sh y)(t) =−

∫ t

tk

y(τ)dτ, ∀t ∈ [tk, tk+1). (6)
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This representation is shown in Fig.2. Note that the effect

of sampling and the variations of the sampling periods

are modelled by the operator ∆sh. This approach has been

considered in [7] and [8] to study the stability of linear

sampled-data systems. In [7], the lifting technique is used

to find a bound on the gain of the operator ∆sh. It is

shown that ‖∆sh‖ ≤ δ0 with δ0 = 2
π hmax. This bound is

attained (‖∆sh‖= δ0) when tk+1−tk = hmax. The scaled small

gain theorem is then used to find linear matrix inequalities

(LMI) stability conditions. In [8], the last boundedness of

the operator is used along with a passivity type property, to

find less conservative LMI stability conditions. The result

is based on robust control theory, by using a frequency

domain approach, Integral Quadratic Constraints (IQC), and

the Kalman-Yakubovich-Popov lemma.

The methods in both [7] and [8] are developed for linear

time invariant (LTI) sampled-data systems, and they cannot

be applied to nonlinear systems. In [13], the operator’s

properties are used to develop a stability analysis for bilinear

sampled-data systems, based on dissipativity theory. We

recall as follows two important lemmas stated in [13], based

on the work in [8] .

Lemma 3.1: [13] Let ∆sh be the operator defined in (6).

Then, for any y ∈ L2[0,hmax) and 0 < XT = X ∈ R
m×m we

have the following inequality:

I1(t) =
∫ t

tk

(∆shy)T (τ)X(∆shy)(τ)− δ 2
0 yT (τ)Xy(τ)dτ ≤ 0,

(7)

for all t ∈ [tk, tk+1).
Lemma 3.2: [13] Let ∆sh be the operator defined in (6).

Then, for any y ∈ L2[0,hmax) and 0 ≤ Y T = Y ∈ R
m×m, we

have the following inequality:

I2(t) =

∫ t

tk

(∆shy)(τ)TYy(τ)+ yT (τ)Y (∆shy)(τ)dτ ≤ 0, (8)

for all t ∈ [tk, tk+1).
In this note we propose to exploit the previous lemmas

to develop a stability criterion for nonlinear sampled-data

systems, which are affine in the control. The method is

inspired by the so called exponential dissipativity [15].

IV. MAIN RESULTS

A. Stability analysis

In the following we provide the main results of this note.

Theorem 4.1: Consider the sampled-data system (3), and

the equivalent representation (5), (6). Consider the quadratic

form

S
(

y(t),w(t)
)

=

[

y(t)
w(t)

]T [
−δ 2

0 X Y

Y X

][

y(t)
w(t)

]

(9)

with δ0 = 2
π hmax, 0 < XT = X ∈ R

m×m, and 0 ≤ Y T = Y ∈
R

m×m. Consider a neighbourhood D⊂R
n of the equilibrium

point x = 0, and suppose that there exist a differentiable

positive definite function V : D → R
+, such that there exist

class K functions β1 and β2, with

β1(|x|)≤V (x)≤ β2(|x|), ∀x ∈D, (10)

and the following inequalities are satisfied:

V̇
(

x(t)
)

+αV
(

x(t)
)

≤ S
(

y(t),w(t)
)

, (11)

V̇
(

x(t)
)

+αV
(

x(t)
)

≤ S
(

y(t),w(t)
)

e−αhmax, (12)

with α > 0, for and any x(t)∈D. Then, the equilibrium x= 0

of the system (3) is locally uniformly asymptotically stable.

Moreover, consider the sub-level set defined by V (·) and a

scalar c > 0

Lc := {x ∈R
n : V (x)≤ c} (13)

Then the set Lc∗ defined by the maximal sub-level set of V

contained in D

c∗ = max
Lc⊂D

c (14)

is an estimate of the domain of attraction. Finally, if all the

conditions are satisfied globally, with class K∞ functions β1

and β2, then the equilibrium x = 0 is globally uniformly

asymptotically stable.

Proof: To show the stability of the sampled-data

system, we define first the following function

W (t) =V
(

x(t)
)

eα(t−tk)−

∫ t

tk

S
(

y(τ),w(τ)
)

,

for any t ∈ [tk, tk+1). The conditions (11) and (12) are

sufficient to have

Ẇ (t)≤ 0, ∀t ∈ [tk, tk+1), ∀x(t) ∈D. (15)

The last equation yields

V
(

x(t)
)

eα(t−tk)−

∫ t

tk

S
(

y(τ),w(τ)
)

≤V (tk). (16)

From Lemma 3.1 and Lemma 3.2, it is easy to see that

V
(

x(t)
)

≤ e−α(t−tk)V
(

x(tk)
)

, ∀t ∈ [tk, tk+1), ∀x(t) ∈D.
(17)

Clearly, the set Lc∗ is positively invariant [16], and it is

the largest sub-level set contained in D. Consider an initial

condition x0 ∈ Lc∗ . From the continuity of the solution x(t),
(17) leads to

V
(

x(t)
)

≤ e−α(t−t0)V
(

x(t0)
)

, ∀t ≥ t0, ∀x0 ∈ Lc∗ . (18)

From (10) and (18), we see that for any solution with x(t0)∈
Lc∗

|x(t)| ≤ β−1
1

(

V
(

x(t0)
)

e−α(t−t0)
)

≤ β−1
1

(

β2(|x(t0)|)e
−α(t−t0)

)

:= β (|x(t0)|, t − t0), ∀t ≥ t0, ∀x(t0) ∈ Lc∗ .

The function β (·, ·) can be easily seen to be a class KL
function. This shows that x = 0 is locally uniformly asymp-

totically stable. Finally, it is trivial to see that if all the

conditions are satisfied globally, with a class K∞ functions

β1 and β2, then x = 0 is globally uniformly asymptotically

stable. This completes the proof.
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Corollary 4.1: Suppose that all the conditions of Theo-

rem 4.1 are satisfied with

β1(|x|)≥ k1|x|
q, β2(|x|)≤ k2|x|

q, for some k1,k2,q > 0.
(19)

Then, the equilibrium x = 0 is locally exponentially stable.

Moreover, the sub-level set Lc∗ defined in (14) and (13), is

an estimate of the domain of attraction. If the conditions hold

globally, then x = 0 is globally exponentially stable.

Proof: Following the same steps as in the proof of

Theorem 4.1, we get

V
(

x(t)
)

≤ e−α(t−t0)V
(

x(t0)
)

, ∀t ≥ t0, ∀x0 ∈ Lc∗ .

Thus, from (10) and (19)

|x(t)| ≤
(V

(

x(t0)
)

e−α(t−t0)

k1

)1/q
≤

( k2|x(t0)|
qe−α(t−t0)

k1

)1/q

=
( k2

k1

)1/q
|x(t0)|e

−(α/q)(t−t0), ∀t ≥ t0, ∀x(t0) ∈ Lc∗ .

This shows that x = 0 locally exponentially stable. If

the conditions hold globally, global exponential stability is

trivial.

Remark 4.1: Considering the storage function V
(

x(t)
)

,

the inequalities (11) and (12) show that (5) is exponentially

dissipative with respect to the supply rates S
(

y,w
)

and

e−αhmaxS
(

y,w
)

respectively, with S defined in (9). This can

be seen from the Remark 2.8 in [15].

B. Sum of squares stability conditions for the class of

polynomial systems

When the linear approximation fails, the dynamics of

many physical phenomena can be modelled by polynomial

differential equations. They are frequently found in several

domains like process control, biology, robotics, and electrical

systems. For this class of systems, SOS decomposition and

semidefinite programming [17], are shown to be a useful tool.

It has been used in several analysis and synthesis control

problems [18].

In this section we specialize the previous result for the

class of affine polynomial sampled-data systems, using SOS

decomposition and semidefinite programming techniques.

We formulate a constructive method to find a storage function

and a supply rate, which satisfy the asymptotic/exponential

stability conditions proposed in the previous section.

Let us consider the stability problem defined in Sec-

tion II for the particular case where the f (x), g(x) and

K(x) are polynomial functions. The system (5) will be

defined by polynomial functions F(x,w) := fn(x) + gn(x)w
and G(x,w) := ∂K

∂x
F(x,w):

{

ẋ = F(x,w),

y = G(x,w).
(20)

When looking for a polynomial storage function V (x), check-
ing the dissipativiy inequalities in Theorem 4.1 is a problem
of checking the non negativity of polynomials. This can be

seen from (9) and (20), as for the polynomial case (11) and
(12) are (respectively) equivalent to

0 ≤ −
∂V

∂x
F(x,w)−αV (x)

+
[

−δ 2
0 GT (x,w)XG(x,w)+2GT (x,w)Y w+wTY w

]

,

and

0 ≤ −
∂V

∂x
F(x,w)−αV (x)

+
[

−δ 2
0 GT (x,w)XG(x,w)+2GT (x,w)Y w+wTY w

]

e−αhmax ,

for any x(t) ∈D. In fact, the right terms in the last inequal-

ities can be written as polynomials of the form p(ξ ) ≥ 0,

with p(ξ ) ∈R[ξ ], and ξ = (x,w).

Checking the non negativity of a polynomial is known

to be a hard problem. Recent methods relaxed this problem

using semidefinite programming and the SOS decomposition

[17]. The relaxation is based on checking whether a polyno-

mial is a SOS, which is sufficient to ensure the semidefinite

positivity.

Definition 4.1: [18] A multivariate polynomial p(x) ∈
R[x] is said to be a sum of squares (SOS), if there exist

some polynomials pi(x) ∈ R[x], i ∈ {1, . . . ,M}, such that

p(x) = ∑M
i=1 p2

i (x).

The relaxation is only sufficient, but there are suggestions in

the literature which indicate that it is not too conservative

(see [18] and the references therein). However, it must be

noted that the computational complexity for testing whether a

polynomial p(x) is an SOS increases rapidly with the degree

of p(x).

SOS techniques are shown to be very useful in systems

analysis [18]. In the following, we reformalize Theorem 4.1

and Corollary 4.1 using the SOS method. The local ap-

plicability of the dissipativty inequalities inside a region

D is ensured using a technique similar to the S-procedure

[19]. Note that when looking for a Lyapunov or a storage

function, we need to ensure that its positive definiteness.

Thus, guaranteeing that it is an SOS is not sufficient, as it

only guarantees its non negativity. To overcome this problem,

we use the following proposition

Proposition 4.1: [18] Given a polynomial V (x) ∈ R[x] of

degree 2d, let

ϕ(x) =
n

∑
i=1

d

∑
j=1

εi jx
2 j
i , such that

d

∑
j=1

εi j > γ, ∀i = 1, . . . ,n

(21)

with γ a positive number, and εi j ≥ 0 for all i and j. Then

the condition

V (x)−ϕ(x) is SOS (22)

guarantees the positive definiteness of V (x).
Corollary 4.2: Consider the sampled-data system (3) in

the case where f (x), g(x) and K(x) are polynomial functions,
or the equivalent representation (20) and (6). Let D = {x ∈
R

n : µl(x) ≥ 0, l = 1,2, . . . ,s} be a neighbourhood of the
origin x = 0. Suppose that there exist a polynomial function
V (x) ∈ R[x], and sums of squares σl(ξ ) and ςl(ξ ), with l ∈
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{1, . . . ,s} and ξ =(x,w), such that the following polynomials
are SOS

V̂ (x) =V (x)−ϕ(x), (23)

ρ1(ξ ) =−
s

∑
l=1

σl(ξ )µl(x)−
∂V

∂x
F(x,w)−αV (x)

+
[

−δ 2
0 GT (x,w)XG(x,w)+2GT (x,w)Y w+wTY w

]

,
(24)

ρ2(ξ ) =−
s

∑
l=1

ςl(ξ )µl(x)−
∂V

∂x
F(x,w)−αV (x)

+
[

−δ 2
0 GT (x,w)XG(x,w)+2GT (x,w)Y w+wTY w

]

e−αhmax .
(25)

with δ0 =
2
π hmax, 0< XT = X ∈R

m×m, 0≤Y T =Y ∈R
m×m,

and ϕ(x) a positive definite polynomial defined in (21). Then,

the equilibrium x = 0 of the system (3) is locally uniformly

asymptotically stable. Moreover, the sub-level set Lc∗ defined

in (14) and (13), is an estimate of the domain of attraction.

Finally, if (24) and (25) are SOS while µl(x) = 0, for all

l ∈ {1,2, . . . ,s}, then the equilibrium is globally uniformly

asymptotically stable.

Proof: First, note that from (23) and Proposition 4.1,

the function V (x) is ensured to be definite positive and

radially unbounded (V (x) → ∞ when x → ∞). Therefore,

using Lemma 4.3 from [16], there exist class K functions

β1 and β2, such that

β1(|x|)≤V (x)≤ β2(|x|), ∀x ∈ R
n.

Moreover, when x(t) ∈ D, i.e. µl(x) ≥ 0 for all l ∈
{1,2, . . . ,s}, then from the non negativity of the SOS poly-

nomials σl(ξ ) and ςl(ξ ), we can see that ρ1(ξ )≥ 0 ( resp.

ρ2(ξ )≥ 0). The later implies that the dissipativity condition

(11) ( resp. (12)) is satisfied. Thus all the local stability

conditions of Theorem 4.1 are satisfied. The case where (24)

and (25) are SOS for µl(x) = 0 ∀l ∈ {1,2, . . . ,s} satisfies

obviously the global stability conditions in Theorem 4.1.

Corollary 4.3: Suppose that all the conditions of Corol-

lary 4.2 are satisfied, and that the storage function V (x)
satisfies

k1|x|
q ≤V (x)≤ k2|x|

q, ∀x ∈ R
n. (26)

Then, the equilibrium x = 0 is locally exponentially stable.

Moreover, the sub-level set Lc∗ defined in (14) and (13), is

an estimate of the domain of attraction. If the conditions hold

globally, then x = 0 is globally exponentially stable.

Proof: The proof follows the same steps of Corol-

lary 4.2, and it is a direct result of Corollary 4.1.

V. ILLUSTRATIVE EXAMPLE

In the following, we revisit the example in [1]. We find

the MASP which guarantees the global uniform asymptotic

stability of the sampled-data system.

A. Example 1

Consider the following system from [1]

ẋ = dx2 − x3 + u,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.62

0.64

0.66

0.68

0.7

0.72

h
m

a
x

α

Fig. 3. Tradeoff between α (the exponential decay rate of the storage
function), and the estimation of the MASP.

with a bounded time-varying |d| ≤ 1, and a stabilizing

control u=K(x) =−2x. Emulating this controller results in a

sampled-data system that can be represented by the operator

∆sh in (6), and a system (5) described by
{

ẋ = dx2 − x3 − 2x+w,

y =−2(dx2 − x3 − 2x+w).

We apply the Corollary 4.2 in order to find a storage
function of the form V (x) = ax2 + bx4, such that (23), (24)
and (25) are SOS. We choose ϕ(x) = 10−3x2, α = 0.1 and
hmax = 0.72. We intend to test the global stability. In this
case, the polynomials (24) and (25) are

ρ1(ξ ) =−(2ax+4bx3)(dx2 −x3 −2x+w)−α(ax2 +ax4)

+
[

−4δ 2
0 X(dx2 −x3 −2x+w)2

−4Y (dx2 −x3 −2x+w)w+Y w2
]

, (27)

ρ2(ξ ) =−(2ax+4bx3)(dx2 −x3 −2x+w)−α(ax2 +ax4)

+
[

−4δ 2
0 X(dx2 −x3 −2x+w)2

−4Y (dx2 −x3 −2x+w)w+Y w2
]

e−αhmax , (28)

where a,b,X ,Y are decision variables. Note that the time-

varying terms d and d2 appear in the polynomial expressions.

However, if both (27) and (28) are ensured to be SOS

for all the values of (d,d2)∈ {(1,0),(1,1),(−1,0),(−1,1)},

then they will be SOS for any time-varying |d| ≤ 1. This

is found to be satisfied using the SOSTOOLS software

[20], for the storage function V (x) = 0.77402x2+ .19911x4,

and the supply function (9) defined by X = 0.47522 and

Y = 0.6230210−3. By Corollary 4.2, we obtain the global

uniform asymptotic stability of the equilibrium x = 0, of

the sampled-data system. This result cannot be obtained

when trying a quadratic storage function. Increasing α (the

exponential decay rate of the storage function), results in

the decrement of the maximum value of hmax for which the

problem is feasible. This can be seen in Fig 3. Previous works

considered this example in the literature for estimating the
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Fig. 4. State trajectory evolution for two sequences of sampling periods.

MASP. In [1], a bound of hmax = 0.368 is found. In [2],

the proposed upper bound is hmax = 0.1428. The conditions

proposed in this paper are found feasible for hmax = 0.72.

State trajectory evolutions are shown in Fig 4. It can be seen

that the state trajectory is asymptotically stable when the

sampling periods are inferior to the bound hmax = 0.72. Also,

note that for a uniform sampling period of tk+1 − tk = 1.05,

asymptotic stability is no longer guaranteed.

VI. CONCLUSION

In this paper we have provided sufficient conditions

for the stability of nonlinear sampled-data systems, which

are affine in the control. The main idea of the paper is

to use the dissipativity theory to provide an estimate of

the maximum allowable sampling period that guarantees

asymptotic/exponential stability. The results are numerically

illustrated for the case of polynomial systems, with the use

of SOS decomposition and semidefinite programming.
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